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Abstract

To ensure the motion accuracy of a machine tool over its entire three-dimensional
workspace, it is important to evaluate all the volumetric errors associated with three
linear axes including three linear displacement errors, six straightness errors and three
squareness errors. The laser step diagonal measurement modifies the diagonal dis-
placement measurement, described in the standard ISO 230-6, by executing a diagonal
as a sequence of single-axis motions. It has been claimed that the step diagonal test
enables the identification of all the volumetric error components by using a linear laser
interferometer only. This paper first shows that the conventional formulation of step
diagonal measurements is potentially subject to a significant estimation error caused
by setup errors in mirror and laser directions. We then propose a new formulation
of laser step diagonal measurement, in order to accurately identify three-dimensional
volumetric errors even under the existence of setup errors. The effectiveness of the
modified identification scheme is experimentally investigated by an application exam-
ple of three-dimensional laser step diagonal measurements to a high-precision vertical
machining center.
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1 Introduction

In ISO standards(e.g. ISO 230-1 [1]), the motion accuracy of a feed drive of a machine tool
is basically evaluated in the axis-to-axis basis; the linear positioning error and straightness
errors are separately measured for each axis, and the squareness error between two axes is
then measured. Error measurements for a coordinate measuring machine (CMM) described
in ISO 10360 series contain tests with a different concept. By using an artefact such as a
ball plate, all the three-dimensional position error components (in X, Y, and Z) for the given
reference location are directly measured over the entire workspace. The importance of the
evaluation of such volumetric errors has been recently recognized also by many machine tool
builders [2]. Currently, technical committees in ASME (TC52) and ISO (TC39) are working
on the standardization of the definition of volumetric accuracy for machine tools [3].

In accuracy measurement of machine tools, linear positioning errors are typically mea-
sured by using a laser interferometer. Straightness and squareness errors are often measured
by using a high-precision displacement sensor and an artifact such as a straight edge or a
square edge. Naturally, the artifact must have geometric and dimensional accuracies guar-
anteed to be higher than the accuracy of the measured machine. Furthermore, since the
measurement is one-dimensional, an operator must change the setup of a sensor and an
artifact every time for the measurement of each different error component. For orthogonal
three-axis machines, 3 linear displacement errors, 6 straightness errors and 3 squareness er-
rors must be measured by different setups. Dual-beam laser systems or autocollimators to
measure straightness and squareness errors are also available from many companies. They

do not require an artifact such as a straight edge, but it is the same in that a different setup



is needed to measure each different error component.

For quicker, lower-cost evaluation of volumetric errors of a machine tool, the standards
ASME Bb5.54 [4] and ISO230-6 [5] define the diagonal measurement by using a laser in-
terferometer. As is illustrated in Fig. 1, the machine moves along each body diagonal of
the machine’s workspace, and the diagonal displacement is measured by using a laser in-
terferometer. Chapman [6] discussed in details that it is not possible to use the diagonal
measurement, to identify each volumetric error component, although it can be used for a
quick check of squareness errors. It is not possible to distinguish linear errors, straightness
errors, and squareness errors of each axis from the results of diagonal tests.

As an extension of diagonal measurement, the step diagonal measurement, or the vector
measurement, has been proposed by Wang [7, 8]. The step diagonal measurement modifies
the diagonal measurement by executing a diagonal as a sequence of single-axis motions. Fig-
ure 2 illustrates the three-dimensional (3D) step diagonal measurement. Unlike the diagonal
measurement, Wang claimed that total three step diagonal measurements for different diag-
onals can separately identify all volumetric errors, including 3 linear displacement errors, 6
straightness errors and 3 squareness errors. Compared to conventional measurements using
a straight edge and a square edge, it is thus significantly more time-efficient. Since it does
not require an artefact, it is lower cost, especially for a large-sized machine, where large
artefacts of high geometric accuracy are needed.

Chapman [6] also discussed an issue with the step diagonal test. He showed that the
misalignment of mirror direction, as well as the machine’s angular motion errors, may causes
a significant error in identified volumetric errors. In our previous publication [9], we further

extended this discussion to show that the conventional formulation by Wang [7] is valid only
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when implicit assumptions related to laser and mirror setups are met, and that it is gener-
ally not possible to guarantee these conditions when volumetric errors of the machine are
unknown.

Then, for the two-dimensional (2D) version of step diagonal measurement, we [9] proposed
its new formulation such that all volumetric errors can be identified even when significant
setup errors exist. We showed that linear positioning errors must be independently measured,
and then normal error components (straightness and squareness errors) can be identified by
using the proposed formulation.

Another potentially critical error factor for step diagonal measurements is angular errors
of each axis (i.e. yaw, pitch and roll). Soons [10] formulated their effect on the 3D step
diagonal measurement and clarified that they may cause a significant identification error.
He also suggested an interesting formulation to separately identify angular errors from step
diagonal tests. However, he only presented its mathematical formulation, without discussing
its validity in practical industrial environment.

The main objective of this paper is to extend our discussion in [9] to the 3D version
of laser step diagonal measurement. Major contributions of this paper, other than those
previously presented in [9], are summarized as follows: 1) A new formulation of 3D laser
step diagonal measurement is presented. The extension from 2D to 3D cases is not obvious,
as will be discussed in Remark #1 in Section 3.2. 2) The feasibility of the cancellation
of the machine’s angular errors in step diagonal measurements is studied with considering
measurement uncertainties of laser measurement. 3) An experimental validation of step di-
agonal measurement is presented. Since Wang’s first publication[7], to our knowledge, there
has been few publication that experimentally demonstrated its estimation accuracy by com-

4



paring the estimates to conventional, more reliable measurements. The experimental studies

presented this paper will be essential to promote its practical application to the industry.

2 Review: Conventional Formulation of Laser Step Di-

agonal Measurement and Its Inherent Issues

This section briefly reviews the conventional formulation of the identification of volumetric
errors by step diagonal measurements presented by Wang [7], and then its inherent issues
discussed in our previous publication [9].

Figure 3 illustrates the setup of the 3D step diagonal measurement. For the simplic-
ity of drawing, only single block is depicted. Define Ae,(x(k)), Aey(x(k)) and Ae,(z(k))
as the positioning error in X-, Y-, and Z-directions, respectively, when the machine moves
toward the X-direction from the reference position z(k — 1) to z(k) (k =1, ---, N). In

other words, when the machine moves from the point A to B in Fig. 3, the vector represent-
T

ing its actual motion is given by | o 4+ Ae,(z(k)) Aey(z(k)) Ae,(z(k)) | - Ae,(y(k)),
Aey(y(k)), Ae,(y(k)), Aey(z(k)), Aey(z(k)), and Ae,(z(k)) are defined similarly. The sub-
script of Ae,(x) represents the error direction, and the symbol in parentheses represents the
direction of motion. In this paper, these total 9N error components are collectively called
volumetric errors.

The nominal size of each block is given by a, x a, x a, (in XxY xZ), as shown in Fig. 2
(ie. z(k) =x(k —1) + ay, y(k) = y(k — 1) + ay, and z(k) = z(k — 1) + a, in Fig. 3). When
the laser is aligned to the body diagonal AG in Fig. 3, the diagonal displacement with the

motion toward X, Y, and Z directions in the k-th block are respectively given by Ry ,,(k),



Ry ppp(k), and R, ,,p(k). This laser beam setup is referred to as ppp measurement hereafter.
Note that “p” stands for “positive,” and “ppp” indicates that all of x, y and z components
of the laser beam direction vector are positive. The subscript of R, .(k) represents the direc-
tion of motion (x, y, z) and the laser direction. A similar measurement is done as the laser
is aligned along body diagonals BH and DF. They are respectively referred to as npp and
pnp measurements (“n” stands for “negative”). Ry npp(k), Rynpp(k), Renpp(k), Rapnp(k),

Ry pnp(k), and R, ,,, (k) are defined similarly.

For example, R, ,,,(k) is given by:

- a; + Aeg(z(k)) -
Raoppp(K) = | Lopwp Lyoop legpp | - Aey(z(k)) (1)
Ae,(z(k))
where k =1, -+, N. (Izppp, lyppps L2 ppp) 18 the unit vector representing the laser direction

in the ppp measurement. (I npp, lynpps Lzmpp) A0 (Lz pnp, Ly pnp» Lz pnp) are defined analogously.

By combining similar formulations for other diagonal displacements, we have [7]:

[ leppp Ly ppp Lz ppp 0 0 0 0 0 0 1T o+ Aes(z(k)) Ra ppp (k)
0 0 0 lz ppp Ly, ppp Lz, ppp . 0 . 0 . 0 ﬁeyEIEZgg Ry,pppgzg
0 0 0 0 0 0 z,ppp y,pPP 2,ppp ez \T R: ppp
—lempp  —lynpp —lznpp l 0 l 0 l 0 0 0 0 A(z(yékgl)e)) Ra npp(N f(kl:c)Jr 1)
T, n z,n 0 0 0 a+ eylY = R n
,npp y,mpp ,npp y y,npp
. 0 . 0 . 0 0 0 0 lznpp  lynpp  lz,npp N ((ygzg; z,nppgk;
0 0 0 0 0 0 ex(z R
z,pnp y,pnp z,pnp z z,pnp
0 0 0 —lzpnp  —lypnp  —lzpnp 0 0 0 Aey(2(k)) Ry pnp(N —k+1)
0 0 0 0 0 0 lapnp  lypnp lepnp 1 L a+ Ae:(2(k)) Rz pnp(k)
(2)
Assume their nominal laser directions, i.e.:
- 1 _
looops lywops Logpp |~ laf| | %> Ty @
Z 1T
= — | _ 3
z,npp» Yy,npp» Z,npp T Yo z
|: l l l ||Cl,|| a Qa a ( )
Z 1T
lm,pnpa ly,pnpa lz,pnp - ||CL|| Qyg, _aya Q,




where |la|| := /a2 + a2 + a2. Then, all the volumetric errors, Ae,(z), -+, Ae.(z) can be
estimated by solving Eq. (2).

Our previous paper [9] has discussed inherent issues with this conventional formulation.
Notice that the conventional formulation is valid only when the following conditions are
satisfied: 1) laser beam directions are precisely aligned to nominal directions, and 2) the flat
mirror is precisely aligned perpendicular to the laser beam, and 3) the machine’s angular
errors are sufficiently small. In practical setup of step diagonal measurement, the direction of
the laser beam and the flat mirror can be only aligned based on the motion of the machine
to be measured. In such a case, it is generally not possible to guarantee the satisfaction
of 1) and 2), when volumetric errors of the machine are unknown. Therefore, volumetric
errors identified by the conventional formulation generally contain a potentially significant

identification error. This discussion applies to the 3D case (2) as well.

3 New Formulation of 3D Laser Step Diagonal Mea-
surement

3.1 Sensitivity of Setup Errors in Conventional Formulation

To propose a new formulation of laser step diagonal measurement such that setup errors
do not impose any effect on estimated volumetric errors, this section first formulates the
sensitivity of setup errors on the estimates of volumetric errors in the conventional formula-
tion (2). The misalignment errors of laser and mirror directions are collectively referred to
as setup errors hereafter. To simplify the discussion, this section assumes that the machine’s
angular error is negligibly small. The influence of angular errors will be discussed later in

Section 3.3.



In the k-th block, suppose that the “nominal” diagonal distance for the x-motion is de-
noted by Ry, (k), when the laser direction is perfectly aligned to the nominal direction and
the mirror is aligned perfectly perpendicular to the laser direction. The symbol ™ indicates
the nominal distance without setup errors. As has been discussed in [9], the misalignment
of laser and mirror directions gives a constant error to the diagonal displacement at each

block. Suppose that this misalignment error in ppp measurement is given by 0R; p,,. In

other words,

R:L’,ppp(k) = Rm,ppp(k) + 5Rr,ppp (4)

Under the assumption that the machine’s angular error is negligibly small, we can approxi-
mate that the effect of setup errors, d R, p,,, is the same for all the blocks. Other parameters,
SRy ppps OB pops ORa nppy Oy npps OR npps 0 R pnp, ORy pnps OR; prp, are defined analogously.
Notice that we have:

6R;1;,ppp + 6Ry,ppp —+ 5Rz,ppp ~ 0 (5)

which applies also to npp and pnp measurements. By solving Eq.(2), we have:



[lall

86s@®) = LR 4 (6) 4 RV = +1) = Ry + R} — ©
86,00 = o (e ypl0) = B yrg(0) = (5B gy = )} ™
86:w0) = SUGR, (1) = Ry (N = 1) = (5B pny — 5Remp)} ®
86:y®) = LR, 1y 8) = Ry (8) = OBy = 3R} o)
A6 00) = G (Ra(F) + g N =k 1) = Ry + 3R np)} (10)
86:0®) = ARy 1y (08) = RV = b+ 1) = OBy = o) (1)
86:c0) = SR 0y 0) = By (8) = R = ) (12)
86y (60) = Yol {Reppy(h) = R (8) = (R = 5By} (13)
86209 = AU Ry 0) 4 Reopny(6) = (R + 0B pny)) — 0 (149

Note that the symbol ~ represents the estimate under setup errors. Equations (6)~(14)
indicate that the estimated volumetric errors are subject to the influence of setup errors by a
factor of % In practical setups, it is generally not valid to assume that they are negligibly
small. Furthermore, it can be easily observed that it is not possible to identify nine setup

errors, 0 Ry ppp, =+, OR, pnp from three step diagonal measurements only.

3.2 New Formulation to Identify Volumetric Errors under Setup
Errors
In order to cancel setup errors, we propose to directly measure linear error components,

Ae,(z(k)), Aey(y(k)) and Ae,(2(k)) (k =1, ---, N). First, for the simplicity of notation,

define:



Azz = OReppp + 0 Ry nppy Ayw 1= 0 Rappp — 0 R pnp,

Aez 1= 5Rx,pnp B 5Rx,nppa )‘:vy = 5Ry,ppp B 5Ryanpp’

)\yy = 5Ry,ppp + 6Ry,pnp7 )\zy = 5Ry,npp - 6Ry,pnp; (15)
Az 1= 5Rz,ppp - 5Rz,nppa )‘yz = 5Rz,ppp - 5RZJ’"P’
)\zz = (SRZ’npp + 5Rz,pnp

which represent the effect of setup errors in Eqs. (6)~(14), respectively. For example, A,
represents the setup error term in the formulation of Aé,(x(k)) (Eq. (6)). The subscript of
each symbol indicates the volumetric error that contains it. Then, when linear positioning
errors, Ae,(z(k)), Aey(y(k)), Ae,(z(k)) (k=1,---, N), are given, from Egs. (6), (10), and

(14), Agzs Ay, and A, can be respectively estimated as follows:

< 2a.,
Aer := mean {_“%”“ (Aey (z(k)) + az) + (Rappp(k) + Ronpp(N — k + 1))}
A 2a
Sy = mean{—mmey(yw))+ay>+(Ry7ppp<k>+Ry7pnp<N—k+1>>} (16)
o 2a.,
See = mean {—ﬂ (B (2(K)) + 2) + (Re mpp(K) +Rz,,mp<k>>}
where the function “mean” represents the mean value over £k = 1,---, N. Notice that the

orientation of the coordinate system can be arbitrarily set. For example, the coordinate

system can be defined such that:
mean {Ae, (z(k))} = mean {Ae,(z(k))} = mean {Ae,(2(k))} =0 (17)

Under this assumption, Ay;, A.z, and A,., can be estimated from Eqs. (7)(8)(13) as follows:

Y- mean{_%ﬁmm(k))+(Rm,,,,,,,(k) —Rx,pn,,(k))}

Ay = mean {—%ﬁmz(m(k)) + (Ra pnp(k) = Runpp(N — k + 1))} (18)
\ = mean —ﬂ ey(z —

e o= mean { =206 (<(8) + (Regmolh) — Rems(h)
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Now, from the definitions (15) and Eq. (5), we have:

)\xy = _)\yx - )‘z:v - )\xz
Ay = —Ayw— Mgz — Ay (19)

From Eqs. (16)(18)(19), we can identify all of nine parameters in Eq. (15). 6N volumetric

errors, Aé,(z(k)) ~ Aé,(z(k)), can be then identified by Eqgs. (6)~(14).

Remark #1:

In the 2D case discussed in [9], setup errors only affect the estimates of linear error com-
ponents, é,(x(k)) and é,(y(k)). In other words, when é,(z(k)) and é,(y(k)) are replaced
with measured values, the conventional formulation (2D version of Eq. (2)) gives good es-
timates for normal error components, é,(x(k)) and é,(y(k)) (k = 1, ---, N). This is not
the case with the three-dimensional case. As has been discussed above, the conventional
formulation (2) may give a significant estimation error for normal error components, even

when linear error components are directly measured and excluded from the estimation.

Remark #2:

Both conventional and proposed formulations of step diagonal measurement assume that
the machine’s volumetric errors are precisely repeatable. Clearly, the machine’s unrepeatable
errors cause an estimation error. Laser measurement uncertainties in total 6 measurements
also deteriorate the estimation accuracy. Although it is not possible to assure the estimation
uncertainty lower than the accumulated positioning uncertainties and measurement uncer-

11



tainties, we claim that a significant practical value of step diagonal measurement is in that
it can evaluate straightness and squareness errors by using a linear laser interferometer only.
Compared to the conventional artifact-based measurement, it requires lower cost, applying
a laser interferometer to the evaluation of all the errors, without using a artifact of high

geometric accuracy. It is particularly advantageous for a large-sized machine.

Remark #3:
When linear error components, Ae,(z(k)), Ae,(y(k)) and Ae,(z(k)), are known, Eq. (2)

can be reformulated as follows:

Ly ppp Lz ppp Lo ppp Lz ppp loppp  lyppp Aey(z(k))

—lynpp  —lznpp lz npp Lz npp lznpp  ly,npp Aez(z(k))

Ly pnp Lz pnp —lapnp  —lzpnp  lepnp  lypnp Aea(y(k))

Ly pnp lz . pnp 0 0 0 0 Aez(y(k))

0 0 lz,ppp L2 ppp 0 0 Aeg(2(k))

0 0 0 0 lz,ppp  ly,ppp Aey(z(k))
Ae,

(Ra,ppp (k) + Ry,ppp(k) + Rz ppp(k)) — (az + ay + az) — (Aex(z(k)) + Aey(y(k)) +
(Ranpp(N =k +1) + Ry npp(k) + Rz npp(k)) — (ae +ay + a:) — (Aex(2(k)) + Aey(y
(Ra,pnp(k) + Ry,pnp(N —k + 1) + Rz pnp(k)) — (¢ +ay + a:) — (Aex(2(k)) + Aey(y
) — ax — Aex(x(k))
Ry ppp(k) — ay — Aey(y(k))

k) —a. — Ae.(z(k))

AA
s
Bt
==
==
++

[

n

L

I3
)
=
=
=
=

By solving Eq. (20), for example, Ae,(z(k)) and Ae,(x(k)) can be respectively given as

follows with the consideration of setup errors represented as in Eq. (4):

llall llall

Aéy(l(k)) = 2(1 (R-"E ppp(k) - Rx,pnp(k)) - E (5R-7’ pnp + 6Ry ppPp + 5R~ PPP)
8ea®) = LU Ry (8) — (Ranpn (N = 5 1) F By (8) + R mpp(K) = (Rymo(N = k4 1) + Repmp(K))}

H I ||a||

(aw +ay +a:) + {Aez(2(k)) + Aey(y(k)) + Aex(2(k))} + (‘5Rm pnp + ORy,ppp + 0 Rz ppp) (21)

where nominal laser beam directions (4) are assumed. Under the assumption in Eq. (17),

the effect of setup errors on the first equation is given by:

5Rw pnp + 5Ry ppp T 5Rz ,ppp — Hi€aAIN { ] —rAeé ( (k) + (R:v,ppp(k) - R:v,pnp(k))} (22)

which can remove the effect of setup errors on the estimate of Aé,(y(k)) given by the second
equation in Eq. (21). Analogous relationship can be observed for Aé,(xz(k)) and Aé,(z(k)),

12



Aé,(y(k)) and Aé,(z(k)). Therefore, by simply solving Eq. (20), one can estimate 6N
volumetric errors, Aé,(x(k)) ~ Aé,(2(k)), removing the influence of setup errors. This is an

alternative formulation of the proposed estimation scheme presented in this subsection.

3.3 Cancellation of the Effect of Angular Errors

The straightness error of a feed drive caused by the deformation of guideways is often ac-
companied with angular errors (yaw, pitch, and roll) [11]. The formulation (2) ignores the
influence of angular errors. When angular errors are not negligibly small compared to posi-
tion errors, they may cause significant estimation errors. Soons [10] formulates the effect of
angular errors on the 3D step diagonal measurement (it is partially presented also by Yang
et al. [12]). Soons also presented a formulation to identify angular error from step diagonal
measurements. This section first briefly reviews Soons’ formulation. The contribution of this
paper is on the discussion of the feasibility of this scheme with the consideration of practical
measurement uncertainties of laser measurement, which will be presented in Section 4.2.

This section assumes the machine configuration depicted in Fig. 4 (the experimental
machine presented in Section 4 has the same configuration). Define the position errors
with respect to the reference position x(k) in X-, Y-, and Z-directions by e,(z(k)) :=
S Aea(a(@)), a(k) == T, Ae,(@(i)), and ex(e(k)) = YL, Ae.(e(i)). e.(y(k)),
e.(z(k)) are defined analogously (x = z,¥, z) . The angular errors around X-, Y- and Z-axes
at the reference position z(k) are defined by e,(x(k)), €,(z(k)), and €,(x(k)), respectively.
€.(y(k)) and €.(2(k)) are defined analogously (x = z,y, 2).

Including the influence of angular errors, the position error in X, Y, and Z directions for

13



the reference position (z(k),y(k), z(k)) can be respectively given as follows [10, 12]:

eo(x(k),y(k), 2(k)) = ea(z(k)) + ex(y(k)) + ea(z(k)) + 2(k) - € (x(k)) + 2(k) - & (y(k))
ey(w(k), y(k),2(k)) = ey(w(k)) +ey(y(k)) + ey (2(k)) + (k) - e.(y(k)) — 2(k) - € (y(k))
—2(k) - ea(2(k))

ex(x(k), y(k), 2(k)) = e(w(k)) +e=(y(k)) + e=(2(k)) — x(k) - €,(y(F)) (23)

Angular errors also change the relative direction of the mirror to the laser beam direc-
tion. For example, as shown in Fig. 5, suppose that the diagonal displacement in the pnp
measurement (i.e. the laser beam is aligned to the diagonal DF) when the mirror moves
from the point D to A is represented by Rpapny(k). Similarly, the diagonal displacement
with the motion from C to B is represented by Rcppnp(k). Considering all the effects of

angular errors, we have:

Rpapnp(k) = Roppnp(k) = —aa - 75— - Aea(2(k)) + ag - 0 - Aez(2(k)) (24)

||a||

It contains angular errors only, with no influence of positioning errors. Similarly, we have:

Rircipnp(k) = Roognp(k) = W Aey<z<k>>+ay-|f‘7y|-Aez<x<k>> (25)
Rappp(N = k) = Ripcpp(N — k) = ayﬁﬂex(xw))my T Aes(e(R) - (26)
Rt ppp(k) = Rapppp(k) = —ay-||“;“-Aem(zue))—ay-ﬁAez(z(k)) (27)

Ripnpp(k) = Bpanpp(k) = —ay - =5 - Aey(w(k)) +ay - 775 - Aex(2(k)) - (28)

By solving these five equations, five out of nine angular errors for each block can be identi-

fied [10].

14



4 Experimental validation

4.1 Estimation of volumetric errors

The problems with the conventional formulation of laser step diagonal measurement, and
the effectiveness of its proposed formulation, are experimentally validated by an application
example to a three-axis vertical-type high-precision commercial machining center.

The machine configuration is shown in Fig. 4. It has three orthogonal linear axes, which
are all driven by a ball screw and a servo motor with a slide guideway. Its positioning resolu-
tion is 0.1 pgm in all the axes. The machine’s strokes are: X: 900mm0OY: 500mm07Z: 350mm.
For laser measurements, a laser doppler displacement meter, MCV-500 by Optodyne, Inc. is
used. Laser beam directions are aligned by using a quad-detector, LD42 by Optodyne, Inc.
The step diagonal measurements are done with the step size a, = a, = a, = 10 mm, over
the entire range of 120 mm x 120 mm x 120 mm (i.e. 12 blocks in X, Y, and Z directions).
Figure 6 shows the experimental setup of laser step diagonal measurement.

First, volumetric errors are estimated by the conventional formulation (2). Figures 7
to 9 show estimated position errors with respect to the reference position (“Estimated by
conventional formulation”). For each of step diagonal measurement, the same measurement
is repeated by five times. Figures 7 to 9 plot the mean of estimated errors by the marks “o”,
as well as their variation at each measurement point by horizontal parallel lines (“=").

For the comparison, linear positioning errors in X, Y, and Z directions, e, (z(k)), e, (y(k)),
and e, (z(k)), were measured by using the same laser interferometer aligned directly toward
X, Y, and Z directions, respectively. The straightness errors in X, Y, and Z directions were

measured by using a laser displacement sensor, LK-G10 by Keyence Corp. (measurement
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resolution: 0.01 pm), and an optical flat as the straight-edge (according to the manufac-
turer’s calibration chart, its straightness error is < PV A/4, A = 0.6328um). The squareness
errors of X-Y, Y-Z, X-Z axes were measured by using the same laser displacement sensor, and
the square-edge by Fujita Works, Ltd. (according to the manufacturer’s calibration chart, its
squareness error is < 0.5 um / 150 mm). Measured position errors in the direction normal
to the feed directions, e, (z(k)), e,(x(k)), - - -, are given by combining measured straightness
and squareness errors. In Figs. 7 to 9, these measured values are also plotted (“Measured
by using artefact”). Similarly as the estimated values, the same measurement was repeated
by five times, and their mean values as well as their variation are plotted in the figures.

Then, volumetric errors are estimated based on the proposed formulation of step diagonal
measurements presented in Section 3.2, by using displacement profiles in ppp-, npp-, pnp-,
X-, Y-, and Z- directions. First, we assume that the machine’s angular errors are negligibly
small. Estimated profiles are also plotted in Figs. 7 to 9 (“Estimated by proposed formula-
tion”). Note that in all the cases, the coordinate system is defined as shown in Eq. (17).

Table 1 summarizes measured and estimated straightness and squareness errors. Here,
the straightness error is defined by the maximum variation of mean values of normal errors
(for example, e, (z(k)) for the straightness error of X axis to the Y direction) from their
least-square mean line. The squareness errors are defined by the gradient of the least-square
mean line of e;(y(k)) (X-Y), ex(2(k)) (X-Z), and e,(y(k)) (Y-Z) with respect to that of
ey(x(k)), e,(z(k)), and e, (z(k)), respectively.

From Figs. 7 to 9 and Table 1, it can be clearly observed that, when the conventional
formulation (2) is used, the estimated volumetric errors from step diagonal measurements
have significant estimation errors. The estimation error is particularly large in the estimates
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of linear positioning errors in Y and Z directions (at maximum about 22 pym over 120mm in
the Z direction).

In overall, volumetric errors of the measured machine are smaller than typical general-
purpose machining centers in the market. The straightness errors of X, Y, and Z axes are
all smaller than 1 ym. Considering the measurement uncertainties associated with the laser
doppler displacement meter or the artefacts, it is difficult to draw any conclusion from the
comparison in straightness errors. On the other hand, the squareness errors of the measured
machine are relatively larger, and thus clearer comparison of measured and estimated values
are possbile. Fig. 8(a) (— the squareness of X-Y), Fig. 9(a) (— the squareness of X-Z),
and Fig. 9(b) (— the squareness of Y-Z), show that the conventional formulation of step
diagonal measurements results in larger estimation errors (see also Table 1). For example,
as is shown in Fig. 8(a), the measured squareness error between X and Y axes is -1.4 ym /
120 mm. The conventional formulation of step diagonal measurements gives its estimate of
3.2 pm / 120 mm. The estimate by the proposed formulation is -1.2 pym / 120 mm. The
estimated by the proposed formulation show better match with the measured value. Similar

observation can be made for all the squareness errors shown in Table 1.

4.2 Identification of angular errors

A small difference between measured volumetric errors and their estimates by the proposed
formulation may be caused by the machine’s angular errors. The angular errors are estimated
by applying the formulation (24)~(28). Note that all the necessary diagonal displacements
can be obtained by performing three measurements moving the mirror in the sequence of

X—=Y—Z (i.e. D—-C—B—F in Fig. 5 in pnp measurement), Y—-Z—X (D—A—-E—F),
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Z—X—=Y (D—-H—G—F) for each diagonal.

Figure 10 shows estimated angular errors by using the formulation (24)~(28). Compared
to actual angular errors of the experimental machine, the estimates in Fig. 10 are clearly too
large.

For example, from Eqs. (24) and (26), Ae,(z(k)) can be estimated by:

V3

{RAD,HMJ(N - k) - RBC,npp(N - k) - RDA,pnp(k) + RCB,pnp(k)} (29)

where it is assumed that a, = a, = a, = a for the simplicity of computation. Suppose that
measured diagonal measurements have an uncertainty of 0.1 um in one block. From Eq. (29),
it is observed that this measurement uncertainty may cause the estimation uncertainty of
Ae,(z(k)) up to 3.5 x 107° rad at the worst case (¢ = 10 mm). In 12 blocks, this may be
accumulated to €,(z(12)) = 4.2 x 10~* rad. To make the estimation uncertainty sufficiently
small to evaluate angular errors on typical machining centers, the uncertainty of laser diag-
onal measurements must be much smaller than 0.1 ym for one block (10y/3 mm), which is
practically quite difficult in a typical factory environment. We conclude that, although it is
mathematically possible to estimate a part of angular errors by the formulation presented
by Soons [10], it is practically difficult under typical uncertainty of laser measurement in a

factory environment.

5 Conclusion

The conventional formulation of the step diagonal measurement proposed by Wang [7] is
valid only when the following implicit conditions are met: (1) laser beam directions are

precisely aligned to nominal directions, (2) the flat mirror is precisely aligned perpendicular
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to the laser beam direction, and (3) the machine’s angular errors are sufficiently small. An
inherent problem with the conventional formulation is that it is generally not possible to
meet (1) and (2) by the adjustment of the setup, when volumetric errors of the machine are
unknown. The new formulation proposed in this paper suggests that linear positioning errors
must be independently measured, and then normal error components (namely, straightness
and squareness error components) can be identified by using step diagonal measurements
even under the existence of setup errors.

As an application example, the proposed scheme was applied to estimate three-dimensional
volumetric errors on a machining center of the positioning resolution of 0.1 ym. Experimen-
tal results indicated that the proposed formulation resulted in much smaller estimation errors
than those by the conventional formulation. Based on the proposed formulation, the square-
ness error of X-Y, X-Z, and Y-Z axes were estimated with an estimation error of at maximum
about 3 pm.

The practical validity of the estimation of angular errors from step diagonal measurements
based on Soons’ formulation [10] was also studied in experiments. Due to the uncertainty
of laser displacement measurements in a typical factory environment, we showed that it is
difficult to cancel the influence of angular errors by using this formulation. Step diagonal
measurements may deteriorate when the machine to be measured has significant angular

errors.
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Table 1: Measured and estimated straightness and squareness errors.

Measured | Conventional | Proposed
estimation estimation

ctror i X 08 pm | L7 4m *

(I:rfiilﬁlior?l\?g 0.2 ym | -18.3 ym -

(I:r(;s(;iﬁii()élizrlg -1.1 ym | 20.9 pm -

R e T e
Ef:;?‘ élt(i?rsei g(f) 55 04 um | 0.7 ym 0.4 pm
e s [T [0 05w
3352“ %t(iisésé g(f) r}; 0.2 ym | 0.3 um 0.7 pm
et L [03m [06m  [05pm
s (Y direction) | V4™ | L1 em 09
Squareness of -1.2 pm 3.2 pm -1.4 pm
Squareness of 1.2 pym -4.3 pm 0.1 pm
Squareness of 2.7 pm -3.9 ym -0.1 pm

Y-7Z

* All the errors are over the range of 120 mm.
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Figure 1: Schematics of diagonal measurement
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Figure 2: Schematics of 3D laser step diagonal measurement
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Figure 3: Volumetric errors and diagonal displacements in single block

Figure 4: Configuration of experimental machine.
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Figure 5: Comparison of two diagonal displacements for the estimation of angular errors.

Figure 6: Experimental setup.
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Figure 7: Measured and identified volumetric errors for the motion toward X direction.
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Figure 10: Estimated angular errors.
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