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ENTROPY OF SUBSHIFTS AND THE MACAEV NCRM

RUI OKAYASU

ABSTRACT. We obtain the exact value of Voiculescu's invariant k3 (r), which is an
obstruction of the existence of quasicentral approximate units relative to the Macaev
ideal in perturbation theory, for & tuple T of operators in the following two classes:
(1) creation operators associated with a subshift, which are used to define Matsumoto
algebras, (2) unitaries in the left regular representation of » finitely generated group.

1. INTRODUCTION

In the remarkable serial works [Voil], [Voi2], [Voi3] and [DV] on perturbation of Hilbert
space operators, Voiculescu investigated a numerical invariant kgp(r) for a family 7 of
bounded linear operators on a separable Hilbert space, where kg (r) is the obstruction of
the existence of quasicentral approximate units relative to the normed ideal Gf} COITe-
sponding to & symmetric norming function ®, (see definitions in Section 2). The invariant
kg{7) is considered to be a kind of dimension of  with respect to the normed ideal 6(,0}
(see [Voil] and [DV]).

In the present paper, we study the invariant X3(7) for the Macaev ideal, which is
denoted by k(7). It is known that k() possesses several remarkable properties: for
instance, kx(7) is always finite and ke(r) = 0 if &% is strictly larger than the Macaev
ideal. In [Voi3], Voiculescu investigated the invariant & (7) for several examples. He
proved that & (7) = log N for an N-tuple 7 of isometries in extensions of the Cunitz
algebra Oy. Here, log N can be interpreted as the value of the topological entropy of the
N-full shift. Inspired by this result, we show that k7 (7) = hyp(X) for a general subshift
X with a certain condition, where A, (X) is the topological entropy of X and 7 is the
family of creation operators on the Fock space associated with the subshift X, which is
used to define the Matsumoto algebra associated with X (e.g. see [Mat]). In particular,
we show that k3,(7) = huwp(X) holds for every almost sofic shift X (cf. [Pet]).

Let I' be a countable finitely generated group and S its generating set. We also study
k2 ((Xa)ecg), where A is the left regular representation of I'. For the related topic, see
[Voi5), in which a relation between k3 ((As)scs) and the entropy of random walks on
groups is discussed. By using a method introduced in [Oka], we can compute the exact
value of k., ((As)acs) for certain amalgamated free product groups. Voiculescu proved
that log N < k2 ((Ae)ecs) < log(2¥ — 1) holds for the free group Fy with the canonical
generating set S {[Voi3, Proposition 3.7. (a)]). As a particular case of our results, we
show that kZ ({As)ees) = l0g(2N — 1) actually holds.
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for useful comments about symbolic dynamics. He also thanke the referee for careful
reading.

2. PRELIMINARY

Let H be a separable infinite dimensional Hilbert space. By B(H), K(H), E‘(:H) and
F(H)}, we denote the bounded linear operators, the compact operators, the finite rank
operators and the finite rank pogitive contractions on H, regpectively.

We begin by recalling some facts concerning normed ideal in [GK]. Let ¢ be the
set of real valued sequences £ = (£;);en with limy ;& = 0, and cogo tl.ll’- Bt}bﬂpm of
€p consigting of the sequences with finite support. A function & on cop is said to be a
symmetric norming function if ¢ satisfies:

(1) ® is a norm on ey;

(2) #((1,0,0,...)) =1;

(3) B((£:)sen) = B({|&r(3])jen) for any bijection m : N — N.
For £ = {£;)sen € g, we define

B(6) = lim &(£*(n)) € [0,00],

where £*(n) = (§1,...,£5,0,0,...) € o9 and £ > & > -+ is the decreasing rearrange-
ment of the absolute value (|¢;|);en. If T € K{H) and & is a symmetric norming function,
then let us denote

[Tl = ®{{s5(T))sen},
where (8;(T))sen is the singular numbers of 7. We define two symmetrically normed
ideals
G = (T € K(H) | |IT]l¢ < o0},

and 62’] by the closure of F(H) with respect to the norm || - ||s. Note that s‘;” does not
coincide with &, in general. If G is & symmetrically normed tdes! ie. & is a ideal of
B(H) and a Banach space with respect to the norm || || satisfying:

(1) [|[XTYlle < [IX|| [ITlle |Vl for T € & and X, Y € B(H),

(2) |I?7)le = |IT|| if T is of rank one,
where || || is the operator norm in B(H), then there exists a unique symmetric norming
function ¢ such that ||T||e = ||T]|s for T € F(H) and 69 C & C &,.

We introduce some symmetrically normed ideals. For 1 < p < o0, the symmetrically

normed ideal €7 (H) is given by the symmetric norming function

&E=Y 4

o

We define C; (H) = eg’;. We remark that it coincides with G5 For 1 < p < oo, the
symmetrically normed ideal C} (H) is given by the symmetric norning function

2518
ey — =1 %j
@p (f) - sﬂ:g E_?:l j]-_,fp .
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We define Cf (H) = G,4. However E{D} is strictly smaller than CHH). For 1 <p<g<
r < oc, we have

Co(H) G € (H) G G(H) G CF(H) G C-(H),
where C,(H) is the Schatten p class.
For a given symmetric norming function ®, which is not equivalent to t.he I'-norm,

there is a symmetric norming function ®* such that Gg- is the dual of Gé , where the
dual pairing is given by the bilinear form (7,8) — Tr(TS). If 1/p+ 1/¢ = 1, then
Co(HY* == Co(H) and C; (H)* = C}(H). In particular, C(H) and C (H) are called the
Macaev ideal and the dual Macaev ideal, respectively.

Let S{“) be a symmetrically normed ideal with a symmetric norming function ®. If
T o= (Tl, Ty} is an N-tuple of bounded linear operators, then the number kg(7) is

defined by
ha(r) = liminf max {|[s, Te]lfe,

+1<

where the inferior limit is taken with respect to the natural order on F(H){ and [A, B] =
AB — BA. Throughout this paper, we denote || ||,,,- by {|- ||y and kg by k; A relation
between the invariant kg and the existence of quamcentral a.pproaumate umts relative to
the symmetrically normed ideal 5(0) is discussed in [Voil]. A quasicentral approximate
unit for 7 = (17, ..., Tx) relative to GE] is a sequence {u,}>2, C F(H){ such that u, ~J
and limg, o {|[un, Tu)|le = 0 for 1 < @ < N. Note that for an N-tuple r = (Ty,...,Ty),
there exists a quasicentral approximate unit for 7 relative to 623} if and only if ks(r) =0
(e.g. see [Voi2, Lemma 1.1]).
We use the following propositions to prove our theorem.

Proposition 2.1 ([Voil, Propasition 1.1]). Let 7 = (T,..., Ty) € B{H)Y and 6% be a
symmetrically normed ideal with & symmeiric norming function ®. If we take a sequence
{tn}, CF(H); with wlimy, o, uy = I, then

ke(r) < liminf max |([ua, Zolls-

n—4or l<a<N

Proposition 2.2 ([Voi3, Proposition 2.1]). Let 7 = (T},...,Tx) € B(H)Y and X, €
CH(H) fora=1,...,N. If

N
S X, T € C(H) + B(H),,
a=1
then we have v
|'ﬂr (Z[XG,TQ])
a=1
where || XallF = infrexta 1Xa = ¥lag-

The following proposition was shown in the proof of [GK, Theorem 14.1].
Proposition 2.3. For T € C{ (H), we have

< k;(‘rlz I%alIf,

n

T =1 84(T)
|IT||F = him sup =220 2
f— 00 Ej=1 1/
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3. SUBSHIFTS AND MACAEV NORM

Let A be a finite set with the discrete topology, which we call the alphabet, and A% tl}e
two-sided infinite product space [[2°_, .4 endowed with the product topology. The .sh-sft
map o on A% is given by (0(z)); = i1y for i € Z. The pair (AZ, o) iz called the full shift.
In particular, if the cardinality of the alphabet A is N, then we call it the N-full shift.

Let X be a shift invariant closed subset of ,A%Z. The topological dynamical system
(X,0x) is called a subshift of A%, where oy is the restriction of the shift map 0. We
sometimes denote the subshift (X, sx) by X for short. A word over A is a finite sequence
w = (@,...,8,} With a; € .4. For z € A% and a word w = (61,...,a,), we say that w
occurs in x if there is an index ¢ such that z; = @y,...,%i4n—1 = @,. The empty word
occurs in every % € AZ by convention. Let F be a collection of words over 4% We define
the subshift X5 to be the suhset of sequences in 4% in which ne word in F occurs. It is
well-known that any subshift X of A% is given by X for some collection F of forbidden
words over AZ. Note that for F = @, the subshift X is the full shift 4%

Let X be a subshift of 4% We denote by W,{X) the set of all words with length n
that occur in X and we set

W(X) = | Wa(X).
n=0

Let @ : Wian41(X) — A be a map, which we call a block map. The extension of ¢ from
X to A% i3 defined by (zi)icz > (5)vez, Where

% = P((Bimm, Fimmi1, - - -, Tian))}:

We also denote this extension by ¢ and call it a sliding block code. Let X,V be two
subshifts and ¢ : X — Y a sliding block code. If ¢ is one-to-one, then ¢ is called an
embedding of X into ¥ and we denote X CV If ¢ has an inverse, i.e. a sliding block
code 3 : ¥ = X auch that ¢ 0 » = idx and ¢ o ¥ = idy, then two subshifis X and ¥ are
topologically conjugate.

The topological enéropy of a subshift X is defined by

huplX) = Jim ~ log [Wa(X)],

where |W,(X)| is the cardinality of W,(X). The reader is referred to [LM] for an intro-
duction to symbolic dynsmics.

For a given subshift X, we next construct the creation operators on the Fock space
associated with X (cf. [Mat]). Let {£,}sca be an orthonormal basis of N-dimensional
Hilbert space C¥, where N is the cardinality of A. For w = (€15...,8a) € Wi(X), we
denote £, =&, ®++-@£,,. We define the Fock space Fx for a subshift X by

Fx =C6 & Pspanft, | we Wo(X)},
neN

where £, is the vacuum vector. The creation operator T, on Fx for o € A is given by

Ta{ﬂ = Ea-s
T,6, = { L®& if awe W(X),
ehw 0 otherwise.



ENTROPY OF SUBSHIFTS AND THE MACAEV NORM 5

Note that T}, is a partial isometry such that

B+) T.T: =1,
acA
where F, is the rank one projection onto €. We denote by P, the projection onto the
subspace spanned by &, for all w € W,(X). For w = (a1,...,8,) € Wh(X), we set
T,=1,,-- T, The following proposition is essentially proved in [Voig].

Proposition 3.1. If 1 = (T\)aca, then we have
koo(T) < heop(X ).
Proof. We first assume that the topological entropy of X is non-zero. Let us denote
b = hyp(X). By definition, for a given € > 1, there exists X' € N such that for any
n > K, we have
% log W, (X)] < ek,

Thus

[Wa(X)] < e™*,
for all n > K. We set
n—-1 .
X.=Y (1 - 1) b2
=0 n
One can show that L
[EARATRES
Since

r = rank([X,, T)) < Z WH(X)| < Z [W; (X)) + Z et

i=1 =K

Zj_l

k(1) < lim supmax |[[X,, Tu]|| < limsup === < ¢h
nope €A n—aes

for n > K, we obtain

In the case of i = 0, for any £ > 0, we have
[Wa(X)| < e™
for sufficiently large n. By the same argument, we can get
ko(7) < limsupmax ||[X,, T|I5, < &,

for arbitrary ¢ > (. O
Next we obtain the lower bound of kL (7) by using Proposition 2.2. Before it, we
prepare some notations. For any m € Z and w = (ay, ..., a5} € W,(X), let us denote
-m[W] = {(Ii)iéz € X [ Im = 81y oy Tmgn—1 = an}-
We sometimes denote the cylinder set ofw] by [w] for short. Let x be a shift invariant
probability measure on X. The following holds:

(1} 3 geassllah) = 1;
(2) pllars-- s8]} = Xpgen pllgo, a1, ..., a0]);
(3) pllo, - ranl) = 220 ea pllBas - - @0, Bnpi]).
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For any partition 8 = (B, ..., Ba} of X, we define a function on X by
L(8)= - _logu(B)xz,

Bep

where xg is the characteristic function of B. Let B1,..., % be partitions of X. The
partition \/¥_, §; is defined by

k
{nB;lBgEﬁi,lﬂiﬂk}-

=1
The value
H,(8)=->_ n(B)logu(B)
Beg

is called the entropy of the partition 8. We define
n-1
.1 -
hul(B,0x) = lim ~Hy(\/ ox'(B))-
i=0
The entropy of (X,ox, ) is defined by

hu{ox) = sup{hu(B, ox) | Hu(B) < oo}

Note that b, (cx) < hyp(X) in general. A shift invariant probability measure is sai‘d to
be a mazimal measure if hyop(X) = hu(ox). The reader is referred to [DGS] for details.

Theorem 3.2. Let 7 = (To)aca be the creation operators for a subshift X. If there exists
a shift invariant probability measure g on X such that for any £ > 0 we have

ip ({z eX: nilfﬂ (\f‘/a}‘ﬂ) (z) — hulox)| > s}) < 0o,
=0 =0

where f is the generating partition {[a)}sca of X, then
hulox) < k(7).
In particular, if we can toke a mazimal measure u with the above condition, then we have
koo{T} = huop(X).
Proof. Let p be a shift invariant probability measure on X. For a € A, we set
=Y Y uleu)TRT,

n20 weEWn (X}

Then

YrXx. = 33 Y pew)TRT,
oA

n2>0 a€A wEW,{X)

=Y ¥ wu)TRT:,

>k weEWs (X)
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and

Sxn = ¥ 3 (Sued)nam
acA

acA 520 weW,{X)
= Y. 3 pp)TAT
>0 weWn(X)
Hence we have
3 X Ta) = R
acA

We agsume that h,{cx) # 0 and denote it by A for short. To apply Proposition 2.2, we
need an estimate of || X;||; Fixz > 0 and a € A We set

Dy = {w € Wy(X) | @9 < yfaw]) < e~CHDE-0,

and
€n = Z p([aw]).
wEWn(X}\Dn
If 1 satisfies the assumption, then we have
Z Ep < 0O, (*)
n>h

Note that 8;(X,) = 3;{X,T,) for all j € N. Thus we have ||X,|[F = |[X.T.||F We put
=Y 3 ulew)TuRT;
=0t wehDn

We remark that for each j € N, there are n € N, w € W,(X) such that 8;{(X,T,) =
#(Jaw]). By (x), we obtain

z;_1 3;(X.Ta)

IXallf = IXoTellf = limsup

n—0o _,-1121.?
< IR+ timsop =0 — (1%
—+oo =1

Hence it suffices to give an estimate of || X,l[F Let d, = > i-01D;], where |D;| is the
cardinality of D;. One can easily check that

23-: sj(Xﬂ)
TR
Note that if sj(.ﬁ] = p([aw]) for some w € Dy, then we have
p—{n+1ih+e) < Sj(i) = p(law]) < o= (n+1)(h—5)

1GHT < lim gup

Assume that there are m > n such that 8,'(5(:) = p([aw]) for some w € D, and § < d,.

Then it holds that
g~ (mH1)h—e) = o—(n+1)(h+e) ()

Indeed, if e~ {m+1KA—2) « o—(rt1}{k+e) thep
51(Xa) = plfow]) < e (mIDA=8) ¢ glatDbte) < y([ay)),



8 RUI OKAYABU

for all u € Dy (1 < k < n). However, by our assumption, we have ([av]) < 84(Xa) =
p([aw]) for some v € Djand 1 €1 < 7. This is a contradiction.
Hence, by (x*), we have

h+e¢
m+15(n+1)h_s
Let £ € N with
h+e h+e
(n+1)h_5—1<:k+1;=_2(n+1)h_£.
Since .
255X  TicoTwen, #llev])
=i T logdn
. Thou(e)
- logd,
n+l1 h+te
we obtal n+l h+e

#([al)-

FUF <1 ntl
Il < timeup 2o 72
Moreover, because
sl = ¥ plewD+ 3 slfew) < |Dalem®+VE 4 g,
wEDy WEWR(XN\Dn

we have
(1s{[a]) — €a) ™+ < | Dy,
Note that £, — 0 {(n — o0) by (*). Therefore

= n+l h4e
Xl = hff:l)loglpnl h_gp([a]}
< ki _
S e log(u(fa) —ea) + (n+ D(h—€) h— < #(lel)

= GulaD.

Since £ is arbitrary, we have )
Xl < 2aD.
By Proposition 2.2, the proof is complete. O

We now give some examples of subshifts with a maximal measure satisfying the condi-
tion in Theorem 3.2.

Corollary 3.3. Let A be ¢ 0-1 N x N matriz. We denote by T4 the Markov shift asso-
ciated with A, i.e.

Ta = {{oi)iez € 5% | Alas ai1) = 1},
where S = {1,...,N} is an alphadel. If 7 = (T,)ees is the creation operators for the
Markov shift £, then we have

k;o('r) = Mop(Ea).
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Proof. It suffices to show that the unique maximal measure of ¥4 satisfies the condition
in Theorem 3.2. For simplicity, we may assume that A is irreducible with the Perron
value a. Note that the topological entropy () is equal to loga. If { and r are the
left and right Perron vectors with Efz ( lats = 1, then the unique maximal measure y is
given by
oot
f"([aﬂj QLyane ,ﬂ“D = “':1""‘ 1

where (ag,a,...,a,) € Woya(E4) {e.g see [Kit]). For any ¢ > 0, there exists K € N
such that for any n > K, we have

log I rpcx
n+1

for all 1 < a,b < N. Therefore for any w € W,,,(S4), we have

log p([w]) —log ] < &,

n+1
for all n > X, i.e. the maximal measure £+ satisfies the condition in Theorem 3.2. O

More generally, there is a class of subshifts, which is called almost sofic (see [Pet]).
A subshift X is said to be almest sofic if for any ¢ > 0, there is an SFT T C X such
that huop(X) — & < heop(Z), where a shiff of finite iype or SFT is a subshift that can be
described by a finite set of forbidden words, i.e. a subshift having the form X for some
finite set F of words.

Corollary 3.4. If r = (T,)sca i3 the creation operators for an SFT 5, then we have

koo(T) = hiop(Z).

Proof. We recall that every SFT I is topologically conjugate to a Markov shift Y4 asso-
ciated with a 0-1 matrix A, Now we give a short proof of this result. Let £ be an SFT
that can be described by & finite set F of forbidden words. We may assume that all words
in F have length N + 1. We set AL = Wy(Z) and the block map © : Wy (Z) —+ Ag"],

w > w. We define the N-th higher block code By : T — (A2 by

(Br())i = (Tiy ..., Zegpy) € AN,

for £ = (z;)ien € L. Note that Sy is the sliding block code with respect to ¢. The
subshift Sx(X) is given by a Markov shift, i.e. there is a 0-1 matrix 4 with Bn(Z) = T,4.

Let p be the maximal measure of £4. The maximal measure of T is given by » = 1o fn.
We recall that p is the Markov measure given by the left and right eigenvectors I, r and
the eigenvalue a. For w € W,(X) with n > N, we have

vilw)) = wllolwun),. .. e(wp—niiq)))
Ia'rb
an—i’

where & = @(wp,n), b= @(Wa-Ny1,0) a0d Wy = (wy,...,w) for k < 1. Hence one can
show that the maximal measure i of L satisfies the condition in Theorem 3.2 by the same
argument as in the proof of Corollary 3.3. O]



10 RUI OKAYASU

Corollary 3.5. Let X be an almost sofic shift. If 7 = (T,)aca i the creation operators
Jor X, then we have
k() = heop(X).

Proof. Let € > 0. Since X is almost sofic, there is an SFT X C X such that higp(X) € <
Fuop(E). Let o : & —+ X be an embedding. Note that the subshift ¢(X) is also an SF'T.
Thus we may identify w(Z) with E. Let g be the unique maximal measure of ¥. For

a € A, we set
X, = 33 wlou) T RiT,

A0 w
where w runs over all elements in W,(Z) with aw € W(Z). We have shown that the
maximal measure 2 of ¥ satisfies the condition of Theorem 3.2 in the proof of Corollary
3.4. Hence by the same argument as in the proof of Theorem 3.2, we have

huop () < B (7).
Thus for arbitrary ¢ > 0, the following holds:
Prop(X) — £ < hyp(Z) < k(7).

It therefore follows from Proposition 3.1 that hyp(X) = kZ(r) if X is an almost sofic
ghift. O

For § > 1, the A-transformation 75 on the interval [0, 1] is defined by the multiplication
with £ (mod 1), i-e. Ty(x) = Sz — [Bz], where [t] is the integer part of £. Let N € N with
N—-1<g<Nand A={0,1,...,N —1}. The f-ezpansion of z € [0,1] i3 a sequence
d(z, 8) = {di(z, ) }icn of A determined by

di(z, B) = [BT5 ' (z)].
We aet
(s = sup (di(z, B))ien,
z€[0,1}

where the above supremum is taken in the lexicographical order, and we define the shift
invariant closed subset I of the full one-sided shift AY by

Z={ze AV @) <, i=0,1,...},

where < is the lexicographical order on AN = {0,1,...,N — I} The §-shift T is the
natural extension given by

Tp = {(z:)icz € A% | (z)ize € EF, k € z}.
It is known that huep(Zs) = log 8, (see [Hof]).

‘The following result might be known amnong specialists, However, we give a proof here
as we can not find it in the literature.

Proposition 8.6. For 8 > 1, the 8-shift Ly i an almost sofic shift,

Proof. In [Pax], it is shown that Ej is an SFT if and only if d(1, 8) is finite, i.e. there is
K'E N such that di(1,5) = 0 for all £ > K. Thus we may assume that d(1, 3) is not
finite. Let ¢g = (§i)ien. For n € N, there is {n) < 4 such that

N < ER <
S T BeE T B
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In [Par, Theorem §), it is proved that
lim f(r) = 8.

Hence we may assume that N — 1 < #(n) < 8 for sufficiently large n. Since the maximal
element (g, has the form

{611621 -y (fn - 1])51}629* ey (&ﬂ - 1}:611 . ):
we have gy < ¢, where < is the lexicographical order. Therefore we obtain
Th CTFC{0,1,..., N1}

It follows that Ty is the shift invariant closed subset of £y with topological entropy
log 8(m). Since d(1, 8(n)) is finite, the subshift Za¢n) is an SFT. It therefore follows form
[Par, Theorem 5] that T4 is an almost sofic. O

Hence it holds that k3 (7) = huwp(Es) for every B-ghift by Corollary 3.5.

Corollary 3.7. Let £, be the S-shift for 8 > 1. If 7 = (T, }ac.a 35 the creation operators
Jor Zg, then we have
FoolT) = huop(Eg} = log 8.

4. GROUPS AND MACAEV NORM

We discuss a relation between groups and the Macaev norm. Let I' be a countable
finitely generated group, S a symmetric set of generators of ' We denote by | |s the
word length and by W,(T,S) the set of elements in I with length =, with respect to
the system of generators §. The logarithmic volume of a group I' in a given system of

generators 5 ig the number
= Hm w1
R—o0 n
(cf. [Ver]). The following proposition can be proved in the same way as in the free group
case [Voi3, Proposition 3.7. (a)).

Proposition 4.1. Let T be a finitely generated group with o finite generating set S and
A the left reqular representation of T If we set Ag = (Ag)ucs, then

k‘;(}ts} 5 Ug.

Proof. Let us denote by F, the projection onto the subspace gpan{s, € 2(I') | g5 = r}.
If we set

then we have 1
[ Xnda — XX} = 143Xk — Xql| € n

for @ € 5. Hence
log =0 [Wa(T, 8)]

£

koolhs) < limsupmax |[Xy, A5, < lim vs.
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Now we compute the exact value of k7 (As) for certain amalgamated free product
groups.
Proposition 4.2. Let A be a finite group, Gy,--+ , Gy nontriuia.f _ﬁnifte groups coniain-
ing A as g subgroup and H),...,Hy the product group of the infinite cyclic group Z
and the finite group A, (N + M > 1). Let T be the amalgamated free product group of
Gy, ,Gag, Hy, oo+ , Hy with amalgamation over A, Set S =G1U- - UIGMU (5 o A).U
© U (8w x A} \ {e}, where §; is the canonical generating set {z;,z;'} of the infinite
eyclic group Z and e is the group unit. Let X be the left reqular representation of I' and
As = {Ag)aes. Then we have

keo(As} = vs.
In particular, for the free group ¥y (N > 2), we have
ko{As) = log(2N — 1).
Proof. By Proposition 4.1, it suffices to show that vg < k (Ag). Let £ I::e the set of the
representatives of Gi/A with e € ©; for i = 1,..., M. We identify x; with (z;,¢) € H;
for j=1,...,N, and set Qur,; = {2,777, e}. Let
MAN

5= J a\{e.

i=]

We define the 0-1 matrix 4 with index 5 by
1 if |ab)s =2;
A(G’ b) = { 0 otl;helrs;vise.

One can casily check that the above matrix A is irreducible and the topological entropy
Pop(24) of the Markov shift T, coincides with the logarithmic volume vz of I' with
respect to the generating set S.

We denote by Iy the subset of I consisting of the group unit e and elements q; - - - Gy €
I, (n € N) of the form

ar €, \{e} for k=1,... n,
t # ik if 154 <M,
Qp = Gpyq ifM'f‘lﬁigSM-l-N,ik:iH].

Note thai the subspace P(To) can be identified with the Fock space F4 of the Markov
shift £4 by the following correspondence:

63 — gu,
A fal@'"'ﬁi&,.

Let us denote by P, the projection onto the subspace
span{d, € P*(T) [ (g]s = n}.
For a € §, we define the partial isometry T, € B(I*(T')) by

Tu = Z Pn+lAaPn-

a0
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Under the identification with F,, the partial isometry T,|;2(r,) for @ € § is the creation
operator on F, (cf. [Oka]). We also identify Ty and W(E,4). For w = ay - an € I'g, we
set Ty =T,, --T,,. Let u be the maximal measure of £4. For a € 5, we put

Xo= Z Zp([ﬂ’w])TwPﬂT:m

nx0 w

where w runs over all w € T with [wls = n and |ew|s = jwls + 1. Fora € $\ 5, we
set X, = 0. It can be easily checked that [\, Xs} = [T4, X,] for a € S. Therefore by the
same proof as in the sufshift case, we obtain

v8 = haap(S) = ks (s):
O

Remark 4.3. Let T be a finitely generated group with a finite generating set S. In [Voi5],
Voiculescu proved that if the entropy h(D, 12} of a random walk z on I' with support 5
is non-zero, then k7 {(Ac)ecs) is non-zero. However the above proposition suggests that
the volume vg of " is more related to the invariant &, ((As)ees) rather than the entropy
A(T, u). It is an interesting problem to ask whether vs being non-zero implies k5, {(Xz)acs)
being non-zero. We also remark here that there is a relation between vs and A(T, g): If
A(T, ) # 0, then g # 0, (see [Ver, Theorem 1]}. If the above mentioned problem was
solved affirmatively, then it would follow from Proposition 4.1 that &7 ((As)ees) # 0 if
and only if vg # 0, i.e. T has exponential growth.
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Abstract

We give a construction of a mclear C"-algebra assoclated with an amalgamated free
product of groups, generalizing Spielberg’s construction of a certain Cumez-Krieger algebra
assoclated with a finitely generated free product of cyclic groups. Our nuclear £*-algebras
can be identified with certain Cuntz-Krieger-Plmaner algebras. We will also show that our
algebrag cen be obtained by the crossed product construction of the canonical actiens on
the hyperbolic boundaries, which proves s speciel case of Adams’ result about amenability
of the boundary action for hyperbolle groups. We will slso give an explicit formuls of the
K-groups of our algebras. Finally we will investigate the relationship between the KMS
states of the generalized gange actions on our C* algebras and random wellks on the groupe.

1 Introduction

In [Cho], Choi proved that the reduced group C*-algebra G} (Z2 + Z3) of the free product
of cyclic groups Z, and Z;3 is embedded in 2. Consequently, this shows that C* (Zg » Z3)
is & nop-nuclear exact C*-algebra, (see S. Wassermann [Was)] for a good introduction to
exact C*-algebras). Spielberg generalized it to finitely generated free products of cyclic
groups in [Spi]. Namely, he constructed a certain action on a compact space and proved
that some Cuntz-Krieger algebras (see [CK]) can be obtained by the crossed product
construction for the action. For a related topic, see W. Szymaiiski and S. Zhang’s work
[SZ].

More generslly, the above mentioned compact space coincides with Gromov’s notion
of the boundaries of hyperbolic groups (e.g. see [GH]). In [Ada], Adams proved that
the action of any discrete hyperbolic group I' on the hyperbolic boundary 31" is amenable



in the sense of Anantharaman-Delaroche [Ans). Tt follows from [Ana] tha the corre-
sponding erossed product C'(6T') », T is nuclear, and this implies that Cf(T') is an exact
C*-algebra. .

Although we know that C(8T') x, I" is nuclear for a general discrete hyperbolic group T’
as mentioned above, there are only few things known about this C*-algebra. So one of our
purposes is to generalize Spielberg’s construction to some finitely generated ama.]ga.ma.ted
free product I' and to give detailed description of the algebra C(8T") %, I". More precisely,
let 7 be a finite index set and G; be a group containing a copy of & finite group & as a
subgroup for ¢ € I. We always assume that each G; is either a finite group or Z x H.
Let I' = #4G; be the amalgamated free product group. We will construct a nuclear C*-
algebra Or associated with T' by mimicking the construction for Cuntz-Krieger algebras
with respect to the full Fock space in M. Enomoto, M. Fujii and Y. Watatani [EFWIi]
and D. E. Evang [Eva]. Thie generalizes Spielberg’s construction.

First we ghow that O has a certain universal property as in the case of the Cuntz-
Krieger algebras, which allows several descriptions of Op. For example, it turne out that
Or is a Cuntz-Krieger-Pimsner algebra, introduced by Pimsner in [Pim2] and studied by
several authors, e.g. T. Kajiwara, C. Pinzari and Y. Watatani [KPW]. We will also show
that O can be obtained by the crossed product construction. Namely, we will introduce
& boundary space 2 with & natural Taction, which coincides with the boundary of the
associated tree (see [Ser], [W1]). Then we will prove that C(f2) x, I is isomorphic to
Or. Since the hyperbolic boundary 8T coincides with € and the two actions of T on §T
and {2 are conjugate, Or is also isomorphic to C{8T) », T, and depends only on the group
structure of I'. As a consequence, we give a proof to Adams’ theorem in this special case.

Next, we will consider the K-groups of @r. In [Pimi], Pimsner gave 8 certain exact
sequence of K K-groups of the crossed product by groups acting on trees. However, it
i8 not & trivial task to apply Pimsner's exact sequence to C(AT") #, T' and obtain its
K-groups. We will give explicit formulae of the X -groups of Or following the method
used for the Cuntz-Krieger algebras instead of using C(01"} x, I" We can compute the
K-groups of C(6T) . T for concrete examples. They are completely determined by the
representation theory of M and the actions of & on G/H (the space of right cosets} by
left multiplication.

Finally we will prove that KMS states on Oy for generalized gauge actions arise from
hermonic measures on the Poisson boundary with respect to random walks on the discrete
group I'. Consequently, for special cases, we can determine easily the type of factor O, for
the corresponding unique KMS state of the gauge action by essentially the same arguments
in M. Enomoto, M, Fujii and Y, Watatani [EFW2], which generalized J. Ramagge and
G. Robertson’s result [RR].

Acknowledgment. The author gives special thanks to Professor Masaki Izumi for
various comments and many important suggestions,



2 Preliminaries

In this section, we collect basic facts used in the present article. We begin by reviewing
the Cuntz-Krieger-Pimsner algebrasin [Pim2]. Let A be a C*-algebra and X be a Hilbert
bimodule over A, which means that X is a right Hilbert A-module with an injective %
homomorphism of A to £(X), where £(X) is the C*-algebra of all adjointable A-linear
operators on X, We assume that X is full, that is, {{x,¥}4 | 2,¥ € X} generates A as
a C*-algebra, where (-,-) 4 is the A-valued inner product on X. We further assume that
X has a finite basis {u;,... ,u,}, which means that z = Sob w{uy, x)a for any z € X.
We fix & basis {u1,.. ,u} of X. Let F(X) = A® €B,,, X*™ be the full Fock space

over X, where X™ ia the n-fold tensor product X @4 X @4 -+ @a X. Note that F(X)
.18 naturally equipped with Hilbert A-bimodule structure. For each z € X, the operator
T: : F(X) — F(X) is defined by

T=($l®"'®xn} = r@r @By,
Tela) = za,

for z,%1,... ,%, € X and a € A. Note that T € L{F(X)) satisfies the following relations

T;T;r = ("E’y}ﬁl ‘leEX!‘
aleb = Ty, z e X,a,be A

Let 7 be the quotient map of L{F(X)) onto L{F(X))/K{F(X)) where KX(F(X)) is
the (*-algebra of all compact operators of L{F(X)). We denote S; = n(T%) for £ € X.
Then we define the Cuntz-Krieger-Pimsner algebra (?x to be

Ox =C*(S: |z € X).
Since X is full, a copy of 4 acting by left multiplication on F(X) is contained in Oy.
Furthermore we have the relation
n
> SuSy, =1 )
§=1

On the other hand, Oy is characterized as the universal C*.algebra generated by A
and &, satisfying the above relations [Pim2, Theorem 3.12]. More precisely, we have

Theorem 2.1 ( [Pim2, Theorem 3.12]) Let X be o full Hilbert A-bimodule and Oy
be the corresponding Cuniz-Krieger-Pimsner algebra. Suppose that {uy, -- ,u,} i3 o finite



basis for X. If B is o C"-algebra genemated by {8z }zcx Sotisfying
S8e+8) = Sz re X,
aszh = S8gzp, zeX,0,bc A,
3;31: (3:: y}-‘h Yy € X,

n
Z: S8y, = L

i=1

Then there eTists a unigue surjective x-homomorphism from Ox onto C*(s,) that maps
Sy to 8.

Next we recall the notion of amenability for discrete C*-dynamical systems introduced
by C. Anantharaman-Delaroche in [Ana). Let (4, G, @) be a C*-dynamical system, where
A is a C*-algebra, G is a group and a is an action of G on A. An A-valued function 2 on
G is said to be of positive type if the matrix [, (h(5;5;))] € M.(A) is positive for any
81,...,8, € . We assume that G is discrete. Then « is said to be amenable if there
exiats a net (hyer C Co(G, Z(A")) of functions of positive type such that

hie) <1 fori €T,
li}nhi(s) =1 fors €G,

where the Jimit is taken in the ¢-weak topology in the enveloping von Neumann algebra.
A" of A. We remark that this is one of several equivalent conditions given in [Ana,
Théoréme 3.3). We will use the following theorems witheut a proof.

Theorem 2.2 ( [Ana, Théoréme 4.5]) Let (A,G,a) be o C*-dynamical system such
that A is nuclear and G 45 discrete. Then the following are equivalent:

1) The full O*-crossed product A 4, G is nuclear;

2) The reduced C*-crossed product A Xae G is nuclear;

$) The W*-crossed product A” X, G is injective;

4) The action o of G on A is amenable.

Theorem 2.3 ( [Ana, Théoréme 4.8]) Let (A, G, a) be an amenable C*-dynamical sys-
tem such that G is discrete. Then the natural quotient map from A x, G onto A Agr G
i5 an {somorphism.

Finally, we review the notion of the strong boundary actions in [LS]. Let I" be a
discrete group acting by homeomorphisms on & compact Hausdorff space §!. Suppose
that ) has at Jeast three points. The action of T on € is said to be & strong boundary
action if for every pair U,V of non-empty open subsets of {2 there exists -y € I" such that
7U° C V' The action of T' on €2 is said to be topologically free in the sense of [AS] if
the fixed point set of each non-trivial element. of I" has empfy interiar.
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Theorem 2.4 ( [LS, Theorem 5]) Let (2,T) be a strong boundary action where 2 is
compact. We further assume that the action is topologically free. Then C(QQ) X, T is purely
infinite and simple.

3 A motivating example

Before introducing our algebras, we pregent a simple ¢ase of Spielberg’s construction for
F; = Z » Z with generators ¢ and b 23 a motivating example. See also [RS]. The
Cayley graph of F; is a homogeneous tree of degree 4. The boundary {2 of the tree in the
sense of [Fre] (see also [Fur]) can be thought of as the set of all infinite reduced words
W = T1T9Zy - -, where x; € § = {e,b,a7!,b~1}. Note that Q2 is compact in the relative
topology of the product topology of [Jy S. In an appendix, several facts about trees are
collected for the convenience of the reader, (see also [FN]). Left multiplication of F» on
£? induces an action of Fy on C(f2). For x € [y, let §X(x) be the set of infinite words
beginning with z. We identify the implementing unitaries in the fuyll crossed product
C'(Q) x Fy with elements of F,. Let p, denote the projection defined by the characteristic
function xni; € C(R2). Note that for each z € 5,

Pe+apezl =1,

Patpo-1+pp+m—r =1,
hold. For z € S, let S, € C{f2) » F; be a partial isometry
Sa = (1 — pz-1).
Then we have
538y = 3T PPyl = by 538y = 8o (1 — pimr),
SpSz = 2(1 — 1)zt = P,
S38e=1-pr1= 3 85,8
yyb=1

These relations show that the partial isometries S, generate the Cuntz-Krieger algebra
Q4 [CK], where

—

0
1
A= 1
1

[l =T o

1
1
1
1 0
On the other hand, we can recover the generators of C({2) x F, by setting

=58 +5- and p,=25,8



Hence we have C(§2) X Fa =~ O4.
Next we recall the Fock apace realization of the Cuntz-Krieger algebras, (e.g. see [.!Eva.],
[EFW1]). Let {e,, &, €4-1,5-1} be a basis of C* We define the Fock space associated

with the matrix A by
Fa=Cey & (P (Gran{e:, ® - ® ez, | Az, 2ia) = 1}),

nz1l

where ¢; is the vacoum vector. For any x € 5, let T3 be the creation operator on F, given

by

Tz = e,

Dey, ®---BDey, fAlz,z1)=1
T:ﬂ{ell. @"'@83“} = {gx - : Othﬁ(Il.'Wiﬂ;J !

Let pp be the rank cne projection on the vacuum vector ¢p. Note that we have
T+ LTy + T T + G T +po = L

If = is the quotient map of B(F) onto the Calkin algebra Q(F), then the C*-algebra
generated by the partial isometries {w(Ty,), 7(T}), 7(Ty-1), 7(T3-1)} is isomorphic to the
Cuntz-Krieger algebra Oy,

Now we look at this construction from another point of view. We can perform the
following natural identification:

F3 eg — .

2
3:1'3""33:“ — J-‘I’Ir"mq EI(FQ)'

Under this identification, the creation operator 7. on {*(F;) can be expressed as

0. = A4,
T.5 = Abya, Hz#al,
ErE 0 otherwise,

where A is the left regular representation of Fy.

For a reduced word z;---z, € Fy, we define the length function | | on Fy by
|#1-+2a| = n. Let p, be the projection onto the closed linear span of {d, € 13(Fy) |
|7l = n}. Then we can express T, for z € 5 by

= an-l-l)lxpn-

=0

Note that this expression makes sense for every finitely generated group. In the next
section, we generalize this construction to amalgamated free product groups.
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4 Construction of a nuclear C*-algebra Or

In what follows, we always assume that J is s finite index set and (; is a group containing
& copy of a finite group H as a subgroup for ¢ € J. Moreover, we assume that each G is
either a finite group or Z x H. We set Jp = {i € I | |Gi] < oc}. Let I' = #5G; be the
amalgamated free product.

First we introduce a “length function” | | on each G;. If ¢ € Ip, we set [g] = I for
any ¢ € G;\ H and |h| = Oforany h € H. If § € I\ Iy we set |(al, k)| = |n| for any
(af k) € G; = Z x H where g; is a generator of Z. Now we extend the length function
to I' Let £ be a set of left representatives of G;/H with ¢ € ;. If v € T’ is writlen
uniquely a8 g1 - -goh, where gy € Qy,,. .- ,0n € i, With i3 # 4,... ,in—1 7 tn(we write
simply #; # -+ 3 4,), then we define

n
= Z | g -
k=1

Let p,, be the projection of 12 (T'} onto 2 (T, ) for each n, whereI'y = {y €T | |7| = n }.
We define partial isometries and unitary operators on 2 (I') by

I, = Enaﬂpﬂ-l-l’\ﬂpﬁ ifgelU; G\ A,
Vi = ifheH,

where X is the left regular representation of I. Let w be the quotient map of B(I2(T))
onto B(I2(I"))/X(1*(I"), where B(I*(I") is the C*-algebra of all bounded linear operators
on {*([') and XC(1*(T)) is the C*-subalgebra of all compact operators of B(I*(T")). We set
7 () = 8, and w(V) = U;. For -y €I, we define S, by

Sy = 8p Sy

where v =gy -+ g, for some g1 € G, \ H,... ,ga € Gi, \ H with i; 5 - .- # {,. Note that
5, does not depend on the expression v = g, --gy. We denote the initial projections of
5, by @y = 87 5, and the range projections by P, =S, Sy foryel.

We collect several relations, which the family {5, Uy | ¢ € Uie; G \ H, b € H}
satisfies.

For g,¢ € |J,Gi\ H with |g| = |¢'| = 1 and h € H,

_J] Pp=Fy it gH=¢H,
Fy Pﬂ‘"{o il gH # ¢'H. (2)
Moreover, if g € G\ H and i € I, then
Q=Y. > P+ 3 P, + P, (3)
.33‘: ¥'e\{e} i€l



and if g = af! and i € I'\ I, then

Qattl = Z Z Py + Z (P;.Jl + Pn;l) + ‘Pa{*"' {3y

jebget\el  jelk
ok

Finally,

1=y ¥ B+ Y (Pa,+P,,;:) (4)
i€ly gesti\{e} ief\Jo

Indeed, (1) follows from the relations T, = T, V3 and T,y = W T, Fr(?m tllel deﬁniti?n,

we have Ty = 3, 0 PaAyPatiAgPn. This can be non-zero if and only if {¢""g| =0, i.e.
¢ ‘g € H. We have (2) immediately. The relation

1= Z Z TFT; + E (TQT; + Ta‘—lT:;-l) -+ o,
iclo gefk icNJlo

implies (4). By multiplying S} on the left and 5, on the right of equation (4) respectively,
we obtain {3).

Moreover, the following condition holds: Let P = Egefk P, fori € Iy, and F; =
Foy+ Pyt for i € I\ I. For every i € I, we have

C'(H) = C* (RULR | he H). (5)

Indeed, since the unitary representation F{ViF] contains the left regular representation
of H with infinite multiplicity, where F] iz some projection with #(F) = F. we have
relation (5).

Now we consider the universal C*-algebra generated by the family {5, Us | ¢ €
Ui G: \ H,h € H} eatisfying (1), (2), (3) and (4). We denote it by Op. Here, the
universality means that if another family {s,, u;} satisfies (1), (2), (3} and (4), then there
existe 8 surjective +-homomorphism ¢ of Or onto C*(sy, 1) such that ¢{S;) = s, and
¢(Uy) = up. Summing up the above, we employ the following definitions and notation:

Definition 4.1 Let I be a finite index sef and G; be a group containing a copy of a finite
group H as e subgroup for i € 1. Suppose that each G is either a finite group or Z x H.
Let Iy be the subset of I such that G; is finite for all i € Iy. We denote the amalgamated
free product x5 G; by I’

We fiz a set ; of left representatives of G/ H with e € ; and a set X; of representa-
tives of H\G,/H which s contained in Q. Let (a;,€) be a generator of G; foriec I\ I,.
We write a4, for short. Here we choose (4 = X; = {af | n € N}. We exclude the case
where | ), (% \ {e} has only one or two points.

We define the corresponding universel C*-algebre Or generated by partial isometries
Sy for 9 € Uig; Gi\ H and unitaries Uy for h € H satisfying (1), (2), (8) and (4).
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We set for y €T,
Qy =35 Sy, Py=58, lr:-""'r’

P=Y,abB iich
P=Fy+Po ifie N\

For convenience, we set for any integer n,
I,={yel|lv=n}

Ba={yelaly="m" T € Qyir # -+ #da}.
We also set A = | ), Da-

Lemma 4.2 Foric€ I andh € H,
UpF; = BU,.
Proof. Use the above relations (2). O

Lemma 4.3 Let 11,7 € I'. Suppose that 53 5, # 0.
If || = |yal, then 83 8y = QgUy for some g € /G, h € H.
If Im| > ||, then 82 8, = S5 for some v €T with |y| = |m| = [l
If || < bval, then S5 S, = 5, for some ¥ € T' with }y| = || — Il

Proof. By (2}, we obtain the lemma. o

Corollary 4.4
Or =span{ S, RS, | p,veliel}

Proof. This follows from the previous lemma. O

Next we consider the gauge action of Op. Namely, if z € T then the family { 25,,Ux }
also satisfies (1), (2), (3), (4) and generates Op. The universality gives an automorphism
a, on O such that a,;(S,) = 25, and a, (U3} = Up. In fact, o is & continuous action of
T on Op, which is called the gauge action. Let dz be the normalized Hasr measure on T
and we define a conditional expectation @ of Or onto the fixed-point algebra Of = {a €
Or | a;(a) = g, for z€ T} by

&(a) =fcv,(a} dz, for a € Or.
T

Lemma 4.5 The fited-point algebre OF is an AF-algebro.



Proof, For each i € I, set
Fi =span{ S,AS, | pv €Tn )
We can find systems of matrix units in JF}, parameterized by p, v € A, a5 follows:
&0 = SubiSy.
Indeed, using the previous lemma, we compute
e:lh“e:,z“ = Oy 3 5 FiQuy Fi55, = h-mefu.m‘

Thus we obtain the identifications
Fi = Myo(C) ® €, Fas
for some integer N(n,{) and some p € A,. Moreover, for £, 7,

i SuPURPS;, if &7 € pH,
€ (SePiSh) € = { Up ' *  otherwise.

for some k € H. Note that C*(S,BULFS, | h € H) is isomorphic to C*(BULF | h € H)
via the map z + S}zS,. Therefore the relation (5) gives

Fi o~ Mi(C) @ 5p8n{ S,RURS, | h € H} = My(C) @ C*(H).
Note that {F} | i € I'} are mutually orthogonal and
F n = Bier ‘F:
is a finite-dimensional C*-algebra.
The relation (2) gives F,, — Fp41. Hence,

F=|J %
n20
is an AF-algebra. Therefore it suffices to show that F = OF. It is trivial that F C OF.
On the other hand, we can approximate any @ € OF by a linear combination of elements
of the form S, F;S;. Since ®(ea) = @,  can be approximated by a linear combination of
elements of the form S, F.8; with |u| = |v|. Thus s € F o

‘We need another lemma to prove the uniqueness of Or.

Lemma 4.6 Suppose that ig € I and W consists of finitely many elements (4, h) € Ax H
such that the last word of p is not contained in Y, and W H = (. Then there exists
¥ =gogn with gp € 4, and iy # -+ # iy # ip such that for any (u, h) € W, phy
never have the form ~y' for somey €T.
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Proof. Let iy € I and W be a finite subset of A x H aa above. Weﬁrstaaerumeth?.t
[Z] > 3. Then we can choose 2 € 4,y € £ and z € fy such that § # ig # §' and 7 # §°
For sufficiently long word

v = (zy)(z2) (wyey) (r2ze2)(zyzyTy) (T2zezz) - - (- - ),

we are done. We next assume that || = 2. Since we exclude the case where {1 U2\ {e}
has only one or two elements, we can choose at least three distinet points 2 € Qy, ¥ € €5

¥ = (zy)(zz}{zyzy)zzzz) (Tyryry)(zezzes) - - (--- 2),
as well. If 4o = j # j' we set
v = (m2Hy2)(z232) (yzyz) T2z sz (yzyzyz) - - - (- - - 2).

Then if v has the desired properties, we are done. Now assume that there exist some
(1, k) € W such that phy = vy for some ¥ Fix such an element {(u,h) € W By
hypothesis, we can choose § € A with || < [4] such that the last word of § does not
belong to §;, and § does not have the form 4 for some §' Set 4 = 4. Then ph¥ does
not have the form ~+y" for any 4" Indeed,

Y = oyl = 76 £ 77,
for some 4" Since W is finite, we can obtain a desired element + by replacing ¥, induc-
tively. (m|
We now obtain the uniqueness theorem for Or.

Theorem 4.7 Let { s5,u } be another fomily of partial isometries and unitaries salisfy-
tng (1), (2}, (8) and ({). Assume that

C'(H) > C*(paunps | h e H),

where i = 3 ennie 5o for i € Io and p; = so,57, + Sqls;-l fori e I'\Iy. Then the
canonical surjective x-homomorphism x of Or onte C* {8y, u ) 18 faithful

Proof. To prove the theorem, it is enough to show that (a) x is faithful on the fixed-point
algebra OF, and (b) |7 (®(a)) ]| < ||=(a)|| for all a € Or thanks to [BKR, Lemma 2.2].
To establich (a), it suffices to show that r is faithful on F, for all n > 0. By the proof

of Lemma 4.5, we have .
Fa = My (C) ® C*(H),
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for some integer N(n,i}. Note that 5, is non-zero. Hence i injective on Mymp(C).
By the other hypothesis, 7 is injective on C*(H).
Next we will show (b). It is enough to check (b) for

a= z ZC,{I,VS#R{S:‘I
nyeER et
where F is a finite subset of [ and J ia a subset of 7. For n = max{|u} | & € F}, we have
a)= 3. D.CLSPSEF
{nveF|ul=lvl} 7€7

Now by changing F if necessary, we may assume that min{|g, |#|} = n for every pair
v € F with Cf , # 0. Since F, = )3, there exists some ¢y € J such that

Iw (@@}l =1l > Clsupusil.
lul={v|
By changing F such that F C A again, we may further assume that
(@@l =11 3 Y CRpsubicttnPio

hEF
fisi

where F' consists of elements of H, (perhaps with multiplicity). By applying the preceding
lemme to
W={{(,h) €A x H|y issubword of p € F,k™' € F'},

we have y € A satisfying the property in the previous lemma. Then we define & projection
Q= Z Br8yPig5y Sz

TEA,

By hypothesis, Q is non-zero.
If g, € Ay, then

Q (5uPia50) @ = 881 Pio 80 Pia 84Pio S0}, = 8,34 Pig 3555,

is non-zero. Therefore s,(s,p,53)s; is also a family of matrix units parameterized by
i, ¥ € A,. Hence the same arguments as in the proof of Lemma 4.5 give

F(F) 2 My(ago)(C) © C° (8,8, Pt} | h € H)

By hypothesis, we deduce that b — Qm(b}Q is faithful on F¥%. In particular, we conelude
that [[x(2(a))|| = |Qr(2(a))}QIl.
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We next claim that Qz(®(a))Q = Qn(a)Q. We fix s, € F If |u| # |1 then one of
#, v has length n and the other is longer; say |} = n and || > n. Then

Q (8uPigtinPis8)) @ = 84845485 DiaUnDin 81, (Z sfsqmsi';s;)
TEAR

Sinee [} > |7|, this can have a non-zero summand only if v = 72’ for some »/ However
S UnS,8:8y = SSuysls,, and s7,,_,, 5, is non-zero only if #'A~Yy has the form vy This
I8 impossible by the choice of +. Therefore we have Q (3,pi,5,} Q = 0 if |4} # |v], namely
Qm{(2(a})Q = @n(a)Q. Hence we can finish proving (b):

[=(@(@)ll = |Q=(2(a})Ql = |@x(a)QI < || (a)|.
Therefere [BKR, Lemma 2.2] gives the theorem. =
By essentially the same arguments, we can prove the following.

Corollary 4.8 Let {t,,us} and {s,,up} be two families of partial isometrics and uni-
taries satisfying (1), (2), (3} and (4). Suppose that the map pnp: — qrupg gives an

taororphism:
C*(poonpy | b € H) = C*(gongs | b € H),

where p; = Egen‘,\{s} tle: s = 2 cniie} 995 ond 50 on. Then the canonical map gives
the isomerphism between C* (2, v1) and C*(s,, uy)-

Before cloging this section, we will show that our algebra O is isomorphic to & certain
Cuntz-Krieger-Pimsner algebra. Let A=C*(PUF |heHjie ) ~ Dics Cr(H). We
define a Hilbert A-bimodule X as follows:

X=spa.n{S,R|gEUGj, lg|=1,iel}
i

with respect to the inner product {§;F,, Sp Pj) = P52 5y F; € A. In terms of the groups,
the A-A bimodule structure can be described as follows: we set

A= @ A= @ ClH],
el el
and define an A-bimodule H; by

Hi=ClgelJGs|lgl=1}]
54

with left and right A-multiplications such that fora = (s € Aand g € G; \ H C M,
a-g=hyg and g-a=gh,
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and with respect to the inner product

g -1
it {794 LR

‘Then we define the A-bimodule X by

X =EPhH,

tel
and we obtain the CKP-algebra Ox.
Proposition 4.9 Assume thot A and X are as above. Then
Op =~ Ox.

Proof. We fix a finite basis u{g,i) = ¢ € H; for g € Qi € J with j # 4,|g9| = 1.
Then we have Ox = C*(Syia) Let sygy = SeF in Or. Note that we have Op =
C*(8ugn). The relation {4) corresponds to the relations (f) of the CKP-algebras. The
family {sy, )} therefore satisfies the relations of the CKP-algebras. Since the CKP-
algebra has universal properties, there exists & canonical surjective *-homomorphism of
Ox onto Op. Conversely, let 8, = 3 ;7 Sugg,) 80d Us = Byerh for b € H in Oy, and
then we have Ox = C*(s,, u). By the universality of Or, we can also obtain a canonical
surjective s-homomorphism of Or onto Ox. These maps are mutual inverses. Indeed,

Sy ZIErS“(ﬂ'J] = EiEISgRi=Sg|
U = @ugh = X PUF=U,.

5 Crossed product algebras associated with Or

In this section, we will show that Or is isomorphic to a erossed product algebra. We first
define a “boundary space” We set

A={(W)nz0 | € T 1l + 1 = [Yntals Iy "ol = 1for & sufficiently large n > 0}

We introduce the following equivalence relstion ~; (¥n)n>0, (¥, )nzo € A are equivalent if
there exists some k € Z such that yH =+ H for a sufficiently large n. Then we define
A= Af ~ We denote the eqmva.lent class of (‘T“}n:ao hy [’}'“]“}o

Before we define an action of I on A, we construct another space § to introduce a
compact space structure, on which I" acts continuously. Let {2 denote the set, of sequences
z: N — I such that

z(n) €}, \{e} fornx1,

z(n) € {aX'}  ifin eI\,

tn # fna if tn € Iy,

zn) =x(n+1) if iy € I\ Jp,in = in4a.
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Note that (2 is a compact Hausdorff subspace of []y (U, % \ {e}). We introduce a map ¢
between A and 3; for 2 = (2(n))n>) € Q, we define a map $(z) = [1,} € A by

Yo = e ifn=0,
Yo = z{1):--z(n}), ifn>1.

Lemma 5.1 The above map ¢ is a bijection from A onto 11 and hence A inkerils a
compact space siructure wa ¢.

Proof. For z = (z(n)) # 2’ = (2/(n)), there existe an integer k such that z(k) # 2/(k). If
#(z) = [l and ¢{z’) = [1], then 1. H # +LH. Hence we have injectivity of ¢. Next we
will show surjectivity. Let [7,] € 5. We may take a representative (7,) satisfying || = n.
Now we assume that v, is uniquely expressed as 7y, = 91 Gahy Yoia = g+ gy W fOr
g € Q4 gk €y, 1, W € H. Since |77 41| = 1, we have

h_lg;I. . 'gl_lgi e ‘9;u+1h' =g,
for some g ¢ H with |g| = 1. Inductively, we have gy = ¢},..., 9, = g,. Hence we can
assume that 7y, = ¢ - - - gu. We set 2(n) = g, and get ¢((2(n))) = [7]. 0
Next we define an action of T' on A. Let [yalazo € A. For oy € T, define

Y- [Tn]nzﬂ = [T’?'n]nzm

We will show that this is a continuous action of ' on A. Let [,),[+)] € A such that
{ta) ~ (%) and v € T Since there exists some integer k such that ¥, H = =, H for
sufficiently large integers n, we have yy,H = vy, H. Hence this is welldefined. To
show that -y is continuous, we consider how v acts on £ via the map ¢. For g € £ with
lgi =1 and z = (2(n))uz1 € N,
[ g if ¢ :)é il:
a ifi=4d4,go(l}g H iel,

and gz2(1) = guhy (. € Q. , 1y € H),
(g-x)V) =4 ¢ Hi=d4,g92(1}¢H ieI\I,
¢ ifi=i,gx(l)e H ie I,

and yx(l) = hl! hp‘E(Z} = gﬂhﬂ(ﬁ € ni:'.thl:hﬂ € H):
| %(2) ifi=4,pz(1) e H, i I\ I,

and forn > 1,
[ aln—1) fizid,
Gn ifi:ihg‘t(l)gﬂl
ad hn12(n} = gnhn (g € R, b € H),
(¢ 2)m)=q =(n-1) fi=i, gx(l)gH,icI\],
Int1 ifi=1, go(l} € H,
and Anz(n + 1} = gni1hng, {gnia € pirs g1 € H),
L 2(n+1) ifi=d,gz(l)eH, i€ '\,
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For he H,

¢ ifn=1, "
= h f i1 e .
(h z)(n)= N ]af.n: :51(,1} gihy, (o1 € Sy, B

and hn_}_ﬂ?(ﬂ) = gnhm (gn € ﬂimhn € H)

Then one can check easily that the pull-back of any open set of £ by -y is also an open
set of . Thus we have proved that -y is & homeomorphism on A. The equations

(W) [Tn] = [77}711] = T([‘T‘Tn]) =xo 7’[‘}'!:]3
imply associativity.
Therefore we have obtained the following:

Lemma 5.2 The above space I i3 a compact Hausdorff space and I' acts on {2 continu-
ously.

The following result is the main theorem of this section.

Theorem 5.3 Assume that () end the action of [ on  are as above. Then we have the
tdentifications
Op = C(N) 2 T =~ C{§2) », T.

Proof. We first consider the full crossed product C(R) ¥ T' Let ¥ = {{z(n)} | 2(1) €
;} £ be clopen sets for ¢ € 1. Notethatlftefo,thenﬁ’mthedJs,]omtumonof
theclopensets{g(ﬂ\l’}Igefk\{e}},andlfiEI\Io,thean YT uY;” where

YE = {(z(n)) | (1) = a7 }. Letp, Xy ﬁﬂdpf’—xy* We define T, = gp; for
gEG;\Ha;nthIgandTﬂ— (p,+p*)for=ef\fu Let Vy =hforh e H.
Then the family {7}, Vi} sa.tisﬁea the relations (1), (2), (3) and (4). Indeed, we can first
check that € H commutes with p; and g*'. So the relation (1) holds. Let g € Gy \ H
and ¢ € Gy \ H with 4, € Ip. Then

T, Te =0 905 = 9 XemwyXo@wnd = i ibongupgy
Moreover it follows from 2\ Y; = |, ¥} that

ToTy = Xeow = D Xy,

J
= Z Z Xl + E Xagla\¥5) + Xar vy
Jeho.j#i gefly\ (e} JeNg
- 5 e ;
it + Y B+
Jelo.ir g\ {2} JelL
= Y ¥ 1ms > T,Tr + T
Jeln g pell;\{e} JeNgp
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For all other cases, we can also check the relations (2) and (3) by similar caleulations.

Since {2 is the digjoint union of ¥;, we have (4). Note that g, pi, 5f € C*(T}, V). Moreover,

since the family {v(Q\Y;)} | ¥ € T, i € IYU{y¥* | v € T,i € T\ Iy} generates the topology

of 2, we have C({}) T = C*(T},, V;). By the universality of Or, there exists a csnonical

surjective «-homomorphism of Or onto C ({1} » I, sending 5, to T, and I}, to V.
Conversely, let ¢; = 24 Fy and gF = Sapr S;ﬂ. Let

wy = Sy -+ Zglenlmnlﬂ' SWrS;; + S; for g € G} \ Hiel,

wq=sﬂ+s:‘_1 for i € I'\ I,
wy =) for h € H.

We will check that w, are unitaries for g € Gi\ H withi € Jp. ¢ € 4\ HU g 1H,
then gg’H = ~H for some v € ; \ {e, g}. Hence

L]
wgw,

= (S,+ ) S,,f.s;,+s;.,) (s,+ 3 s,,,s;,+s;..)

FEIN\EUYH EN\HUp—LH
= 5855+ ). SpSuSySiy+8018pm
¢Et\HUg 1 H
= B+ > EBtQ=1
g'efi\{eg}

Similarly, we have wiwy = 1. For the other case, we can check in the same way.
Ifi € I, 7 € &\ {e} then

2_ ot

P

= Y S+ X SSL+8n | StSaul
geik Fefi\Hug 1 H

- Tass {5+ T S5+5m
gt gE\Hug

= Y 5,558 =1
stk

For i € T\ Jo, we have ¢} + wog7w], = 1 and gt + g7 + ¢ = 1 as well. Therefore
the conjugates of the family {g, qf:} by the elements of I' generate a commutative €*-
algebra. This is the image of a representation of C{({2). Thexefore (g;, w) gives a covariant
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representation of the C*-dynamical system (C(f2),T'). Note that (g, w,) generates Or
Hence by the universality of the full erossed product C(§) » T, there exists & canonical
surjective *-homomorphism of C(£Y) x I onto Or. It is easy to show that the above two
*-homomorphisms are the inverses of each other.

S — gp; - wely = Oy,
SG‘*I — G,:Aﬂ(p;, + pf) = Wk (’Qq‘tl + Pu:k:} = Sui'” "
Oy h = U,

We have shown the identification & ~ C(f?) » I. Since there exists a canonical
surjective map of C(2) x I onto C(Q) », I, we have a surjective »-homomorphism of Op
onto C(2) n, I'. Let C(Q) %, T = C*(#(p), A} where # is the induced representation on
the Hilbert space (T, H) by the universal representation x of C'(§2) on a Hilbert space
H and A is the unitary representation of I' on I*(T", H) such that (A,x}(2) = z(s~%¢) for
z € I2(T', M). By the uniqueness theorem for Oy, it suffices to check

C* (m(xw )it (xy)) =~ C*{H).
But the unitary representation #(xy}Aa#(xy;} is quasi-equivalent to the left regular rep-
resentation of H. This completes the proof of the theorem. (m]

In [Ser], Serre defined the tree G, on which T" acts. In an appendix, we will give the
definition of the tree Gir = (V, E) where V is the set of vertices and E i5 the set of edges.
We denate the corresponding natural boundary by #G'y. We also show how to construct
boundaries of trees in the appendix. (See Furstenberz [Fur] and Freudenthal [Fre] for
detsils. )

Proposttion 5.4 The space 8Gr i3 homeomorphic to (t and the above bwo actions of T
on 8Gr and () are conjugate.

Proof. We define a map ¢ from 8Gr to . First we assume that 7 = {1,2}. The corre-
sponding tree G'r consists of the vertex set V =T/, [[T/Ga and the edge set £ = T'/H.
For w € 8Gr, we can identify w with an infinite chain {Gg,,glG;,,glggG.;,,-..} with
g2 €54, \{e} and i; # 4 5 --- Then we define p(w) = [z{n} = g;.]. We will recall the
definition of the corresponding tree Gy, in general, on the appendix, (see [Ser]). Simi-
larly, we can identify w € 8Gr with an infinite chain {Go. Gi,, 011Gy, 1Gy, 102G, . . . 1
Moreover we may ignore vertices ¥G for an infinite chajn w,

{Go, Gy, (:1Go — ignoring), ¢ G, (619260 — ignoring), g16:Gy,, .. . }.
Therefore, we define a map y of 8Gr to 2 by

P(W) = [z(n) = g].
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The pull-back by 4 of any open set of 3Gy is an open set on §2. It follows that ¢ is &
homeomorphism. The two actions on 8Gp and §2 are defined by left multiplication. So it
immediately follows that these actions are conjugate. D

It ia known that T is a hyperbolic group (see a proof in the appendix, where we recall
the notion of hyperbolicity for finitely generated groups as introduced by Gromov e.g. see
(GH]). Let § = {|J,; G;} and G(T', §} be the Cayley graph of I" with the word metric d.
Let 0T be the hyperbolic boundary.

Proposition 5.5 The hyperbolic boundary 8T is homeomorphic to Q and the actions of
I' are conjugate.

Proof. We can define a map 4 from Q to 8T by (2(n)) — [zs = z{1) - -z(n)]. Indeed,
8ince (Zn | Tm} = min{n,m} — oo (n,m — o), it is well-defined. For z # y in £2, there
existe & such that z(k) # y(k). Then (p(z)lk(y)) < k + 1, which shows injectivity.
Let (zn) € 8F. Suppose that , = gn1)« -+ Gngha)hn for some g; € [, 8% \ {e} with
B(1) # - # nlka). B gu) = Gonit)s -+ 2 90t) = Gme) B0 Fae1) # Gmqrayy, thon we set
Sem == Go{t) - * " Ial) = Gm{1) * - - Gm@)- S0 We have

(T | 2m) < d(e,8nm) + 1 — o0 (n,m ~ o0).

Therefore we can choose sequences n, < ny <---,and my <mg < -, such that a,, g,
is & sub-word of an,; m,,,. Then a sequence {nt1)s -+ + » Bnll)s Gnar (1) - - - } is mapped
to (%) by . We have proved that ¢ is surjective. The pull-back of any open set in 81" is
an open get in 2. So 4 is continuous. Since §2, 6T are compact Hausdorff spaces, 1 is a
homeomorphism. Again, the two actions on Q and 8T are defined by left multiplication
and hence are conjugate. o

Remark  Since the action of I' on 8T depends only on the group structure of I' in
IGH], the above proposition shows that Or is, up to isomorophism, independent of the
choice of generators of T.

6 Nuclearity, simplicity and pure infiniteness of O

We first begin by reviewing the crossed product B x N of a C*-algebra B by a «-
endomorphism; this construction was first introduced by Cuntz [C1] to describe the Cuntz
algebra O, as the crossed product of UHF algebras by +-endomorphisms. See Stacey’s
paper [Sia| for a more detailed discussion. Suppose that p is an injective *-endomorphism
on a unital C*-slgebra B. Let E be the inductive limit kim(B ~2> B) with the cotre-
sponding injective homomorphisms g, : B — B (n € N). Let p be the projection ao(1).
There exists an automorphism 7 given by fo o, = ¢, o p with inverse (b} — onra(h).
Then the crossed product B X, N is defined to be the hereditary C*-algebra p(B X5 Z)p.

19



The map o, induces an embedding of B into B. Therefore the canonical embedding of B
into B x5 Z gives an embedding 7 : B — B X, N. Moreover the compression by g of the
implementing unitary is an isometry V belonging to B », N satisfying

Va(B)V* = x{p(8)).

In fact, B », N ia also the universal C*-algebra generated by a copy 7(B) of B and an
isometry V satisfying the above relation. If B is nuclear, then so is B x4, N.

Proposition 6.1
Opr~OFf u,N

In particular, Op is nuclear.

Proof. We fix ¢ € G;\ H for all i € I. We can choose projections &; which are sums of
projections Fy such that ¢; < Qg and 3., e = 1. Then V =3, , Sye; is an isometry
in Or,

We claim that VOEV* C OF and Or = C* (O, V). Let 2 € OF. It is obvious
that VaV* € Of and ¢* (Of, V) € Or. To show the second claim, it suffices to check
that S,F8) € O for all x,v and ¢. ¥ |u| = |v|, we have S, P8 € OF. If [u| # v,
then we may assume |u} < Ju]. Let jv| — |g| = k. Thus S,BS; = (V*)*V*S,P,S* and
VS, F,5* € OF. This proves our claim.

We define a +-endomorphism p of Of by p{a) = VaV* for s € OF. Thanks to
the universality of the crossed product O x, N, we obtain a canonical surjective *-
homomorphism o of Of 4, N onto C*{Of, V). Since OF x, N has the universal property,
there also exists a gauge action S on OF x4, N. Let ¥ be the corresponding canonical
conditional expectation of OF x, N onto OF. Suppose that a € kero. Then o{a*a) = 0.
Since @og = o0, we have oo ¥(a”a) = 0. The injectivity of 7 on OF implies ¥(a*a) = 0
and hence a*¢ = and a = 0. It follows that Op o OF », N. (

In section 2, we reviewed the notion of amenability for discrete group actions. The
following is a special case of [Ada).

Corollary 6.2 The action of T on 8T is amengble.

Proof. This follows from Theorem 2.2 and the above proposition. (m)
We slso have a partial result of {Kir), [D1], |D2] and [DS].
Corollary 6.3 The reduced group C*-algebra C*(T') iz exact.

Proof. It is well-known that every C*-subslgebra of an exact C*-algebrs is exact; see
Wassermann’s monograpk [Was]. Therefore the inclusion Co(T) € O implies exactness.
O

Finally we give & sufficient condition for the simplicity and pure infiniteness of Op.
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Corollary 6.4 Suppose that T' = +5 G, satisfies the following condition:
There exists ot least one element j € I such that

n N{ = {B},
iy

where Ny = (o cq gHg™
Then Or is simple and purely infinite.

Proof. We first claim that for any € A and Jg| = 1 with Jug| = [u| + 1,
pHu™ 0 H 2 pgHg 'y N H.

Suppose that g = - -y, such that wg € £, with gy # -+ # 1, and g € G; with
i # in. We first assume that g = py. If pughe~p™ € pgHg 'u~ N H, then ghg™? €
p Hp C Gy . Thus ghg™! € G; NG, implies ghg~! € H. Next we assume that lul > 1.
If pohglu' € pgHg~y"1 N H, then

fiz-- paghg ™t gt € g Hpy € G,

Thus |pg - - - pnghg 3" - - 3t| < 1 implies ghg™' € H. This proves the claim.

Let {8y, Un} be any family satisfying the relations (1), (2), (3) and (4). By the
uniquenees theorem, it is encugh to show that C*(RULP | h € H} ~ C*(H) for any
£ € 1. We next claim that there exists € T" such that the initial letter of + belongs to
Q; and {UsS, }pen have mutually orthogonal ranges.

Let g € 1%, If gHg™' N H = {e}, then it is enough to set ¥ = g. Now suppose
that there exists some h € gHg™' N H with & # e¢. We first assume that ¢ = j, By the
hypothesis, there exists some 4; € [ such that g~lhg & N;, and i # #;. Hence there exists
¢ € €%, such that g~'hg & g1 Hgy" and so b & gmHo g™ I gaHg "9~ N H = {e},
then it ie enough to put ¥ = gg;. If not, we set m = g¢} for some 4 € . By the first
part of the proof, we have

9Hg 0 H 2 pyHyp O H.
Since H is finite, we can inductively obtain 71,7, ...y, satisfying
eHg 'NH QgnHY'¢'NH 2 - 2gm--mHN -1 nH ={e}.

Then we set v = g7 -~ Yn. If £ # j, we can carry out the same arguments by replacing
g by v = gg; for some g; € £;. Hence from the identification U3,S, & &, € [2(H),
it follows that the unitary. representation F.UzF; is quasi-equivelent to the left regular
representation of . Thus O is simple.

In Section &, we have proved that Op =~ C(Q}) 1. ' We show that the action of T
on £} is the strong boundary action (see Preliminaries). Let U, V be any non-empty open
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sets in {2. There exists some open set O = {(z(n)) € 2 | z(1) = ¢, -~ . 2(k) = g} which
is contained in V' 'We may also assume that £/ is an open of the form {(z(n})) € 2 |
() =7, ,2(m) =m}. Lt vy=g1- gyt -y Thenwehave U CcOCV
Since C(2) . ' is simple, it follows from [AS] that the action of I is topological free.
Therefore it follows from Theorem 2.4 that C(2) x, I', namely O, is purely infinite. O

Remark We gave a sufficient condition for Op to be simple. However, we can
completely determine the ideal structure of Op with further effort. Indeed, we will obfain
8 matrix Ar to compute K-groups of Or in the next section. The same argument as
in [C2] also works for the ideal structure of Op. For Cuntz-Krieger algebras, we need
to assume that corresponding matrices have the condition (II) of [C2] to apply the
uniqueness theorem. Since we have another uniqueness theorem for our algebras, we can
always apply the ideal structure theorem.

Let & =TI x {1,...,r} be a finite set, where r is the number of all irreducible unitary
representations of H. For z,y € I, we define 2 > y if there exists a sequence 1, ..., Zy, of
elements in T such that 2, = 2,7,, = y and Ar{Z,, Tos1) # 0z =1,...,m — 1). We call
x and y equivalent if z > y > x and write I'y,. for the partially ordered set of equivalence
classes of elements z in X for which = > z. A subset K of Iy, is called hereditary if
" = 1 and v, € K implies 1, € K. Let

LK)={z€l|m2z22 forsome z,me | )}
ek

We denote by Ix the closed ideal of Or generated by projections P(i, k), which is defined
in the next section, for all (i, k) € E(K).

Theorem 8.5 { [C2, Theorem 2.5.)) The map K — Iy s an inclusion preserving
bijection of the set of hereditary subsets of s onto the set of closed {deals of Op.

7 K-theory for Or

In this section we give explicit formulae of the K-groups of r. We have described Or
as the crossed product OF » N in Section 6, So to apply the Pimsner-Voiculesen exact
sequence [PV], we need to compute the X-groups of the AF-algebra OF. We assume
that each G; is finite for simplicity throughout this section. We can also compute the
K -groups for general cases by essentially the same arguments. Recall that the fixed-point
slgebra is described as follows:

of =],
nzo
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-Fn = eieff;il
For each n, we consider a direct summand of F,,, which is

-F,: = G‘(SpHUhRS; I h € H: h“‘l = Ivl = n)!
and the embedding JF}, — F,,1 is given by

S,PUPS,

= Y S.UnS89:5)5
geii\{e}

= 3 5.SnPuSly.

g ik

Let {x1,...,Xr} be the set of characters corresponding with all irreducible unitary
representations of the finite group H with degrees ny,... ,n,. Then we have the identifi-
cation C*(H) o~ M,,(C} & - - & M, {C). We can write a unit p; of the k-th component
M, (C) of C*(H) as follows: n

=10 Y Xa(B)Un-
H i
Suppose that for § # 7,
Fo 22 My (C) © C*(H),
an-'_l ~ MN(»—]-IJ](C) ® C*(H).
Now we compute each embedding of 5§ — 73,
Mpyn(C) @ Mn,(C) — Mpn11,5(C) @ My, (C)

at the X-theory level. P(i, k) denotes PipiF;. Let P be the projection e®1 in Myen(C)@

Mng(c) giv’&n by
P=5,P(i,k)S;, forsome g € A,

where e is a minimal projection in the matrix algebras, and @ be the unit of Myn41,5(C)®
M, (C) given by
Q= ). S.P31S;.
vYEAn 41

At the K-theory level, we have [P] = ni[e). Hence it suffices to compute tr(PQ)/n,
where tr is the canonical trace in the matrix algebras.
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w(PQ) _ tr( (SuPERSH( Y S,,P(J,I}S*))

YE D41

vEARL

= tr (I%(Z @S ESH Y S..P(J,I)S'))

Zx.,(h}( 3 S SuSePeSi Y S»Pu',t)s:))

g\ {e} "5 ¥EAntY

SyShe Pl r)s;,))

f__-‘\,f'_-"\,

"EH yefk\{e}

Y xBtr (8uUp1ng PG, DS,)

Em\{ﬁ}hEH@}
1 -
= 3 Y x®ulerg),

#€0:\{e} heH(9)

u:lw n:l

n

where H(g) is the stabilizer of gH by the left multiplication of H.

Now fix 2 € X; \ {e}. Let {g € Q: | HgH = HzH} = {90 = 2,01,--- ,gm-1}- Then
there exists hlsh;u--- ,hm—hh:ﬂ_l € H such that iz = glhi,..., Rz = gm_lh{.,,_l.
Note that h,H(2)h;! = H(g,) for s =1,... ,m — 1. Since xj,Ys are class functions, we
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m-1
uPQ) _ ]'ilf“ (E 3 Xelhahi xelB s T hohh hozh] 1))

#=1 heH(z)

N ﬁ (Z 3" xelhhb )l _IMH_I))
EX;

]
S
=
Y
Mi
N
&
=
¥
)
g
S

s> ('"z; > _Tixf(h))

SEX‘ #=1 heH(z)

3 (l-%(;% Zl{x:hx?}zm)

X}

= Z {Xh Xf}ﬂ(ﬂt}i

HEX;

where
xi(h) = xi (ﬂ?' h)
Xn XD i@ = Z xX:(RXE(h).

hE.E(}

Let Ar({j,l},('i,kj} = zwex;\{a}(xkrﬁ}ﬂ(ﬂ for ¢ 7é J and Al"((iskjs (ini)) = 0 for
1< k,{ £r Then we describe the embedding F% — F7., at the K-theory level by the
matrix [Ap((i, k), (5, D)) 1<ricr- Let Ap = [Ap((4, k), (7,1))]. We have the following lemma.

Lemma 7.1 N N Ar o
Ko (o) = m (2 25, 27)
where N = |I|r

We can compute the K-groups of Op by using the Pimsner-Voiculescu sequence with
essentially the same argument as in the Cuntz-Krieger algebra case (gee [C2]).

Theorem 7.2

Ko(Or) = ZV/(1- An)2¥
Ki(Or) = Ker{l-Ar:2¥ -Z¥} onZV
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Proof, It suffices to compute the X-groups of 0, = 5; x5 Z. We represent the inductive
bimit

lig (2 252"
as the set of equivalence classes of T = (21, Tz, - --) such that 2 € ZN with Tpqy = A(zz).

» - » - " - - T -th
If § is a partial isometry in Op such that &,(S) = 25 and Plsa:pm,]ectmn in Of wi
P < 58, then [p(P)] = [VPV"] = [(V§*S)P(VS*5)*] = [SP5*] in Ko(®OF). Recall that

Pr = o pTOLS
|H|

Let P = S, P(i, k)5S, for some p € &y I o= iy - -+ iy then

[~(P)]
= [§, PS5,

= (177 2 X0 (Sun - Sun PO+ 5 )]
heH

- i‘im (ﬁz: - xf)[cal),

=l Xi\{e}

where the e; are non-zero minimal projections for 1 < I < r Thus it follows that ;' is
the shift on Ko(OF). We denote the shift by ¢. If z = (21,22,2s, --) € Ko(Or), then
o(r) = (za,Ts,---). By the Pimsner-Voiculescn exact sequence, there exists an exact
sequence

0— K1(Br) — KofOr) — KolBr) - Ko(@r) — 0.

Tt therefore follows that Ky(Op) = Ku(ﬁi}/(l - a}Ko(@;) and K;(Or) = ker{l — ¢) on
Ko(O7). =

Finally we consider some simple examples. First let I'= SL{2,Z) = Z, %z, Zg. Let 1
be the unit character of Z; and let x2 be the character such that yo(a) = —1 where a is
a generator of Z;. These are one-dimensional and exhaust sll the irreducible characters.
Then we have the corresponding matrix

Ar =

[ - Y
| i I e T o
Lo e Y = ]
o0 =0

Hence the corresponding K-groups are Ky(Or) = 0 and K;(Or) = 0. In fact, Oz403,70 =
Ory0z, € Qpuzy = O @ Os,
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Next let ' = &, «g, &4, 7 = (12) and 0 = (123). Note that S3 = {1,7,0). Oy has
three irreducible characters:

1 T (24
X1 1 1 1
X2 1 -1 1
Xa 2 0 -1

Moreover, &3\&,/&; has only two points; say ©; and S3z6; with z = (12)(34).
Then we obtain the corresponding matrix

=D DO D
Ll — = -
R == Qo
L=J == N
=R = e
(=T = — I O R

Hence this gives Ko(Or) = Z@®2Z4 and K;(Or) = Z. In this case, I' satisfies the condition
of Theorem 6.3. So Or is a simple, nuclear, purely infinite C*-algebra.

8 KMS states on O

In this section, we investigate the relationship between KMS states on Or for generalized
gauge actions and random walks on I'. Throughout thie section, we assume that all groupa
(= are finite though we can carry out the same arguments if G; = Z x H for some i € I.
Let w = (g )ier € IREI By the universality of Or, we can define an automorphism o for
any t € R on Op by o(8,) = e¥~T™¢3, for g € Gy \ H and o2 (U}) = U, for h € H.
Hence we obtain the R-action &¥ on Op. We call it the generalized gauge action with
respect to w. We will only consider actions of these types and determine KMS states on

Or for these actions.

In [W1], Woess showed that our boundary ( can be identified with the Poisson
boundary of random walks satisfying certain conditions. The reader is referred to {W2]
for a good survey of random walks.

Let s be a probability measure on I' and consider & random walk governed by p, ie.
the transition probability from x to y given by

p(z,y) = plz7y).

A random walk is said to be irreducible if for any 7,y € I', p™(z, y) # 0 for some integer
n, where

M= Y. plma)p(z, ) -pZaa, p).
12240801 ET
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A probability measure » on Q is said to be stationary with respect to u if v = e+ v, where
it * 1 is defined by

f F(w)dp + p{w) = ] f Flowldu(g)dvw), for f € C(R,).
1 1 J/suppp

By [W1, Theorem 9.1}, if a random walk governed by a probability measure 4 on I is
irreducible, then there exists a unique stationery probability measure v on {2 with respect
to g. Moreover if i has finite support, then the Poisson boundary eoincides with (£, ).

If v is a probability measure on the compact space £, then we can define a state ¢,

by
$u(X) = [ E(X)dv for X € Op,
where F is the canonical conditional expectation of C{{2) », [ onto C(02).
One of our purposes in this section is to prove that there exists a random walk governed
by a probability measure y that induces the stationary measure v on {I such that the
corresponding state ¢, is the unique KMS state for . Namely,

Theorem 8.1 Assume that the matriz Ar obiained in the preceding section is irreducible.
For any w = (w;)ier € ]R[,‘:', there exists a unigque probabdility measure u with the following
properties:

(i) suppip) = Uyer G: \ H.

(i) pu(oh) = plg) forany g € U,; Gi\ H and ke H.

(ili) The corresponding unigue stationary measure v on Q induces the unigue KMS

state ¢, for o/ and the corresponding inverse temperature B is also unique.

We need the hypothesis of the irreducibility of the matrix Ay for the uniqueness of
the KMS state. Though it is, in general, difficult to check the irreducibility of Ap, by
Theorem 6.5, the condition of simplicity of Or in Corollary 6.4 is also a sufficient condition
for irreducibility of Ar. To obtain the theorem, we first present two lemmas.

Lemma 8.2 Assume that v is ¢ probabilify measure on . Then the corresponding state
By 13 the KMS siate for o if and only if v satisfies the Jollowing conditions:

=By e -1
YUz T)) = [Gfi... 1 H] -.el Tmeﬂ"‘m

Jorzy € 4, with éy # - # i, where Q(zy -+ 2,,) is the cylinder subset of Q defined by

sy -Tn) = {21 € 2| 2(1) = 21, .., 2(m) = 7).



Proof ¢, is the KMS state for o* if and only if
So(Se PULSY S, PiUhST) = ¢S, PiUnSy - ol ma(Se PUAS,)),

for any £, 5,0, 7€ A h ke Hand 4, € 1.

We may assume that [¢] + (o = [of + 7| and [n] 2 o). Set |} = p, |0l = g, |el =
Sl =t and let £ = &+ &, 7 = m -1y with & € 0y \ {e}m € 24 \ {e} and
¥ FigJ1# - # . Then

‘f’v(SfPUhS' Sd-RiUk ) 6!1: rq..daﬂnm‘f‘v S-fRUh a1 %U;S.:]
= Ompy- ﬂ-w‘sm+1d¢v(35hﬂ rk‘*‘mx»m)
= m---n..66m+1&5£h.1-k—1n.+1---r)q Z ¥ (ﬂ{ﬁm)},
zeilk\{e}
and

¢ (Sz ﬁUkS" &=y (SeFiUnSy))
= e .. g Bupehin ... Mg (S, PilhS; - SePULS;)
= C_"’“’“ “6_’“’"9""’ R LT T Y LR
= e~ .. o RupBun L. B o e Be, . 00kt tphin E\{ }V{ﬂ(ﬂx}],
rEl\{e

whers é;; = 1 only if g € G \ H. Therefore the corresponding state ¢, is the KMS state
for o if and only if v satisfies the following conditions:

V(QEr . . &) = e .. e Py (Ofz)),

for © € O \ {e} with i # 4.
Now we assume that ¢, is the KMS state for o®. Then fori e 1,

¥y =¢ul(B)= D $(55;)

9ESti\{e}

= Y eSS
e {e}

= ¢ hu Z ¢v(Q9}

gefti{e)

= A Z ¢"u(1"'

pEfl{e}

= e P4([Gy: H] - 1)(1 - »(¥3).
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[Gi:H]—l
[G::H]— 1+ &P

YY) =
Moreover,

YT, .. . Zm)) = 3oz, Sz 5z, - - Fay)

= ¢S, - 55, g5 (Say -+ Sam))
g~ .., e-ﬂm...%(g%}
e-.&"i:l .a .e-ﬁ“'ﬁn(l -— V(Q(Yfm)n

E—ﬁi’ﬁ i .g_ﬁu‘m—l

- [Gi. : H] — 14 ePitm

Conversely, suppoee that a probability measure 1+ satisfies the condition of this lemma.
By the first part of this proof, ¢. is the KMS state for o”. D

Lemma 8.3 Assume that v it the unigue stationary megsure on {} with respect o o
random walk on T, governed by a probability measure p with the conditions (i), (i)
Theorem 8.1, Then ¢, is a B-KMS state for o if and only if p satisfies the following
condifions:

__ ILiuG
#(g) N Eke.r(-‘?k H:,ii Cl)

where gy = |Gi \ H| and C; = (1 — e P)g; — (1 — ) |H| for i e I.

for geGi\\H and i€l

Proof Assume that ¢, is a 3-KMS state for o For any f € C(Q),

ﬂ Hw)dv(w) = ﬂ' F(w)ds + v(w)
- ﬁ £ (gw)di{w)dus)

= ﬂ (X8 f g )(w)dv(w)du(g)
= Z (8} (Ag FAg)

g€eupplp)

= 2 sl (),

gE3upp{y)

where Or ~ C(Q) 4, T =C*"(f, A | f€ C(Q),yv € T).
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Put f = xo@) = P, fori € I and z € 4\ {e}. Since Xy = S+ peq mug-18 SowSp +
5y, for g € Gy \ H and ¥ € I, we have

-
1= 3 wlee®+ D o+ Y. plge
gHmzH geGN\H ogHvxH QEGN\KH j#i
for any i € T and = € £\ {e}. Let z,y € (L \ {e} with zH # yH. Then

1= 3w+ X wle)+ D, mlee,
et oHAsH  geGyHi

1= Y s@eP+ 3 wlo)+ 3 slg)e™™
gH=yH gH#yH FEC\H vk

By the ahove equations, we have u(z) = u(y), and then it follows from hypothesis (ii) in

Theorem 8.1 that u(g) = w; for any g € G; \ H. Therefore we have

1= |H|eP%p + (gi — |Hm+ 3 gse™ py,
4

for any i € I, where g; = |G; \ H|. Thus by considering the above equations for ¢ and
Jel,
| Ele oy~ | H|e™ga; + (g5 — | H )i — (95 — |H sy + gre ™% — qie™ %1 = 0.
Hence we obtain the equation,
(|H " + g: — |H| — gie™™* ) = (|H|e™ + g5 — |H| — gge™4)p;.
Since p(l Joy Gi \ H) = 1, we have

(1—eP¥)gy — (1 — e”P4)(H|

s+ D (T = g Foryg, — (1= e = -

We put C; = (1 — e7P%)g; — (1 — e~%%)| H| and then
Iy =
{g: + G‘; G Yo = L.

Therefore
1

= g+ Ce 3500 95/C
Hj-ﬁ cj
[} H,'-,l-i C; + Ej,&'(gjci Hk,&.j C)
Hj,ii C.f
Dorer 9 e O
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On the other hand, let v be the probability messure on sa.tmfymg the condition in
Lemma 8.2. ‘Then the corresponding state ¢, is the KMS state. It is enough to check
that 4= = w by [W1]. Since

Qg - ) = €PN P11 0(30),
for z, € Q;, \ {e} with §; # - - - # iy, we have

perl@er--a) = [ Xatoren @ ()

= Z #g) f (A;Xﬂ(n---sn))‘y)(w)d”(w)

P
= E iy BBy - SenSe -+ 52)
eCy \H x\ H=gH
+ Y mblSrnSa s Sel TS m)
gEC;, \Hz HofigH
+ Z 1190 (Sg-182, 8y +  + S2o 55, -+ 52, 313;1}
FEGN\H b
= (|H|e'ﬁ""#u + (g — |HDps, + Zme'ﬂ“m) {2z -+ 2n))
i
= UT1...20))

o

To prove the uniqueness of KMS states of Or, we need the irreducibility of the matrix
Ar (S8ee |EFW2) for KMS states on Cuntz-Krieger algebras). Set an irreducible metrix
B = [B{(i,k), (3,1))) = [e™P4 AL((i, k), (5,1))]. Let Kj be the set of all 8-KMS states for
the action o We put

L= {y=G R <R | By=y, 36020, T3 myGb)=1).
fel k=l

We now have the necessary ingredients for the proof of Theorem 8.1.

Proof of Theorem 8.1 We first prove the uniqueness of the corresponding inverse tem-
perature. Let ¢ be a 5-KMS state for o¥. For i € I,

BPY= Y, #(SS)= 3 ¢(S308=,(S,)
geirfe} gen\{e}

= e 3 9(Q,)

gef\{e}
= e PG : H) - 1)(1- ¢(R)).
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Thus ¢(F;) = X(B)/(1+ X(8)), where (8} = 'ﬁ"“([G't H] —1). Since 3 er Fi = 1,
‘EEI 1+ Ae(ﬁ)

The function } ., 1/(1 + X(B)) is a monotone increasing continuous function such that

1/[G:: H] it 8=0,
X T (el

Since 3., 1/[G: : H] < |1]/2 € |I| — 1, there exists a unique 7 satisfying

1
1=§([G,—:H]—1)rﬂ"i+l

Therefore we obtain the uniqueness of the inverse temperature 5.
We will next show the uniqueness of the KMS state ¢,. We claim that Kjp is in
one-to-one correspondence with L. In fact, we define a map f from Kz to Lg by

F(#) = [B(PG, k) /nal.
Indeed,
fUG(PEE) = D d(muS,0tmp(S)))
geti\]e}

= Z ¢ (S;pksa)
9eﬂ:\{=}
= T 3 eSS,

I l peft\ e} he F

| I Z Z xt(h)#QQUQ_lfw}

seﬂa\{e} heH(g)

= E 3 x::(h)Zé(ﬁUerj)

seﬂ;\{e} heH{g)

TE'T )IEDD xk(h.)ZD»(PUJ)U;—wPu,t))-

9ER\{e} heH(g) JH =1

f

Since ¢ is & trace on C*(P(5,)UnP(5,1) | A € H) = M, (C) and M, (C) bas a unique
tracial state, we have

$(P(, DUg-13eP (1)) = x:(y“hg}-w:—gﬁ-)—)-
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Therefore, by the same arguments as in the previous section, we obtain

) )
= T T T WY Y #PGITuePG)
| Isefk\{e} heH(g) it =1

~ e T T e s PG

reX\{e} F# I=1

= N Z Ar((G,0), G, kN (P, D} .
(A0

Hence this is well-defined.

Suppose that v is the probability measure in Lernma 8.2 and ¢, is the induced 5-KMS
state for o, Set n vector y = [y(i, k) = ¢, (P(3, k))/ns). Since y is strictly pogitive and B
is irreducible, 1 is the eigenvalue which dominates the absohite value of all eigenvalue of
B by the Perron-Frobenius theorem. It also follows from the Perron-Frobenius theorem
that Ls has only one element. Hence f ia surjective.

Let g€ Ky For§ =& bt =npy -y with 6, # - Fl, 1 # - #FJn, heH
andig I,

efn ... M (S UnF.8) = ¢(SeUnFicti=gs(S7))
= Sy SUF) = 8¢ (UnP.)

= &a ) SURPGK)) = 6gp > 30 (RSP, K)) [,
k=l Rl

because ¢ is a trace on C*(UpP(i, k) | k € H) = M, (C). I f(¢) = f(1), then the above
celeulations imply ¢ = ¢ on OF. By the KMS condition, ¢(b) = 0 = (b} for b ¢ or
Thus ¢ = 1 and f is injective. Therefore ¢, is the unique S-KMS state for o o

Remarks and Examples  Let » be the corresponding probability measure with
the gauge action . Under the identification L®(f2, 1) 4, T =~ 7,(Or)", we can determine
the type of the factor by essentially the same arguments as in [EFWY. If H is trivial,
then Or is a Cuntz-Krieger algebra for some irreducible matrix with 0-1 entries. In this
case, we can always apply the result in [EFW2]. This fact generalizes [RR]. ¥ H is
not trivial, then by using the condition of simplicity of Or in Corollary 6.4 to check the
irreducibility of the matrix Ap, we can apply Theorern 8.1. In the special case where
G = G for all { € I, we can easily determine the type of the factor 7.,(Or)” for the gauge
action. The factor 7, (Or)” is of type III, where ) = 1/{|G : H} - 1)? if |I] = 2 and
A=1/(2)—1)([G: H] - 1} if |It > 2. For instance, let T' = G +¢, ©;. We have already
obtained the matrix Ar in section 7, but we can determine that the factor L ($,0) %, T
is of type IIl; ;5 without using Ap.
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We next discuss the converse. Namely any R-actions that have KMS states induced
by & probability measure 4 on T with some conditions is, in fact, a generalized gauge
action.

Let i be a given probability measure on T with supp(y) = ,,, G; \ H. By [W1],
there exists an unique probability measure » on 2 such that g * v = v. Let (7, H,, z,)
be the GNS-representation of @p with respect to the state ¢,. We also denote a vector
state of z, by ¢,.

#0) = (az,,3,)  for aem(Op)

Let o} be the modular automorphism group of ¢,.

Theorem 8.4 Suppose that ;s ia o probability measure on T' such that supp(p) = U G\
H and p(g) = u(hg) for any g € |U,;; Gs\ H, h € H. Ifv is the corresponding stationary
seasure with respect to i, then there exists w, € Ry such that

oy (mu(Sy)) = EJ:I”"Wu{SgJ for geG\Hiel,

and
o (7, (U)) =n,(Uy) for heH.

Proof To prove that of (7,(S,)) = eV “wm,(5,), it suffices to show that there exists
{s € Ry such that

() dum(Spla) = Gpulamn(Sy)) for g€ G\,ae m(Or)
In fact, Let A, be the modular operator and J, be the modular conjugate of ¢,.

(left hand side of (x)) = (. (S;)at,, 2,)
= {az,,m(54) z,)
= {“mw*fvﬁyﬂmr(ss}mv)
= {a:rﬂwv{sg)xlﬂ Jvaxv}
= (AYm,(S,)z,, AYa%z,).
and
(right hand side of (%)) = ¢, {am,(S,)z., )
= C,{w,(S,)a:,,a"a:,).
Therefore for a € m,(Op)",
(ﬁiﬂﬂv('s's)mw 8 a*z,) = Calm ()T, @ 2y).

and hence for ¢ € dom(ﬂ.yz], we have

{ALHTV{SQJ%I A'}rmy} = 'l:ﬂ' {WV (Ss)xm 1"} *
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Thus Aiﬁr,(Sg}z:, € dom{AL?) and we obtain
Aum(Sg)xs = (e S,) %

Therefore
AY P, (Sp)x, = &P (S,)z,,

and then
(02 (7{8,)} - T m(Sy))z = 0,

where o] is the modular automorphism group of ¢,. Since z, is 8 separating vector,
o1 (m(Sg)) = C;CI tﬂ'v(sa)f
Now we will show that
$u(mu(Sg)e) = (o (am,(Sp)) for g€ Gi\ H,ae&m(Or)"

We may assume that o = fA, for f € C(f2). Recall that S, = Agxmvy; € C(2) %, T
Since
_ - - dg~lv
wimisa) = [ 1o = [ f0ZE wa),

we claim that

-1
Y=g o 2\N

This is the Martin kernel K(3~,w), (See [W1]). Hence it suffices to show that KX {g~, z)
is constant for any z =, - - -z, € I" such that z; ¢ G;. By [W1], we have

K(ﬂ_l,z} — G(g_la :’B)

Gle,z) ’

where Gy, 2) = 310, p®(y, 2) is the Green kernel. Since any probability from ¢~ to z
must be through elements of H at least once, we have

G(e™,5) = 3" Flg™, H)G(h, 2),
kel
where 5* = inf{n > 0| Z, = 2} and F(g,2) = 3% Pr,[s* =n] in [W2]. By hypothesis
#lg) = plhg) for any g € | )., C:i\ H and h € H, we hz:ve
G(h,z) = Gle,z} forany he H.
Therefore we have wy = log(3 4 F(972, 1)), of(m,(Us)) = 7, (Uy) can be proved in the

same way. Hence we are done. o
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9 Appendix

Trees  Wo first review trees based on [FN]. A graph is a pair (V, E) consisting of a set
of vertices V and a family F of two-element subsets of V, called edges. A path is a finite
sequence {'T’lz -+ 3%n} € V such that {ﬂ?i,.’.t'-i+1} e E. {V,EJ ia said to be connected if for
£,y € V thereexists a path {z;,... ,2,} with z; = 2,z, = y. If (V, E} is & tree, then for
Z, € V there exists a ynique path {z,,...,z,} joining z to y such that z; # zyz. We
denote this path by [z,3). A tree is ssid to be locally finite if every vertex belongs to
finitely many edges. The number of edges to which a vertex of a locally finite tree belongs
is called a degree. If the degree iz independent of the choice of vertices, then the tree is
called homogeneous,

We introduce trees for amalgamated free product groups based on [Ser]. Let (Giler
be a family of groups with an index set I. When X is a group and every G; conteins H
as & subgroup, then we denote *5Gy by I, which is the amalgamated free product of the
groups. If we choose sets £); of left representatives of G;/H with ¢ € §); for sny ¢ € I,
then each v € I' can be written uniquely as

T:gm---gﬂh}

where b & H,g1 €, \{e},... .00 € 0, \ {€} and i) # iz, i3 #dg,... ,in1 # in.
Now we construct the corresponding tree. At first, we assume that I = {1,2}. Let

V=r/G[[1/G; and E=T/H,

and the original and terminal maps 0 : T/H — ['/G; and t : T'/H - T'/(; are natural
aurjections. If is easy to see that Gr = (V, ) is a tree. In general, we assume that the
elemnent 0 does not belong to I. Let Gy = H and H; = H for i € I. Then we define

V= [ r/6; and E=]]r/8
iefujo) i€l

Now we define two maps 0,t: E =V For H; € £, let
O(H§)=Gu and t(H;) =G,

For any 7H; € E, we may assume that yH = g, -.g,H; such that g, € £}, with
i) # -+ £ dp. If§ =4, we define

ofyHy) =Gy, and i(vH;) = 4Gy

If % # i, we define
olvHi} =Gy and t{yH) =G,

Then we have a tree Gr = (V, B).
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For a tree (V, E), the set V is naturally a metric space. The distance d(:r,'y) is_ defined
by the number of edges in the unique path {z,y]. An infinite chain is an mﬁmt‘e pa_th
{Z1,22,...} such that =, # z,,;. We define an equivalence relation on the set of !nﬁmte
chains. Twe infiatte chains {z1,2s,...}, {p1,12,.-. } are equivalent if there exists an
integer k such that x, = yn; for a sufficiently large n. The boundary 2 of a tree is the
set of the equivalence classes of infinite chains. The boundary may be thought of as a
point at infinity. Next we introduce the topology into the space VU2 such that VUSY is
compact, the points of V are open and V is dense in ¥ U 2. It suffices to define a basis
of neighborhoods for each w € 2. Let ¢ be a vertex. Let {z,z1,2;,...} be an infinite
chain representing w. For each y = z,,, the neighborhood of w iz defined to consist of all
vertices and all boundary points of the infinite chsins which include |z, 3.

Hyperbolic groups  We introduce hyperbolic groups defined by Gromov. See
[GH] for details. Suppose that (X, d) is a metric space. We define a product by

(zly)s = %{d(w. z) +d(y, z) - d{z, )},

for ,y,z € X, This is called the Gromov product. Let § > 0 and w € X. A metric space
X is said to be d-hyperbolic with respect to w if For z, 4z € X,

(zls)w = min{(x|2)y, (2w} — 4. (1)

Note thet if X is §-hyperbolic with respect to 1w, then X i 24-hyperbolic with respect to
anyw € X.

Definition 9.1 The space X is said o be hyperbolic if X is &-hyperbolic with respect to
some w £ X and some § > (.

Suppose that T is a group generated by a finite subset § such that §~1 = 8. Let
G(I', 5} be the Cayley graph. The graph G(I', §) has a natural word metric. Hence

G(T, 5 is a metric space.

Definition 9.2 A finitely generated group I" is said to be hyperbolic with respect to g finite
generolor system S if the corresponding Cagley graph G{T', S} is hyperbolic with respect
to the word meiric.

In fact, hyperbolicity is independent of the choice of S. Therefore we say that T 3 ¢
hyperbolic group, for short,

We define the hyperbolic boundary of a hyperbolic space X. Let w € X be a point.
A sequence (z,) in X is said to converge 16 infinity if (5|2} — oo, (n,m — oo).
Note that this is independent of the choice of . The set X, is the set of all sequences
converging to infinity in X. Then we define an equivelence relation in X,,. Two sequences
(Zn), (¥n) are equivalent if (T, |y}, — 00, (n ~+ 00). Although this is not an equivalence
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relation in general, the hyperbolicity assures that it is indeed an equivalence relation. The
set of all equivalent classes of X, is called the hyperbolic boundary (at infinity) and
denoted by 8X. Next we define the Gromov product on X U&X. For z,y € X USX,
we choose sequences (2,), (yn) converging to ,7, respectively. Then we define {zjy} =
lim infy o0 (% Jym}w- Note that this is well-defined and i 2,y € X then the above product
coincides with the Gromov product on X.

Definition 9.3 The topology of X U 8X is defined by the following neighborhood basis:
{ve X |dlzy)<r} forzeX,r>0,
{yeXVaX |{zlg) >r} forzedX,r>0.

We remark that if X is & tree, then the hyperbolic boundary 8X coincides with the
natural boundary £ in the sense of [Fre].

Finally we prove that an amalgamated free product I' = g, considered in this
paper, is a hyperbolic group.

Lemma 9.4 The group T = »xG; is a hyperbolic group.

Proof. Let 8= {g & |),G:| |g| £ 1}. Let G(T, 8) be the corresponding Cayley graph. K
suffices to show (}) for w = e. For z,, 2 € T, we can write uniquely as follows:

T = Ty Lnhy,

¥ = e Ymly,
2 = 7 -zghy,
where
zleﬂ‘(ﬂlh ey -’ﬁnem(:..), 'hSEH:
0 €y s Ym EQg.) My EH,
ZIEﬂi(,ﬂ, cany ZkEQ.-(,ﬁ), h, € H.

such that each element hes length one. Then d(z,¢) = n, d(y,e) = m and d(z,¢e) = k. If
i) = iltn), -+ lBim)) = Hpiag) a0 ${Triagyia) # iBiaarar), then (zly), = I(z, ).
Similarly, we obtain the positive integers i{z, 2), {(y, #) such that (z]2), = I(z, z), {y|2}, =
i(y, z). We can have (}} with § = 0. (]
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TYPE II FACTORS ARISING FROM CUNTZ-KRIEGER
ALGEBRAS

RUI OKAYASU

APSTRACT, 'We determing the types of factore arising from GNB-represntationa
of quasi-free KMS states on Cunts-Krieger algebras. Applying our result to
tha Cunts-Krieger algebran arising from the boundary actions of some amnal-
gamated free product gronps, we ales determine the types of the harmenic
meamires o8 the boundaries,

1. INTRODUCTION

The Cuntz algebra Oy, [Cun] and the Guniz-Krieger algebra &4 [CK], & general-
ization of Oy, are important examples of C*-algebras. The Cuntz-Krieger algebra
O, associated with a 0-1 matrix A, is the universal {*-algebra generated by the
family of partial isometrica {9;}{%, satisfying the Cuntz-Krieger relations. The
universal property of O, allows us to define the so-called gauge action on (P4. The
existence of KMS states for one-parameter automorphisms is ome of the natural
queetions. The KMS states for the gauge actione on Oy, and €4 were obtained by
D, Olesen and G- K. Pedersen [OF], and M, Enomoto, M. Fujii and Y. Watatani
[EFW}, respectively. More generally, D. E. Evans determined the KMS states on
Oy, for the quasi-free actions in [Eva]. In order to construct examples of subfactars,
M. Irumi determined the types of factors obtained by the GNS-representations of
quaai-free KMS states in [Izu), One of the purposes in this paper ls to generalize his
result to Cuntz-Krieger algebras. The existence and the uniqueness of quasi-free
KMS states on Cunte-Krieger algebras were proved by R. Exel and M. Laca in [EL).
It implies that the von Neumann algebrae arising from thelr GNS-representations
are factors. We will compute the Connes spectrum of the modular automorphism
group and determine the types of quasi-free KMS states,

As an application, we can give a construction of type III factors from geometric
objecta. J. Spielberg proved in [Spi] that some Cuntz-Krieger algebras can be
abtained by the crossed product construction of the boundary action (5T, '), where
I' in the free product of cyclic groupa and 8T is the hyperbolic boundary as a
hyperbolic group. This construction was generalized to amalgamated free product
groups in [Oka). Under thie identiflcation, it was shown that there is one-to-one
correspondence between quasi-free KMS states and some class of rapdom walks on
I. Namely, by identifying OI" with the Poisson boundary, harmonic measures on
o' induce quasi-free KMS states. We will apply the main result to the harinonic
measures and determine the types of them. I turns out that the resulting factors
are either of type I1l; or of type I, (0 « X < 1), where A is some algebraic number.
Therefore, by combining these results, we can make type 111 factora from boundary
actions and harmonic measures on the boundary, which generalizes J. Ramagge and
G. Robertson’s result In [RR].
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2, PRELIMINARIES

2.1. Perron-Frobenius theorem. Let A = [A(i, /)], be an N x N matrix with
non-negative entries. We denote the (i, j}-entry of A™ by A™(4,§). A matrix Ais
irreducible if for every pair of indices i and j there is an m > 0 with A™(4,7) > 0.
For 1 < 4,j < W, put E(3,j) = {m € N | A(;,j) > 0} and p(i) = gc.d{m €
N | A™(i,i) # 0}. Note that if A is irreducible, then p = p(i) for any i and we
call it the pertod of A. An irreducible matrix A is said to be periodic of period p if
p>1and aperiodicif p=1. Set I, = {{ |1 <i < N,E{(i,1) =k — 1 (med p)} for
k=1,...,p. i Ais periodic, then the index set {1,..., N} can be decompoaed into
distinct subsets I1,...,J, such that the matrix A trandlates from I into Iy, {Jp
into ), and the restriction of A® to I, is aperiodic. If A is irreducible, the Perron-
Frobenius theorem guarantees the existence of the strictly poaitive efgenvector with
reapect to the simple root ¢ of the characteristic polynomial auch that o > 3| for
any other sigenvalue 5. Moreover, the following theorem 1s known.

Theorem 2.1 {[Kit, Theorem 1.3.8]). Let A be on srreducible matriz with non-
negative eniries and p the period of A. Ifz =T{(z),...,zy) ondy = (4n,...,¥N)}
are the right and left Perron eigenveciors of the Perron cigenvalue o such thal
E():l Ty = p, then

nh_?gndm(‘l,j)f&m = Ei¥y,
Joranyi, f=1,... N.

2.2. Cuntz-Krieger algebrad. Let A be an ¥ x N (-1 matrix without zero rows.
Then the Cuntz-Krieger algebra O4 is the universal C™*-algebra generated by the
family of partial isometries 8y,...,Sy satisfying:

N N
518 =3 A(,))S;5), and 1=3 S
=1 =1
For ¢ = 1,...,N, let us denote the initial projection of 5; by @; and the range
projection by Fy. Wesaﬁ'tha.t{ = (f-h'"'!&l‘l) € H?:]_'{Ij- --:N} with A(Ei:£i+l) #
0 is an edméssible word and denote the set of all admissible words by W,. We
define two maps 5 and r by #(£) = & and r(§} = £,. For & = (&1,...,86.),0 =
(M- -2 1m) € Wa with A(f,m) = 1, we define the concatenation £ -5 in W, by
{(E1y.séns, - -, Rm)- Let us ay that an admissible word ¢ = (61,.-., &) B &
:m;lif;‘.d.({mfl} =1. Wesay that aloop {is a circle if § # & forany 1 < k,{ <n,
k#1). -
Let w = (wy,...,wN) € RY. We define the action 2 of R on @4 by a(5;) =
eV Iis fort € Randi=1,...,N. Hw = (1,...,1), then o is the gauge
action. We define two word-length functions. For £ = (§,...,£&,) € Wy, we
denota the canonical one by [£] = n and the other by w; = wy, + -+, Let
nd = {(ﬂ*);?:k l A(Gk,ﬂk+1} = 1} be tul.'lﬁ get of all Onﬁ'ﬂid.Ed inﬁl'.l.ite adm.isﬁble
words. Note that there is the faithful conditional expectation & from 04 onto
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THER{ S¢S} | £ € Wa} = O(Ra) (see [OK]). We assume that there is § € R, and
27 > 0 that satisfies;
N
&g = Ze'ﬂ""A({,’j}zj, and 1=+ + 2y
J=l
We can define a probability measure » on (24 by
F{ﬂ‘(fh . :eﬂ—lsgn}} = C—ﬁ”‘l i 'e-&‘n—lxe-}

where nﬁ(fh-“ifﬂ} is the cyﬁﬂdﬂr set {{Ga]:'i.l =R 17 I H = fl:--'s“ll = Eﬂ}'
This probability measure induces a8 S-KMS sitate for a® on O by ¢* =vo &, Set
A, §) = e™P A, §). Note that the vector 2 = T{x,,..., 2x) is the right Perron
eigemvector of the matrix A, with respert to the Perron elgenvalue 1. R. Exel and
M. Laca, ie fact, showed the following in [EL).

Theorem 2.2 {{EL, Theorem 18.5]). Jf A is irvedurible, then there exists the unigque
B-KMS state ¢* of the Cunte-Krieger algebra 4 for the action o and the inverse
temperainre § is aloo unique.

Throughout this paper, we assume that A is irreducible and not a permutation
matrix. Let (wgw, Hyo,Eps) be the GNS-triple of ¢ The above theorem, in
particular, says that the von Neumann algebra M = 7 {4)" becomes & factor.

2.3. AF-algebras. The following results are based on [SV, Theorem 1.3.12.]. Con-
sider an AF-algebre B = o Bny Where {B,}2, is an inereasing family of finite
C*-subalgebras. We assumenihaz By = Cl. We define a maximal sbelian subalge-
bra C' of B as follows. Let Oy = By and Oy, the C™-subalgebra genarated by O,
and Dn.|.1, where Dyt 18 ammofﬂ,ﬂ.l, containing C,. 'We define ¢ =] InD'n Ch.
One can check that C' 18 a masa of B. There is a conditional expectation @ from
B onto ', and there is a topological dynamical eystem (2, T'} such that & = C(1),
B =tpan{fu| f € C(M),u € T} and T = |J,,,, [, where I', consists of all uni-
taries u in By, with 4Cru® = Oy Let v be o I'quasi-invariant probability measure
on {1. It induces a state = v o ¥ of B. Let (xy,Hy,£y) be the GNS-iriple of ¢,
Then we obtain the following:

(1} mg(C)" i a masa in 7y (B)"

(2) xp(CY = L°(,0).

(3) The conditional expectation ¥ can extend to %y(B)” whose image is we(CY

3. LEMMaTa

We denote by ¢5 the fixed-point algebra under o. We firgt introduce an
equivalence relation on the index set J = {1,...,/N'}.. We say thst § is equivalent
to j if there are £, 1 € W, auch that s(£) = i,8(n) = j,r(§) =r(n) and cw; =wy, It
is easy to check that this is an equivalence relation. We obtain the corresponding
digjoint union [ = F U--- U LY. Note that if a® is the gauge action, then this
decompogition coincides with the one with respect to the period of 4. Set P =
}:‘,iﬂ:.P.-. Our goal in this section is to prove the following lemma.

Lemma 3.1,
Z{wgs(OF ') = 7go{OF ) N5 (OF ) = D Crge (Prp).
kw1
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‘We need some lemmata to show the above.
Lemma 3.2, The fized-point algebrs O is an AF-algebra

Proof, Set F} = span{S¢P,5% | wg = wy = t} for ¢ € fwg | &€ € Wu}. Since
{S¢FiS;} gives the matrix units, F} is a simple finite-dimensional C*-algebra. We
can define finite-dimensional C™-algebras K, as follows:

F_1 = CJ.,
Fo =\ R=PPF fornzpo,
T e €T EKE

where wmia = min{w; | i € I} and
K}, = {wg | £ € Wa, Alr(£),%) = 1, flmin — i < wg < Nimin }.

Indesd, let S¢, PiS}, € FY for t € Ki and Sg, P;S%, € F} for s € Ki. We assume
that Sg, PS8y Se, P;Sy, # 0. Hm| = [&], then 1y =& and thus s =t and § = j.
‘We now suppose that || # |£a]- Without loss of generality, we may assume that
Inaf < |éa|. Since FiSy 8¢, F; # 0, we have BS; S, Py = §¢F; for some ¢ with
§2 = m - £ and 8(£) = i. Hence we obtain w; < we. However,

iy = Wy + W 3> T — &Y + 0% = Rldmin.

Thus gy < g, € Rugin and this iz a contradiction.

We next show that F, is & C*-subalgebraof Fyy, . Let S¢F;S5 € Ff with ¢ € K.
¥ (n + Lwmin — w4 < ¢, then we have S¢ PS5y € Foqy. Ht < (0 + 1)Wain — w4, then
we have

SePiSy =) Ali, §)5¢51P;S; S} € Fosa.
jer
We can define an AF-algbera F = [J, Fy.

We claim that F = OF It is clear that ¥ € 0" ‘To show the converse, we
need the conditional expectation. Hew;/w; € Qforalli,7 € I, then we can define the
faithful conditional expectation from O, onto OF by the integration on T. If not,
we consider an action & of TV such that &,(S;} = 5,5 forz € (z1,.-.,2n) €TV
Since there is the embedding of R into TV, ¢ —» (e¥™Tunt,,,, ev=Tnt) wg cap
consider the closure of R in T¥ via this embedding. Therefore the conditional
expectation is given by the integration on the compact group K. One can easily
check that the flxed-peint algebra under &y coinsides with 04 and thus we can
show that OF = F by using this conditional expectation. ]

We will need one more lemma. Let p be the period of the matrix A. We define

partial isometries for m €N, i ¢ I by
o) = z SgSnFiSg Sy,
f.ﬂEL(me)

where Li(n) = {£ € W | a(f) = i, A(r(£),q) = 1,[€] = n} is the set of all loops
of 4 with length n. Note that 6% is self-adjoint. We define the tracia] state by
¥ = ¢“|oge on OF , and use the same symbol ¢ for its normal extension to
T (0% ) for simplicity.
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Lemmn 38.3. Let f € xg(C(04))” and a € 7y (OF )*. Then for anyic I,
Jim o (88 f68)a) = o (Pof W+ (Pra)zusd,
where y = (tn,...,¥n} ¥ the left Perron eigenvecior of A, with 3.,z = p.

Proof. Note that C(024) = BPBB{SeS¢ | £ € Wa} is & masa in the AF-algebra OF
We denote by % the conditional expectation from xy» (09 ) onto 1ge (C(RAN)" =
L%{(l4,v). We first prove the lemma for £ ¢ C(2,) and 6 € 03  Remark that
¥ = v o ¥, We may assume that @ € O(f}4). Indeed, if the statement holds for

¥(a) instead of a, then since 0 0¥ € C(f1.4), we will have
Jim g (@01600) =l (010100 %(e))

(P (Pl (o))ew]
W (P (Pa)aipi.
It suffices to check the statement for § = S;, Py, §3,,0 = S PpS}, with [1] =
kp, |¢a| = Ip and #(()) = 3((a) = 4. In this case, for sufficiently large m wo have

01090 = 3 8805, Sy PS8 5a 5%,

t

where £ and % run over all admissible words from o, 7 to § with {&'| = (m —
Hp, |v'| = (m — k)p. Therefore

WD) = e, e PYa AlNIR (5, )e
—  e~Paz,yePUag ywy (M — o)
= (v (a)a].

Next let f € L™(f24,11). We choose g € C(f14) with ||(# ~ g)éy~|| < &. Then

v (010 168a) -y~ (Pif > (Pa)agy]l < W (69( - 5)0%a)|
+ |¢(0D 980 a) — g (PigW” (Pio)zi?]
+  WPBS — )W (Pra)aa?l,
and we get the following estimate of the flrst, term:
W B -~ )80} = |97 (EDatl®(F - g}
< (DD 0D Py ((f — 9 (f — )V
NalllI(F — )€l
because $* is tracial. In e aimilar way, we can show the mtatement for a €
"y (OF V' m
We will use the following folklore among specialisis, (e.g. see {Izu)).

Lemma 3.4 ([lzu, Lomma 4.1]}. Lei B be o unital C*-algebra, ¢ o siate of B and
(74, Hy,Ly) the GNS-triple of ¢. We assume thai the eyelic vector £, ia a separating
vector for my(B)" Let C be a unital C*-sublagebra of B ond ¢ the restriction of ¢
to C. Then (Rslc, Hy) is quasi-equivalent to the GNS-representation (ry, Hy) of
.

Now we have the necessary ingredients for the proof of Lemma 3.1.

1A,
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Proof of Lemma 8.1. 1t 18 easy to chow that me(Pry) € Z(mpu(0F )") for k =
L,... N By Lemma 3.4, mg-{€3")" is isomorphic to xy=(0F ). It therefore
suffices to show that Z{my(0F ) = @, CPry. Let 2 € Z(wy.(C0F)") be
8 non-trivial projection. Since L®°({},) is a masa in mye(OF ), we have 2 €
LN 4). We can apply Lemma 3.3 to f = Fiz:

Jirm (85260 a) = 9" (Piz)* (Ra)ziy].

Om the other hand, since z is centered, we get
lim (6020000) = lm ¢*(@Q00z0) = ¢*(R)9"(Pza)ar].
Therefore
PP (Frra) = ¥ (Pz)y” (Fia)-
Since ¢~ is faithful on xy»{OF )" and a is arbitrary, we get
_ (R,
o=y
Therefore we obtsin z = 3, &P for ¢ € {0,1}. I & # 0 for i € I, then there
are admlssible words £,n with s(€) = i,s(n) = j,r{{} = r(n) and wg = wy for
J & Iy, and z must commute with S;S; € OFf Hence we have z = 3 3 o Pre
for ¢ ¢ {0,1}. 0
4. MAIN THEOREM
We first review some notations in [Con). Iet (M,R,0) be a W*-dynamical
system. For f € L'(R), we define a ¢-weakly continuous linear map on Af by
ay(z) = / t@oc(z)dt forz € M.
The Arveson spectrum of o is defined by
Sp(o) =[H2(N1 f e L'®), o =0},

where Z(f} = {r € & | f(r) = 0} and R is the dual group of R. Then the Connes
spectrum of o is defined by

T(2) = [ Sp(olers),
r

where p runs over all non-zero projections in Z{(M*) = M° (M"Y Note that
L'(o) C Sp(olpmy) holds for any non-zero projection p in M
For each i € I, let ; be the closed additive subgroup of R generated by fuw; for
:ﬂll l?ogs Efwith s(§) =4 and @ the closed additive subgroup generated by Suw, for
circles £,

Lemmua 4.1, Foranyicl, G=0,.

Proof. Tt i? clear that G C ;. Conversely, let £ be a loop with 5(¢) = 4, Then
there are circles £(1),.. ., £(n) such that We=wgy+r -ty Thus G; € G O

We will prove the following main theorem.

Theorem 4.2. (1) Ifwefiy € Q for off circies £7y then M = xyo(0,)" is the
AFD type Ll factor for A =e~", where (7 = +Z JorsomercR,.
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(2) Fuwgfuy @ Q for some circles £,7, then M = xyw(04)" is the AFD type I

Joctor.

Proof. Since ¢ is a*-invariant, o* can be extended to an action on M, We use the
same symbol ¢ for ita normal extension. Let ¢*° be the modular automorphism
group for ¢ , which satisfies of = o4, for ¢ € R We first claim that M* =
Zge{%)" One can check that the conditional expectation from O4 onto o
in the proof of Lemma 3.2 can extend to the one on wyx(4) Thus by the
approximation arguments, we can obtain our claim.

By Lemma 3.1, we obtain I'{a*") =, Sp{d“"hzyp,:. }. Since Sp(e*” |paer ) €
Sp(a*'|p,rgﬁrjforiefﬂ',wehaw P(ﬁ}:nEISp{d'Vlnuﬂ).

We now clalm that Sp(c* |pur} = Gy for each i € I. Let £,1 be loope with
s(€) = 2(n) =i. ¥ f € Keto? | prp,, then

0 =of* (RSSyF) = f(Blug — wa)) PiTe S P

Since P,S¢SyPy # 0, we have B(w; — wy) € Sp(o* [pmn). Thus a group gen-
erated by fwg for all loops ¢ with a{f)} = i is contained in Sp(c* |m 7). Since
Sple*” |paep,) i8 closed, G5 C Sple* |pur) holds. Comversely let r € R\ G
Choose a fanction f € L'(K) with f(r) # 0 and flg, = 0. We have

0% |nsep (PSS P) = F(Bwe — wy)) PSSP,
If PS¢ Sy Py # 0, then we have #(f) = a(n) = i and A(r(€),5) = A(r(n),5) = 1 for
some j € I. Since A is irreducible, there is an admissible word ¢ with #({) = 7 and
A(r(¢),3) = 1. Two admisible words ¢ -, - ave loops with s{¢() = s(-¢) = .
Rolile )
Blwy — wy) = Blwg +wg —wy —we) = Blwe.g —wyg) € Ge.
Wa therefore obtain f € Kero®|p prp,. It follows from Lemma 4.1 that T'{g#") =

7. In the case (1), we have @ = rZ for some r € R, and ) ia determined by
e’ O

Example 4.3. Let F; be the free group with the canonical generators a;,...,8q
and § = {a1,a7,...,6n,0;1} the generating set. The corresponding Cayley graph
is the homopensous tree with degree 2n. We define a compact space by

Q= {=)E lz# ) e [[5
i=1
Note that € is compact and T' acta on {3} by left multiplications. We remark that
¢oinsides with the hyperbolic boundary ¥y, of F,. In [Spi), Spielberg showed the
identification 4 =~ O{) x F,,, where

1 011 11\
6111 - 11
1110 - 11
A=| 1101 - 1 1§ (2% 3nmatrix).
1111 10
\1 111 0 1/
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We now apply Theorem 4.2 to 4 ~ C(§1) % F,. Note that the canonical masa
C(024) of @4 coinsides with C(f2). Let w = (ws)zes € E3™ and v the corresponding
probability measure on 2, which induces the KMS state for o By Theorem 4.2,
we have the following:

(1) Fwzfwy € Q for allz,y € 8, then L=(Q,v) 1 K, is the AFD type 111, facior
Jorsome 0 < A <1,

(2) If wpfuwy & Q for some 2,y € S, then L™, v) x F, is the AFD type HI)
Jactor.

Let it be & probability measure on F, with suppx = 5. By [Oka), the random
walk with law u induces the harmonic measure # on 3 such that the modular
sutomorphism group of the state vo® has the form a¥ for some w = (W, )2es € R2®
Therefore the above result also means that we determine the type of harmonic
measures on {} (c¢f. [RR]).

Remark 4.4. We can also prove the same resulta for Op in [Oka] in the same way,
where I’ is an amalgamated free product group *gGYy. Here, we will give a sketch
of the proof.

Let I be a finite index set and G; a group containing a copy of a group H as s
subgroup for ¢ € I. We amsume that G; is finite for simplicity. p is the universal
C*-algebra generated by partial isometries s 9 € Uie; Gi \ H and unitaries Uy,
h € H patisfying certain conditions (see [Oka]). We use some symbols in [Oka). For
w=(w.-)¢gell|f|.wemnsiduthe action o of R given by

o (S} = eItg, for icl, ge G\ H,
af(h) = Uy for heH,

where || is the cardinality of I. Remark that there is an identification Op =~
C{f2) » T for some compact space (¥ ([Oka, Theorem 5.3]). Let & be the canonical
conditional expectation from C(f1) » I' onto C'(R). It was shown that there ia the
unique §-KMS state ¢ = v o & for o, where v is the corresponding probability
megsure on {}. However the difference from the above example is that C{ft) may be
not a masa of the fixed-point algebra under 0. Therefore we need some arguments
t0 obtain the similar result for (r. Choose a masa C, containing (). We assume
that I' = G satlsfies the following condition:

Foranpicl, there is an element v, =gy - - . g, € T such thet ey H # v H for
ang {e#A)h e H, where gy EG \HFuithi=1, fig,dn F g, ... ing # iy

We remark that the above assumption holds if T = »p(v; satisfies the condition
of [Oka, Corollary 6.4]. Fix +; eatisfying the above. Let ¥ be the restriction of ¢
on the fixed-point algebra under OF° For g € Gi \ H, we set

353) = E S;S.,iS,,P,S;S;S;,
&n
wh:ere £,7 run over all words fram g to an element, which is not in G}, with length
# if {7] > 2 and length 2m if [I] = 2. Let 7y be the GNS-representation of ¢,
Then we will get: the similar result of Lemma, 3.3.

Lemma 4.5. For f € 74(C)" and a € ny{0F")", we haze
olim $(6% 56a) = WP, FY0(P0)2,y2 ks,
where 24,4, 2, are some constants.
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Using this lemme., we can prove the following similarly.
Proposition 4.8.

" CF; =3,
2o ={ O™ ¢ HSE
Hence we can compute the Connes spectrum of the modular automorphism group
in the similar way. This gives a generalization on [RR].

Corollary 4.7, Let Op,w,$,v be the above and xy the GNS-representation of ¢.
Then
(1) Heyfoy € Q for any i, 5 € I, then wg(Op)" = L°(Q,») 1T is the AFD type

Iy factor for some 0 < A < 1.
(2) If wyfwy & Q for some i,§ € I, then my(Or) ~ L®(Q,¥) 1 [ iz the AFD

iype II; factor.
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