Title	Entropy of subshifts and the Macae vnorm（ Dissertation＿全文 ）
Author（s）	Okay asu，Rui
Citation	Kyoto University（京都大学）
Issue Date	$2003-03-24$
URL	http：／ddx．doi．org／10．14989／doctor．k9912
Right	Thesis or Dissertation
Type	Textversion author Ty

学位申請論文
\qquad

ENTROPY OF SUBSHIFTS AND THE MACAEV NORM

RUI OKAYASU

Abstract

We obtain the exact value of Voiculescu＇s invariant $k_{\infty}^{-}(\tau)$ ，which is an obstruction of the existence of quasicentral approximate units relative to the Macaev ideal in perturbation theory，for a tuple τ of operators in the following two clasees： （1）creation operators associated with a subshift，which are used to define Matsumoto algebras，（2）unitarles in the left regular representation of a finitely generated group．

1．Introduction

In the remarkable serial works［Voi1］，［Voi2］，［Voi3］and［DV］on perturbation of Hilbert space operators，Voiculescu investigated a numerical invariant $k_{\Phi}(\tau)$ for a family τ of bounded linear operators on a separable Hilbert space，where $k_{\phi}(\tau)$ is the obstruction of the existence of quasicentral approximate units relative to the normed ideal $\mathcal{S}_{{ }^{(0)}}$ corre－ sponding to a symmetric norming function Φ ，（see definitions in Section 2）．The invariant $k_{\Phi}(\tau)$ is considered to be a kind of dimension of τ with respect to the normed ideal $\mathfrak{S}_{\phi}^{(0)}$ （see［Voil］and［DV］）．

In the present paper，we study the invariant $k_{\phi}(\tau)$ for the Macaev ideal，which is denoted by $k_{\infty}^{-}(\tau)$ ．It is known that $k_{\infty}^{-}(\tau)$ possesses several remarkable properties：for instance，$k_{\infty 0}^{-}(\tau)$ is always finite and $k_{\Phi}(\tau)=0$ if $\mathfrak{S}_{\Phi}^{(0)}$ is strictly larger than the Macaev ideal．In［Voi3］，Voiculescu investigated the invariant $k_{\infty}^{-}(\tau)$ for several examples．He proved that $k_{\infty}^{-}(\tau)=\log N$ for an N－tuple τ of isometries in extensions of the Cuntz algebra \mathcal{O}_{N} ．Here， $\log N$ can be interpreted as the value of the topological entropy of the N－full shift．Inspired by this result，we show that $k_{\infty}^{-}(\tau)=h_{\text {top }}(X)$ for a general subshift X with a certain condition，where $h_{\text {top }}(X)$ is the topological entropy of X and τ is the family of creation operators on the Fock space associated with the subshift X ，which is used to define the Matsumoto algebra associated with X（e．g．see［Mat］）．In particular， we ahow that $k_{\infty}^{-}(\tau)=h_{\text {top }}(X)$ holds for every almost sofic shift X（cf．［Pet］）．

Let Γ be a countable finitely generated group and S its generating set．We also study $k_{\infty}^{-}\left(\left(\lambda_{a}\right)_{a \in s}\right)$ ，where λ is the left regular representation of Γ ．For the related topic，see ［Voi5］，in which a relation between $k_{\infty}^{-}\left(\left(\lambda_{a}\right)_{a \in S}\right)$ and the entropy of random walks on groups is discussed．By using a method introduced in［Oka］，we can compute the exact value of $k_{\infty}^{-}\left(\left(\lambda_{a}\right)_{a \in S}\right)$ for certain amalgamated free product groups．Voiculescu proved that $\log N \leq k_{\infty}^{-}\left(\left(\lambda_{a}\right)_{a \in S}\right) \leq \log (2 N-1)$ holds for the free group \mathbb{F}_{N} with the canonical generating set S（［Voi3，Proposition 3．7．（a）］）．As a particular case of our results，we show that $k_{\mathrm{o}}^{-}\left(\left(\lambda_{a}\right)_{a \in S}\right)=\log (2 N-1)$ actually holds．
Acknowledgment．The author wishes to express his gratitude to Masaki Izumi for his constant encouragement and important suggestions．He is grateful to Kengo Matsumoto

[^0]for useful comments about symbolic dynamics. He also thanks the referee for careful reading.

2. Preliminary

Let H be a separable infinite dimensional Hilbert space. $\mathrm{By} \mathbf{B}(H), \mathbb{K}(H), \mathbb{F}(H)$ and $\mathbf{F}(H)_{1}^{+}$, we denote the bounded linear operators, the compact operators, the finite rank operators and the finite rank positive contractions on H, respectively.
We begin by recalling some facts concerning normed ideal in [GK]. Let c_{0} be the set of real valued sequences $\xi=\left(\xi_{j}\right)_{j \in \mathrm{~N}}$ with $\lim _{f \rightarrow \infty} \xi_{j}=0$, and $c_{0,0}$ the subspace of c_{0} consisting of the sequences with finite support. A function Φ on $c_{0,0}$ is said to be a symmetric norming function if Φ satisfies:
(1) Φ is a norm on $c_{0,0}$;
(2) $\Phi((1,0,0, \ldots))=1$;
(3) $\Phi\left(\left(\xi_{j}\right)_{j \in \mathbb{N}}\right)=\Phi\left(\left(\left|\xi_{\pi(j)}\right|\right)_{j \in \mathbb{N}}\right)$ for any bijection $\pi: \mathbf{N} \rightarrow \mathbf{N}$.

For $\xi=\left(\xi_{j}\right)_{\xi \in \mathbb{N}} \in c_{0}$, we define

$$
\Phi(\xi)=\lim _{n \rightarrow \infty} \Phi\left(\xi^{*}(n)\right) \in[0, \infty]
$$

where $\xi^{*}(n)=\left(\xi_{1}^{*}, \ldots, \xi_{n}^{*}, 0,0, \ldots\right) \in c_{0,0}$ and $\xi_{1}^{*} \geq \xi_{2}^{*} \geq \cdots$ is the decreasing rearrangement of the absolute value $\left(\left|\xi_{j}\right|\right)_{j \in \mathbb{N}}$. If $T \in K(H)$ and Φ is a symmetric norming function, then let us denote

$$
\|T\|_{\&}=\Phi\left(\left(s_{j}(T)\right)_{j \in \mathbb{N}}\right)
$$

where $\left(s_{j}(T)\right)_{j \in \mathrm{~N}}$ is the singular numbers of T. We define two symmetrically normed ideals

$$
\mathcal{G}_{\Phi}=\left\{T \in \mathbb{K}(H) \mid\|T\|_{\Phi}<\infty\right\}
$$

and $\mathfrak{S}_{\phi}^{(0)}$ by the closure of $\mathbf{F}(H)$ with respect to the norm $\|\cdot\|_{\Phi}$. Note that $\mathbb{S}_{\phi}^{(0)}$ does not coincide with $\mathfrak{S}_{\mathbb{4}}$ in general. If \mathfrak{S} is a symmetrically normed ideal, i.e. \mathfrak{S} is a ideal of $\mathbf{B}(H)$ and a Banach space with respect to the norm $\left\|\|_{\mathcal{S}}\right.$ satisfying:
(1) $\|X T Y\|_{\mathcal{\Theta}} \leq\|X\|\|T\|_{\mathcal{G}}\|Y\|$ for $T \in \mathcal{G}$ and $X, Y \in \mathbf{B}(H)$,
(2) $\|T\|_{\varrho}=\|T\|$ if T is of rank one,
where $\|\|$ is the operator norm in $\mathbb{B}(H)$, then there exists a unique symmetric norming function Φ such that $\|T\|_{\mathscr{G}}=\|T\|_{\Phi}$ for $T \in \mathbf{F}(H)$ and $\mathfrak{S}_{\Phi}^{(0)} \subseteq \subseteq \subseteq \mathcal{S}_{\Phi}$.

We introduce some symmetrically normed ideals. For $1<p \leq \infty$, the symmetrically normed ideal $\mathcal{C}_{\mathrm{p}}^{-}(H)$ is given by the symmetric norming function

$$
\Phi_{p}^{-}(\xi)=\sum_{j=1}^{\infty} \frac{\xi_{\xi}^{*}}{j^{1-1 / p}}
$$

We define $\mathcal{C}_{p}^{-}(H)=\mathfrak{S}_{\Phi_{p}^{-}}^{(0)}$. We remark that it coincides with $\mathcal{S}_{\Phi_{\bar{p}}^{-}}$For $1 \leq p<\infty$, the symmetrically normed ideal $C_{p}^{+}(H)$ is given by the symmetric norming function

$$
\Phi_{p}^{+}(\xi)=\sup _{n \in \mathbb{N}} \frac{\sum_{j=1}^{n} \xi_{j}^{*}}{\sum_{j=1}^{n} \frac{j^{1 / p}}{} .}
$$

We define $\mathcal{C}_{p}^{+}(H)=\mathfrak{S}_{\Phi_{p}^{+}}$. However $\mathbb{G}_{\Phi_{p}^{+}}^{(0)}$ is strictly smaller than $\mathcal{C}_{p}^{+}(H)$. For $1 \leq p<q<$ $r \leq \infty$, we have

$$
\mathcal{C}_{p}(H) \subsetneq \mathcal{C}_{q}^{-}(H) \varsubsetneqq \mathcal{C}_{q}(H) \varsubsetneqq \mathcal{C}_{q}^{+}(H) \varsubsetneqq \mathcal{C}_{r}(H)
$$

where $\mathcal{C}_{p}(H)$ is the Schatten p class.
For a given symmetric norming function Φ, which is not equivalent to the l^{1}-norm, there is a symmetric norming function Φ^{*} such that $\mathfrak{S}_{\Phi}{ }^{*}$ is the dual of $\mathfrak{S}_{\Phi}^{(0)}$, where the dual pairing is given by the bilinear form $(T, S) \mapsto \operatorname{Tr}(T S)$. If $1 / p+1 / q=1$, then $\mathcal{C}_{p}(H)^{*} \simeq \mathcal{C}_{q}(H)$ and $\mathcal{C}_{p}^{-}(H)^{*} \simeq \mathcal{C}_{q}^{+}(H)$. In particular, $\mathcal{C}_{\infty}^{-}(H)$ and $\mathcal{C}_{1}^{+}(H)$ are called the Macaev ideal and the dual Macaev ideal, respectively.

Let $\mathbb{S}_{\Phi}^{(0)}$ be a symmetrically normed ideal with a symmetric norming function Φ. If $\tau=\left(T_{1}, \ldots, T_{N}\right)$ is an N-tuple of bounded linear operators, then the number $k_{\Phi}(\tau)$ is defined by

$$
\left.k_{\Phi}(\tau)=\liminf _{u \in \mathbb{Y}(H)_{1}^{+}} \max _{1 \leq \Delta \leq N}\| \| u, T_{a}\right] \|_{\Phi},
$$

where the inferior limit is taken with respect to the natural order on $\mathbb{F}(H)_{1}^{+}$and $[A, B]=$ $A B-B A$. Throughout this paper, we denote $\left\|\|_{\Phi_{p}^{-}}^{-}\right.$by $\| \cdot \|_{p}^{-}$and $k_{\phi_{p}^{-}}$by k_{p}^{-}A relation between the invariant k_{Φ} and the existence of quasicentral approximate units relative to the symmetrically normed ideal $\mathfrak{S}_{\phi}^{(0)}$ is discussed in [Voi1]. A quasicentral approximate unit for $\tau=\left(T_{1}, \ldots, T_{N}\right)$ relative to $\mathbb{S}_{\phi}^{(0)}$ is a sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subseteq \mathrm{F}(H)_{1}^{+}$such that $u_{n} \nearrow I$ and $\lim _{n \rightarrow \infty}\left\|\left[u_{n}, T_{a}\right]\right\|_{\Phi}=0$ for $1 \leq a \leq N$. Note that for an N-tuple $\tau=\left(T_{1}, \ldots, T_{N}\right)$, there exists a quasicentral approximate unit for τ relative to $\mathcal{S}_{\Phi}^{(0)}$ if and only if $k_{\Phi}(\tau)=0$ (e.g. see [Voi2, Lemma 1.1]).

We use the following propositions to prove our theorem.
Proposition 2.1 ([Voi1, Proposition 1.1]). Let $\tau=\left(T_{1}, \ldots, T_{N}\right) \in \mathbf{B}(H)^{N}$ and $\mathbb{S}_{\Phi}^{(0)}$ be a symmetrically normed ideal with a symmetric norming function Φ. If we take a sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{F}(H)_{1}^{+}$with $w-\lim _{n \rightarrow \infty} u_{n}=I$, then

$$
k_{\Phi}(\tau) \leq \liminf _{n \rightarrow \infty} \max _{1 \leq a \leq N}\left\|\left[u_{n}, T_{\mathbf{a}}\right]\right\|_{\Phi}
$$

Proposition 2.2 ([Voi3, Proposition 2.1]). Let $\tau=\left(T_{1}, \ldots, T_{N}\right) \in \mathbf{B}(H)^{N}$ and $X_{a} \in$ $\mathcal{C}_{1}^{+}(H)$ for $a=1, \ldots, N$. If

$$
\sum_{a=1}^{N}\left[X_{a}, T_{a}\right] \in \mathcal{C}_{1}(H)+\mathbb{B}(H)_{+},
$$

then we have

$$
\left|\operatorname{Tr}\left(\sum_{a=1}^{N}\left[X_{a}, T_{a}\right]\right)\right| \leq k_{\infty}^{-}(\tau) \sum_{a=1}^{N}\left\|X_{a}\right\|_{1}^{\mp},
$$

where $\left\|X_{a}\right\|_{1}^{\tilde{f}}=\inf _{Y \in \mathbf{F}(B)}\left\|X_{a}-Y\right\|_{\Phi_{1}^{+}}$.
The following proposition was shown in the proof of [GK, Theorem 14.1].
Proposition 2.3. For $T \in \mathcal{C}_{1}^{+}(H)$, we have

$$
\|T\|_{1}^{\overline{+}}=\limsup _{n \rightarrow \infty} \frac{\sum_{j=1}^{n} s_{j}(T)}{\sum_{j=1}^{n} 1 / j}
$$

3. Subshifts and Macaev Norm

Let \mathcal{A} be a finite set with the discrete topology, which we call the alphabet, and \mathcal{A}^{Z} the two-sided infinite product space $\prod_{i=-\infty}^{\infty} \mathcal{A}$ endowed with the product topology. The shift map σ on $\mathcal{A}^{\mathbf{Z}}$ is given by $(\sigma(x))_{i}=x_{i+1}$ for $i \in \mathbb{Z}$. The pair $\left(\mathcal{A}^{\mathbf{Z}}, \sigma\right)$ is called the full shift. In particular, if the cardinality of the alphabet \mathcal{A} is N, then we call it the N-full shift.

Let X be a shift invariant closed subset of $\mathcal{A}^{\mathbf{Z}}$. The topological dynamical system (X, σ_{X}) is called a subshift of $\mathcal{A}^{\mathbf{Z}}$, where σ_{X} is the restriction of the shift map σ. We sometimes denote the subshift $\left(X, \sigma_{X}\right)$ by X for short. A word over \mathcal{A} is a finite sequence $w=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \in \mathcal{A}$. For $x \in \mathcal{A}^{2}$ and a word $w=\left(a_{1}, \ldots, a_{n}\right)$, we say that w occurs in x if there is an index i such that $x_{i}=a_{1}, \ldots, x_{i+n-1}=a_{n}$. The empty word occurs in every $x \in \mathcal{A}^{\mathbf{Z}}$ by convention. Let \mathcal{F} be a collection of words over $\mathcal{A}^{\mathbf{Z}}$ We define the subshift $X_{\mathcal{F}}$ to be the subset of sequences in $\mathcal{A}^{\mathbf{Z}}$ in which $n o$ word in \mathcal{F} occurs. It is well-known that any subshift X of $\mathcal{A}^{\mathbf{Z}}$ is given by $X_{\mathcal{F}}$ for some collection \mathcal{F} of forbidden words over \mathcal{A}^{Z}. Note that for $\mathcal{F}=\emptyset$, the subshift $X_{\mathcal{F}}$ is the full shift \mathcal{A}^{Z}

Let X be a subshift of $\mathcal{A}^{\mathbf{Z}}$ We denote by $\mathcal{W}_{n}(X)$ the set of all words with length n that occur in X and we set

$$
\mathcal{W}(X)=\bigcup_{n=0}^{\infty} \mathcal{W}_{n}(X)
$$

Let $\varphi: \mathcal{W}_{m+n+1}(X) \rightarrow \mathcal{A}$ be a map, which we call a block map. The extension of φ from X to $\mathcal{A}^{\mathbf{Z}}$ is defined by $\left(x_{i}\right)_{i \in Z} \mapsto\left(y_{i}\right)_{i \in Z}$, where

$$
y_{i}=\varphi\left(\left(x_{i-m}, x_{i-m+1}, \ldots, x_{i+n}\right)\right)
$$

We also denote this extension by φ and call it a sliding block code. Let X, Y be two subshifts and $\varphi: X \rightarrow Y$ a sliding block code. If φ is one-to-one, then φ is called an embedding of X into Y and we denote $X \subseteq Y$ If φ has an inverse, i.e. a sliding block code $\psi: Y \rightarrow X$ such that $\psi \circ \varphi=\operatorname{id}_{X}$ and $\varphi \circ \psi=\mathrm{id}_{Y}$, then two subshifts X and Y are topologically conjugate.

The topological entropy of a subshift X is defined by

$$
h_{\text {top }}(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{W}_{n}(X)\right|
$$

where $\left|\mathcal{W}_{n}(X)\right|$ is the cardinality of $\mathcal{W}_{n}(X)$. The reader is referred to [LM] for an introduction to symbolic dynamics.
For a given subshift X, we next construct the creation operators on the Fock space associated with X (cf. [Mat $]$). Let $\left\{\xi_{a}\right\}_{a \in \mathcal{A}}$ be an orthonormal basis of N-dimensional Hilbert space \mathbb{C}^{N}, where N is the cardinality of \mathcal{A}. For $w=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{W}_{n}(X)$, we denote $\xi_{w}=\xi_{\alpha_{1}} \otimes \cdots \otimes \xi_{a_{n}}$. We define the Fock space \mathcal{F}_{X} for a subshift X by

$$
\mathcal{F}_{X}=\mathbb{C}_{0} \oplus \bigoplus_{n \in \mathbb{N}} \operatorname{span}\left\{\xi_{t \tau} \mid w \in \mathcal{W}_{n}(X)\right\}
$$

where ξ_{0} is the vacuum vector. The creation operator T_{a} on \mathcal{F}_{X} for $a \in \mathcal{A}$ is given by

$$
\begin{aligned}
T_{a} \xi_{0} & =\xi_{a}, \\
T_{a} \xi_{w} & =\left\{\begin{array}{cl}
\xi_{a} \otimes \xi_{w} & \text { if aw } \in \mathcal{W}(X) \\
0 & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Note that T_{a} is a partial isometry such that

$$
P_{0}+\sum_{a \in \mathcal{A}} T_{a} T_{a}^{*}=1
$$

where P_{0} is the rank one projection onto \mathbb{C}_{0}. We denote by P_{n} the projection onto the subspace spanned by ξ_{w} for all $w \in \mathcal{W}_{n}(X)$. For $w=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{W}_{n}(X)$, we set $T_{t w}=T_{a_{1}} \cdots T_{a_{n}}$ The following proposition is essentially proved in [Voi3].
Proposition 3.1. If $\tau=\left(T_{a}\right)_{a \in \mathcal{A}}$, then we have

$$
k_{\infty}^{-}(\tau) \leq h_{\text {top }}(X)
$$

Proof. We first assume that the topological entropy of X is non-zero. Let us denote $h=h_{\text {top }}(X)$. By definition, for a given $\epsilon>1$, there exists $K \in \mathbb{N}$ such that for any $n \geq K$, we have

$$
\frac{1}{n} \log \left|\mathcal{W}_{n}(X)\right|<\varepsilon h
$$

Thus

$$
\left|\mathcal{W}_{n}(X)\right|<e^{n \varepsilon h}
$$

for all $n \geq K$. We set

$$
X_{n}=\sum_{j=0}^{n-1}\left(1-\frac{j}{n}\right) P_{j}
$$

One can show that

$$
\left\|\left[X_{n}, T_{a}\right]\right\| \leq \frac{1}{n}
$$

Since

$$
r_{n}=\operatorname{rank}\left(\left[X_{n}, T_{a}\right]\right) \leq \sum_{j=1}^{n}\left|\mathcal{W}_{j}(X)\right| \leq \sum_{j=1}^{K-1}\left|\mathcal{W}_{j}(X)\right|+\sum_{j=K}^{n} e^{j \epsilon h}
$$

for $n \geq K$, we obtain

$$
k_{\infty}^{-}(\tau) \leq \limsup _{n \rightarrow \infty} \max _{a \in \mathcal{A}} \left\lvert\,\left\|\left[X_{n}, T_{a}\right]\right\|_{\infty} \leq \limsup _{n \rightarrow \infty} \frac{\sum_{j=1}^{r_{n}} 1 / j}{n} \leq \varepsilon h .\right.
$$

In the case of $h=0$, for any $\varepsilon>0$, we have

$$
\left|\mathcal{W}_{n}(X)\right|<e^{n \varepsilon}
$$

for sufficiently large n. By the same argument, we can get

$$
k_{\infty}^{-}(\tau) \leq \lim \sup _{n \rightarrow \infty} \max _{a \in \mathcal{A}}\left\|\left[X_{n}, T_{a}\right]\right\|_{\infty}^{-} \leq \varepsilon
$$

for arbitrary $\epsilon>0$.
Next we obtain the lower bound of $k_{\infty}^{-}(\tau)$ by using Proposition 2.2. Before it, we prepare some notations. For any $m \in \mathbb{Z}$ and $w=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{W}_{n}(X)$, let us denote

$$
{ }_{m}[w]=\left\{\left(x_{i}\right)_{i \in \mathbf{Z}} \in X \mid x_{m}=a_{1}, \ldots, x_{m+n-1}=a_{n}\right\}
$$

We sometimes denote the cylinder set $0[w]$ by $[w]$ for short. Let μ be a shift invariant probability measure on X. The following holds:
(1) $\sum_{a \in \mathcal{A}} \mu([a])=1$;
(2) $\mu\left(\left[a_{1}, \ldots, a_{n}\right]\right)=\sum_{a_{0} \in \mathcal{A}} \mu\left(\left[a_{0}, a_{1}, \ldots, a_{n}\right]\right)$;
(3) $\mu\left(\left[a_{1}, \ldots, a_{n}\right]\right)=\sum_{a_{n+1} \in \mathcal{A}} \mu\left(\left[a_{1}, \ldots, a_{n}, a_{n+1}\right]\right)$.

For any partition $\beta=\left(B_{1}, \ldots, B_{n}\right)$ of X, we define a function on X by

$$
I_{\mu}(\beta)=-\sum_{B \in \mathcal{B}} \log \mu(B) \chi_{B_{1}}
$$

where χ_{B} is the characteristic function of B. Let $\beta_{1}, \ldots, \beta_{k}$ be partitions of X. The partition $V_{i=1}^{k} \beta_{i}$ is defined by

$$
\left\{\bigcap_{i=1}^{k} B_{i} \mid B_{i} \in \beta_{i}, 1 \leq i \leq k\right\}
$$

The value

$$
H_{\mu}(\beta)=-\sum_{B \in \mathcal{A}} \mu(B) \log \mu(B)
$$

is called the entropy of the partition β. We define

$$
h_{\mu}\left(\beta, \sigma_{X}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} H_{\mu}\left(\bigvee_{i=0}^{n-1} \sigma_{X}^{-i}(\beta)\right)
$$

The entropy of $\left(X, \sigma_{X}, \mu\right)$ is defined by

$$
h_{\mu}\left(\sigma_{X}\right)=\sup \left\{h_{\mu}\left(\beta, \sigma_{X}\right) \mid H_{\mu}(\beta)<\infty\right\} .
$$

Note that $h_{\mu}\left(\sigma_{X}\right) \leq h_{\text {top }}(X)$ in general. A shift invariant probability measure μ is said to be a maximal measure if $h_{\text {top }}(X)=h_{\mu}\left(\sigma_{X}\right)$. The reader is referred to [DGS] for details.
Theorem 3.2. Let $\tau=\left(T_{a}\right)_{a \in \mathcal{A}}$ be the creation operators for a subshift X. If there exists a shift invariant probability measure μ on X such that for any $\varepsilon>0$ we have

$$
\sum_{n=0}^{\infty} \mu\left(\left\{x \in X:\left|\frac{1}{n+1} I_{\mu}\left(\bigvee_{i=0}^{n} \sigma_{X}^{-i} \beta\right)(x)-h_{\mu}\left(\sigma_{X}\right)\right|>\varepsilon\right\}\right)<\infty
$$

where β is the generating partition $\left\{[a\}_{a \in \mathcal{A}}\right.$ of X, then

$$
h_{\mu}\left(\sigma_{X}\right) \leq k_{\infty}^{-}(\tau)
$$

In particular, if we can take a maximal measure μ with the above condition, then we have

$$
k_{\infty}^{-}(\tau)=h_{\text {top }}(X) .
$$

Proof. Let μ be a shift invariant probability measure on X. For $a \in \mathcal{A}$, we set

$$
X_{a}=\sum_{n \geq 0} \sum_{w \in \mathcal{W}_{n}(X)} \mu([a w]) T_{w} P_{0} T_{a w}^{*}
$$

Then

$$
\begin{aligned}
\sum_{a \in \mathcal{A}} T_{a} X_{a} & =\sum_{n \geq 0} \sum_{a \in \mathcal{A}} \sum_{w \in \mathcal{W}_{n}(X)} \mu([a w]) T_{a w} P_{0} T_{a w}^{*} \\
& =\sum_{n \geq 1} \sum_{w \in \mathcal{W}_{a}(X)} \mu([w]) T_{w} P_{0} T_{w 1}^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{a \in \mathcal{A}} X_{a} T_{a} & =\sum_{n \geq 0} \sum_{w \in \mathcal{W}_{n}(X)}\left(\sum_{a \in \mathcal{A}} \mu([a w])\right) T_{w} P_{0} T_{w}^{*} \\
& =\sum_{n \geq 0} \sum_{w \in \mathcal{W}_{n}(X)} \mu([w]) T_{w} P_{0} T_{w}^{*}
\end{aligned}
$$

Hence we have

$$
\sum_{a \in \mathcal{A}}\left[X_{a}, T_{a}\right]=P_{0}
$$

We assume that $h_{\mu}\left(\sigma_{X}\right) \neq 0$ and denote it by h for short. To apply Proposition 2.2, we need an estimate of $\left\|X_{a}\right\|_{1}^{\mp}$ Fix $\varepsilon>0$ and $a \in \mathcal{A}$. We set

$$
D_{n}=\left\{w \in \mathcal{W}_{n}(X) \mid e^{-(n+1)(h+\varepsilon)} \leq \mu([a w]) \leq e^{-(n+1)(h-\varepsilon)}\right\}
$$

and

$$
\varepsilon_{n}=\sum_{w \in \mathcal{W}_{n}(X) \backslash D_{n}} \mu([a w])
$$

If μ satisfies the assumption, then we have

$$
\sum_{n \geq 0} \varepsilon_{n}<\infty
$$

Note that $s_{j}\left(X_{a}\right)=s_{j}\left(X_{a} T_{a}\right)$ for all $j \in \mathbb{N}$. Thus we have $\left\|X_{a}\right\|_{i}^{\tilde{f}}=\left\|X_{a} T_{a}\right\|_{1}^{\mp}$ We put

$$
\widetilde{X_{a}}=\sum_{n \geq 0} \sum_{w \in D_{n}} \mu([a w]) T_{w} P_{0} T_{w}^{*} .
$$

We remark that for each $j \in \mathbb{N}$, there are $n \in \mathbb{N}$, w $\in \mathcal{W}_{n}(X)$ such that $s_{j}\left(X_{a} T_{a}\right)=$ $\mu([a w])$. By (*), we obtain

$$
\begin{aligned}
\left\|X_{a}\right\|_{1}^{\tilde{f}}=\left\|X_{a} T_{a}\right\|_{1}^{\tilde{F}} & =\underset{n \rightarrow \infty}{\limsup } \frac{\sum_{j=1}^{n} s_{j}\left(X_{a} T_{a}\right)}{\sum_{j=1}^{n} 1 / j} \\
& \leq\left\|\widetilde{X_{a}}\right\|_{1}^{\tilde{f}}+\underset{n \rightarrow \infty}{\limsup _{n \rightarrow \infty}} \frac{\sum_{k=0}^{\infty} \varepsilon_{k}}{\sum_{j=1}^{n} 1 / j}=\left\|\widetilde{X_{a}}\right\|_{1}^{\tilde{1}}
\end{aligned}
$$

Hence it suffices to give an estimate of $\left\|\widetilde{X_{a}}\right\|_{1}^{\mp}$ Let $d_{n}=\sum_{j=0}^{n}\left|D_{j}\right|$, where $\left|D_{j}\right|$ is the cardinality of D_{j}. One can easily check that

$$
\left\|\widetilde{X_{a}}\right\|_{1}^{\tilde{+}} \leq \underset{n \rightarrow \infty}{\limsup } \frac{\sum_{j=1}^{d_{n}} s_{j}\left(\widetilde{X_{0}}\right)}{\sum_{j=1}^{d_{n}} 1 / j}
$$

Note that if $s_{j}\left(\widetilde{X_{a}}\right)=\mu([a w])$ for some $w \in D_{n}$, then we have

$$
e^{-(n+1)(h+\varepsilon)} \leq s_{j}\left(\widetilde{X_{a}}\right)=\mu([a w]) \leq e^{-(n+1)(h-\varepsilon)}
$$

Assume that there are $m>n$ such that $s_{j}\left(\widetilde{X_{a}}\right)=\mu\left([a w d)\right.$ for some $w \in D_{m}$ and $j \leq d_{n}$. Then it holds that

$$
e^{-(m+1)(h-\varepsilon)} \geq e^{-(n+1)(h+\varepsilon)}
$$

Indeed, if $e^{-(m+1)(h-\varepsilon)}<e^{-(n+1)(h+\varepsilon)}$, then

$$
s_{j}\left(\widetilde{X_{a}}\right)=\mu([a w]) \leq e^{-(m+1)(h-\varepsilon)}<e^{-(n+1)(h+\varepsilon)} \leq \mu([a u])
$$

for all $u \in D_{k}(1 \leq k \leq n)$. However, by our assumption, we have $\mu([a v]) \leq s_{j}\left(\widetilde{X_{a}}\right)=$ $\mu([a t 0])$ for some $v \in D_{l}$ and $1 \leq l \leq n$. This is a contradiction.

Hence, by ($\star \star$), we have

$$
m+1 \leq(n+1) \frac{h+\varepsilon}{h-\varepsilon}
$$

Let $k \in \mathbb{N}$ with

$$
(n+1) \frac{h+\varepsilon}{h-\varepsilon}-1<k+1 \leq(n+1) \frac{h+\varepsilon}{h-\varepsilon} .
$$

Since

$$
\begin{aligned}
\frac{\sum_{j=1}^{d_{a}} s_{j}\left(\widetilde{X_{a}}\right)}{\sum_{j=1}^{d_{n}} 1 / j} & \leq \frac{\sum_{j=0}^{k} \sum_{w \in D_{i}} \mu([a w])}{\log d_{n}} \\
& \leq \frac{\sum_{j=0}^{k} \mu([a])}{\log d_{n}} \\
& \leq \frac{n+1}{\log d_{n}} \frac{h+\varepsilon}{h-\varepsilon} \mu([a])
\end{aligned}
$$

we obtain

$$
\left\|\widetilde{X_{a}}\right\|_{1}^{\tilde{T}} \leq \underset{n \rightarrow \infty}{\limsup } \frac{n+1}{\log d_{n}} \cdot \frac{h+\varepsilon}{h-\varepsilon} \mu([a])
$$

Moreover, because

$$
\mu([a])=\sum_{w \in D_{n}} \mu([a w])+\sum_{w \in \mathcal{W}_{n}(X) \backslash D_{n}} \mu([a w]) \leq\left|D_{n}\right| e^{-(n+1)(h-s)}+\varepsilon_{n},
$$

we have

$$
\left(\mu([a])-\varepsilon_{n}\right) e^{(n+1)(n-\varepsilon)} \leq\left|D_{n}\right| .
$$

Note that $\varepsilon_{n} \rightarrow 0(n \rightarrow \infty)$ by ($*$). Therefore

$$
\begin{aligned}
\left\|\widetilde{X_{a}}\right\|_{1}^{\tilde{+}} & \leq \limsup _{n \rightarrow \infty} \frac{n+1}{\log \left|D_{n}\right|} \frac{h+\varepsilon}{h-\varepsilon} \mu([a]) \\
& \leq \underset{n \rightarrow \infty}{\limsup } \frac{n+1}{\log \left(\mu([a])-\varepsilon_{n}\right)+(n+1)(h-\varepsilon)} \cdot \frac{h+\varepsilon}{h-\varepsilon} \mu([a]) \\
& =\frac{h+\varepsilon}{(h-\varepsilon)^{2}} \mu([a])
\end{aligned}
$$

Since ε is arbitrary, we have

$$
\left\|X_{a}\right\|_{1}^{\tilde{+}} \leq \frac{1}{h} \mu([a])
$$

By Proposition 2.2, the proof is complete.
We now give some examples of subshifts with a maximal measure satisfying the condition in Theorem 3.2.
Corollary 3.3. Let A be a $0-1 N \times N$ matrix. We denote by Σ_{A} the Markov shift associated with A, i.e.

$$
\Sigma_{A}=\left\{\left(a_{i}\right)_{i \in \mathbf{Z}} \in S^{\mathbf{Z}} \mid A\left(a_{i}, a_{i+1}\right)=1\right\}
$$

where $S=\{1, \ldots, N\}$ is an alphabet. If $\tau=\left(T_{a}\right)_{a \in S}$ is the creation operators for the Markov shift Σ_{A}, then we have

$$
k_{\text {oo }}^{-}(\tau)=h_{\text {top }}\left(\Sigma_{A}\right)
$$

Proof. It suffices to show that the unique maximal measure of Σ_{A} satisfies the condition in Theorem 3.2. For simplicity, we may assume that A is irreducible with the Perron value α. Note that the topological entropy $h_{\text {top }}\left(\Sigma_{A}\right)$ is equal to $\log \alpha$. If l and r are the left and right Perron vectors with $\sum_{a=1}^{N} l_{a} r_{a}=1$, then the unique maximal measure μ is given by

$$
\mu\left(\left[a_{0}, a_{1}, \ldots, a_{n}\right]\right)=\frac{l_{a_{0}} r_{a_{n}}}{\alpha^{n}}
$$

where $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathcal{W}_{n+1}\left(\Sigma_{A}\right)$ (e.g. see $\left.[\mathrm{Kit}]\right)$. For any $\varepsilon>0$, there exists $K \in \mathbb{N}$ such that for any $n \geq K$, we have

$$
\left|\frac{\log l_{a} r_{b} \alpha}{n+1}\right|<\varepsilon
$$

for all $1 \leq a, b \leq N$. Therefore for any $w \in \mathcal{W}_{n+1}\left(\Sigma_{A}\right)$, we have

$$
\left|-\frac{1}{n+1} \log \mu([w])-\log \alpha\right|<\varepsilon
$$

for all $n \geq K$, i.e. the maximal measure μ satisfies the condition in Theorem 3.2.
More generally, there is a class of subshifts, which is called almost sofic (see [Pet]). A subshift X is said to be almost sofic if for any $\varepsilon>0$, there is an SFT $\Sigma \subseteq X$ such that $h_{\text {top }}(X)-\varepsilon<h_{\text {top }}(\Sigma)$, where a shift of finite type or SFT is a subshift that can be described by a finite set of forbidden words, i.e. a subshift having the form $X_{\mathcal{F}}$ for some finite set \mathcal{F} of words.

Corollary 3.4. If $\tau=\left(T_{a}\right)_{a \in \mathcal{A}}$ is the creation operators for an SFT Σ, then we have

$$
k_{\infty}^{-}(\tau)=h_{\text {top }}(\Sigma)
$$

Proof. We recall that every SFT Σ is topologically conjugate to a Markov shift Σ_{A} associated with a 0-1 matrix A. Now we give a short proof of this result. Let Σ be an SFT that can be described by a finite set \mathcal{F} of forbidden words. We may assume that all words in \mathcal{F} have length $N+1$. We set $\mathcal{A}_{\Sigma}^{[M]}=\mathcal{W}_{N}(\Sigma)$ and the block map $\varphi: \mathcal{W}_{N}(\Sigma) \rightarrow \mathcal{A}_{\Sigma}^{[N]}$, $w \mapsto w$. We define the N-th higher block code $\beta_{N}: \Sigma \rightarrow\left(\mathcal{A}_{\Sigma}^{[N]}\right)^{\mathbf{Z}}$ by

$$
\left(\beta_{N}(x)\right)_{i}=\left(x_{i}, \ldots, x_{i+N-1}\right) \in \mathcal{A}_{\Sigma}^{[M]}
$$

for $x=\left(x_{i}\right)_{i \in \mathbb{N}} \in \Sigma$. Note that β_{N} is the sliding block code with respect to φ. The subshift $\beta_{N}(\Sigma)$ is given by a Markov shift, i.e. there is a $0-1$ matrix A with $\beta_{N}(\Sigma)=\Sigma_{A}$.

Let μ be the maximal measure of Σ_{A}. The maximal measure of Σ is given by $\nu=\mu \circ \beta_{N}$. We recall that μ is the Markov measure given by the left and right eigenvectors l, r and the eigenvalue α. For $w \in \mathcal{W}_{n}(\Sigma)$ with $n \geq N$, we have

$$
\begin{aligned}
\nu([w]) & =\mu\left(\left[\varphi\left(w_{[1, N]}\right), \ldots, \varphi\left(w_{[n-N+1, n]}\right]\right)\right) \\
& =\frac{l_{a} r_{b}}{\alpha^{n-N}}
\end{aligned}
$$

where $a=\varphi\left(w_{[1, N]}\right), b=\varphi\left(w_{[n-N+1, n]}\right)$ and $w_{[k, l]}=\left(w_{k}, \ldots, w_{l}\right)$ for $k \leq l$. Hence one can show that the maximal measure ν of Σ satisfies the condition in Theorem 3.2 by the same argument as in the proof of Corollary 3.3.

Corollary 3.5. Let X be an almost sofic shift. If $\tau=\left(T_{a}\right)_{a \in \mathcal{A}}$ is the creation operators for X, then we have

$$
k_{\infty}^{-}(\tau)=h_{\mathrm{top}}(X) .
$$

Proof. Let $\varepsilon>0$. Since X is almost sofic, there is an SFT $\Sigma \subseteq X$ such that $h_{\text {top }}(X)-\varepsilon<$ $h_{\text {top }}(\Sigma)$. Let $\varphi: \Sigma \rightarrow X$ be an embedding. Note that the subshift $\varphi(\Sigma)$ is also an SFT. Thus we may identify $\varphi(\Sigma)$ with Σ. Let μ be the unique maximal measure of Σ. For $a \in \mathcal{A}$, we set

$$
X_{a}=\sum_{n \geq 0} \sum_{w} \mu([a w]) T_{w} P_{0} T_{a w}^{*},
$$

where w runs over all elements in $\mathcal{W}_{n}(\Sigma)$ with aw $\in \mathcal{W}(\Sigma)$. We have shown that the maximal measure μ of Σ satisfies the condition of Theorem 3.2 in the proof of Corollary 3.4. Hence by the same argument as in the proof of Theorem 3.2, we have

$$
h_{t o p}(\Sigma) \leq k_{\infty}^{-}(\tau) .
$$

Thus for arbitrary $\varepsilon>0$, the following holds:

$$
h_{\text {top }}(X)-\varepsilon<h_{\text {top }}(\Sigma) \leq k_{\infty}^{-}(\tau)
$$

It therefore follows from Proposition 3.1 that $h_{\text {top }}(X)=k_{\infty}^{-}(\tau)$ if X is an almost sofic shift.

For $\beta>1$, the β-transformation T_{β} on the interval $[0,1]$ is defined by the multiplication with $\beta(\bmod 1)$, i.e. $T_{\beta}(x)=\beta x-[\beta x]$, where $[t]$ is the integer part of t. Let $N \in \mathbb{N}$ with $N-1<\beta \leq N$ and $\mathcal{A}=\{0,1, \ldots, N-1\}$. The β-expansion of $x \in[0,1]$ is a sequence $d(x, \beta)=\left\{d_{i}(x, \beta)\right\}_{i \in \mathrm{~N}}$ of \mathcal{A} determined by

$$
d_{i}(x, \beta)=\left[\beta T_{\beta}^{i-1}(x)\right]
$$

We set

$$
\zeta_{\beta}=\sup _{x \in[0,1]}\left(d_{i}(x, \beta)\right)_{i \in \mathbb{N}}
$$

where the above supremum is taken in the lexicographical order, and we define the shift invariant closed subset Σ_{β}^{+}of the full one-sided shift \mathcal{A}^{N} by

$$
\Sigma_{\mathcal{\beta}}^{+}=\left\{x \in \mathcal{A}^{\mathbb{N}} \mid \sigma^{i}(x) \leq \zeta_{\beta}, i=0,1, \ldots\right\}
$$

where \leq is the lexicographical order on $\mathcal{A}^{\mathbf{N}}=\{0,1, \ldots, N-I\}^{\mathrm{N}}$ The β-shift Σ_{β} is the natural extension given by

$$
\Sigma_{\rho}=\left\{\left(x_{i}\right)_{i \in \mathbb{Z}} \in \mathcal{A}^{\mathbf{Z}} \mid\left(x_{i}\right)_{i \geq k} \in \Sigma_{\beta}^{+}, k \in \mathbb{Z}\right\}
$$

It is known that $h_{\text {top }}\left(\Sigma_{\beta}\right)=\log \beta$, (see [Hof]).
The following result might be known among specialists. However, we give a proof here as we can not find it in the literature.
Proposition 3.6. For $\beta>1$, the β-shift Σ_{β} is an almost sofic shift.
Proof. In [Par], it is shown that Σ_{β} is an SFT if and only if $d(1, \beta)$ is finite, i.e. there is $K \in \mathbb{N}$ such that $d_{k}(1, \beta)=0$ for all $k \geq K$. Thus we may assume that $d(1, \beta)$ is not finite. Let $\zeta_{\beta}=\left(\xi_{i}\right)_{i \in \mathbb{N}}$. For $n \in \mathbb{N}$, there is $\beta(n)<\beta$ such that

$$
1=\frac{\xi_{1}}{\beta(n)}+\frac{\xi_{2}}{\beta(n)^{2}}+\cdots+\frac{\xi_{\mathfrak{n}}}{\beta(n)^{n}} .
$$

In [Par, Theorem 5], it is proved that

$$
\lim _{n \rightarrow \infty} \beta(n)=\beta
$$

Hence we may assume that $N-1 \leq \beta(n)<\beta$ for sufficiently large n. Since the maximal element $\zeta_{\beta(n)}$ has the form

$$
\left(\xi_{1}, \xi_{2}, \ldots,\left(\xi_{n}-1\right), \xi_{1}, \xi_{2}, \ldots,\left(\xi_{n}-1\right), \xi_{1}, \ldots\right)
$$

we have $\zeta_{\beta(n)}<\zeta$, where $<$ is the lexicographical order. Therefore we obtain

$$
\Sigma_{\beta(n)}^{+} \subseteq \Sigma_{\beta}^{+} \subseteq\{0,1, \ldots, N-1\}^{N}
$$

It follows that $\Sigma_{\beta(n)}$ is the shift invariant closed subset of Σ_{β} with topological entropy $\log \beta(n)$. Since $d(1, \beta(n))$ is finite, the subshift $\Sigma_{\beta(n)}$ is an SFT. It therefore follows form [Par, Theorem 5] that Σ_{β} is an almost sofic.

Hence it holds that $k_{\infty}^{-}(\tau)=h_{\text {top }}\left(\Sigma_{\beta}\right)$ for every β-shift by Corollary 3.5.
Corollary 3.7. Let Σ_{β} be the β-shift for $\beta>1$. If $\tau=\left(T_{a}\right)_{a \in \mathcal{A}}$ is the creation operators for Σ_{β}, then we have

$$
k_{\infty}^{-}(\tau)=h_{\mathrm{top}}\left(\Sigma_{\beta}\right)=\log \beta
$$

4. Groups and Macaev Norm

We discuss a relation between groups and the Macaev norm. Let Γ be a countable finitely generated group, S a symmetric set of generators of Γ We denote by $|\mid s$ the word length and by $\mathcal{W}_{n}(\Gamma, S)$ the set of elements in Γ with length n, with respect to the system of generators S. The logarithmic volume of a group Γ in a given system of generators S is the number

$$
v_{S}=\lim _{n \rightarrow \infty} \frac{\log \left|\mathcal{W}_{n}(\Gamma, S)\right|}{n}
$$

(cf. [Ver]). The following proposition can be proved in the same way as in the free group case [Voi3, Proposition 3.7. (a)].
Proposition 4.1. Let Γ be a finitely generated group with a finite generating set S and λ the left regular representation of Γ If we set $\lambda_{S}=\left(\lambda_{a}\right)_{a \in S}$, then

$$
k_{\infty}^{-}\left(\lambda_{S}\right) \leq v_{S}
$$

Proof. Let us denote by P_{n} the projection onto the subspace $\overline{\operatorname{span}}\left\{\left.\delta_{g} \in l^{2}(\Gamma)| | g\right|_{s}=n\right\}$. If we set

$$
X_{n}=\sum_{j=0}^{n-1}\left(1-\frac{j}{n}\right) P_{j}
$$

then we have

$$
\left\|X_{n} \lambda_{a}-\lambda_{a} X_{n}\right\|=\left\|\lambda_{a}^{*} X_{n} \lambda_{a}-X_{n}\right\| \leq \frac{1}{n}
$$

for $a \in S$. Hence

$$
k_{\infty}^{-}\left(\lambda_{S}\right) \leq \underset{n \rightarrow \infty}{\lim \sup } \max _{a \in S}\left\|\left[X_{n}, \lambda_{a}\right]\right\|_{\infty}^{-} \leq \lim _{n \rightarrow \infty} \frac{\log \sum_{j=0}^{n}\left|\mathcal{W}_{n}(\Gamma, S)\right|}{n}=v_{S}
$$

Now we compute the exact value of $k_{\infty}^{-}\left(\lambda_{S}\right)$ for certain amalgamated free product groups.

Proposition 4.2. Let A be a finite group, G_{1}, \cdots, G_{M} nontrivial finite groups containing A as a subgroup and H_{1}, \ldots, H_{N} the product group of the infinite cyclic group \mathbf{Z} and the finite group $A,(N+M>1)$. Let Γ be the amalgamated free prodtuct group of $G_{1}, \cdots, G_{M} H_{1}, \cdots, H_{N}$ with amalgomation over A. Set $S=G_{1} \cup \cdots \cup G_{M} \cup\left(S_{1} \times A\right) \cup$ $\cdots \cup\left(S_{N} \times A\right) \backslash\{e\}$, where S_{j} is the canonical generating set $\left\{x_{j}, x_{j}^{-1}\right\}$ of the infinite cyclic group \mathbb{Z} and e is the group unit. Let λ be the left regular representation of Γ and $\lambda_{s}=\left(\lambda_{a}\right)_{a \in S}$. Then we have

$$
k_{\infty}^{-}\left(\lambda_{S}\right)=v_{S}
$$

In particular, for the free grousp $\mathrm{F}_{N}(N \geq 2)$, we have

$$
k_{\infty}^{-}\left(\lambda_{S}\right)=\log (2 N-1) .
$$

Proof. By Proposition 4.1, it suffices to show that $v_{S} \leq k_{\infty}^{-}\left(\lambda_{S}\right)$. Let Ω_{i} be the set of the representatives of G_{i} / A with $e \in \Omega_{i}$ for $i=1, \ldots, M$. We identify x_{j} with $\left(x_{j}, e\right) \in H_{j}$ for $j=1, \ldots, N$, and set $\Omega_{M_{+j}}=\left\{x_{j}, x_{j}^{-1}, e\right\}$. Let

$$
\bar{S}=\bigcup_{i=1}^{M+N} \Omega_{i} \backslash\{e\}
$$

We define the 0-1 matrix A with index \tilde{S} by

$$
A(a, b)=\left\{\begin{array}{cc}
1 & \text { if }|a b|_{s}=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

One can easily check that the above matrix A is irreducible and the topological entropy $h_{\text {top }}\left(\Sigma_{A}\right)$ of the Markov shift Σ_{A} coincides with the logarithmic volume v_{S} of Γ with respect to the generating set S.

We denote by Γ_{0} the subset of Γ consisting of the group unit e and elements $a_{1} \cdots a_{n} \in$ $\Gamma,(n \in \mathbb{N})$ of the form

$$
\begin{cases}a_{k} \in \Omega_{i_{k}} \backslash\{e\} & \text { for } k=1, \ldots, n \\ i_{k} \neq i_{k+1} & \text { if } 1 \leq i_{k} \leq M, \\ a_{k}=a_{k+1} & \text { if } M+1 \leq i_{k} \leq M+N, i_{k}=i_{k+1}\end{cases}
$$

Note that the subspace $l^{2}\left(\Gamma_{0}\right)$ can be identified with the Fock space \mathcal{F}_{A} of the Markov shift Σ_{A} by the following correspondence:

$$
\begin{aligned}
\delta_{e} & \longleftrightarrow \xi_{0}, \\
\delta_{a_{1} \cdots a_{n}} & \longleftrightarrow \xi_{a_{l}} \otimes \cdots \otimes \xi_{a_{n}} .
\end{aligned}
$$

Let us denote by P_{n} the projection onto the subspace

$$
\overline{\operatorname{span}}\left\{\left.\delta_{g} \in l^{2}(\Gamma)| | g\right|_{s}=n\right\}
$$

For $a \in S$, we define the partial isometry $T_{a} \in \mathbb{B}\left(l^{2}\left(\Gamma^{\prime}\right)\right)$ by

$$
T_{a}=\sum_{n \geq 0} P_{n+1} \lambda_{a} P_{n}
$$

Under the identification with \mathcal{F}_{A}, the partial isometry $\left.T_{a}\right|_{12}\left(\Gamma_{0}\right)$ for $a \in \widetilde{S}$ is the creation operator on \mathcal{F}_{A}, (cf. [Oka]). We also identify Γ_{0} and $\mathcal{W}\left(\Sigma_{A}\right)$. For $w=a_{1} \cdots a_{n} \in \Gamma_{0}$, we set $T_{w}=T_{a_{1}} \cdots T_{a_{n}}$. Let μ be the maximal measure of Σ_{A}. For $a \in \widetilde{S}$, we put

$$
X_{a}=\sum_{n \geq 0} \sum_{w} \mu([a w]) T_{w} P_{0} T_{a w}^{*},
$$

where w runs over all $w \in \Gamma_{0}$ with $|w|_{S}=n$ and $|a w|_{s}=|w|_{s}+1$. For $a \in S \backslash \bar{S}$, we set $X_{a}=0$. It can be easily checked that $\left[\lambda_{a}, X_{a}\right]=\left[T_{a}, X_{a}\right]$ for $a \in \tilde{S}$. Therefore by the same proof as in the sufshift case, we obtain

$$
v_{S}=h_{\text {top }}\left(\Sigma_{A}\right)=k_{\infty}^{-}\left(\lambda_{S}\right)
$$

Remark 4.3. Let Γ be a finitely generated group with a finite generating set S. In [Voi5], Voiculescu proved that if the entropy $h(\Gamma, \mu)$ of a random walk μ on Γ with support S is non-zero, then $k_{\infty}^{-}\left(\left(\lambda_{a}\right)_{a \in s}\right)$ is non-zero. However the above proposition suggests that the volume v_{S} of Γ is more related to the invariant $k_{\infty}^{-}\left(\left(\lambda_{a}\right)_{a \in S}\right)$ rather than the entropy $h(\Gamma, \mu)$. It is an interesting problem to ask whether v_{S} being non-zero implies $k_{\infty}^{-}\left(\left(\lambda_{\Omega}\right)_{a \in S}\right)$ being non-zero. We also remark here that there is a relation between v_{S} and $h(\Gamma, \mu)$: If $h(\Gamma, \mu) \neq 0$, then $v_{S} \neq 0$, (see [Ver, Theorem 1]). If the above mentioned problem was solved affirmatively, then it would follow from Proposition 4.1 that $k_{\infty}^{-}\left(\left(\lambda_{a}\right)_{a \in \mathcal{S}}\right) \neq 0$ if and only if $v_{S} \neq 0$, i.e. Γ has exponential growth.

REferences

[DGS] Denker, M.; Grillenberger, C.; Slgmund, K.: Ergodic theory on compact spaces. Lecture Notes in Mathematics, Vol. 527. Springer-Verlag, Berlin-New York, 1976.
[DV] David, G.; Voiculeacu, D.:s-numbers of singular integrals for the invariance of absolutely continuous spectra in fractional dimensions. J. Funct. Anal. 94 (1990), no. 1, 14-26.
[GK] Gohberg, I. C.; Krełn, M. G.: Introduction to the theory of tinear nonselfadjoint operators. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969.
[Hof] Hofbauer, F.: β-shifts have stique matimal measure. Monatsh. Math. 85 (1978), no. 3, 189-198.
[Kit] Kitchens, B.P.: Symbolic dynamics. One-sided, two-sided and countahe state Markov shifts, Universitext. Springer-Verlag, Berlin, 1998.
[LM] Lind, D.; Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995.
[Mat] Matsumoto, K.: On C^{*}-algebras associated with subshifts. Internat. J. Math. 8 (1997), no. 3, 357-374.
[Oka] Okayasu, R.: Cuntz-Krieger-Pimsner algebras associated with amalgamated free product groups. Publ. Res. Inst. Math. Sci. 38 (2002), no. 1, 147-190.
[Par] Parry, W.: On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401416.
[Pet] Petersen, K.: Chains, entropy, coding. Ergodic Theory Dynam. Systems 6 (1986), no. 3, 415-448
[Ver] Vershik, A.M.: Dynamic theory of gnowth in groups: entropy, boundaries, examples. Russian Math. Surveys 55 (2000), no. 4, 667-733.
[Vol1] Voiculescu, D.: Some results on norm-ideal perturbations of Hibert space operators. J. Operator Theory 2 (1979), no. 1, 3-37.
[Voi2] Voiculescu, D.: Some results on norm-ideal perturbations of Hilbert space operators. II. J. Operator Theory 5 (1981), no. 1, 77-100.
[Vois] Voiculescu, D.: On the existence of quasicentral approximate units relative to normed ideals. Part I. J. Funct. Anal. 91 (1990), no. 1, 1-36.
[Vos4] Voiculeacu, D.: Entropy of dynamical systems and perturbations of operators. Ergodic Theory Dynam. Systems 11 (1991), no. 4, 779-786.
[Voi5] Voiculescu, D.: Entropy of rendom walls on gnosps and the Macaev norm. Proc. Amer. Math. Soc. 119 (1993), no. 3, 971-977.

Department of Mathematics; Kyoto University, Kyoto 606-8502, JAPAN
E-mail address: ruiekusn.kyoto-u.ac.jp

Cuntz-Krieger-Pimsner Algebras Associated with Amalgamated Free Product Groups

Rui OKAYASU
Department of Mathematics, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
e-mail: rui@kusm.kyoto-u.ac.jp

Abstract

We give a construction of a nuclear C^{+}-algebra assoclated with an amalgamsted free product of groups, generaliving Spielberg's construction of a certain Cuntz-Krieger algebra associated with a finitely generated free product of cyclic groupe. Our nuclear C^{*}-algebras can be identified with certain Cuntz-Krieger-Pimaner algebras. We will also show that our algebras can be obtained by the crossed product construction of the canonical actions on the hyperbolic boundaries, which proves a special case of Adams' result about amenability of the boundary action for hyperbolic groups. We will also give an explicit formula of the K-groups of our algebras. Finally we will investigate the relationship between the KMS btates of the generalized gruge actions on our C^{*} algebras and random wellas on the groups.

1 Introduction

In [Cho], Choi proved that the reduced group C^{*}-algebra $C_{r}^{*}\left(\mathbb{Z}_{2} * \mathbb{Z}_{3}\right)$ of the free product of cyclic groups \mathbb{Z}_{2} and \mathbb{Z}_{3} is embedded in \mathcal{O}_{2}. Consequently, this shows that $C_{5}^{*}\left(\mathbb{Z}_{2} * \mathbb{Z}_{3}\right)$ is a non-nuclear exact C^{*}-algebra, (see S . Wassermann [Was] for a good introduction to exact C^{*}-algebras). Spielberg generalized it to finitely generated free products of cyclic groupe in [Spi]. Namely, he constructed a certain action on a compact space and proved that some Cuntz-Krieger algebras (see [CK]) can be obtained by the crossed product construction for the action. For a related topic, see W. Szymański and S. Zhang's work [SZ].

More generally, the above mentioned compact space coincides with Gromov's notion of the boundaries of hyperbolic groups (e.g. [GH]). In [Ada], Adams proved that the action of any discrete hyperbolic group Γ on the hyperbolic boundary $\partial \Gamma$ is amenable
in the sense of Anantharaman-Delaroche [Ana]. It follows from [Ana] that the corresponding crossed product $C(\partial \Gamma) \rtimes_{r} \Gamma$ is nuclear, and this implies that $C_{r}^{*}(\Gamma)$ is an exact C^{*}-algebra.

Although we know that $C(\partial \Gamma) x_{r} \Gamma$ is nuclear for a general discrete hyperbolic group Γ as mentioned above, there are only few things known about this C^{*}-\&igebra. So one of our purposes is to generalize Spielberg's construction to some finitely generated amalgamated free product Γ and to give detailed description of the algebra $C(\delta \Gamma) x_{\mathrm{r}} \Gamma$. More precisely, let I be a finite index set and G_{i} be a group containing a copy of a finite group H as a subgroup for $i \in I$. We always assume that each G_{i} is either a finite group or $\mathbb{Z} \times H$. Let $\Gamma=*_{H} G_{i}$ be the amalgamated free product group. We will construct a nuclear C^{*} algebra \mathcal{O}_{Γ} associated with Γ by mimicking the construction for Cuntz-Krieger algebras with respect to the full Fock space in M. Enomoto, M. Fujii and Y. Watatani [EFW1] and D. E. Evans [Eva]. This generalizes Spielberg's construction.

First we show that \mathcal{O}_{T} has a certain universal property as in the case of the CuntzKrieger algebras, which allows several descriptions of \mathcal{O}_{T}. For example, it turns out that \mathcal{O}_{Γ} is a Cuntz-Krieger-Pimsner algebra, introduced by Pimsner in [Pim2] and studied by several authors, e.g. T. Kajiwara, C. Pinzari and Y. Watatani [KPW]. We will also show that \mathcal{O}_{Γ} can be obtained by the crossed product construction. Namely, we will introduce a boundary space Ω with a natural Γ-action, which coincides with the boundary of the associated tree (see [Ser], [W1]). Then we will prove that $C(\Omega) \rtimes_{T} \Gamma$ is isomorphic to \mathcal{O}_{Γ}. Since the hyperbolic boundary $\partial \Gamma$ coincides with Ω and the two actions of Γ on $\partial \Gamma$ and Ω are conjugate, \mathcal{O}_{r} is also isomorphic to $C(\partial \Gamma) x_{r} \Gamma$, and depends only on the group structure of Γ. As a consequence, we give a proof to Adams' theorem in this special case.

Next, we will consider the K-groups of \mathcal{O}_{r}. In [Pim1], Pimsner gave a certain exact sequence of $K K$-groups of the crossed product by groups acting on trees. However, it is not a trivial task to apply Pimsner's exact sequence to $C(\partial \Gamma) \chi_{r} \Gamma$ and obtain its K-groups. We will give explicit formulae of the K-groups of \mathcal{O}_{Γ} following the method used for the Cuntz-Krieger algebras instead of using $C(\partial \Gamma) \rtimes_{r} \Gamma$ We can compute the K-groups of $C(\partial \Gamma) \rtimes_{r} \Gamma$ for concrete examples. They are completely determined by the representation theory of H and the actions of H on G_{i} / H (the space of right cosets) by left multiplication.

Finally we will prove that KMS states on \mathcal{O}_{T} for generalized gauge actions arise from harmonic measures on the Poisson boundary with respect to random walks on the discrete group Γ. Consequently, for special cases, we can determine easily the type of factor $\mathcal{O}_{\Gamma}^{\prime \prime}$ for the corresponding unique KMS state of the gauge action by essentially the same arguments in M. Enomoto, M. Fujii and Y. Watatani [EFW2], which generalized J. Ramagge and G. Robertson's result [RR].

Acknowledgment. The author gives special thanks to Professor Masaki Izumi for various comments and many important suggestions.

2 Preliminaries

In this section, we collect basic facts used in the present article. We begin by reviewing the Cuntz-Krieger-Pimsner algebras in [Pim2]. Let A be a C^{*}-algebra and X be a Hilbert bimodule over A, which means that X is a right Hilbert A-module with an injective *homomorphism of A to $\mathcal{L}(X)$, where $\mathcal{L}(X)$ is the C^{*}-algebra of all adjointable A-linear operators on X. We assume that X is full, that is, $\left\{\langle x, y\rangle_{A} \mid x, y \in X\right\}$ generates A as a C^{*}-algebra, where $(\cdot,)_{A}$ is the A-valued inner product on X. We further assume that X has a finite basis $\left\{u_{1}, \ldots, u_{n}\right\}$, which means that $x=\sum_{i=1}^{n} u_{i}\left\langle u_{i}, x\right\rangle_{A}$ for any $x \in X$. We fix a basis $\left\{u_{1}, . ., u_{n}\right\}$ of X. Let $\mathcal{F}(X)=A \oplus \oplus_{n \geq 1} X^{(n)}$ be the full Fock space over X, where $X^{(n)}$ is the n-fold tensor product $X \otimes_{A} X \otimes_{A} \cdots \otimes_{A} X$. Note that $\mathcal{F}(X)$.is naturally equipped with Hilbert A-bimodule structure. For each $x \in X$, the operator $T_{x}: \mathcal{F}(X) \rightarrow \mathcal{F}(X)$ is defined by

$$
\begin{aligned}
T_{x}\left(x_{1} \otimes \cdots \otimes x_{n}\right) & =x \otimes x_{1} \otimes \cdots \otimes x_{n} \\
T_{x}(a) & =x a
\end{aligned}
$$

for $x, x_{1}, \ldots, x_{n} \in X$ and $a \in A$. Note that $T_{x} \in \mathcal{L}(\mathcal{F}(X)$) satisfies the following relations

$$
\begin{array}{rlc}
T_{x}^{*} T_{y} & =\langle x, y\rangle_{A}, \quad x, y \in X \\
a T_{x} b & =T_{a x b} \quad x \in X, a, b \in A .
\end{array}
$$

Let π be the quotient map of $\mathcal{L}(\mathcal{F}(X))$ onto $\mathcal{L}(\mathcal{F}(X)) / \mathcal{K}(\mathcal{F}(X))$ where $\mathcal{K}(\mathcal{F}(X))$ is the C^{*}-algebra of all compact operators of $\mathcal{L}(\mathcal{F}(X))$. We denote $S_{x}=\pi\left(T_{x}\right)$ for $x \in X$. Then we define the Cuntz-Krieger-Pimsner algebra \mathcal{O}_{X} to be

$$
\mathcal{O}_{X}=C^{*}\left(S_{x} \mid x \in X\right)
$$

Since X is full, a copy of A acting by left multiplication on $\mathcal{F}(X)$ is contained in \mathcal{O}_{X}. Furthermore we have the relation

$$
\sum_{i=1}^{n} S_{w_{i}} S_{w_{i}}^{*}=1
$$

On the other hand, $\mathcal{O}_{\boldsymbol{X}}$ is characterized as the universal C^{*}-algebra generated by A and S_{x}, satisfying the above relations [Pim2, Theorem 3.12]. More precisely, we have

Theorem 2.1 ($\left[\right.$ Pim2, Theorem 3.12]) Let X be a full Hibert A-bimodule and \mathcal{O}_{X} be the corresponding Cuntz-Krieger-Pimsner algebra. Suppose that $\left\{u_{1}, \cdots, u_{n}\right\}$ is a finite
basis for X. If B is a C^{*}-algebra generated by $\left\{s_{x}\right\}_{x \in X}$ satisfying

$$
\begin{array}{rlr}
s_{x}+s_{y} & =s_{x+y}, \quad x \in X, \quad x \in X, a, b \in A \\
a s_{x} b & =s_{a x b}, \quad x \in \\
s_{x}^{*} s_{y} & =\langle x, y\rangle_{A}, \quad x, y \in X, \\
\sum_{i=1}^{n} s_{u_{i}} s_{u_{i}}^{*} & =1
\end{array}
$$

Then there exists a unique surjective *-homomorphism from \mathcal{O}_{X} onto $C^{*}\left(s_{x}\right)$ that maps S_{x} to s_{x}.

Next we recall the notion of amenability for discrete C^{*}-dynamical systems introduced by C. Anantharaman-Delaroche in [Ana]. Let (A, G, α) be a C^{*}-dynamical system, where A is a C^{*}-algebra, G is a group and α is an action of G on A. An A-valued function h on G is said to be of positive type if the matrix $\left[\alpha_{s_{i}}\left(h\left(s_{i}^{-1} s_{j}\right)\right)\right] \in M_{n}(A)$ is positive for any $s_{1}, \ldots, s_{n} \in G$. We assume that G is discrete. Then α is said to be amenable if there exists a net ($\left.h_{i}\right)_{i \in J} \subset C_{c}\left(G, Z\left(A^{\prime \prime}\right)\right)$ of functions of positive type such that

$$
\begin{cases}h_{i}(e) \leq 1 & \text { for } i \in I \\ \lim _{i} h_{i}(s)=1 & \text { for } s \in G\end{cases}
$$

where the limit is taken in the σ-weak topology in the enveloping von Neumann algebra $A^{\prime \prime}$ of A. We remark that this is one of several equivalent conditions given in [Ana, Theorème 3.3]. We will use the following theorems without a proof.

Theorem 2.2 ([Ana, Théorème 4.5]) Let (A, G, α) be a C^{*}-dynamical system such that A is nuclear and G is discrete. Then the following are equivalent:

1) The full C^{*}-crossed product $A \rtimes_{\alpha} G$ is nuclear;
2) The reduced C^{*}-crossed product $A \lambda_{a r} G$ is nuclear;
3) The W^{*}-crossed product $A^{\prime \prime}>_{\text {owu }} G$ is injective;
4) The action α of G on A is amenable.

Theorem 2.3 ([Ana, Théorème 4.8]) Let (A, G, α) be an amenable C^{*}-dynamical system such that G is discrete. Then the natural quotient map from $A \rtimes_{\alpha} G$ onto $A \rtimes_{\text {ar }} G$ is an isomorphism.

Finally, we review the notion of the strong boundary actions in [LS]. Let Γ be a discrete group acting by homeomorphisms on a compact Hausdorff space Ω. Suppose that Ω has at least three points. The action of Γ on Ω is said to be a strong boundary action if for every pair U, V of non-empty open subsets of Ω there exists $\gamma \in \Gamma$ such that $\gamma U^{c} \subset V$ The action of Γ on Ω is said to be topologically free in the sense of [AS] if the fixed point set of each non-trivial element of Γ has empty interior.

Theorem 2.4 ([LS, Theorem 5]) Let (Ω, Γ) be a strong boundary action where Ω is compact. We further assume that the action is topologically free. Then $C(\Omega) x_{r} \Gamma$ is purely infinite and simple.

3 A motivating example

Before introducing our algebras, we present a simple çase of Spielberg's construction for $\mathbf{F}_{2}=\mathbb{Z} * \mathbb{Z}$ with generators a and b as a motivating example. See also [RS]. The Cayley graph of \mathbf{F}_{2} is a homogeneous tree of degree 4. The boundary Ω of the tree in the sense of [Fre] (see also [Fur]) can be thought of as the set of all infinite reduced words $\omega=x_{1} x_{2} x_{3} \cdots$, where $x_{i} \in S=\left\{a, b, a^{-1}, b^{-1}\right\}$. Note that Ω is compact in the relative topology of the product topology of $\Pi_{N} S$. In an appendix, several facts about trees are collected for the convenience of the reader, (see also [FN]). Left multiplication of F_{2} on Ω induces an action of \mathbb{F}_{2} on $C(\Omega)$. For $x \in \mathbb{F}_{2}$, let $\Omega(x)$ be the set of infinite words beginning with x. We identify the implementing unitaries in the full crossed product $C(\Omega) \times \mathbb{F}_{2}$ with elements of \mathbb{F}_{2}. Let p_{x} denote the projection defined by the characteristic function $\chi_{\Omega(x)} \in C(\Omega)$. Note that for each $x \in S$,

$$
\begin{gathered}
p_{x}+x p_{x}-1 x^{-1}=1 \\
p_{a}+p_{a}-1+p_{b}+p_{b}-1=1,
\end{gathered}
$$

hold. For $x \in S$, let $S_{x} \in C(\Omega) \rtimes \mathbf{F}_{2}$ be a partial isometry

$$
S_{x}=x\left(1-p_{x-1}\right)
$$

Then we have

$$
\begin{gathered}
S_{x}^{*} S_{y}=x^{-1} p_{x} p_{y} y=\delta_{x, y} S_{x}^{*} S_{x}=\delta_{x, y}\left(1-p_{x}-1\right) \\
S_{x} S_{x}^{*}=x\left(1-p_{x}-1\right) x^{-1}=p_{x} \\
S_{x}^{*} S_{x}=1-p_{x}-1=\sum_{y+x^{-1}} S_{y} S_{y}^{*}
\end{gathered}
$$

These relations show that the partial isometries S_{x} generate the Cuntz-Krieger algebra \mathcal{O}_{A} [CK], where

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

On the other hand, we can recover the generators of $C(\Omega) \rtimes \mathbb{F}_{2}$ by setting

$$
x=S_{x}+S_{x-2}^{*} \quad \text { and } \quad p_{x}=S_{x} S_{x}^{*} .
$$

Hence we have $C(\Omega) \rtimes \mathbb{F}_{2} \simeq \mathcal{O}_{A}$.
Next we recall the Fock space realization of the Cuntz-Krieger algebras, (e.g. see [Eva], [EFW1]). Let $\left\{e_{a}, e_{b}, e_{a}-1, e_{b-1}\right\}$ be a basis of \mathbf{C}^{4} We define the Fock space associated with the matrix A by

$$
\mathcal{F}_{A}=\mathbb{C} e_{0} \oplus \bigoplus_{n \geq 1}\left(\operatorname{sp} \bar{n}\left\{e_{x_{1}} \otimes \cdots \otimes e_{x_{n}} \mid A\left(x_{i}, x_{i+1}\right)=1\right\}\right),
$$

where e_{0} is the vacuum vector. For any $x \in S$, let T_{s} be the creation operator on \mathcal{F}, given by

$$
\begin{aligned}
T_{x} e_{0} & =e_{x_{x}} \\
T_{x}\left(e_{x_{1}} \otimes \cdots \otimes e_{x_{n}}\right) & = \begin{cases}e_{x} \otimes e_{x_{1}} \otimes \cdots \otimes e_{x_{n}} & \text { if } A\left(x, x_{1}\right)=1, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Let p_{0} be the rank one projection on the vacuum vector e_{0}. Note that we have

$$
T_{a} T_{a}^{*}+T_{b} T_{b}^{*}+T_{a-1} T_{a-1}^{*}+T_{b-1} T_{b-1}^{*}+p_{0}=1 .
$$

If π is the quotient map of $B(\mathcal{F})$ onto the Calkin algebra $\mathcal{Q}(\mathcal{F})$, then the C^{*}-algebra generated by the partial isometries $\left\{\pi\left(T_{a}\right), \pi\left(T_{b}\right), \pi\left(T_{a}-1\right), \pi\left(T_{b}\right)\right\}$ is isomorphic to the Cuntz-Krieger algebra \mathcal{O}_{A}.

Now we look at this construction from another point of view. We can perform the following natural identification:

$$
\mathcal{F} \ni \stackrel{e_{x_{1}} \otimes \cdots \otimes e_{x_{n}}}{\longleftrightarrow} \longleftrightarrow \delta_{\delta_{x_{1} \cdots z_{n}}}^{\delta_{e}} \in l^{2}\left(\mathbf{F}_{2}\right) .
$$

Under this identification, the creation operator T_{x} on $l^{2}\left(\mathbf{F}_{2}\right)$ can be expressed as

$$
\begin{aligned}
T_{z} \delta_{e} & =\lambda_{1} \delta_{e}, \\
T_{x} \delta_{x_{1} \cdots x_{n}} & = \begin{cases}\lambda_{r} \delta_{x_{1} \cdots x_{n}} & \text { if } x \neq x_{1}^{-1}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

where λ is the left regular representation of F_{2}.
For a reduced word $x_{1} \cdots x_{n} \in \mathbb{F}_{2}$, we define the length function | on \mathbb{F}_{2} by $\left|x_{1} \cdots x_{n}\right|=n$. Let p_{n} be the projection onto the closed linear span of $\left\{\delta_{\gamma} \in l^{2}\left(\mathbf{F}_{2}\right) \mid\right.$ $|\gamma|=n\}$. Then we can express T_{x} for $x \in S$ by

$$
T_{x}=\sum_{n \geq 0} p_{n+1} \lambda_{x} p_{n} .
$$

Note that this expression makes sense for every finitely generated group. In the next section, we generalize this construction to amalgamated free product groups.

4 Construction of a nuclear C^{*}-algebra \mathcal{O}_{Γ}

In what follows, we always assume that I is a finite index set and G_{i} is a group containing a copy of a finite group H as a subgroup for $i \in I$. Moreover, we assume that each G_{i} is either a finite group or $\mathbb{Z} \times H$. We set $I_{0}=\left\{i \in I| | G_{i} \mid<\infty\right\}$. Let $\Gamma=*_{H} G_{i}$ be the amalgemated free product.

First we introduce a "length function" $\left|\mid\right.$ on each G_{i}. If $i \in I_{0}$, we set $| g \mid=1$ for any $g \in G_{i} \backslash H$ and $|h|=0$ for any $h \in H$. If $i \in I \backslash I_{0}$ we set $\left|\left(a_{i}^{n}, h\right)\right|=|n|$ for any ($\left.a_{i}^{n}, h\right) \in G_{i}=\mathbb{Z} \times H$ where a_{i} is a generator of \mathbb{Z}. Now we extend the length function to Γ Let Ω_{i} be a set of left representatives of G_{i} / H with $e \in \Omega_{i}$. If $\gamma \in \Gamma$ is written uniquely as $g_{1} \cdots g_{n} h$, where $g_{1} \in \Omega_{i_{1}}, \ldots, g_{n} \in \Omega_{i_{n}}$ with $i_{1} \neq i_{2}, \ldots, i_{n-1} \neq i_{n}$ (we write simply $i_{1} \neq \cdots \neq i_{n}$), then we define

$$
|\gamma|=\sum_{k=1}^{n}\left|g_{k}\right| .
$$

Let p_{n} be the projection of $l^{2}(\Gamma)$ onto $l^{2}\left(\Gamma_{n}\right)$ for each n, where $\Gamma_{n}=\{\gamma \in \Gamma| | \gamma \mid=n\}$. We define partial isometries and unitary operators on $l^{2}(\Gamma)$ by

$$
\begin{cases}T_{g}=\sum_{n \geq 0} p_{n+1} \lambda_{g} p_{n} & \text { if } g \in \bigcup_{i \in I} G_{i} \backslash H, \\ V_{h}=\lambda_{h} & \text { if } h \in H,\end{cases}
$$

where λ is the left regular representation of Γ. Let π be the quotient map of $B\left(l^{2}(\Gamma)\right)$ onto $B\left(l^{2}(\Gamma)\right) / \mathcal{K}\left(l^{2}(\Gamma)\right)$, where $\mathcal{B}\left(l^{2}(\Gamma)\right)$ is the C^{*}-algebra of all bounded linear operators on $l^{2}(\Gamma)$ and $K\left(l^{2}(\Gamma)\right)$ is the C^{*}-subalgebra of all compact operators of $B\left(l^{2}(\Gamma)\right)$. We set $\pi\left(T_{g}\right)=S_{g}$ and $\pi\left(V_{h}\right)=U_{h}$. For $\gamma \in \Gamma$, we define S_{η} by

$$
S_{\gamma}=S_{g 1} \cdots S_{g_{n}}
$$

where $\gamma=g_{1} \cdots g_{n}$ for some $g_{1} \in G_{i_{1}} \backslash H, \ldots, g_{n} \in G_{i_{n}} \backslash H$ with $i_{1} \neq \cdots \neq i_{n}$. Note that S_{γ} does not depend on the expression $\gamma=g_{1} \cdots g_{n}$. We denote the initial projections of S_{γ} by $Q_{\gamma}=S_{\gamma}^{*} S_{\gamma}$ and the range projections by $P_{\gamma}=S_{\gamma} S_{\gamma}^{*}$ for $\gamma \in \Gamma$.

We collect several relations, which the family $\left\{S_{g}, U_{h} \mid g \in \bigcup_{i \in I} G_{i} \backslash H, h \in H\right\}$ satisfies.

For $g, g^{\prime} \in \bigcup_{i} G_{i} \backslash H$ with $|g|=\left|g^{\prime}\right|=1$ and $h \in H$,

$$
\begin{gather*}
S_{g h}=S_{g} U_{h}, \quad S_{h g}=U_{h} S_{g} \tag{1}\\
P_{g} \quad P_{g^{\prime}}
\end{gather*}= \begin{cases}P_{g}=P_{g^{\prime}} & \text { if } g H=g^{\prime} H, \tag{2}\\
0 & \text { if } g H \neq g^{\prime} H .\end{cases}
$$

Moreover, if $g \in G_{i} \backslash H$ and $i \in I_{0}$, then

$$
\begin{equation*}
Q_{g}=\sum_{\substack{j \in I_{0} \\ j \neq i}} \sum_{g^{\prime} \in \Omega \lambda \backslash\{e\}} P_{g^{\prime}}+\sum_{j \in I \backslash \mathrm{~J}_{0}} P_{a_{j}}+P_{\mathrm{a}_{j}^{-1}} \tag{3}
\end{equation*}
$$

and if $g=a_{i}^{ \pm 1}$ and $\dot{i} \in I \backslash I_{0}$, then

$$
\begin{equation*}
Q_{a_{i}^{ \pm 1}}=\sum_{j \in I_{0}} \sum_{g^{\prime} \in \Omega_{j} \backslash\{e\}} P_{g^{\prime}}+\sum_{\substack{j \in \lambda I_{0} \\ j \neq i}}\left(P_{a_{j}}+P_{a_{j}^{-1}}\right)+P_{a_{i}^{ \pm 1}} \tag{3}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
1=\sum_{i \in I_{0}} \sum_{g \in S, \backslash \epsilon\}} P_{g}+\sum_{i \in I \backslash J_{0}}\left(P_{a_{1}}+P_{a_{i}^{-1}}\right) \tag{4}
\end{equation*}
$$

Indeed, (1) follows from the relations $T_{g h}=T_{g} V_{h}$ and $T_{h g}=V_{h} T_{g}$. From the definition, we have $T_{g^{\prime}}^{*} T_{g}=\sum_{n \geq 0} p_{n} \lambda_{g^{*}}^{*} p_{n+1} \lambda_{g} p_{n}$. This can be non-zero if and only if $\left|g^{\prime-1} g\right|=0$, i.e. $g^{\prime-1} g \in H$. We have (2) immediately. The relation

$$
1=\sum_{i \in I_{0}} \sum_{g \in \Omega_{i}} T_{g} T_{g}^{*}+\sum_{i \in \Lambda I_{0}}\left(T_{a_{i}} T_{a_{1}}^{*}+T_{a_{i}^{-1}} T_{a_{i}^{-1}}^{*}\right)+p_{0}
$$

implies (4). By multiplying S_{g}^{*} on the left and S_{g} on the right of equation (4) respectively, we obtain (3).

Moreover, the following condition holds: Let $P_{i}=\sum_{g \in \mathfrak{M}_{4}} P_{g}$ for $i \in I_{0}$, and $P_{i}=$ $P_{a_{i}}+P_{a_{i-1}^{-1}}$ for $i \in I \backslash I_{0}$. For every $i \in I$, we have

$$
\begin{equation*}
C^{*}(H) \simeq C^{*}\left(P_{i} U_{h} P_{i} \mid h \in H\right) . \tag{5}
\end{equation*}
$$

Indeed, since the unitary representation $P_{i}^{\prime} V_{h} P_{i}^{\prime}$ contains the left regular representation of H with infinite multiplicity, where P_{i}^{\prime} is some projection with $\pi\left(P_{i}^{\prime}\right)=P_{i}$. we have relation (5).

Now we consider the universal C^{*}-algebra generated by the family $\left\{S_{g}, U_{h} \mid g \in\right.$ $\left.\bigcup_{i \in I} G_{i} \backslash H, h \in H\right\}$ satisfying (1), (2), (3) and (4). We denote it by \mathcal{O}_{Γ}. Here, the universality means that if another family $\left\{s_{g}, u_{h}\right\}$ satisfies (1), (2), (3) and (4), then there exists a surjective *-homomorphism ϕ of \mathcal{O}_{r} onto $C^{*}\left(s_{g}, u_{h}\right)$ such that $\phi\left(S_{g}\right)=s_{g}$ and $\phi\left(U_{h}\right)=u_{\lambda}$. Summing up the above, we employ the following definitions and notation:

Definition 4.1 Let I be a finite index set and G_{i} be a group containing a copy of a finite group H as a subgroup for $i \in I$. Suppose that each G_{i} is either a finite group or $\mathbb{Z} \times H$. Let I_{0} be the subset of I such that G_{i} is finite for all $i \in I_{0}$. We denote the amalgamated free product $*_{H} G_{i}$ by Γ

We fix a set Ω_{i} of left representatives of G_{i} / H with $e \in \Omega_{i}$ and a set X_{i} of representatives of $H \backslash G_{i} / H$ which is contained in Ω_{i}. Let $\left(a_{i}, e\right)$ be a generator of G_{i} for $i \in I \backslash I_{0}$. We write a_{i}, for short. Here we choose $\Omega_{i}=X_{i}=\left\{a_{i}^{n} \mid n \in \mathbb{N}\right\}$. We exclude the case where $\bigcup_{i} \Omega_{i} \backslash\{e\}$ has only one or two points.

We define the corresponding universal C^{*}-algebra \mathcal{O}_{T} generated by partial isometries S_{g} for $g \in \bigcup_{i \in I} G_{i} \backslash H$ and unitaries U_{h} for $h \in H$ satisfying (1), (2), (9) and (4).

We set for $\gamma \in \Gamma$,

$$
\begin{array}{cc}
Q_{\gamma}=S_{\gamma}^{*} \quad S_{\gamma}, & P_{\gamma}=S_{\gamma} S_{\gamma}^{*}, \\
P_{i}=\sum_{g \in \Omega_{i}} P_{g} & \text { if } i \in I_{0}, \\
P_{i}=P_{a_{i}}+P_{a_{i}^{-1}} & \text { if } i \in I \backslash I_{0} .
\end{array}
$$

For convenience, we set for any integer n,

$$
\begin{gathered}
\Gamma_{n}=\{\gamma \in \Gamma| | \gamma \mid=n\}, \\
\Delta_{n}=\left\{\gamma \in \Gamma_{n} \mid \gamma=\gamma_{1} \cdots \gamma_{n}, \gamma_{k} \in \Omega_{i_{n}}, i_{1} \neq \cdots \neq i_{n}\right\} .
\end{gathered}
$$

We also set $\Delta=\bigcup_{n \geq 1} \Delta_{n}$.

Lemma 4.2 For $i \in I$ and $h \in H$,

$$
U_{h} P_{i}=P_{i} U_{h}
$$

Proof. Use the above relations (2).
Lemma 4.3 Let $\gamma_{1}, \gamma_{2} \in \Gamma$. Suppose that $S_{\gamma_{1}}^{*} S_{\gamma_{2}} \neq 0$.
If $\left|\gamma_{1}\right|=\left|\gamma_{2}\right|$, then $S_{\gamma_{1}}^{*} S_{\gamma_{2}}=Q_{g} U_{h}$ for some $g \in \bigcup_{i \in I} G_{i}, h \in H$.
If $\left|\gamma_{1}\right|>\left|\gamma_{2}\right|$, then $S_{\gamma_{1}}^{*} S_{\gamma_{2}}=S_{7}^{*}$ for some $\gamma \in \Gamma$ with $|\gamma|=\left|\gamma_{1}\right|-\left|\gamma_{2}\right|$.
If $\left|\gamma_{1}\right|<\left|\gamma_{2}\right|$, then $S_{\gamma_{1}}^{*} S_{\gamma_{2}}=S_{\gamma}$ for some $\gamma \in \Gamma$ with $|\gamma|=\left|\gamma_{2}\right|-\left|\gamma_{1}\right|$.
Proof. By (2), we obtain the lemma.

Corollary 4.4

$$
\mathcal{O}_{\Gamma}=\overline{\operatorname{span}}\left\{S_{\mu} P_{i} S_{\nu}^{*} \mid \mu, \nu \in \Gamma, i \in I\right\}
$$

Proof. This follows from the previous lemma.
Next we consider the gauge action of \mathcal{O}_{Γ}. Namely, if $z \in \mathbb{T}$ then the family $\left\{z S_{g}, U_{h}\right\}$ also satisfies (1), (2), (3), (4) and generates $\mathcal{O}_{\mathbf{r}}$. The universality gives an automorphism α_{z} on \mathcal{O}_{Γ} such that $\alpha_{x}\left(S_{g}\right)=z S_{g}$ and $\alpha_{x}\left(U_{h}\right)=U_{h}$. In fact, α is a continuous action of \mathbb{T} on \mathcal{O}_{Γ}, which is called the gauge action. Let $d z$ be the normalized Haar measure on \mathbb{T} and we define a conditional expectation Φ of \mathcal{O}_{Γ} onto the fixed-point algebra $\mathcal{O}_{\Gamma}^{\mathrm{T}}=\{a \in$ $\mathcal{O}_{\Gamma} \mid \alpha_{z}(a)=a$, for $\left.z \in \mathbf{T}\right\}$ by

$$
\Phi(a)=\int_{\mathbf{T}} \alpha_{z}(a) d x, \quad \text { for } a \in \mathcal{O}_{\Gamma}
$$

Lemma 4.5 The fixed-point algebra \mathcal{O}_{Γ}^{T} is an $A F$-algebra.

Proof. For each $i \in I$, set

$$
\mathcal{F}_{n}^{i}=\overline{\operatorname{span}}\left\{S_{\mu} P_{i} S_{\nu}^{*} \mid \mu, \nu \in \Gamma_{n}\right\}
$$

We can find systems of matrix units in \mathcal{F}_{n}^{i}, parameterized by $\mu, \nu \in \Delta_{n}$, as follows:

$$
e_{\mu, \nu}^{i}=S_{\mu} P_{i} S_{\nu}^{*}
$$

Indeed, using the previous lemma, we compute

$$
e_{\mu_{1}, \mu_{1}}^{i} e_{\mu_{2}, \nu_{2}}^{i}=\delta_{\nu_{1}, \mu_{2}} S_{\mu_{1}} P_{i} Q_{\nu_{1}} P_{i} S_{\nu_{2}}^{*}=\delta_{\nu_{1}, \mu_{2}} e_{\mu_{1}, \nu_{2}}^{i} .
$$

Thus we obtain the identifications

$$
\mathcal{F}_{n}^{\prime} \simeq M_{N(n, i)}(\mathbf{C}) \otimes e_{\mu, \mu}^{i} \mathcal{F}_{n}^{i} e_{\mu, \mu}^{i}
$$

for some integer $N(n, i)$ and some $\mu \in \Delta_{n}$. Moreover, for ξ, η,

$$
e_{\mu, \mu}^{i}\left(S_{\xi} P_{i} S_{\eta}^{*}\right) e_{\mu, \mu}^{i}= \begin{cases}S_{\mu} P_{i} U_{h} P_{i} S_{\mu}^{*} & \text { if } \xi, \eta \in \mu H, \\ 0 & \text { otherwise. }\end{cases}
$$

for some $h \in H$. Note that $C^{*}\left(S_{\mu} P_{i} U_{h} P_{i} S_{\mu}^{*} \mid h \in H\right)$ is isomorphic to $C^{*}\left(P_{i} U_{h} P_{i} \mid h \in H\right)$ via the map $x \mapsto S_{\mu}^{*} x S_{\mu}$. Therefore the relation (5) gives

$$
\mathcal{F}_{n}^{i} \simeq M_{k}(\mathbf{C}) \otimes \operatorname{sp} \overline{\sin }\left\{S_{\mu} P_{i} U_{\hbar} P_{k} S_{\mu}^{*} \mid h \in H\right\} \simeq M_{k}(\mathbf{C}) \otimes C^{*}(H) .
$$

Note that $\left\{\mathcal{F}_{n}^{\prime} \mid i \in I\right\}$ are mutually orthogonal and

$$
\mathcal{F}_{n}=\oplus_{i \in I} \mathcal{F}_{n}^{i}
$$

is a finite-dimensional C^{*}-algebra.
The relation (2) gives $\mathcal{F}_{n} \rightarrow \mathcal{F}_{n+1}$. Hence,

$$
\mathcal{F}=\overline{\bigcup_{n \geq 0} \mathcal{F}_{n}}
$$

is an $A F$-algebra. Therefore it suffices to show that $\mathcal{F}=\mathcal{O}_{\Gamma}^{\mathbf{T}}$. It is trivial that $\mathcal{F} \subseteq \mathcal{O}_{\Gamma}^{\mathbf{T}}$. On the other hand, we can approximate any $a \in \mathcal{O}_{\Gamma}^{\mathbf{T}}$ by a linear combination of elements of the form $S_{\mu} P_{i} S_{\nu}^{*}$. Since $\Phi(a)=a, a$ can be approximated by a linear combination of elements of the form $S_{\mu} P_{i} S_{\nu}^{*}$ with $|\mu|=|\nu|$. Thus $a \in \mathcal{F}$

We need another lemma to prove the uniqueness of \mathcal{O}_{Γ}.
Lemma 4.6 Suppose that $i_{0} \in I$ and W consists of finitely many elements $(\mu, h) \in \Delta \times H$ such that the last word of μ is not contained in $\Omega_{i_{0}}$ and $W \cap H=\emptyset$. Then there exists $\gamma=g_{0} \cdots g_{n}$ with $g_{k} \in \Omega_{i_{k}}$ and $i_{0} \neq \cdots \neq i_{n} \neq i_{0}$ such that for any $(\mu, h) \in W, \mu h \gamma$ never have the form $\gamma \gamma^{\prime}$ for some $\gamma^{\prime} \in \Gamma$.

Proof. Let $i_{0} \in I$ and W be a finite subset of $\Delta \times H$ as above. We first assume that $|I| \geq 3$. Then we can choose $x \in \Omega_{i_{0}}, y \in \Omega_{j}$ and $z \in \Omega_{j^{\prime}}$ such that $j \neq i_{0} \neq j^{\prime}$ and $j \neq j^{\prime}$ For sufficiently long word

$$
\gamma=(x y)(x z)(x y x y)(x z x z)(x y x y x y)(x z x z x z) \cdots(\cdots z),
$$

We are done. We next assume that $|I|=2$. Since we exclude the case where $\Omega_{1} \cup \Omega_{2} \backslash\{e\}$ has only one or two elements, we can choose at least three distinct points $x \in \Omega_{\text {io }}, y \in \Omega_{\text {; }}$ and $z \in \Omega_{j^{\prime}}$. If $i_{0} \neq j=j^{\prime}$ we set

$$
\gamma=(x y)(x z)(x y x y)(x z x z)(x y x y x y)(x z x z x z) \cdots(\cdots z),
$$

as well. If $i_{0}=j \neq j^{\prime}$ we set

$$
\gamma=(x z)(y z)(x z x z)(y z y z)(x z x z x z)(y z y z y z) \cdots(\cdots z) .
$$

Then if γ has the desired properties, we are done. Now assume that there exist some $(\mu, h) \in W$ such that $\mu h \gamma=\gamma \gamma^{\prime}$ for some γ^{\prime} Fix such an element $(\mu, h) \in W \quad$ By hypothesis, we can choose $\delta \in \Delta$ with $\left|\gamma^{\prime}\right| \leq|\delta|$ such that the last word of δ does not belong to $\Omega_{i_{0}}$ and δ does not have the form $\gamma^{\prime} \delta^{\prime}$ for some δ^{\prime} Set $\tilde{\gamma}=\gamma \delta$. Then $\mu h \tilde{\gamma}$ does not have the form $\gamma \gamma^{\prime \prime}$ for any $\gamma^{\prime \prime}$ Indeed,

$$
\mu h \tilde{\gamma}=\mu h \gamma \delta=\gamma \gamma^{\prime} \delta \neq \bar{\gamma} \gamma^{\prime},
$$

for some $\gamma^{\prime \prime}$ Since W is finite, we can obtain a desired element γ by replacing $\tilde{\gamma}_{1}$ inductively.

We now obtain the uniqueness theorem for \mathcal{O}_{Γ}.
Theorem 4.7 Let $\left\{s_{g}, u_{h}\right\}$ be another family of partial isometries and unitaries satisfying (1), (2), (9) and (4). Assume that

$$
C^{*}(H) \simeq C^{* *}\left(p_{i} u_{h} p_{i} \mid h \in H\right)
$$

where $p_{i}=\sum_{g \in \Omega_{i} \backslash(e)} s_{g} s_{g}^{*}$ for $i \in I_{0}$ and $p_{i}=s_{a_{4}} s_{a_{i}}^{*}+s_{a_{i}^{-1}} s_{a_{i}^{-1}}^{*}$ for $i \in I \backslash I_{0}$. Then the canonical surjective *-homomorphism π of \mathcal{O}_{Γ} onto $C^{* *}\left(s_{g}, u_{h}\right)$ is faithful.

Proof. To prove the theorem, it is enough to show that (a) π is faithful on the fixed-point algebra $\mathcal{O}_{\Gamma}^{\mathrm{T}}$, and (b) $\|\pi(\Phi(a))\| \leq\|\pi(a)\|$ for all $a \in \mathcal{O}_{\Gamma}$ thanks to [BKR, Lemma 2.2].

To establish (a), it suffices to show that π is faithful on \mathcal{F}_{n} for all $n \geq 0$. By the proof of Lemma 4.5, we have

$$
\mathcal{F}_{n}^{i}=M_{N(n, i)}(\mathbb{C}) \otimes C^{*}(H)
$$

for some integer $N(n, i)$. Note that $s_{g} s_{g}^{*}$ is non-zero. Hence π is injective on $M_{N(n, i)}(\mathbb{C})$. By the other hypothesis, π is injective on $C^{*}(H)$.

Next we will show (b). It is enough to check (b) for

$$
a=\sum_{\mu \nu \in F} \sum_{j \in J} C_{\mu, \nu}^{j} S_{\mu} P_{j} S_{\nu}^{*}
$$

where F is a finite subset of Γ and J is a subset of I. For $n=\max \{|\mu| \mid \mu \in F\}$, we have

$$
\Phi(a)=\sum_{\{\mu, \nu \in F| | \mu|=|\nu|\}} \sum_{j \in J} C_{\mu, \nu}^{j} S_{\mu} P_{j} S_{\nu}^{*} \in \mathcal{F}_{n}
$$

Now by changing F if necessary, we may assume that $\min \{|\mu|,|\nu|\}=n$ for every pair $\mu, \nu \in F$ with $C_{\mu, \nu}^{j} \neq 0$. Since $\mathcal{F}_{n}=\oplus_{i} \mathcal{F}_{n}$, there exists some $i_{0} \in J$ such that

$$
\|\pi(\Phi(a))\|=\left\|\sum_{|\mu|=|\nu|} C_{\mu_{\nu}}^{i_{0}} s_{\mu} p_{\nu_{0}} s_{\nu}^{*}\right\| .
$$

By changing F such that $F \subset \Delta$ again, we may further assume that

$$
\|\pi(\Phi(a))\|=\left\|\sum_{\substack{\mu_{0}^{\prime}, \nu \in F=F| \\ | \mu|=| \nu F^{*}}} \sum_{h,} C_{\mu_{1}, h^{\prime}}^{i_{0}} s_{\mu} p_{i_{0}} u_{h} p_{i_{0}} s_{\nu}^{*}\right\|
$$

where $F^{\text {c }}$ consists of elements of H, (perhaps with multiplicity). By applying the preceding lemma to

$$
W=\left\{\left(\mu^{\prime}, h\right) \in \Delta \times H \mid \mu^{\prime} \text { is subword of } \mu \in F, h^{-1} \in F^{\prime}\right\}
$$

we have $\gamma \in \Delta$ satisfying the property in the previous lemma. Then we define a projection

$$
Q=\sum_{r \in \Delta_{n}} s_{\tau} s_{\gamma} p_{i_{0}} s_{\gamma}^{*} s_{\gamma}^{*} .
$$

By hypothesis, Q is non-zero.
If $\mu, \nu \in \Delta_{n}$ then

$$
Q\left(s_{\mu} p_{i_{0}} s_{\nu}^{*}\right) Q=s_{\mu} s_{\gamma} p_{i_{0}} s_{\gamma}^{*} p_{i_{0}} s_{\gamma} p_{i_{0}} s_{\gamma}^{*} s_{\nu}^{*}=s_{\mu} s_{\gamma} p_{i_{0}} s_{\gamma}^{*} s_{\nu}^{*}
$$

is non-zero. Therefore $s_{\mu}\left(s_{\gamma} p_{i_{0}} s_{7}^{*}\right) s_{u}^{*}$ is also a family of matrix units parameterized by $\mu, \nu \in \Delta_{n}$. Hence the same arguments as in the proof of Lemma 4.5 give

$$
\pi\left(\mathcal{F}_{n}^{i_{0}^{0}}\right) \simeq M_{N\left(n, i_{0}\right)}(\mathbb{C}) \otimes C^{*}\left(s_{\mu} s_{\gamma} p_{i_{0}} u_{h} p_{i_{0}} s_{\gamma}^{*} s_{\mu}^{*} \mid h \in H\right)
$$

By hypothesis, we deduce that $b \mapsto Q \pi(b) Q$ is faithful on $\mathcal{F}_{n}^{i_{0}}$. In particular, we conclude that $\|\pi(\Phi(a))\|=\|Q \pi(\Phi(a)) Q\|$.

We next claim that $Q \pi(\Phi(a)) Q=Q \pi(a) Q$. We fix $\mu, \nu \in F$ If $|\mu| \neq|\nu|$ then one of μ, ν has length n and the other is longer; say $|\mu|=n$ and $|\nu|>n$. Then

$$
Q\left(s_{\mu} p_{i_{0}} u_{h} p_{i_{0}} s_{\nu}^{*}\right) Q=s_{j_{\mu}} s_{\gamma} p_{i_{0}} s_{\gamma}^{*} p_{i_{0}} u_{h} p_{i_{0}} s_{\nu}^{*}\left(\sum_{\tau \in \Delta_{n}} s_{\tau} s_{\gamma} p_{i_{0}} s_{\gamma}^{*} s_{\tau}^{*}\right)
$$

Since $|\nu|>|\tau|$, this can have a non-zero summand only if $\nu=\tau \nu^{\prime}$ for some ν^{\prime} However $s_{\gamma}^{*} u_{h} s_{\nu}^{*} s_{\tau} s_{\gamma}=s_{\gamma}^{*} u_{h} s_{\nu}^{*} s_{\gamma}$, and $s_{\nu^{\prime} h^{-1}}^{*} s_{\gamma}$ is non-zero only if $\nu^{\prime} h^{-1} \gamma$ has the form $\gamma \gamma^{\prime}$ This is impossible by the choice of γ. Therefore we have $Q\left(s_{\mu} p_{i_{0}} s_{\nu}\right) Q=0$ if $|\mu| \neq|\nu|$, namely $Q \pi(\Phi(a)) Q=Q \pi(a) Q$. Hence we can finish proving (b):

$$
\|\pi(\Phi(a))\|=\|Q \pi(\Phi(a)) Q\|=\|Q \pi(a) Q\| \leq\|\pi(a)\| .
$$

Therefore [BKR, Lemma 2.2] gives the theorem.
By essentially the same arguments, we can prove the following.
Corollary 4.8 Let $\left\{t_{g}, v_{h}\right\}$ and $\left\{s_{g}, v_{h}\right\}$ be two families of partial isometries and unitaries satisfying (1), (2), (3) and (4). Suppose that the map $p_{i} v_{h} p_{i} \mapsto q_{i} u_{h} q_{i}$ gives an isomorphism:

$$
C^{*}\left(p_{i} v_{h} p_{i} \mid h \in H\right) \simeq C^{*}\left(g_{i} v_{h} g_{i} \mid h \in H\right)
$$

where $p_{i}=\sum_{g \in \Omega_{1} \backslash(\epsilon)} t_{g} t_{g}^{*}, q_{i}=\sum_{g \in \Omega_{i} \backslash(\epsilon)} s_{g} s_{g}^{*}$ and so on. Then the canonical map gives the isomorphism between $C^{*}\left(t_{g}, v_{h}\right)$ and $C^{*}\left(s_{g}, u_{h}\right)$.

Before closing this section, we will show that our algebra \mathcal{O}_{Γ} is isomorphic to a certain Cuntz-Krieger-Pimsner algebra. Let $A=C^{*}\left(P_{i} U_{h} P_{i} \mid h \in H, i \in I\right) \simeq \bigoplus_{i \in I} C_{r}^{*}(H)$. We define a Hilbert A-bimodule X as follows:

$$
X=\overline{\operatorname{spsn}}\left\{S_{g} P_{i}\left|g \in \bigcup_{j \neq 1} G_{j},|g|=1, i \in I\right\}\right.
$$

with respect to the inner product $\left\langle S_{g} P_{i}, S_{g} P_{j}\right\rangle=P_{i} S_{g}^{*} S_{g^{\prime}} P_{j} \in A$. In terms of the groups, the $A-A$ bimodule structure can be described as follows: we set

$$
A=\bigoplus_{i \in I} A_{i}=\bigoplus_{i \in I} \mathbb{C}[H]
$$

and define an A-bimodule \mathcal{H}_{i} by

$$
\mathcal{H}_{i}=\mathbb{C}\left[\left\{g \in \bigcup_{j \neq i} G_{j}| | g \mid=1\right\}\right]
$$

with left and right A-multiplications such that for $a=\left(h_{i}\right)_{t \in I} \in A$ and $g \in G_{j} \backslash H \subset \mathcal{H}_{i}$,

$$
a \cdot g=h_{j} g \text { and } g \cdot a=g h_{i},
$$

and with respect to the inner product

$$
\left\langle g, g^{\prime}\right\rangle_{\mathcal{M}_{i}}= \begin{cases}g^{-1} g^{\prime} \in A_{i} & \text { if } g^{-1} g^{\prime} \in H, \\ 0 & \text { otherwise } .\end{cases}
$$

Then we define the A-bimodule X by

$$
X=\bigoplus_{i \in I} \mathcal{H}_{i}
$$

and we obtain the CKP-algebra O_{X}.
Proposition 4.9 Assume that A and X are as above. Then

$$
\mathcal{O}_{r} \simeq \mathcal{O}_{X}
$$

Proof. We fix a finite basis $u(g, i)=g \in \mathcal{H}_{i}$ for $g \in \Omega_{j}, i \in I$ with $j \neq i,|g|=1$. Then we have $\mathcal{O}_{X}=C^{*}\left(S_{u(g, i)}\right)$. Let $s_{u(g, i)}=S_{g} P_{i}$ in \mathcal{O}_{Γ}. Note that we have $\mathcal{O}_{\Gamma}=$ $C^{*}\left(s_{u(g, i)}\right)$. The relation (4) corresponds to the relations (\dagger) of the CKP-algebras. The family $\left\{s_{w(\theta, v)}\right\}$ therefore satisfies the relations of the CKP-algebras. Since the CKPalgebra has universal properties, there exists a canonical surjective $*$-homomorphism of \mathcal{O}_{X} onto \mathcal{O}_{Γ}. Conversely, let $s_{g}=\sum_{i \in I} S_{u(g, i)}$ and $u_{h}=\oplus_{\varepsilon \in I} h$ for $h \in H$ in \mathcal{O}_{X}, and then we have $\mathcal{O}_{\boldsymbol{X}}=C^{*}\left(s_{g}, u_{h}\right)$. By the universality of \mathcal{O}_{Γ}, we can also obtain a canonical surjective $*$-homomorphism of \mathcal{O}_{Γ} onto $\mathcal{O}_{\boldsymbol{X}}$. These maps are mutual inverses. Indeed,

$$
\begin{array}{rll}
S_{g} & \mapsto \sum_{i \in I} S_{u(0, i)} & \mapsto \sum_{i \in I} S_{g} P_{i}=S_{g}, \\
U_{h} & \mapsto \oplus_{i \in I} h & \mapsto \sum_{i \in I} P_{i} U_{h} P_{i}=U_{h} .
\end{array}
$$

5 Crossed product algebras associated with \mathcal{O}_{Γ}

In this section, we will show that \mathcal{O}_{T} is isomorphic to a crossed product algebra. We first define a "boundary space" We set

$$
\bar{\Lambda}=\left\{\left(\gamma_{n}\right)_{n \geq 0}\left|\gamma_{n} \in \Gamma,\left|\gamma_{n}\right|+1=\left|\gamma_{n+1}\right|,\left|\gamma_{n}^{-1} \gamma_{n+1}\right|=1 \text { for a sufficiently large } n \geq 0\right\}\right.
$$

We introduce the following equivalence relation $\sim ;\left(\gamma_{n}\right)_{n \geq 0},\left(\gamma_{n}^{\prime}\right)_{n \geq 0} \in \tilde{\Lambda}$ are equivalent if there exists some $k \in \mathbb{Z}$ such that $\gamma_{n} H=\gamma_{n+k}^{\prime} H$ for a sufficiently large n. Then we define $\Lambda=\tilde{\Lambda} / \sim$ We denote the equivalent class of $\left(\gamma_{n}\right)_{n \geq 0}$ by $\left[\gamma_{n}\right]_{n \geq 0}$.

Before we define an action of Γ on Λ, we construct another space Ω to introduce a compact space structure, on which Γ acts continuously. Let Ω denote the set of sequences $x: \mathbb{N} \rightarrow \Gamma$ such that

$$
\begin{cases}x(n) \in \Omega_{i_{n}} \backslash\{e\} & \text { for } n \geq 1, \\ x(n) \in\left\{a_{i_{n}}^{ \pm 1}\right\} & \text { if } i_{n} \in I \backslash I_{0}, \\ i_{n} \neq i_{n+1} & \text { if } i_{n} \in I_{0}, \\ x(n)=x(n+1) & \text { if } i_{n} \in I \backslash I_{0}, i_{n}=i_{n+1} .\end{cases}
$$

Note that Ω is a compact Hausdorff subspace of $\prod_{N}\left(\bigcup_{i} \Omega_{4} \backslash\{e\}\right)$. We introduce a map ϕ between Λ and Ω; for $x=(x(n))_{n \geq 1} \in \Omega$, we define a map $\phi(x)=\left[\gamma_{n}\right] \in \Lambda$ by

$$
\begin{aligned}
\gamma_{0} & =e \quad \text { if } n=0, \\
\gamma_{n} & =x(1) \cdots x(n), \quad \text { if } n \geq 1
\end{aligned}
$$

Lemma 5.1 The above map ϕ is a bijection from Λ onto Ω and hence Λ inherits a compact space structure via ϕ.
Proof. For $x=(x(n)) \neq x^{\prime}=\left(x^{\prime}(n)\right)$, there exists an integer k such that $x(k) \neq x^{\prime}(k)$. If $\phi(x)=\left[\gamma_{n}\right]$ and $\phi\left(x^{\prime}\right)=\left[\gamma_{n}^{\prime}\right]$, then $\gamma_{k} H \neq \gamma_{k}^{\prime} H$. Hence we have injectivity of ϕ. Next we will show surjectivity. Let $\left[\gamma_{n}\right] \in \Sigma$: We may take a representative $\left(\gamma_{n}\right)$ satisfying $\left|\gamma_{n}\right|=n$. Now we assume that γ_{n} is uniquely expressed as $\gamma_{n}=g_{1} \cdots g_{n} h, \gamma_{n+1}=g_{1}^{\prime} \cdots g_{n+1}^{\prime} h^{\prime}$ for $g_{k} \in \Omega_{i k}, g_{k}^{\prime} \in \Omega_{j_{k}}, h, h^{\prime} \in H$. Since $\left|\gamma_{n}^{-1} \gamma_{n+1}\right|=1$, we have

$$
h^{-1} g_{n}^{-1} \cdots g_{1}^{-1} g_{1}^{\prime} \cdots g_{n+1}^{\prime} h^{\prime}=g
$$

for some $g \notin H$ with $|g|=1$. Inductively, we have $g_{1}=g_{1}^{\prime}, \ldots, g_{n}=g_{n}^{\prime}$. Hence we can assume that $\gamma_{n}=g_{1} \cdots g_{n}$. We set $x(n)=g_{n}$ and get $\phi((x(n)))=\left[\gamma_{n}\right]$.

Next we define an action of Γ on Λ. Let $\left[\gamma_{n}\right]_{n \geq 0} \in \Lambda$. For $\gamma \in \Gamma$, define

$$
\gamma \cdot\left[\gamma_{n}\right]_{n \geq 0}=\left[\gamma \gamma_{n}\right]_{n \geq 0}
$$

We will show that this is a continuous action of Γ on Λ. Let $\left[\gamma_{n}\right]\left[\gamma_{n}^{\prime}\right] \in \Lambda$ such that $\left(\gamma_{n}\right) \sim\left(\gamma_{n}^{\prime}\right)$ and $\gamma \in \Gamma$. Since there exists some integer k such that $\gamma_{n} H=\gamma_{n+k}^{\prime} H$ for sufficiently large integers n, we have $\gamma \gamma_{n} H=\gamma \gamma_{n+k}^{\prime} H$. Hence this is well-defined. To show that γ is continuous, we consider how γ acts on Ω via the map ϕ. For $g \in \Omega_{i}$ with $|g|=1$ and $x=(x(n))_{n \geq 1} \in \Omega$,

$$
(g \cdot x)(1)= \begin{cases}g & \text { if } i \neq i_{1}, \\ g_{1} & \text { if } i=i_{1}, g x(1) \notin H, i \in I_{0}, \\ & \text { and } g x(1)=g_{1} h_{1}\left(g_{1} \in \Omega_{i_{1}}, h_{1} \in H\right), \\ g & \text { if } i=i_{1}, g x(1) \notin H, i \in I \backslash I_{0}, \\ g_{2} & \text { if } i=i_{1}, g x(1) \in H, i \in I_{0}, \\ & \text { and } g x(1)=h_{1}, h_{1} x(2)=g_{2} h_{2}\left(g_{2} \in \Omega_{\left.i_{2}, h_{1}, h_{2} \in H\right),} x(2)\right. \\ \text { if } i=i_{1}, g x(1) \in H, i \in I \backslash I_{0},\end{cases}
$$

and for $n>1$,

$$
(g x)(n)= \begin{cases}x(n-1) & \text { if } i \neq i_{1}, \\ g_{n} & \text { if } i=i_{1}, g x(1) \notin H, \\ & \text { and } h_{n-1} x(n)=g_{n} h_{n}\left(g_{n} \in \Omega_{i_{n}}, h_{n} \in H\right), \\ x(n-1) & \text { if } i=i_{1}, g x(1) \notin H, i \in I \backslash I_{0}, \\ g_{n+1} & \text { if } i=i_{1}, g x(1) \in H, \\ & \text { and } h_{n} x(n+1)=g_{n+1} h_{n+1},\left(g_{n+1} \in \Omega_{i_{n+1}}, h_{n+1} \in H\right), \\ x(n+1) & \text { if } i=i_{1}, g x(1) \in H, i \in I \backslash I_{0} .\end{cases}
$$

For $h \in H$,

$$
(h x)(n)= \begin{cases}g_{1} & \text { if } n=1, \\ & \text { and } h x(1)=g_{1} h_{1},\left(g_{1} \in \Omega_{i_{1}}, h_{n} \in H\right), \\ g_{n} & \text { if } n>1, \\ & \text { and } h_{n-1} x(n)=g_{n} h_{n},\left(g_{n} \in \Omega_{i_{n}}, h_{n} \in H\right) .\end{cases}
$$

Then one can check easily that the pull-back of any open set of Ω by γ is also an open set of Ω. Thus we have proved that γ is a homeomorphism on Λ. The equations

$$
\left(\gamma \gamma^{\prime}\right)\left[\gamma_{n}\right]=\left[\gamma \gamma^{\prime} \gamma_{n}\right]=\gamma\left(\left[\gamma^{\prime} \gamma_{n}\right]\right)=\gamma \circ \gamma^{\prime}\left[\gamma_{n}\right]
$$

imply associativity.
Therefore we have obtained the following:

Lemma 5.2 The above space Ω is a compact Hausdorff space and Γ acts on Ω contint-

 ously.The following result is the main theorem of this section.
Theorem 5.3 Assume that Ω and the action of $\mathrm{\Gamma}$ on Ω are as above. Then we have the identifications

$$
\mathcal{O}_{\Gamma} \simeq C(\Omega) \times \Gamma \simeq C(\Omega) \times \rtimes_{\Gamma} \Gamma
$$

Proof. We first consider the full crossed product $C(\Omega) \times \Gamma$ Let $Y_{i}=\{(x(n)) \mid x(1) \in$ $\left.\Omega_{i}\right\} \subset \Omega$ be clopen sets for $i \in I$. Note that if $i \in I_{0}$, then Y_{i} is the disjoint union of the clopen sets $\left\{g\left(\Omega \backslash Y_{i}\right) \mid g \in \Omega_{i} \backslash\{e\}\right\}$, and if $i \in I \backslash I_{0}$, then $Y_{i}=Y_{i}^{+} \cup Y_{i}^{-}$where $Y_{i}^{ \pm}=\left\{(x(n)) \mid x(1)=a_{i}^{ \pm}\right\}$. Let $p_{i}=\chi_{n \backslash} Y_{i}$ and $p_{i}^{ \pm}=\chi_{Y_{i}^{ \pm}}$. We define $T_{g}=g p_{i}$ for $g \in G_{i} \backslash H$ and $i \in I_{0}$ and $T_{a_{i}^{ \pm 1}}=a_{i}^{ \pm 1}\left(p_{i}+p_{i}^{ \pm}\right)$for $i \in I \backslash I_{0}$. Let $V_{h}=h$ for $h \in H$. Then the family $\left\{T_{g}, V_{h}\right\}$ satisfies the relations (1), (2), (3) and (4). Indeed, we can first check that $h \in H$ commutes with p_{i} and $p_{i}^{ \pm 1}$. So the relation (1) holds. Let $g \in G_{i} \backslash H$ and $g^{\prime} \in G_{j} \backslash H$ with $i, j \in I_{0}$. Then

$$
T_{g}^{*} T_{g^{\prime}}=p_{i} g^{-1} g^{\prime} p_{j}=g^{-1} \chi_{g\left(\Omega \backslash Y_{i}\right)} \chi_{g^{\prime}\left(\Omega \backslash Y_{g}\right)} g^{\prime}=\delta_{i, j} \delta_{g H_{g} g^{H} p_{i} g^{-1} g^{\prime}}
$$

Moreover it follows from $\Omega \backslash Y_{i}=\bigcup_{j \neq i} Y_{j}$ that

$$
\begin{aligned}
T_{g}^{*} T_{g} & =\chi \Omega \backslash Y_{i}=\sum_{j \neq i} \chi Y_{j} \\
& =\sum_{j \in I_{0, j} \neq f} \sum_{g \in \Omega_{j} \backslash(e\}} \chi_{g\left(\Omega \backslash Y_{j}\right)}+\sum_{j \in I_{I_{0}}} \chi_{a_{j}\left(\Omega \backslash Y_{j}\right)}+\chi_{a_{j}^{-1}\left(\Omega \backslash Y_{j}\right)} \\
& =\sum_{j \in I_{0, j \neq i}} \sum_{\left.g \in \Omega_{j} \backslash e\right\}} g p_{j} g^{-1}+\sum_{j \in \Lambda \mathrm{I}_{0}} p_{j}^{+}+p_{j}^{-} \\
& =\sum_{j \in I_{0, j} j \neq i} \sum_{g \in \Omega_{j} \backslash(e\}} T_{g} T_{g}^{*}+\sum_{j \in \Omega \backslash I_{0}} T_{a_{j}} T_{a_{j}}^{*}+T_{a_{j}^{-1}} T_{a_{j}^{-1}}^{*}
\end{aligned}
$$

For all other cases, we can also check the relations (2) and (3) by similar calculations. Since Ω is the digjoint union of Y_{i}, we have (4). Note that $g, p_{i}, p_{i}^{t} \in C^{\prime \prime}\left(T_{g}, V_{h}\right)$. Moreover, since the family $\left\{\gamma\left(\Omega \backslash Y_{i}\right) \mid \gamma \in \Gamma, i \in I\right\} \cup\left\{\gamma Y_{i}^{ \pm} \mid \gamma \in \Gamma, i \in I \backslash I_{0}\right\}$ generates the topology of Ω, we have $C(\Omega) \rtimes \Gamma=C^{*}\left(T_{g}, V_{h}\right)$. By the universality of \mathcal{O}_{Γ}, there exists a canonical surjective *-homomorphism of \mathcal{O}_{Γ} onto $C(\Omega) \times \Gamma$, sending S_{g} to T_{g} and U_{h} to V_{h}.

Conversely, let $g_{i}=\sum_{f \neq i} P_{j}$ and $q_{i}^{ \pm}=S_{a_{i}^{ \pm 1}} S_{a_{i}}^{*}$. Let

$$
\begin{cases}w_{g}=S_{g}+\sum_{g^{\prime} \in \Omega_{\backslash} \backslash H L_{q}-1 H} S_{g g^{\prime}} S_{g^{\prime}}^{*}+S_{g}^{*} & \text { for } g \in G_{i} \backslash H, i \in I_{0_{1}} \\ w_{a_{i}}=S_{a_{i}}+S_{a_{i}^{-1}}^{*} & \text { for } i \in I \backslash I_{0}, \\ w_{h}=U_{h} & \text { for } h \in H .\end{cases}
$$

We will check that w_{g} are unitaries for $g \in G_{i} \backslash H$ with $i \in I_{0}$. If $g^{\prime} \in \Omega_{i} \backslash H \cup g^{-1} H$, then $g g^{\prime} H=\gamma H$ for some $\gamma \in \Omega_{i} \backslash\{e, g\}$. Hence

$$
\begin{aligned}
& w_{g} w_{g}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& =S_{q} S_{g}^{*}+\sum_{\rho^{\prime} \in \Omega_{i} \backslash H \cup_{g-1}-1} S_{g g^{\prime}} S_{g^{\prime}}^{\prime *} S_{g^{\prime}} S_{g g^{\prime}}^{*}+S_{g^{-1}}^{*} S_{g-1} \\
& =P_{g}+\sum_{g^{\prime} \in \Omega_{i} \backslash(e, s)} P_{g^{\prime}}+Q_{g}=1 .
\end{aligned}
$$

Similarly, we have $w_{g}^{*} w_{g}=1$. For the other case, we can check in the same way.
If $i \in I_{0}, \tau \in \Omega_{i} \backslash^{g}\{e\}$ then

$$
\begin{aligned}
& \sum_{g \in \Omega_{4}} w_{g} q_{i} w_{g}^{*} \\
& =\sum_{g \in \Omega_{i}}\left(S_{g}+\sum_{g^{\prime} \in \Omega_{i} \backslash H \cup g^{-1} H} S_{g g^{\prime}} S_{g^{\prime}}^{*}+S_{g^{-1}}^{*}\right) S_{\tau}^{*} S_{\tau} w_{g}^{*} \\
& =\sum_{g \in \Omega_{t}} S_{g} S_{\tau}^{*} S_{\tau}\left(S_{g}^{*}+\sum_{g^{\prime} \in \Omega_{i} \backslash P U_{g^{-1} H}} S_{g} S_{g g^{\prime}}^{*}+S_{g^{-1}}\right) \\
& =\sum_{g \in \Omega_{4}} S_{g} S_{\tau}^{*} S_{\tau} S_{g}^{*}=1 .
\end{aligned}
$$

For $i \in I \backslash I_{0}$, we have $q_{i}^{+}+w_{0_{1}, q_{i}^{-}} w_{a_{i}}^{*}=1$ and $q_{i}^{+}+q_{i}^{-}+q_{i}=1$ as well. Therefore the conjugates of the family $\left\{q_{i}, q_{i}^{+}\right\}$by the elements of Γ generate a commutative C^{*} algebra. This is the image of a representation of $C(\Omega)$. Therefore (q_{i}, w) gives a covariant
representation of the C^{*}-dynamical system $(C(\Omega), \Gamma)$. Note that (g_{i}, w_{g}) generates \mathcal{O}_{T}. Hence by the universality of the full crossed product $C(\Omega) \times \Gamma$, there exists a canonical surjective *-homomorphism of $C(\Omega) \rtimes \Gamma$ onto \mathcal{O}_{Γ}. It is easy to show that the above two *-homomorphisms are the inverses of each other.

$$
\begin{array}{ccccc}
S_{g} & \mapsto & g p_{i} & \mapsto & w_{g} Q_{g}=S_{g}, \\
S_{\alpha_{ \pm 1} \pm 1} & \mapsto & a_{i}^{ \pm 1}\left(p_{i}+p_{i}^{ \pm}\right) & \mapsto & w_{a_{i}^{ \pm 1}}\left(Q_{a_{i}^{ \pm 1}}+P_{a_{i}^{ \pm 1}}\right)=S_{a_{i}^{ \pm 1}}, \\
U_{h} & \mapsto & h & \mapsto & U_{h} .
\end{array}
$$

We have shown the identification $\mathcal{O}_{\Gamma} \simeq C(\Omega) \times \Gamma$. Since there exists a canonical surjective map of $C(\Omega) \times \Gamma$ onto $C(\Omega) x_{r} \Gamma$, we have a surjective *-homomorphism of \mathcal{O}_{Γ} onto $C(\Omega) x_{r} \Gamma$. Let $C(\Omega) \lambda_{r} \Gamma=C^{*}\left(\tilde{\pi}\left(p_{i}\right), \lambda\right)$ where $\tilde{\pi}$ is the induced representation on the Hilbert space $l^{2}(\Gamma, \mathcal{H})$ by the universal representation π of $C(\Omega)$ on a Hilbert space \mathcal{H} and λ is the unitary representation of Γ on $l^{2}(\Gamma, \mathcal{H})$ such that $\left(\lambda_{0} x\right)(t)=x\left(s^{-1} t\right)$ for $x \in l^{2}(\Gamma, \mathcal{H})$. By the uniqueness theorem for \mathcal{O}_{Γ}, it suffices to check

$$
C^{*}\left(\bar{\pi}\left(\chi_{y_{i}}\right) \lambda_{\mathbb{R}} \tilde{\pi}\left(\chi_{v_{i}}\right)\right) \simeq C^{*}(H) .
$$

But the unitary representation $\tilde{\pi}\left(\chi_{Y_{i}}\right) \lambda_{h} \tilde{\pi}\left(\chi Y_{i}\right)$ is quasi-equivalent to the left regular representation of H. This completes the proof of the theorem.

In [Ser], Serre defined the tree G_{T}, on which Γ acts. In an appendix, we will give the definition of the tree $G_{T}=(V, E)$ where V is the set of vertices and E is the set of edges. We denote the corresponding natural boundary by ∂G_{T}. We also show how to construct boundaries of trees in the appendix. (See Furstenberg [Fur) and Freudenthal [Fre] for details.)

Proposition 5.4 The space ∂G_{T} is homeomorphic to Ω and the above two actions of Γ on ∂G_{T} and Ω are conjugate.

Proof. We define a map ψ from ∂G_{T} to Ω. First we assume that $I=\{1,2\}$. The corresponding tree G_{T} consists of the vertex set $V=\Gamma / G_{1} \amalg \Gamma / G_{2}$ and the edge set $E=\Gamma / H$. For $\omega \in \partial G_{T}$, we can identify ω with an infinite chain $\left\{G_{i_{1}}, g_{1} G_{i_{2}}, g_{1} g_{2} G_{i_{3}}, \ldots\right\}$ with $g_{k} \in \Omega_{i_{k}} \backslash\{e\}$ and $i_{1} \neq i_{2} \neq \cdots$ Then we define $\psi(\omega)=\left[x(n)=g_{i_{n}}\right]$. We will recall the definition of the corresponding tree G_{T} in general, on the appendix, (see [Ser]). Similarly, we can identify $\omega \in \partial G_{T}$ with an infinite chain $\left\{G_{0}, G_{i_{1}}, g_{1} G_{0}, g_{1} G_{i_{2}}, g_{1} g_{2} G_{0}, \ldots\right\}$. Moreover we may ignore vertices γG_{0} for an infinite chain ω,

$$
\left\{G_{0}, G_{i_{1}},\left(g_{1} G_{0} \rightarrow \text { ignoring }\right), g_{1} G_{i_{2}},\left(g_{1} g_{2} G_{0} \rightarrow \text { ignoring }\right), g_{1} g_{2} G_{i_{s}}, \ldots\right\}
$$

Therefore, we define a map ψ of ∂G_{T} to Ω by

$$
\psi(\omega)=\left[x(n)=g_{n}\right] .
$$

The pull-back by ψ of any open set of ∂G_{T} is an open set on Ω. It follows that ψ is a homeomorphism. The two actions on ∂G_{T} and Ω are defined by left multiplication. So it immediately follows that these actions are conjugate.

It is known that Γ is a hyperbolic group (see a proof in the appendix, where we recall the notion of hyperbolicity for finitely generated groups as introduced by Gromov e.g. see $[G H])$. Let $S=\left\{\bigcup_{i \in I} G_{i}\right\}$ and $G(\Gamma, S)$ be the Cayley graph of Γ with the word metric d. Let $\partial \Gamma$ be the hyperbolic boundary.

Proposition 5.5 The hyperbolic boundary 8Γ is homeomorphic to Ω and the actions of I are conjugate.

Proof. We can define a map ψ from Ω to $\partial \Gamma$ by $(x(n)) \mapsto\left[x_{n}=x(1) \cdots x(n)\right]$. Indeed, since $\left\langle x_{n} \mid x_{m}\right\rangle=\min \{n, m\} \rightarrow \infty(n, m \rightarrow \infty)$, it is well-defined. For $x \neq y$ in Ω, there existe k such that $x(k) \neq y(k)$. Then $\langle\psi(x) \mid \psi(y)\rangle \leq k+1$, which shows injectivity. Let $\left(x_{n}\right) \in \partial \Gamma$. Suppose that $x_{n}=g_{n(1)} \cdots g_{n\left(k_{n}\right)} h_{n}$ for some $g_{l} \in \bigcup_{i} \Omega_{i} \backslash\{e\}$ with $n(1) \neq \cdots \neq n\left(k_{n}\right)$. If $g_{n(1)}=g_{m(1)}, ., \quad, g_{n(l)}=g_{m(l)}$ and $g_{n(l+1)} \neq g_{m(l+1)}$, then we set $a_{n, m}=g_{\mathrm{n}(\mathbf{1})} \cdots g_{\mathrm{n}(\mathrm{l})}=g_{m(1)} \cdots g_{m(l)}$. So we have

$$
\left\langle x_{n} \mid x_{m}\right\rangle \leq d\left(e, a_{n, m}\right)+1 \rightarrow \infty(n, m \rightarrow \infty) .
$$

Therefore we can choose sequences $n_{1}<n_{2}<\cdots$, and $m_{1}<m_{2}<\cdots$, such that $a_{n_{k}, m_{k}}$ is a sub-word of $a_{n_{k+1}, m_{k+1}}$. Then a sequence $\left\{g_{\left.n_{k}(1), \ldots, g_{n_{k}(l)}, g_{n_{k+1}(l+1)}, \ldots\right\} \text { is mapped }{ }^{\prime}\left(x_{n}, m_{k}\right.}\right.$ to $\left(x_{\mathrm{r}}\right)$ by ψ. We have proved that ψ is surjective. The pull-back of any open set in $\partial \Gamma^{\prime}$ is an open set in Ω. So ψ is continuous. Since $\Omega, \partial \Gamma$ are compact Hausdorff spaces, ψ is a homeomorphism. Again, the two actions on Ω and $\partial \Gamma$ are defined by left multiplication and hence are conjugate.

Remark Since the action of Γ on $\partial \Gamma$ depends only on the group structure of Γ in $[\mathrm{GH}]$, the above proposition shows that \mathcal{O}_{Γ} is, up to isomorophism, independent of the choice of generators of Γ.

6 Nuclearity, simplicity and pure infiniteness of \mathcal{O}_{Γ}

We first begin by reviewing the crossed product $B \times \mathbb{N}$ of a C^{*}-algebra B by a *endomorphism; this construction was first introduced by Cuntz [C1] to describe the Cuntz algebra \mathcal{O}_{n} as the crossed product of UHF algebras by *-endomorphisms. See Stacey's paper [Sta] for a more detailed discussion. Suppose that ρ is an injective *-endomorphism on a unital C^{*}-algebra B. Let \bar{B} be the inductive limit $\lim (B \xrightarrow{\rho} B)$ with the corresponding injective homomorphisms $\sigma_{n}: B \rightarrow \bar{B}(n \in \mathbb{N})$. Let p be the projection $\sigma_{0}(1)$. There exists an automorphism $\bar{\rho}$ given by $\bar{\rho} \circ \sigma_{n}=\sigma_{n} \circ \rho$ with inverse $\sigma_{n}(b) \mapsto \sigma_{n+1}(b)$. Then the crossed product $B \times_{\rho} \mathbb{N}$ is defined to be the hereditary C^{*}-algebra $p\left(\bar{B} \times_{\bar{\rho}} \mathbb{Z}\right)_{p}$.

The map σ_{0} induces an embedding of B into \bar{B}. Therefore the canonical embedding of \bar{B} into $\bar{B}{x_{p}}^{Z}$ gives an embedding $\pi: B \rightarrow B \rtimes_{\rho}$ N. Moreover the compression by p of the implementing unitary is an isometry V belonging to $B x_{\rho}$ N eatisfying

$$
V \pi(b) V^{*}=\pi(\rho(b)) .
$$

In fact, $B x_{\rho} \mathbb{N}$ is also the universal C^{*}-algebra generated by a copy $\pi(B)$ of B and an isometry V satisfying the above relation. If B is nuclear, then so is $B x_{0} N$.

Proposition 6.1

$$
\mathcal{O}_{\mathrm{r}} \simeq \mathcal{O}_{\mathrm{T}}^{\mathrm{T}} x_{\rho} \mathrm{N}
$$

In particular, \mathcal{O}_{Γ} is nuclear.
Proof. We fix $g_{i} \in G_{i} \backslash H$ for all $i \in I$. We can choose projections e_{i} which are sums of projections P_{g} such that $e_{i} \leq Q_{g i}$ and $\sum_{i \in I} e_{i}=1$. Then $V=\sum_{i \in I} S_{g_{i}} e_{i}$ is an isometry in O_{T}.

We claim that $V O_{\Gamma}^{T} V^{*} \subseteq \mathcal{O}_{\Gamma}^{\mathrm{T}}$ and $\mathcal{O}_{\mathrm{r}}=C^{*}\left(\mathcal{O}_{\Gamma}^{\mathrm{T}}, V\right)$. Let $a \in \mathcal{O}_{\mathrm{T}}^{\mathrm{T}}$. It is obvious that $V a V^{*} \in \mathcal{O}_{\Gamma}^{\top}$ and $C^{*}\left(\mathcal{O}_{\Gamma}^{\mathrm{T}}, V\right) \subseteq \mathcal{O}_{\Gamma}$. To show the second claim, it suffices to check that $S_{\mu} P_{i} S_{\nu}^{*} \in \mathcal{O}_{\Gamma}$ for all μ, ν and i. If $|\mu|=|\nu|$, we have $S_{\mu} P_{i} S_{v}^{*} \in \mathcal{O}_{\Gamma}^{\mathrm{T}}$. If $|\mu| \neq|\nu|$, then we may assume $|\mu|<|\nu|$. Let $|\nu|-|\mu|=k$. Thus $S_{\mu} P_{i} S_{\nu}^{*}=\left(V^{*}\right)^{k} V^{k} S_{\mu} P_{i} S_{\nu}^{*}$ and $V^{k} S_{\mu} P_{i} S_{\nu}^{*} \in \mathcal{O}_{\Gamma}^{\mathbf{T}}$. This proves our claim.

We define a *-endomorphism ρ of \mathcal{O}_{Γ}^{T} by $\rho(a)=V a V^{*}$ for $a \in \mathcal{O}_{\Gamma}^{\mathrm{T}}$. Thanks to the universality of the crossed product $\mathcal{O}_{\Gamma}^{\mathrm{T}} \chi_{\rho} \mathbf{N}$, we obtain a canonical surjective *homomorphism σ of $\mathcal{O}_{\Gamma}^{\mathbf{T}} x_{\rho} \mathrm{N}$ onto $C^{*}\left(\mathcal{O}_{\Gamma}^{\mathrm{T}}, V\right)$. Since $\mathcal{O}_{\Gamma}^{\mathrm{T}} x_{\rho} \mathrm{N}$ has the universal property, there also exists a gauge action β on $\mathcal{O}_{\mathrm{T}}^{\mathrm{T}} \times_{p} \mathbb{N}$. Let Ψ be the corresponding canonical conditional expectation of $\mathcal{O}_{\Gamma}^{\mathbb{T}} x_{p} \mathbb{N}$ onto $\mathcal{O}_{\Gamma}^{\mathbb{T}}$. Suppose that $a \in \operatorname{ker} \sigma$. Then $\sigma\left(a^{*} a\right)=0$. Since $\alpha \circ \sigma=\sigma \circ \beta$, we have $\sigma \circ \Psi\left(a^{*} a\right)=0$. The injectivity of σ on $O_{\Gamma}^{\text {T implies } \Psi\left(a^{*} a\right)=0}$ and hence $a^{*} a=0$ and $a=0$. It follows that $\mathcal{O}_{\Gamma} \simeq \mathcal{O}_{\Gamma}^{T} x_{\rho} \mathbb{N}$.

In section 2, we reviewed the notion of amenability for discrete group actions. The following is a special case of [Ada].

Corollary 6.2 The action of Γ on $\partial \Gamma$ is amenable.

Proof. This follows from Theorem 2.2 and the above proposition.
We also have a partial result of [Kir], [D1], [D2] and [DS].
Corollary 6.3 The reduced group C^{*}-algebra $C_{r}^{*}(\Gamma)$ is exact.
Proof. It is well-known that every C^{*}-subalgebra of an exact C^{*}-algebra is exact; see Wassermann's monograph [Was]. Therefore the inclusion $C_{\Gamma}^{*}(\Gamma) \subset \mathcal{O}_{\Gamma}$ implies exactness.

Finally we give a sufficient condition for the simplicity and pure infiniteness of \mathcal{O}_{Γ}.

Corollary 6.4 Stuppose that $\Gamma=*_{H} G_{i}$ satisfies the following condition:
There exists at least one element $j \in I$ such that

$$
\bigcap_{i \neq j} N_{i}=\{e\},
$$

where $N_{i}=\bigcap_{g \in G_{i}} g H g^{-1}$
Then \mathcal{O}_{Γ} is simple and purely infinite.
Proof. We first claim that for any $\mu \in \Delta$ and $|g|=1$ with $|\mu g|=|\mu|+1$,

$$
\mu H \mu^{-1} \cap H \supseteq \mu g H g^{-1} \mu^{-1} \cap H .
$$

Suppose that $\mu=\mu_{1} \cdots \mu_{n}$ such that $\mu_{k} \in \Omega_{h_{k}}$ with $\mu_{1} \neq \cdots \neq \mu_{n}$ and $g \in G_{i}$ with $i \neq i_{n}$. We first assume that $\mu=\mu_{1}$. If $\mu g g^{-1} \mu^{-1} \in \mu g H_{g}^{-1} \mu^{-1} \cap H$, then $g h g^{-1} \in$ $\mu^{-1} H \mu \subseteq G_{t_{1}}$ Thus $g h g^{-1} \in G_{i} \cap G_{i_{1}}$ implies $g h g^{-1} \in H$. Next we assume that $|\mu|>1$. If $\mu g h g^{-1} \mu^{-1} \in \mu g H g^{-1} \mu^{-1} \cap H$, then

$$
\mu_{2} \cdots \mu_{\mathrm{R}} g h g^{-1} \mu_{k}^{-1} \cdots \mu_{2}^{-1} \in \mu_{1}^{-1} H \mu_{\mathrm{t}} \subseteq G_{t_{2}}
$$

Thus $\left|\mu_{2} \cdots \mu_{n} g h g^{-1} \mu_{k}^{-1} \cdots \mu_{2}^{-1}\right| \leq 1$ implies $g h g^{-1} \in H$. This proves the claim.
Let $\left\{S_{g}, U_{h}\right\}$ be any family satistying the relations (1), (2), (3) and (4). By the uniqueness theorem, it is enough to show that $C^{*}\left(P_{i} U_{h} P_{i} \mid h \in H\right) \simeq C^{*}(H)$ for any $i \in I$. We next claim that there exists $v \in \Gamma$ such that the initial letter of ν belongs to Ω_{i} and $\left\{U_{h} S_{\nu}\right\}_{n \in H}$ have mutually orthogonal ranges.

Let $g \in \Omega_{i}$. If $g H^{-1} \cap H=\{e\}$, then it is enough to set $\nu=g$. Now suppose that there exists some $h \in g H g^{-1} \cap H$ with $h \neq e$. We first assume that $i=j$. By the hypothesis, there exists some $i_{1} \in I$ such that $g^{-1} h g \notin N_{i_{1}}$ and $i \neq i_{1}$. Hence there exists $g_{1} \in \Omega_{i_{1}}$ such that $g^{-1} h g \notin g_{1} H g_{1}^{-1}$ and so $h \notin g g_{1} H g_{1}^{-1} g^{-1}$ If $g g_{1} H g_{1}^{-1} g^{-1} \cap H=\{e\}$, then it is enough to put $\nu=g g_{1}$. If not, we set $\gamma_{1}=g_{1} g_{1}^{\prime}$ for some $g_{1}^{\prime} \in \Omega_{,}$. By the first part of the proof, we have

$$
g H g^{-1} \cap H \supsetneq \mu \gamma_{1} H \gamma_{1}^{-1} \mu^{-1} \cap H
$$

Since H is finite, we can inductively obtain $\gamma_{1}, \gamma_{2}, \ldots \gamma_{n}$ satisfying

$$
g H g^{-1} \cap H \supsetneq g \gamma_{1} H \gamma_{1}^{-1} g^{-1} \cap H \supsetneq \cdots \supsetneqq g \gamma_{1} \cdots \gamma_{n} H \gamma_{n}^{-1} \cdots \gamma_{1}^{-1} g^{-1} \cap H=\{e\}
$$

Then we set $\nu=g \gamma_{1} \cdots \gamma_{n}$. If $i \neq j$, we can carry out the same arguments by replacing g by $\gamma=g g_{j}$ for some $g_{j} \in \Omega_{j}$. Hence from the identification $U_{h} S_{\nu} \leftrightarrow \delta_{h} \in l^{2}(H)$, it follows that the unitary representation $P_{i} U_{h} P_{i}$ is quasi-equivelent to the left regular representation of H. Thus \mathcal{O}_{Γ} is simple.

In Section 5, we have proved that $\mathcal{O}_{\Gamma} \simeq C(\Omega) x_{r} \Gamma$ We show that the action of Γ on Ω is the strong boundary action (see Preliminaries). Let U, V be any non-empty open
sets in Ω. There exists some open set $O=\left\{(x(n)) \in \Omega \mid x(1)=g_{1}, \cdots, x(k)=g_{k}\right\}$ which is contained in V We may also assume that U^{c} is an open of the form $\{(x(n)) \in \Omega \mid$ $\left.x(1)=\gamma_{1} \cdots, x(m)=\gamma_{m}\right\}$. Let $\gamma=g_{1} \cdots g_{k} \gamma_{m}^{-1} \cdots \gamma_{1}^{-1}$ Then we have $\gamma U^{c} \subset O \subset V$ Since $C(\Omega) x_{r} \Gamma$ is simple, it follows from [AS] that the action of Γ is topological free. Therefore it follows from Theorem 2.4 that $C(\Omega) \searrow_{\Perp} \Gamma$, namely \mathcal{O}_{Γ}, is purely infinite.

Remark We gave a sufficient condition for $\mathcal{O}_{\boldsymbol{r}}$ to be simple. However, we can completely determine the ideal structure of \mathcal{O}_{Γ} with further effort. Indeed, we will obtain a matrix A_{Γ} to compute K -groups of \mathcal{O}_{Γ} in the next section. The same argument as in [C2] also works for the ideal structure of $\mathcal{O}_{\boldsymbol{T}}$. For Cuntz-Krieger algebras, we need to assume that corresponding matrices have the condition (II) of [C2] to apply the uniqueness theorem. Since we have another uniqueness theorem for our algebras, we can always apply the ideal structure theorem.

Let $\Sigma=I \times\{1, \ldots, r\}$ be a finite set, where r is the number of all irreducible unitary representations of H. For $x, y \in \Sigma$, we define $x \geq y$ if there exists a sequence x_{1}, \ldots, x_{m} of elements in Σ such that $x_{1}=x, x_{m}=y$ and $A_{\Gamma}\left(x_{a}, x_{a+1}\right) \neq 0(a=1, \ldots, m-1)$. We call x and y equivalent if $x \geq y \geq x$ and write $\Gamma_{A_{\Gamma}}$ for the partially ordered set of equivalence classes of elements x in Σ for which $x \geq x$. A subset K of $\Gamma_{A_{r}}$ is called hereditary if $\gamma_{1} \geq \gamma_{2}$ and $\gamma_{1} \in K$ implies $\gamma_{2} \in K$. Let

$$
\Sigma(K)=\left\{x \in \Sigma \mid x_{1} \geq x \geq x_{2} \text { for some } x_{1}, x_{2} \in \bigcup_{\tau \in K} \gamma\right\} .
$$

We denote by I_{K} the closed ideal of \mathcal{O}_{Γ} generated by projections $P(i, k)$, which is defined in the next section, for all $(i, k) \in \Sigma(K)$.

Theorem 6.5 ([C2, Theorem 2.5.]) The map $K \mapsto I_{K}$ is an inchusion preserving bijection of the set of hereditary subsets of $\Gamma_{A_{r}}$ onto the set of closed ideals of \mathcal{O}_{Γ}.

$7 K$-theory for \mathcal{O}_{Γ}

In this section we give explicit formulae of the K-groups of \mathcal{O}_{Γ}. We have described \mathcal{O}_{Γ} as the crossed product $\mathcal{O}_{\Gamma}^{\mathrm{T}} \rtimes \mathbb{N}$ in Section 6. So to apply the Pimsner-Voiculescu exact sequence [PV], we need to compute the K-groups of the $A F$-algebra $\mathcal{O}_{\Gamma}^{\mathrm{T}}$. We assume that each G_{i} is finite for simplicity throughout this section. We can also compute the K-groups for general cases by essentially the same arguments. Recall that the fixed-point algebra is described as follows:

$$
\mathcal{O}_{\Gamma}^{T}=\overline{\bigcup_{n \geq 0} \mathcal{F}_{n}}
$$

$$
\mathcal{F}_{n}=\oplus_{i \in I} \mathcal{F}_{n}^{i} .
$$

For each n, we consider a direct summand of \mathcal{F}_{n}, which is

$$
\mathcal{F}_{n}^{i}=C^{*}\left(S_{\mu} P_{i} U_{h} P_{i} S_{\nu}^{*}|h \in H,|\mu|=|\nu|=n),\right.
$$

and the embedding $\mathcal{F}_{n}^{i} \hookrightarrow \mathcal{F}_{n+1}$ is given by

$$
\begin{aligned}
& S_{\mu} P_{i} U_{h} P_{i} S_{\nu}^{*} \\
& =\sum_{g \in \Omega_{i} \backslash\{e\}} S_{\mu} U_{h}\left(S_{g} Q_{g} S_{g}^{*}\right) S_{\nu}^{*} \\
& =\sum_{g} \sum_{i^{\prime} \neq i} S_{\mu} S_{h g} P_{i^{\prime}} S_{\nu g}^{*}
\end{aligned}
$$

Let $\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ be the set of characters corresponding with all irreducible unitary representations of the finite group H with degrees n_{1}, \ldots, n_{τ}. Then we have the identification $C^{*}(H) \simeq M_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{r}}(\mathbb{C})$. We can write a unit p_{k} of the k-th component $M_{n_{4}}(\mathbb{C})$ of $C^{*}(H)$ as follows:

$$
p_{k}=\frac{n_{k}}{|H|} \sum_{h \in H} \overline{\chi_{k}(h)} U_{h}
$$

Suppose that for $i \neq j$,

$$
\begin{gathered}
\mathcal{F}_{n}^{\prime} \simeq M_{N(n, i)}(\mathbb{C}) \otimes C^{*}(H) \\
\mathcal{F}_{n+1}^{j} \simeq M_{N(n+1, j)}(\mathrm{C}) \otimes C^{*}(H)
\end{gathered}
$$

Now we compute each embedding of $\mathcal{F}_{n}^{i} \hookrightarrow \mathcal{F}_{n+1}^{i}$,

$$
M_{N(n, i)}(\mathbb{C}) \otimes M_{n i}(\mathbf{C}) \hookrightarrow M_{N(n+1, j)}(\mathbb{C}) \otimes M_{n g}(\mathbb{C})
$$

at the K-theory level. $P(i, k)$ denotes $P_{i} p_{k} P_{i}$. Let P be the projection $e \otimes 1$ in $M_{N(n, i)}(C) \otimes$ $M_{n_{k}}(\mathbb{C})$ given by

$$
P=S_{\mu} P(i, k) S_{\mu}^{*} \quad \text { for some } \mu \in \Delta_{n}
$$

where e is a minimal projection in the matrix algebras, and Q be the unit of $M_{N(n+1, j)}(C) \otimes$ $M_{n_{1}}(\mathbb{C})$ given by

$$
Q=\sum_{\nu \in \Delta_{\Delta+1}} S_{\nu} P(j, l) S_{\nu}^{*}
$$

At the K-theory level, we have $[P]=n_{k}[e]$. Hence it suffices to compute $\operatorname{tr}(P Q) / n_{k}$, where tr is the canonical trace in the matrix algebras.

$$
\begin{aligned}
& \frac{\operatorname{tr}(P Q)}{n_{k}}=\operatorname{tr}\left(\frac{1}{n_{k}}\left(S_{\mu} P(i, k) S_{\mu}^{*}\right)\left(\sum_{\nu \in \Delta_{\mu+1}} S_{\nu} P(j, l) S_{\nu}^{*}\right)\right) \\
& =\operatorname{tr}\left(\frac{1}{|H|}\left(\sum_{h \in H} \overline{\chi_{k}(h)} S_{\mu} U_{h} P_{i} S_{\mu}^{*}\right)\left(\sum_{\nu \in \Delta_{n+1}} S_{\nu} P(j, l) S_{\nu}^{* *}\right)\right) \\
& =\frac{1}{|H|} \operatorname{tr}\left(\sum_{h \in H} \overline{\chi_{k}(h)}\left(\sum_{g \in \Omega_{i} \backslash\{e\}} \sum_{i^{\neq j}} S_{\mu} S_{h g} P_{i^{\prime}} S_{\mu g}^{*}\right)\left(\sum_{v \in \Delta_{n+1}} S_{\nu} P(j, l) S_{v}^{*}\right)\right) \\
& =\frac{1}{|\vec{H}|} \operatorname{tr}\left(\sum_{h \in H} \overline{\chi_{k}(h)}\left(\sum_{g \in \Omega_{h} \backslash(e\}} S_{\mu} S_{h g} P(j, l) S_{\mu g}^{* *}\right)\right) \\
& =\frac{1}{|H|} \sum_{\left.g \in \AA_{M} \backslash\{ \}\right\}} \sum_{h \in H(g)} \overline{\chi_{k}(h)} \operatorname{tr}\left(S_{\mu q} U_{g^{-1} h g} P(j, l) S_{\mu g}^{*}\right) \\
& =\frac{1}{|H|} \sum_{g \in M_{i} \backslash(e)} \sum_{h \in H(g)} \overline{\chi_{k}(h)} x_{l}\left(g^{-1} h g\right),
\end{aligned}
$$

where $H(g)$ is the stabilizer of $g H$ by the left multiplication of H.
Now fix $x \in X_{i} \backslash\{e\}$. Let $\left\{g \in \Omega_{i} \mid H g H=H x H\right\}=\left\{g_{0}=x, g_{1}, \ldots, g_{m-1}\right\}$. Then there exists $h_{1}, h_{1}^{\prime}, \ldots, h_{m-1}, h_{m-1}^{\prime} \in H$ such that $h_{1} x=g_{1} h_{1}^{\prime}, \ldots, h_{m-1} x=g_{m-1} h_{m-1}^{\prime}$. Note that $h_{s} H(x) h_{s}^{-1}=H\left(g_{s}\right)$ for $s=1, \ldots, m-1$. Since χ_{k}, χ_{l} are class functions, we
have

$$
\begin{aligned}
\frac{\operatorname{tr}(P Q)}{n_{k}} & =\frac{1}{|H|} \sum_{x \in X_{i}}\left(\sum_{s=1}^{m-1} \sum_{h \in H(x)} \overline{\chi_{k}\left(h_{s} h h_{s}^{-1}\right)} \chi_{l}\left(h_{s}^{\prime} x^{-1} h_{s}^{-1} h_{\theta} h h_{s}^{-1} h_{s} x h_{s}^{-1}\right)\right) \\
& =\frac{1}{|H|} \sum_{x \in X_{i}}\left(\sum_{s=1}^{m-1} \sum_{h \in H(x)} \overline{\chi_{k}\left(h_{s} h_{s}^{-1}\right)} \chi_{l}\left(h_{s}^{\prime} x^{-1} h x h_{\theta}^{\prime-1}\right)\right) \\
& =\frac{1}{|H|} \sum_{x \in X_{i}}\left(\sum_{s=1}^{m-1} \sum_{h \in H(x)} \overline{\chi_{k}(h)} \chi_{l}\left(x^{-1} h x\right)\right) \\
& =\frac{1}{|H|} \sum_{x \in X_{i}}\left(\sum_{s=1}^{m-1} \sum_{h \in H(x)} \overline{\chi_{k}(h)} \chi_{l}^{x}(h)\right) \\
& =\sum_{x \in X_{i}}\left(\frac{|H(x)|}{|\bar{H}|} \sum_{k=1}^{m-1}\left\langle\chi_{k}, \chi_{l}^{y}\right\rangle_{H(x)}\right) \\
& =\sum_{x \in X_{i}}\left\langle\chi_{k}, \chi_{l}^{s}\right\rangle_{H(x)}
\end{aligned}
$$

where

$$
\begin{aligned}
\chi_{l}^{\pi}(h) & =\chi_{l}\left(x^{-1} h x\right) \\
\left\langle\chi_{k}, \chi_{l}^{x}\right\rangle_{H(x)} & =\frac{1}{|H(x)|} \sum_{h \in B(x)} \overline{\chi_{k}(h)} \chi_{l}^{\pi}(h) .
\end{aligned}
$$

Let $A_{\Gamma}((j, l),(i, k))=\sum_{x \in X_{i} \backslash(6)}\left\langle\chi_{k}, \chi_{j}^{x}\right\rangle_{H(x)}$ for $i \neq j$ and $A_{\Gamma}((i, k),(i, l))=0$ for $1 \leq k, l \leq r$ Then we describe the embedding $\mathcal{F}_{n}^{\prime} \hookrightarrow \mathcal{F}_{n+1}^{j}$ at the K-theory level by the matrix $\left[A_{\Gamma}((i, k),(j, l))\right]_{1 \leq k, l \leq r}$. Let $A_{\Gamma}=\left[A_{\Gamma}((i, k),(j, l))\right]$. We have the following lemma.
Lemma 7.1

$$
\begin{gathered}
K_{0}\left(\mathcal{O}_{\Gamma}^{\mathrm{T}}\right)=\underset{\mathbb{l}}{\underline{\lim }}\left(\mathbb{Z}^{N} \xrightarrow{A_{\mathbf{r}}} \mathbb{Z}^{N}\right) \\
K_{1}\left(\mathcal{O}_{\Gamma}^{\mathrm{T}}\right)=0
\end{gathered}
$$

where $N=|I| r$
We can compute the K-groups of \mathcal{O}_{Γ} by using the Pimsner-Voiculescu sequence with essentially the same argument as in the Cuntz-Krieger algebra case (see [C2]).
Theorem 7.2

$$
\begin{aligned}
& K_{0}\left(\mathcal{O}_{\Gamma}\right)=\mathbb{Z}^{N} /\left(1-A_{\Gamma}\right) \mathbb{Z}^{N} \\
& K_{1}\left(\mathcal{O}_{\Gamma}\right)=\operatorname{Ker}\left\{1-A_{\Gamma}: \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{N}\right\} \quad \text { on } \mathbb{Z}^{N}
\end{aligned}
$$

Proof. It suffices to compute the K-groups of $\overline{\mathcal{O}}_{7}=\overline{\mathcal{O}}_{\Gamma}^{\mathbf{T}} \rtimes_{\overline{\mathcal{D}}} \mathcal{Z}$. We represent the inductive limit

$$
\lim _{\longrightarrow}\left(\mathbb{Z}^{N} \xrightarrow{\Lambda_{r}} \mathbb{Z}^{N}\right)
$$

as the set of equivalence classes of $x=\left(x_{1}, x_{2}, \cdots\right)$ such that $x_{k} \in \mathbf{Z}^{N}$ with $x_{k+1}=A\left(x_{k}\right)$. If S is a partial isometry in \mathcal{O}_{Γ} auch that $\alpha_{\nu}(S)=z S$ and P is a projection in $\mathcal{O}_{\Gamma}^{\mathrm{T}}$ with $P \leq S^{*} S$, then $[\rho(P)]=\left[V P V^{*}\right]=\left[\left(V S^{*} S\right) P\left(V S^{*} S\right)^{*}\right]=\left[S P S^{*}\right]$ in $K_{0}\left(\mathcal{O}_{\mathrm{T}}^{\mathrm{T}}\right)$. Recall that

$$
p_{k}=\frac{n_{k}}{|H|} \sum_{h \in H} \overline{\chi_{k}(h)} U_{h}
$$

Let $P=S_{\mu} P(i, k) S_{\mu}^{*}$ for some $\mu \in \Delta_{n}$. If $\mu=\mu_{1} \cdots \mu_{n}$, then

$$
\begin{aligned}
& {\left[\bar{\rho}^{-1}(P)\right]} \\
& =\left[S_{\mu_{1}}^{*} P S_{\mu_{1}}\right] \\
& =\left[\frac{n_{k}}{|H|} \sum_{h \in H} \overline{\chi_{k}(h)}\left(S_{\mu_{2}} \cdots S_{\mu_{n}} P_{i} U_{h} P_{i} S_{\mu_{n}} \cdots S_{\mu_{2}}^{*}\right)\right] \\
& =\cdots \\
& =\sum_{j \neq i} \sum_{l=1}^{r} n_{i}\left(\sum_{x \in X_{i} \backslash\{t\}}\left\langle\chi_{k}, \chi_{l}^{\pi}\right\rangle\left[e_{i}\right]\right),
\end{aligned}
$$

where the e_{l} are non-zero minimal projections for $1 \leq l \leq r$ Thus it follows that $\bar{\rho}_{\sigma}^{-1}$ is the shift on $K_{0}\left(\overline{\mathcal{O}}_{\mathrm{r}}^{\mathbf{T}}\right)$. We denote the shift by σ. If $x=\left(x_{1}, x_{2}, x_{3}, \cdots\right) \in K_{0}\left(\overline{\mathcal{O}}_{\mathrm{r}}^{\mathrm{T}}\right)$, then $\sigma(x)=\left(x_{2}, x_{3}, \cdots\right)$. By the Pimsner-Voiculescu exact sequence, there exista an exact sequence

It therefore follows that $K_{0}\left(\overline{\mathcal{O}}_{\Gamma}\right)=K_{0}\left(\overline{\mathcal{O}}_{\Gamma}^{\mathbf{T}}\right) /(1-\sigma) K_{0}\left(\overline{\mathcal{O}}_{\Gamma}^{\mathbf{T}}\right)$ and $K_{1}\left(\mathcal{O}_{\Gamma}\right)=\operatorname{ker}(1-\sigma)$ on $K_{0}\left(\bar{O}_{\Gamma}^{\mathbf{T}}\right)$.

Finally we consider some simple examples. First let $\Gamma=S L(2, Z)=\mathbb{Z}_{4} *_{Z_{2}} \mathbf{Z}_{5}$. Let χ_{1} be the unit character of \mathbb{Z}_{2} and let χ_{2} be the character such that $\chi_{2}(a)=-1$ where a is a generator of \mathbb{Z}_{2}. These are one-dimensional and exhaust all the irreducible characters. Then we have the corresponding matrix

$$
A_{\Gamma}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right)
$$

Hence the corresponding K-groups are $K_{0}\left(\mathcal{O}_{\Gamma}\right)=0$ and $K_{1}\left(\mathcal{O}_{T}\right)=0$. In fact, $\mathcal{O}_{\mathbf{Z}_{4} \boldsymbol{\eta}_{2} \boldsymbol{Z}_{0}} \simeq$ $\mathcal{O}_{\mathbf{Z}_{2} * \mathrm{Z}_{3}} \oplus \mathcal{O}_{\mathbf{Z}_{2} * \mathrm{Z}_{3}} \simeq \mathcal{O}_{2} \oplus \mathcal{O}_{2}$.

Next let $\Gamma=\mathfrak{S}_{4} *_{\Theta_{4}} \mathfrak{S}_{4}, \tau=(12)$ and $\sigma=(123)$. Note that $\mathfrak{S}_{3}=(1, \tau, \sigma) . \mathfrak{S}_{3}$ has three irreducible characters:

	1	τ	σ
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Moreover, $\mathfrak{S}_{\mathfrak{s}} \backslash \mathfrak{S}_{4} / \mathfrak{S}_{3}$ has only two points; say \mathfrak{S}_{3} and $\mathfrak{S}_{3} x \mathfrak{S}_{3}$ with $x=(12)(34)$. Then we obtain the corresponding matrix

$$
A_{\Gamma}=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 2 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 & 0
\end{array}\right)
$$

Hence this gives $K_{0}\left(\mathcal{O}_{\Gamma}\right)=\mathbf{Z} \oplus \mathbb{Z}_{4}$ and $K_{1}\left(\mathcal{O}_{\Gamma}\right)=\mathbf{Z}$. In this case, Γ satisfies the condition of Theorem 6.3. So \mathcal{O}_{Γ} is a simple, nuclear, purely infinite $C^{* *}$-algebra.

8 KMS states on \mathcal{O}_{Γ}

In this section, we investigate the relationship between KMS states on \mathcal{O}_{Γ} for generalized gauge actions and random walks on Γ. Throughout this section, we assume that all groups G_{i} are finite though we can carry out the same arguments if $G_{i}=\mathbb{Z} \times H$ for some $i \in I$. Let $\omega=\left(\omega_{i}\right)_{i \in I} \in \mathbb{R}_{+}^{I I \mid}$ By the universality of \mathcal{O}_{Γ}, we can define an automorphism α_{i}^{α} for any $t \in \mathbb{R}$ on \mathcal{O}_{T} by $\alpha_{t}^{\omega}\left(S_{g}\right)=e^{\sqrt{-1} \omega_{d} t} S_{g}$ for $g \in G_{i} \backslash H$ and $\alpha_{t}^{\omega}\left(U_{h}\right)=U_{h}$ for $h \in H$. Hence we obtain the \mathbf{R}-action α^{μ} on \mathcal{O}_{Γ}. We call it the generalized gauge action with respect to ω. We will only consider actions of these types and determine KMS states on \mathcal{O}_{Γ} for these actions.

In [W1], Woess showed that our boundary Ω can be identified with the Poisson boundary of random walks satisfying certain conditions. The reader is referred to [W2] for a good survey of random walks.

Let μ be a probability measure on Γ and consider a random walk governed by μ, i.e. the transition probability from x to y given by

$$
p(x, y)=\mu\left(x^{-1} y\right)
$$

A random walk is said to be irreducible if for any $x, y \in \Gamma, p^{(n)}(x, y) \neq 0$ for some integer n, where

$$
p^{(n)}(x, y)=\sum_{x_{1}, x_{2}, \ldots, x_{n-1} \in \Gamma} p\left(x, x_{1}\right) p\left(x_{1}, x_{2}\right) \cdots p\left(x_{n-1}, y\right) .
$$

A probability measure ν on Ω is said to be stationary with respect to μ if $\nu=\mu * \nu$, where $\mu * \nu$ is defined by

$$
\int_{\Omega} f(\omega) d \mu * \nu(\omega)=\int_{\Omega} \int_{\text {supp } \mu} f(g \omega) d \mu(g) d \nu(\omega), \quad \text { for } \quad f \in C(\Omega, \nu)
$$

By [W1, Theorem 9.1], if a random walk governed by a probability measure μ on Γ is irreducible, then there exists a unique stationary probability measure ν on Ω with respect to μ. Moreover if μ has finite support, then the Poisson boundary coincides with (Ω, ν).

If ν is a probability measure on the compact space Ω, then we can define a state ϕ_{ν} by

$$
\phi_{\nu}(X)=\int_{\Omega} E(X) d \nu \text { for } X \in \mathcal{O}_{\Gamma}
$$

where E is the canonical conditional expectation of $C(\Omega) x_{\mathrm{r}} \Gamma$ onto $C(\Omega)$.
One of our purposes in this section is to prove that there exists a random walk governed by a probability measure μ that induces the stationary measure ν on Ω such that the corresponding state ϕ_{ν} is the unique KMS state for α^{ω}. Namely,

Theorem 8.1 Assume that the matrix A_{Γ} obtained in the preceding section is irreducible. For any $\omega=\left(\omega_{i}\right)_{i \in I} \in \mathbb{R}_{+}^{|I|}$, there exists a unique probability measure μ with the following properties:
(i) $\operatorname{supp}(\mu)=\bigcup_{i \in I} G_{i} \backslash H$.
(ii) $\mu(g h)=\mu(g)$ for any $g \in \bigcup_{t \in I} G_{i} \backslash H$ and $h \in H$.
(iii) The corresponding tmique stationary measure ν on Ω induces the unique $K M S$ state ϕ_{ν} for α^{ω} and the corresponding inverse temperature β is also unigue.

We need the hypothesis of the irreducibility of the matrix A_{r} for the uniqueness of the KMS state. Though it is, in general, difficult to check the irreducibility of A_{T}, by Theorem 6.5, the condition of simplicity of \mathcal{C}_{T} in Corollary 6.4 is also a sufficient condition for irreducibility of A_{Γ}. To obtain the theorem, we first present two lemmas.

Lemma 8.2 Assume that ν is a probability measure on Ω. Then the corresponding state ϕ_{ν} is the $K M S$ state for α^{ω} if and only if ν satisfies the following conditions:

$$
\nu\left(\Omega\left(x_{1} \cdots x_{m}\right)\right)=\frac{e^{-\beta \omega_{1}} \cdots e^{-\beta \omega_{m-1}}}{\left[G_{i_{m}}: H\right]-1+e^{\beta \omega_{i_{m}}}}
$$

for $x_{k} \in \Omega_{i_{k}}$ with $i_{1} \neq \cdots \neq i_{m}$, where $\Omega\left(x_{1} \cdots x_{m}\right)$ is the cylinder subset of Ω defined by

$$
\Omega\left(x_{1} \cdots x_{m}\right)=\left\{\left(\left.x(n)\right|_{n \geq 1} \in \Omega \mid x(1)=x_{1}, \ldots, x(m)=x_{m}\right\}\right.
$$

Proof ϕ_{ν} is the KMS state for α^{ω} if and only if

$$
\phi_{\nu}\left(S_{\xi} P_{i} U_{h} S_{\eta}^{*} \cdot S_{\sigma} P_{j} U_{k} S_{\tau}^{*}\right)=\phi\left(S_{\sigma} P_{j} U_{k} S_{\tau}^{*} \cdot \alpha_{\sqrt{-1} \beta}^{\omega}\left(S_{\xi} P_{i} U_{h} S_{\eta}^{*}\right)\right)
$$

for any $\xi, \eta, \sigma, \tau \in \Delta, h, k \in H$ and $i, j \in I$.
We may assume that $|\xi|+|\sigma|=|\eta|+|\tau|$ and $|\eta| \geq|\sigma|$. Set $|\xi|=p,|\eta|=q,|\sigma|=$ $s,|\tau|=t$ and let $\xi=\xi_{1} \cdots \xi_{p}, \eta=\eta_{1} \cdots \eta_{q}$ with $\xi_{k} \in \Omega_{i_{t}} \backslash\{e\}, \eta_{k} \in \Omega_{j_{k}} \backslash\{e\}$ and $i_{1} \neq \cdots \neq i_{p}, j_{1} \neq \cdots \neq j_{q}$. Then

$$
\begin{aligned}
& \phi_{\nu}\left(S_{\xi} P_{i} U_{h} S_{\eta}^{*} \quad S_{\sigma} P_{j} U_{k} S_{\tau}^{*}\right)=\delta_{\eta_{1} \cdots \eta_{k}, o} \delta_{\eta_{0+1}, j} \phi_{\nu}\left(S_{\xi} P_{i} U_{h} S_{\eta_{0+1}^{*} \cdots \eta_{l}} U_{k} S_{r}^{*}\right) \\
& =\delta_{\eta_{1} \cdots \eta_{k}, \sigma} \delta_{\eta_{0}+1, j} \phi_{\nu}\left(S_{\xi b} P_{i} S_{\tau k^{-1}{ }_{\eta_{0+1} \cdots \eta_{k}}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \phi_{\nu}\left(S_{\sigma} P_{j} U_{k} S_{\tau}^{*} \cdot \alpha_{\sqrt{-1} \beta}^{\omega}\left(S_{\xi} P_{i} U_{h} S_{\eta}^{*}\right)\right) \\
& =e^{-\beta \omega_{1}} \cdots e^{-\beta \omega_{1} e_{p}} e^{\beta \omega_{1}} \cdots e^{\beta \omega_{j_{0}}} \phi_{\nu}\left(S_{\sigma} P_{j} U_{k} S_{\tau}^{*} \cdot S_{\xi} P_{i} U_{h} S_{\eta}^{*}\right) \\
& =e^{-\beta \omega k_{1}} \cdots e^{-\beta \omega_{p}} e^{\beta \omega_{\gamma_{1}}} \cdots e^{\beta \omega_{j_{q}} \delta_{\tau \xi_{1} \cdots \xi_{1}} \delta_{\xi_{t+1}, j} \phi_{\nu}\left(S_{\sigma k \xi_{t+1} \cdots \xi_{p} h} P_{i} S_{\eta}^{*}\right)} \\
& =e^{-\beta \omega \omega_{1}} \cdots e^{-\beta \omega \omega_{\rho}} e^{\beta \omega j_{1}} \cdots e^{\beta \omega j_{a}} \delta_{\tau \xi_{1} \cdots \xi_{1}} \delta_{\xi_{t+1}, j} \delta_{\sigma k \xi_{q+1} \cdots \xi_{p} h, \eta} \sum_{x \in \Omega_{1} \backslash\{e\}} \nu(\Omega(\eta x)),
\end{aligned}
$$

where $\delta_{g, i}=1$ only if $g \in G_{i} \backslash H$. Therefore the corresponding state ϕ_{ν} is the KMS state for α^{ω} if and only if ν satisfies the following conditions:

$$
\nu\left(\Omega\left(\xi_{1} \ldots \xi_{p} x\right)\right)=e^{-\beta \omega_{1_{1}}} \ldots e^{-\beta \omega_{p}} \nu(\Omega(x)),
$$

for $x \in \Omega_{i} \backslash\{e\}$ with $i \neq i_{p}$.
Now we assume that ϕ_{ν} is the KMS state for α^{ω}. Then for $i \in I$,

$$
\begin{aligned}
\nu\left(Y_{i}\right) & =\phi_{\nu}\left(P_{i}\right)=\sum_{g \in \Omega_{i} \backslash(e)} \phi_{\nu}\left(S_{g} S_{g}^{*}\right) \\
& =\sum_{g \in \Omega_{i} \backslash\{ \}} \phi_{\nu}\left(S_{g}^{*} \alpha_{V-1 \rho}^{\omega}\left(S_{g}\right)\right) \\
& =e^{-\beta \omega_{i}} \sum_{g \in \Omega_{i} \backslash(\epsilon\}} \phi_{\nu}\left(Q_{g}\right) \\
& =e^{-\beta \omega_{i}} \sum_{g \in \Omega_{i} \backslash(e\}} \phi_{\nu}\left(1-P_{i}\right) \\
& =e^{-\beta \omega_{1}}\left(\left[G_{i}: H\right]-1\right)\left(1-\nu\left(Y_{i}\right)\right) .
\end{aligned}
$$

Hence,

$$
\nu\left(Y_{i}\right)=\frac{\left[G_{j}: H\right]-1}{\left[G_{i}: H\right]-1+e^{\beta_{i j}}}
$$

Moreover,

$$
\begin{aligned}
& \nu\left(\Omega\left(x_{1} \ldots x_{m}\right)\right)=\phi_{\nu}\left(S_{x_{1}} \cdots S_{x_{m}} S_{x_{m}}^{*} \cdots S_{x_{1}}^{*}\right) \\
& =\phi_{\nu}\left(S_{x_{m}}^{*} \cdots S_{x_{1}}^{*} \alpha_{\sqrt{-1 \beta}}^{\mu}\left(S_{x_{1}} \cdots S_{x_{m}}\right)\right) \\
& =e^{-\beta \omega_{i_{1}}} \cdots e^{-\beta \omega_{m_{m}} \phi_{\nu}\left(Q_{x_{m}}\right)} \\
& =e^{-\beta \omega_{i_{1}} \cdots e^{-\beta \omega_{m_{m}}}\left(1-\nu\left(\Omega\left(Y_{i_{m}}\right)\right)\right)} \\
& =\frac{e^{-\beta \omega_{k_{1}}} \cdots e^{-\beta \omega_{m-1}}}{\left[G_{i_{m}}: H\right]-1+e^{\beta \omega_{m m}}} .
\end{aligned}
$$

Conversely, suppoee that a probability measure ν satisfies the condition of this lemma. By the first part of this proof, ϕ_{ν} is the KMS state for α^{ω}.

Lemma 8.3 Assume that ν is the unique stationary measure on Ω with respect to a random walk on Γ, governed by a probability measure μ with the conditions (i), (ii) in Theonem 8.1. Then ϕ_{ν} is a β-KMS state for α^{ν} if and only if μ satisfies the following conditions:

$$
\mu(g)=\frac{\prod_{j \neq i} C_{5}}{\sum_{k \in I}\left(g_{k} \prod_{l \neq k} C_{l}\right)} \quad \text { for } g \in G_{i} \backslash H \quad \text { and } \quad i \in I,
$$

where $g_{i}=\left|G_{i} \backslash H\right|$ and $C_{i}=\left(1-e^{-\beta \omega_{i}}\right) g_{i}-\left(1-e^{\beta \omega_{i}}\right)|H|$ for $i \in I$.
Proof Assume that ϕ_{ν} is a β-KMS state for α^{ω} For any $f \in C(\Omega)$,

$$
\begin{aligned}
& \iint f(\omega) d \nu(\omega)=\iint f(\omega) d \mu * \nu(\omega) \\
& =\iint f(g \omega) d \nu(\omega) d \mu(g) \\
& =\iint\left(\lambda_{g}^{*} f \lambda_{g}\right)(\omega) d \nu(\omega) d \mu(g) \\
& =\sum_{g \in \operatorname{supp}(\mu)} \mu(g) \phi_{\nu}\left(\lambda_{g}^{*} f \lambda_{g}\right) \\
& =\sum_{g \in \operatorname{supp}(\mu)} \mu(g) \phi_{\nu}\left(f \lambda_{g} \alpha_{\sqrt{-1 \beta}}^{\omega}\left(\lambda_{g}^{*}\right)\right),
\end{aligned}
$$

where $\mathcal{O}_{\mathrm{r}} \simeq C(\Omega) \rtimes_{r} \Gamma=C^{*}\left(f, \lambda_{\gamma} \mid f \in C(\Omega), \gamma \in \Gamma\right)$.

Put $f=\chi_{\Omega(x)}=P_{x}$ for $i \in I$ and $x \in \Omega_{i} \backslash\{e\}$. Since $\lambda_{g}=S_{g}+\sum_{g^{\prime} \in \Omega_{d} \backslash H \cup g^{-1} H} S_{g g^{\prime}} S_{g^{\prime}}^{*}+$ $S_{g^{-1}}^{*}$ for $g \in G_{i^{\prime}} \backslash H$ and $i^{t} \in I$, we have

$$
1=\sum_{g H=x H} \mu(g) e^{\beta \omega_{i}}+\sum_{g \in \mathcal{O}_{n} \backslash H, g H \neq x H} \mu(g)+\sum_{g \in \mathcal{O}_{j} \backslash H_{j}, j \neq i} \mu(g) e^{-\beta \omega_{g}}
$$

for any $i \in I$ and $x \in \Omega_{i} \backslash\{e\}$. Let $x, y \in \Omega_{i} \backslash\{e\}$ with $x H \neq y H$. Then

$$
\begin{aligned}
& 1=\sum_{g H x x H} \mu(g) e^{\beta \omega s}+\sum_{g H \neq \neq H} \mu(g)+\sum_{g \in G_{j} \backslash H, j \neq i} \mu(g) e^{-\beta \omega_{j}}, \\
& 1=\sum_{g H=\psi H} \mu(g) e^{\beta \omega_{1}}+\sum_{g H \neq \psi H} \mu(g)+\sum_{g \in G_{j} \backslash H_{j}, i} \mu(g) e^{-\beta \omega_{j}}
\end{aligned}
$$

By the above equations, we have $\mu(x)=\mu(y)$, and then it follows from hypothesis (ii) in Theorem 8.1 that $\mu(g)=\mu_{i}$ for any $g \in G_{i} \backslash H$. Therefore we have

$$
1=|H| e^{\beta \omega_{1}} \mu_{i}+\left(g_{i}-|H|\right) \mu_{i}+\sum_{j \neq j} g_{j} e^{-\beta \omega_{1}} \mu_{j},
$$

for any $i \in I$, where $g_{i}=\left|G_{i} \backslash H\right|$. Thus by considering the above equations for i and $j \in I$,

$$
|H| e^{\beta \omega_{i}} \mu_{i}-|H| e^{\beta \omega_{i}} \mu_{j}+\left(g_{i}-|H|\right) \mu_{i}-\left(g_{j}-|H|\right) \mu_{j}+g_{j} e^{-\beta \omega_{j}} \mu_{j}-g_{i} e^{-\beta \omega_{i}} \mu_{i}=0 .
$$

Hence we obtain the equation,

$$
\left(|H| e^{\beta \omega_{i}}+g_{i}-|H|-g_{i} e^{-\beta \omega_{i}}\right) \mu_{i}=\left(|H| e^{\beta \omega_{j}}+g_{j}-|H|-g_{j} e^{-\beta \omega_{j}}\right) \mu_{j} .
$$

Since $\mu\left(\bigcup_{i \in I} G_{i} \backslash H\right)=1$, we have

$$
g_{i} \mu_{i}+\sum_{j \neq i} g_{j} \frac{\left(1-e^{-\beta \omega_{i}}\right) g_{i}-\left(1-e^{-\beta \omega_{i}}\right)|H|}{\left(1-e^{-\beta \omega_{j}}\right) g_{j}-\left(1-e^{-\beta \omega_{j}}\right)|H|} \mu_{i}=1
$$

We put $C_{i}=\left(1-e^{-\beta \omega_{i}}\right) g_{i}-\left(1-e^{-\beta \omega_{i}}\right)|H|$ and then

$$
\left(g_{i}+C_{i} \sum_{j \neq i} \frac{g_{j}}{C_{j}}\right) \mu_{i}=1
$$

Therefore

$$
\begin{aligned}
\mu_{i} & =\frac{1}{g_{i}+C_{i} \sum_{j \not p i} g_{j} / C_{j}} \\
& =\frac{\prod_{j \neq i} C_{j}}{g_{i} \prod_{j \not+i} C_{j}+\sum_{j \nLeftarrow i}\left(g_{j} C_{i} \Pi_{k \neq j} C_{k}\right)} \\
& =\frac{\prod_{j \neq 4} C_{j}}{\sum_{k \in I} g_{k} \prod_{l+k} C_{i}} .
\end{aligned}
$$

On the other hand, let ν be the probability measure on Ω satisfying the condition in Lemma 8.2. Then the corresponding state ϕ_{ν} is the KMS state. It is enough to check that $\mu * \nu=\nu$ by [W1]. Since

$$
\nu\left(\Omega\left(x_{1} \cdots x_{n}\right)\right)=e^{-\beta \omega \omega_{1}} \cdots e^{-\beta \omega_{i_{n-1}} \nu\left(\Omega\left(x_{n}\right)\right)},
$$

for $x_{k} \in \Omega_{i_{k}} \backslash\{e\}$ with $i_{1} \neq \cdots \neq i_{n}$, we have

$$
\begin{aligned}
& \mu * \nu\left(\Omega\left(x_{1} \cdots x_{n}\right)\right)=\iint \chi_{\Omega\left(x_{1} \cdots x_{n}\right)}(\omega) d \mu * \nu(\omega) \\
& =\sum_{g \in s u p p \mu} \mu(g) \int\left(\lambda_{g}^{*} \chi_{\Omega\left(x_{1} \cdots \varepsilon_{n}\right)} \lambda_{g}\right)(\omega) d \nu(\omega) \\
& =\sum_{g \in c_{H_{1}} \cup H, x_{1} H=g H} \mu_{i_{1}} \phi_{\nu}\left(S_{x_{2}} \cdots S_{x_{n}} S_{x_{n}}^{*} \cdots S_{x_{2}}^{*}\right) \\
& +\sum_{g \in G_{i_{1}} \backslash H, x_{1} B \neq g H} \mu_{4_{1}} \phi_{\nu}\left(S_{g^{-1} x_{1}} S_{x_{2}} \cdots S_{x_{n}} S_{x_{n}}^{*} \cdots S_{x_{2}}^{*} S_{g}^{*-1 x_{1}}\right) \\
& +\sum_{g \in G_{1} \backslash F_{1} \& H_{1}} \mu_{l} \phi_{\nu}\left(S_{g-1} S_{x_{1}} S_{x_{2}} \cdots S_{x_{n}} S_{x_{n}}^{*} \cdots S_{x_{2}}^{*} S_{x_{1}}^{*} S_{g^{1}}^{*}\right) \\
& =\left(|H| e^{i \omega_{i_{1}} \mu_{i_{1}}}+\left(g_{i_{1}}-|H|\right) \mu_{i_{1}}+\sum_{i \neq i_{1}} g_{i} e^{-\theta \omega_{i_{i}}} \mu_{i}\right) \nu\left(\Omega\left(x_{1} \cdots x_{n}\right)\right) \\
& =\nu\left(\Omega\left(x_{1} \ldots x_{n}\right)\right) .
\end{aligned}
$$

To prove the uniqueness of KMS states of \mathcal{O}_{Γ}, we need the irreducibility of the matrix A_{r} (See [EFW2] for KMS states on Cuntz-Krieger algebras). Set an irreducible matrix $B=[B((i, k),(j, l))]=\left[e^{-\beta \omega_{i}} A_{\Gamma}^{t}((i, k),(j, l))\right]$ Let K_{β} be the set of all β-KMS states for the action α^{ω} We put

$$
L_{\beta}=\left\{y=[y(i, k)] \in \mathbb{R}^{N} \mid B y=y, \quad y(i, k) \geq 0, \quad \sum_{i \in I} \sum_{k=1}^{r} n_{k} y(i, k)=1\right\}
$$

We now have the necessary ingredients for the proof of Theorem 8.1.
Proof of Theorem 8.1 We first prove the uniqueness of the corresponding inverse temperature. Let ϕ be a β-KMS state for α^{ω}. For $i \in I$,

$$
\begin{aligned}
\phi\left(P_{i}\right) & =\sum_{g \in \Omega_{i} \backslash(e\}} \phi\left(S_{g} S_{g}^{*}\right)=\sum_{g \in \Omega_{i} \backslash(\{)} \phi\left(S_{g}^{*} \alpha_{\sqrt{-1 \beta}}^{\omega}\left(S_{g}\right)\right) \\
& =e^{-\beta \omega_{i}} \sum_{g \in \Omega_{\backslash} \backslash\{e\}} \phi\left(Q_{g}\right) \\
& =e^{-\beta \omega_{i}}\left(\left[G_{i}: H\right]-1\right)\left(1-\phi\left(P_{i}\right)\right)
\end{aligned}
$$

Thus $\phi\left(P_{i}\right)=\lambda_{i}(\beta) /\left(1+\lambda_{i}(\beta)\right)$, where $\lambda_{i}(\beta)=e^{-\beta \omega_{k}}\left(\left[G_{i}: H\right]-1\right)$. Since $\sum_{i \in I} P_{i}=1$,

$$
|I|-1=\sum_{i \in I} \frac{1}{1+\lambda_{i}(\beta)}
$$

The function $\sum_{i \in J} 1 /\left(1+\lambda_{i}(\beta)\right)$ is a monotone increasing continuous function such that

$$
\sum_{i \in I} \frac{1}{1+\lambda_{i}(\beta)}=\left\{\begin{array}{cc}
\sum_{i \in I} 1 /\left[G_{i}: H\right] & \text { if } \beta=0 \\
|I| & \text { if } \beta \rightarrow \infty
\end{array}\right.
$$

Since $\sum_{i \in I} 1 /\left[G_{i}: H\right] \leq|I| / 2 \leq|I|-1$, there exists a unique β satisfying

$$
|I|-1=\sum_{i \in I} \frac{1}{\left(\left[G_{i}: H\right]-1\right) e^{-\beta \omega_{i}}+1}
$$

Therefore we obtain the uniqueness of the inverse temperature β.
We will next show the uniqueness of the KMS state ϕ_{ν}. We claim that K_{β} is in one-to-one correspondence with L_{β}. In fact, we define a map f from K_{β} to L_{β} by

$$
f(\phi)=\left[\phi(P(i, k)) / n_{k}\right] .
$$

Indeed,

$$
\begin{aligned}
& e^{\beta \omega_{4}} \phi(P(i, k))=\sum_{\theta \in \Omega \backslash\{\epsilon\}} \phi\left(p_{k} S_{g} \alpha_{\sqrt{-1 \beta}}^{\omega}\left(S_{g}^{*}\right)\right) \\
& =\sum_{g \in \Omega_{i} \backslash\{\varepsilon\}} \phi\left(S_{s}^{*} p_{k} S_{\emptyset}\right) \\
& =\frac{n_{k}}{|H|} \sum_{g \in \Omega_{\wedge \(t)}} \sum_{h \in B} \overline{\chi_{k}(h)} \phi\left(S_{s}^{*} U_{h} S_{g}\right) \\
& =\frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \backslash\{e\}} \sum_{h \in H(g)} \overline{\chi_{k}(h)} \phi\left(Q_{g} U_{g}-1_{h q}\right) \\
& =\frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \backslash(f)} \sum_{h \in H(g)} \overline{\chi_{k}(h)} \sum_{j \neq 4} \phi\left(P_{j} U_{g}-h_{h_{g}} P_{j}\right) \\
& =\frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \backslash(c)} \sum_{h \in H(g)} \overline{\chi_{k}(h)} \sum_{j \neq 1} \sum_{l=1}^{r} \phi\left(P(j, l) U_{g-1} h_{g} P(j, l)\right) .
\end{aligned}
$$

Since ϕ is a trace on $C^{*}\left(P(j, l) U_{h} P(j, l) \mid h \in H\right) \simeq M_{n_{t}}(\mathbb{C})$ and $M_{n_{l}}(\mathbb{C})$ has a unique tracial state, we have

$$
\phi\left(P(j, l) U_{g^{-1} h g} P(j, l)\right)=\chi_{l}\left(g^{-1} h g\right) \frac{\phi(P(j, l))}{n_{l}}
$$

Therefore, by the same arguments as in the previous section, we obtain

$$
\begin{aligned}
& e^{\beta \omega_{k}} \phi(P(i, k)) \\
& =\frac{n_{k}}{|H|} \sum_{g \in \Omega_{i} \backslash\{e\}} \sum_{h \in H(g)} \overline{\chi_{k}(h)} \sum_{j \neq} \sum_{l=1}^{r} \phi\left(P(j, l) U_{g}-1 h_{g} P(j, l)\right) \\
& =n_{k} \sum_{x \in X_{i} \backslash(\epsilon)} \sum_{j \neq i} \sum_{l=1}^{r}\left(\chi_{k}, \chi_{l}^{\bar{T}}\right\rangle_{B(x)} \phi(P(j, l)) / n_{l} \\
& =n_{k} \sum_{(j, l)} A_{\Gamma}((j, l),(i, k)) \phi(P(j, l)) / n_{l} .
\end{aligned}
$$

Hence this is well-defined.
Suppose that ν is the probability measure in Lemms 8.2 and ϕ_{ν} is the induced β-KMS state for α^{μ}. Set a vector $y=\left[y(i, k)=\phi_{\nu}(P(i, k)) / n_{k}\right]$. Since y is atrictly positive and B is irreducible, 1 is the eigenvalue which dominates the absolute value of all eigenvalue of B by the Perron-Frobenius theorem. It also follows from the Perron-Frobenius theorem that L_{g} has only one element. Hence f is surjective.

Let $\phi \in K_{\beta}$. For $\xi=\xi_{i_{1}} \cdots \xi_{i_{n}}, \eta=\eta_{j_{1}} \cdots \eta_{j_{n}}$ with $i_{1} \neq \cdots \neq i_{n}, j_{1} \neq \cdots \neq j_{n}, h \in H$ and $i \in I$,

$$
\begin{aligned}
& e^{k \omega_{j_{1}}} \cdots e^{k \omega_{j n}} \phi\left(S_{\xi} U_{h} P_{i} S_{\eta}^{*}\right)=\phi\left(S_{\xi} U_{h} P_{i} \alpha_{\sqrt{-1 \beta}}^{\omega}\left(S_{\eta}^{* *}\right)\right) \\
& =\phi\left(S_{\eta}^{*} S_{\xi} U_{h} P\right)=\delta_{\xi, \eta} \phi\left(U_{h} P_{i}\right) \\
& =\delta_{\xi, \eta} \sum_{k=1}^{5} \phi\left(U_{h} P(i, k)\right)=\delta_{\xi, \eta} \sum_{k=1}^{r} x_{k}(h) \phi(P(i, k)) / n_{k},
\end{aligned}
$$

because ϕ is a trace on $C^{*}\left(U_{h} P(i, k) \mid h \in H\right) \simeq M_{n_{k}}(C)$. If $f(\phi)=f(\psi)$, then the above calculations imply $\phi=\psi$ on $\mathcal{O}_{\Gamma}^{\mathrm{T}}$. By the KMS condition, $\phi(b)=0=\psi(b)$ for $b \notin \mathcal{O}_{\Gamma}^{\mathrm{T}}$. Thus $\phi=\psi$ and f is injective. Therefore ϕ_{ν} is the unique β-KMS state for α^{ω}.

Remarks and Examples Let ν be the corresponding probability measure with the gauge action α. Under the identification $L^{\infty}(\Omega, \nu) \rtimes_{w} \Gamma \simeq \pi_{\nu}\left(\mathcal{O}_{\Gamma}\right)^{\prime \prime}$, we can determine the type of the factor by essentially the same arguments as in [EFW2]. If H is trivial, then $\mathcal{O}_{\boldsymbol{\Gamma}}$ is a Cuntz-Krieger algebra for some irreducible matrix with $0-1$ entries. In this case, we can always apply the result in [EFW2]. This fact generalizes [RR]. If H is not trivial, then by using the condition of simplicity of \mathcal{O}_{Γ} in Corollary 6.4 to check the irreducibility of the matrix A_{F}, we can apply Theorem 8.1. In the special case where $G_{i}=G$ for all $i \in I$, we can easily determine the type of the factor $\pi_{\nu}\left(\mathcal{O}_{T}\right)^{\prime \prime}$ for the gauge action. The factor $\pi_{\nu}\left(O_{\Gamma}\right)^{\prime \prime}$ is of type III_{λ} where $\lambda=1 /([G: H]-1)^{2}$ if $|I|=2$ and $\lambda=1 /(|I|-1)([G: H]-1)$ if $|I|>2$. For instance, let $\Gamma=\mathcal{S}_{4} * \otimes_{8} \mathfrak{S}_{4}$. We have already obtained the matrix A_{Γ} in section 7 , but we can determine that the factor $L^{\infty}(\Omega, \nu) x_{w} \Gamma$ is of type $\mathrm{III}_{1 / 9}$ without using A_{Γ}.

We next discuss the converse. Namely any R-actions that have KMS states induced by a probability measure μ on Γ with some conditions is, in fact, a generalized gauge action.

Let μ be a given probability measure on Γ with $\operatorname{supp}(\mu)=\bigcup_{i \in I} G_{i} \backslash H$. By [W1], there exista an unique probability measure ν on Ω such that $\mu * \nu=\nu$. Let ($\pi_{\nu}, H_{\nu,} x_{\nu}$) be the GNS-representation of \mathcal{O}_{Γ} with respect to the state ϕ_{ν}. We also denote a vector state of x_{ν} by ϕ_{ν}.

$$
\phi_{\nu}(a)=\left\langle a x_{\nu}, x_{\nu}\right\rangle \quad \text { for } \quad a \in \pi_{\nu}\left(\mathcal{O}_{\Gamma}\right)^{\prime \prime}
$$

Let σ_{t}^{ν} be the modular automorphism group of ϕ_{ν}.
Theorem 8.4 Stppose that μ is a probability measure on Γ such that $\operatorname{supp}(\mu)=\bigcup_{i \in I} G_{i} \backslash$ H and $\mu(g)=\mu(h g)$ for any $g \in \bigcup_{i \in I} G_{i} \backslash H, h \in H$. If ν is the corresponding stationary measure with respect to μ, then there exists $\omega_{g} \in \mathbb{R}_{+}$such that

$$
\sigma_{t}^{\nu}\left(\pi_{\nu}\left(S_{g}\right)\right)=e^{\sqrt{-\mathrm{I}_{\omega_{\rho} t}} \pi_{\nu}\left(S_{g}\right) \quad \text { for } \quad g \in G_{i} \backslash H, i \in I, ~}
$$

and

$$
\sigma_{t}^{\nu}\left(\pi_{\nu}\left(U_{h}\right)\right)=\pi_{\nu}\left(U_{h}\right) \quad \text { for } \quad h \in H .
$$

Proof To prove that $\sigma_{t}^{\nu}\left(\pi_{\nu}\left(S_{g}\right)\right)=e^{\sqrt{-1} \omega_{g} t} \pi_{\nu}\left(S_{g}\right)$, it suffices to show that there exists $\zeta_{g} \in \mathbf{R}_{+}$such that

$$
\text { (*) } \quad \phi_{\nu}\left(\pi_{\nu}\left(S_{p}\right) a\right)=\zeta_{g} \phi_{\nu}\left(a \pi_{\nu}\left(S_{g}\right)\right) \text { for } g \in G_{i} \backslash, a \in \pi_{\nu}\left(\mathcal{O}_{\Gamma}\right)^{\prime \prime}
$$

In fact, Let Δ_{ν} be the modular operator and J_{ν} be the modular conjugate of ϕ_{ν}.

$$
\begin{aligned}
& \text { (left hand side of }(*))=\left\langle\pi_{\nu}\left(S_{g}\right) a x_{\nu}, x_{\nu}\right\rangle \\
& =\left\langle a x_{\nu}, \pi_{\nu}\left(S_{g}\right)^{*} x_{\nu}\right\rangle \\
& =\left\langle a x_{\nu}, J_{\nu} \Delta_{\nu}^{1 / 2} \pi_{\nu}\left(S_{g}\right) x_{\nu}\right\rangle \\
& =\left\langle\Delta_{\nu}^{1 / 2} \pi_{\nu}\left(S_{g}\right) x_{\nu}, J_{\nu} a x_{\nu}\right\rangle \\
& =\left\langle\Delta_{\nu}^{1 / 2} \pi_{\nu}\left(S_{g}\right) x_{\nu}, \Delta_{\nu}^{1 / 2} a^{*} x_{\nu}\right\rangle .
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { (right hand side of }(*))=\zeta_{g}\left\langle a \pi_{\nu}\left(S_{g}\right) x_{\nu}, x_{\nu}\right\rangle \\
& \quad=\zeta_{g}\left\langle\pi_{\nu}\left(S_{g}\right) x_{\nu}, a^{*} x_{\nu}\right\rangle .
\end{aligned}
$$

Therefore for $a \in \pi_{\nu}\left(\mathcal{O}_{r}\right)^{\prime \prime}$,

$$
\left\langle\Delta_{\nu}^{1 / 2} \pi_{\nu}\left(S_{g}\right) x_{\nu}, \Delta_{\nu}^{1 / 2} a^{*} x_{\nu}\right\rangle=\zeta_{g}\left\langle\pi_{\nu}\left(S_{g}\right) x_{\nu}, a^{*} x_{\nu}\right\rangle .
$$

and hence for $y \in \operatorname{dom}\left(\Delta_{\nu}^{1 / 2}\right)$, we have

$$
\left\langle\Delta_{\nu}^{1 / 2} \pi_{\nu}\left(S_{g}\right) x_{\nu}, \Delta_{\nu}^{1 / 2} y\right\rangle=\zeta_{g}\left(\pi_{\nu}\left(S_{g}\right) x_{\nu}, y\right\rangle
$$

Thus $\Delta_{\nu}^{1 / 2} \pi_{\nu}\left(S_{g}\right) x_{\nu} \in \operatorname{dom}\left(\Delta_{\nu}^{1 / 2}\right)$ and we obtain

$$
\Delta_{\nu} \pi_{\nu}\left(S_{g}\right) x_{\nu}=\zeta_{g} \pi_{\nu}\left(S_{g}\right) x_{\nu}
$$

Therefore

$$
\Delta_{\nu}^{\sqrt{-1} t} \pi_{\nu}\left(S_{g}\right) x_{\nu}=\zeta_{g}^{\sqrt{-1}} \pi_{\nu}\left(S_{g}\right) x_{\nu}
$$

and then

$$
\left(\sigma_{t}^{\nu}\left(\pi_{\nu}\left(S_{g}\right)\right)-\zeta_{g}^{\gamma-1 t} \pi_{\nu}\left(S_{g}\right)\right) x_{\nu}=0
$$

where σ_{t}^{ν} is the modular automorphism group of ϕ_{ν}. Since x_{ν} is a separating vector,

$$
\sigma_{i}^{\nu}\left(\pi_{\nu}\left(S_{g}\right)\right)=\zeta_{g}^{\sqrt{-\mathbf{I} t} \pi_{\nu}\left(S_{g}\right) ., ~ . ~}
$$

Now we will show that

$$
\phi_{\nu}\left(\pi_{\nu}\left(S_{g}\right) a\right)=\zeta_{g} \phi_{\nu}\left(a \pi_{\nu}\left(S_{g}\right)\right) \text { for } g \in G_{i} \backslash H, a \in \pi_{\nu}\left(\mathcal{O}_{\Gamma}\right)^{\prime \prime}
$$

We may assume that $a=f \lambda_{g^{-1}}$ for $f \in C(\Omega)$. Recall that $S_{g}=\lambda_{g} \chi_{\Omega \backslash Y_{1}} \in C(\Omega) \rtimes_{r} \Gamma$. Since

$$
\phi_{\nu}\left(\pi_{\nu}\left(S_{g} a\right)\right)=\int_{\Omega \backslash Y_{i}} f\left(g^{-1} \omega\right) d \nu(\omega)=\int_{\Omega \backslash Y_{i}} f(\omega) \frac{d g^{-1} \nu}{d \nu}(\omega) d \nu(\omega)
$$

we claim that

$$
\frac{d g^{-1} \nu}{d \nu}(\omega)=\zeta_{g} \quad \text { on } \quad \Omega \backslash Y_{i}
$$

This is the Martin kernel $K\left(g^{-1}, \omega\right)$, (See [W1]). Hence it suffices to show that $K\left(g^{-1}, x\right)$ is constant for any $x=x_{1} \cdots x_{n} \in \Gamma$ such that $x_{1} \notin G_{i}$. By [W1], we have

$$
K\left(g^{-1}, x\right)=\frac{G\left(g^{-1}, x\right)}{G(e, x)}
$$

where $G(y, z)=\sum_{k=1}^{\infty} p^{(k)}(y, z)$ is the Green kernel. Since any probability from g^{-1} to x must be through elements of H at least once, we have

$$
G\left(g^{-1}, x\right)=\sum_{h \in A} F\left(g^{-1}, h\right) G(h, x)
$$

where $s^{x}=\inf \left\{n \geq 0 \mid Z_{n}=x\right\}$ and $F(g, x)=\sum_{n=0}^{\infty} \operatorname{Pr}_{g}\left[s^{x}=n\right]$ in [W2]. By hypothesis $\mu(g)=\mu(h g)$ for any $g \in \bigcup_{i \in I} G_{i} \backslash H$ and $h \in H$, we have

$$
G(h, x)=G(e, x) \quad \text { for any } \quad h \in H .
$$

Therefore we have $\omega_{g}=\log \left(\sum_{h \in H} F\left(g^{-1}, h\right)\right) . \sigma_{t}^{\nu}\left(\pi_{\nu}\left(U_{h}\right)\right)=\pi_{\nu}\left(U_{h}\right)$ can be proved in the same way. Hence we are done.

9 Appendix

Trees We first review trees based on [FN]. A graph is a pair (V, E) consisting of a set of vertices V and a family E of two-element subsets of V, called edges. A path is a finite sequence $\left\{x_{1}, . ., x_{n}\right\} \subseteq V$ such that $\left\{x_{i}, x_{i+1}\right\} \in E .(V, E)$ is said to be connected if for $x, y \in V$ there exists a path $\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{1}=x, x_{n}=y$. If (V, E) is a tree, then for $x, y \in V$ there exists a unique path $\left\{x_{1}, \ldots, x_{n}\right\}$ joining x to y such that $x_{i} \neq x_{i+2}$. We denote this path by $[x, y]$. A tree is said to be locally finite if every vertex belongs to finitely many edges. The number of edges to which a vertex of a locally finite tree belongs is called a degree. If the degree is independent of the choice of vertices, then the tree is called homogeneous.

We introduce trees for amalgamated free product groups based on [Ser]. Let $\left(G_{i}\right)_{i \in I}$ be a family of groups with an index set I. When H is a group and every G_{i} containa H as a subgroup, then we denote $*_{H} G_{i}$ by Γ, which is the amalgamated free product of the groups. If we choose sets Ω_{i} of left representatives of G_{i} / H with $e \in \Omega_{i}$ for any $i \in I$, then each $\gamma \in \Gamma$ can be written uniquely as

$$
\gamma=g_{1} g_{2} \cdots g_{n} h
$$

where $h \in H, g_{1} \in \Omega_{i_{1}} \backslash\{e\}, \ldots, g_{n} \in \Omega_{i_{n}} \backslash\{e\}$ and $i_{1} \neq i_{2}, i_{2} \neq i_{3}, \ldots, i_{n-1} \neq i_{n}$.
Now we construct the corresponding tree. At first, we assume that $I=\{1,2\}$. Let

$$
V=\Gamma / G_{1} \coprod \Gamma / G_{2} \text { and } E=\Gamma / H
$$

and the original and terminal maps o: $\Gamma / H \rightarrow \Gamma / G_{1}$ and $t: \Gamma / H \rightarrow \Gamma / G_{2}$ are natural surjections. It is easy to see that $G_{T}=(V, E)$ is a tree. In general, we assume that the element 0 does not belong to I. Let $G_{0}=H$ and $H_{i}=H$ for $i \in I$. Then we define

$$
V=\coprod_{i \in \Omega \cup\{0\}} \Gamma / G_{i} \text { and } E=\coprod_{i \in I} \Gamma / H_{i} .
$$

Now we define two maps $o, t: E \rightarrow V$ For $H_{i} \in E$, let

$$
o\left(H_{i}\right)=G_{0} \text { and } t\left(H_{i}\right)=G_{i}
$$

For any $\gamma H_{i} \in E$, we may assume that $\gamma H=g_{1} \cdot g_{n} H_{i}$ such that $g_{k} \in \Omega_{i_{k}}$ with $i_{1} \neq \cdots \neq i_{n}$. If $i=i_{n}$ we define

$$
o\left(\gamma H_{i}\right)=\gamma G_{i_{n}} \text { and } t\left(\gamma H_{i}\right)=\gamma G_{0}
$$

If $i \neq i_{n}$ we define

$$
o\left(\gamma H_{i}\right)=\gamma G_{0} \text { and } t\left(\gamma H_{i}\right)=\gamma G_{i}
$$

Then we have a tree $G_{T}=(V, E)$.

For a tree (V, E), the set V is naturally a metric space. The distance $d(x, y)$ is defined by the number of edges in the unique path $[x, y]$. An infinite chain is an infinite path $\left\{x_{1}, x_{2}, \ldots\right\}$ such that $x_{i} \neq x_{i+2}$. We define an equivalence relation on the set of infinite chains. Two infinite chains $\left\{x_{1}, x_{2}, \ldots\right\},\left\{y_{1}, y_{2}, \ldots\right\}$ are equivalent if there exists an integer k such that $x_{n}=y_{n+k}$ for a sufficiently large n. The boundary Ω of a tree is the set of the equivalence classes of infinite chains. The boundary may be thought of as a point at infinity. Next we introduce the topology into the space $V \cup \Omega$ such that $V \cup \Omega$ is compact, the points of V are open and V is dense in $V \cup \Omega$. It suffices to define a basis of neighborhoods for each $\omega \in \Omega$. Let x be a vertex. Let $\left\{x, x_{1}, x_{2}, \ldots\right\}$ be an infinite chain representing ω. For each $y=x_{n}$, the neighborhood of ω is defined to consist of all vertices and all boundary points of the infinite chains which include $[x, y]$.

Hyperbolic groups We introduce hyperbolic groups defined by Gromov. See [GH] for details. Suppose that (X, d) is a netric space. We define a product by

$$
\langle x \mid y\rangle_{z}=\frac{1}{2}\{d(x, z)+d(y, z)-d(x, y)\},
$$

for $x, y, z \in X$. This is called the Gromov product. Let $\delta \geq 0$ and $w \in X$. A metric space X is said to be δ-hyperbolic with respect to w if For $x, y, z \in X$,

$$
\langle x \mid y\rangle_{\omega} \geq \min \left\{\langle x \mid z\rangle_{w},\langle y \mid z\rangle_{\infty}\right\}-\delta .
$$

Note that if X is δ-hyperbolic with respect to w, then X is 2δ-hyperbolic with respect to any $w^{\prime} \in X$.

Definition 9.1 The space X is said to be hyperbolic if X is δ-hyperbolic wisth respect to some $w \in X$ and some $\delta \geq 0$.

Suppose that Γ is a group generated by a finite subset S such that $S^{-1}=S$. Let $G(\Gamma, S)$ be the Cayley graph. The graph $G(\Gamma, S)$ has a natural word metric. Hence $G(\Gamma, S)$ is a metric space.

Definition 9.2 A finitely generated group Γ is said to be hyperbolic with respect to a finite generator system S if the corresponding Cayley graph $G(\Gamma, S)$ is hyperbolic with respect to the word metric.

In fact, hyperbolicity is independent of the choice of S. Therefore we say that Γ is a hyperbolic group, for short.

We define the hyperbolic boundary of a hyperbolic space X. Let $w \in X$ be a point. A sequence $\left(x_{n}\right)$ in X is said to converge to infinity if $\left\langle x_{n} \mid x_{m}\right\rangle_{w} \rightarrow \infty,(n, m \rightarrow \infty)$. Note that this is independent of the choice of w. The set X_{∞} is the set of all sequences converging to infinity in X. Then we define an equivalence relation in X_{∞}. Two sequences $\left(x_{n}\right),\left(y_{n}\right)$ are equivalent if $\left\langle x_{n} \mid y_{n}\right\rangle_{w} \rightarrow \infty,(n \rightarrow \infty)$. Although this is not an equivalence
relation in general, the hyperbolicity assures that it is indeed an equivalence relation. The set of all equivalent classes of X_{∞} is called the hyperbolic boundary (at infinity) and denoted by ∂X. Next we define the Gromov product on $X \cup \partial X$. For $x, y \in X \cup \partial X$, we choose sequences $\left(x_{n}\right),\left(y_{n}\right)$ converging to x, y, respectively. Then we define $\langle x \mid y\rangle=$ $\lim _{\inf }^{n \rightarrow \infty},\left(x_{n}\left|y_{n}\right\rangle_{w}\right.$. Note that this is well-defined and if $x, y \in X$ then the above product coincides with the Gromov product on X.
Definition 9.3 The topology of $X \cup \partial X$ is defined by the following neighborhood basis:

$$
\begin{gathered}
\{y \in X \mid d(x, y)<r\} \quad \text { for } x \in X, r>0 \\
\{y \in X \cup \partial X \mid\langle x \mid y\rangle>r\} \\
\text { for } x \in \partial X, r>0 .
\end{gathered}
$$

We remark that if X is a tree, then the hyperbolic boundary ∂X coincides with the natural boundary Ω in the sense of [Fre].

Finally we prove that an amalgamated free product $\Gamma=*_{H} G_{4}$, considered in this paper, is a hyperbolic group.
Lemma 9.4 The grout $\Gamma=*_{H} G_{i}$ is a hyperbolic group.
Proof. Let $S=\left\{g \in \bigcup_{i} G_{i}| | g \mid \leq 1\right\}$. Let $G(\Gamma, S)$ be the corresponding Cayley graph. It suffices to show (\dagger) for $w=e$. For $x, y, z \in \Gamma$, we can write uniquely as follows:

$$
\begin{aligned}
& x=x_{1} \cdots x_{n} h_{x} \\
& y=y_{1} \cdots y_{m} h_{y}, \\
& z=z_{1} \cdots z_{k} h_{z},
\end{aligned}
$$

where

$$
\begin{array}{llll}
x_{1} \in \Omega_{i\left(x_{1}\right)}, & \ldots, & x_{n} \in \Omega_{i\left(x_{n}\right)}, & h_{i} \in H, \\
y_{1} \in \Omega_{i(m)}, & \ldots, & \left.y_{m} \in \Omega_{i\left(y_{m}\right)}\right) & h_{y} \in H, \\
z_{1} \in \Omega_{i\left(x_{1}\right)}, & \ldots, & z_{k} \in \Omega_{i\left(z_{k}\right)}, & h_{z} \in H .
\end{array}
$$

such that each element has length one. Then $d(x, e)=n, d(y, e)=m$ and $d(z, e)=k$. If $i\left(x_{1}\right)=i\left(y_{1}\right), \cdots, i\left(x_{l(x, y)}\right)=i\left(y_{l(x, y)}\right)$ and $i\left(x_{l(x, y)+1}\right) \neq i\left(y_{l(x, y)+1}\right)$, then $\langle x \mid y\rangle_{e}=l(x, y)$. Similarly, we obtain the positive integers $l(x, z), l(y, x)$ such that $\langle x \mid z\rangle_{e}=l(x, z),\langle y \mid z\rangle_{e}=$ $l(y, z)$. We can have (\ddagger) with $\delta=0$.

References

[Ada] Adams, S. Bourndary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups. Topology 33 (1994), no. 4, 765-783.
[Ana] Anantharaman-Delaroche, C. Systmes dynamiques non commutatifs et moyennabilit. Math. Ann. 279 (1987), no. 2, 297-315.
[AS] Archbold, R. J. and Spielberg, J. S. Topologically free actions and ideals in discrete C^{*}-dynamical systems. Proc. Edinburgh Math. Soc. (2) 37 (1994), no. 1, 119-124.
[BKR] Boyd, S. , Keswani, N. and Raeburn, I. Faithful representations of crossed products by endomorphisms. Proc. Amer. Math. Soc. 118 (1993), no. 2, 427-436.
[Cho] Choi, M D. A simple $C^{\prime \prime}$-algebna generated by two finite-order unitaries. Canad. J. Math. 31 (1979), no. 4, 867-880.
[C1] Cuntz, J. Simple C*-algebras generated by isometries. Comm. Math. Phys. 57 (1977), по. 2, 173-185.
[C2] Cuntz, J. A class of C^{*}-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for C^{*}-algebras. Invent. Math. 63 (1981), no. 1, 25-40.
[CK] Cuntz, J. and Krieger, W A class of C^{*}-algebras and topological Markov chains. Invent. Math. 56 (1980), no. 3, 251-268.
[D1] K.J. Dykema: Exactness of reduced amalgamated free products of C^{*}-algebras. to appear in Proc. Edinburgh Math. Soc.
[D2] K.J. Dykema: Fhee products of exact groups. preprint (1999)
[DS] K.J. Dykema and D. Shlyakhtenko: Exactness of Cuntz-Pimsner C*-algebras. to appear in Proc. Edinburgh Math. Soc.
[EFW1] Enomoto, M. , Fujii, M and Watatani, Y. Tensor algebra on the sub-Fock space associated with $\mathcal{O}_{\mathbf{A}}$. Math. Japon. 26 (1981), no. 2, 171-177.
[EFW2] Enomoto, M. , Fujii, M. and Watatani, Y. KMS states for gauge action on O_{A}. Math. Japon. 29 (1984), no. 4, 607-619.
[Eval Evans, D E. Gauge actions on \mathcal{O}_{A}. J. Operator Theory 7 (1982), no. 1, 79-100.
[FN] Figà-Talamanca, H and Nebbia, C. Harmonic analysis and representation theory for groups acting on homogeneous trees., London Mathematical Society Lecture Note Series, 162. (Cambridge University Press, 1991).
[Fre] Freudenthal, H. Über die Enden diskreter Rāume und Gruppen. Comment. Math. Helv. 17 (1944) 1-38.
[Fur] Furstenberg, H. Boundary theory and stochastic processes on homogeneous spaces. Harmonic analysis on homogeneous spaces. (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), 193-229. Amer. Math. Soc., Providence, R.I., 1973.
[GH] Ghys, t. and de la Harpe, P. Sur les groupes hyperboliques d'aprs Mikhael Gromov (Bern, 1988). Progr. Math., 83, Birkhuser Boston, Boston, MA, 1990.
[KPW] Kajiwara, T. , Pinzari, C. and Watatani, Y. Ideal structure and simplicity of the C^{*}-algebras generated by Halbert bimodules. J. Funct. Aral. 159 (1998), no. 2, 295-322.
[Kir] Kirchberg, E. On subalgebrus of the CAR-algebra. J. Funct. Anal. 129 (1995), no. 1, 35-63.
[LS] Laca, M. and Spielberg, J. Purely infinite C^{*}-algebras from boundary actions of discrete groups. J. Reine Angew. Math. 480 (1996), 125-139.
[Pim1] Pimsner, M V. KK-groups of crossed products by groups acting on trees. Invent. Math. 86 (1986), no. 3, 603-634.
[Pim2] Pimsner, M V. A class of C^{*}-algebras genexalizing both Cuntz-Krieger algebras and crossed products by Z. Free probability theory, 189-212, Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997.
[PV] Pimsner, M. and Voiculescu, D. Exact sequences for K-groups and Ext-groups of certain cross-product C^{*}-algebras. J. Operator Theory 4 (1980), no. 1, 93-118.
[RR] Ramagge, J. and Robertson, G. Factors from trees. Proc. Amer. Math. Soc. 125 (1997), no. 7, 2051-2055.
[RS] Robertson, G. and Steger, T. C^{*}-algebras arising from group actions on the boundary of a triangle bridding. Proc. London Math. Soc. (3) 72 (1996), no. 3, 613-637.
[Ser] Serre, J-P. Trees. Translated from the French by John Stillwell. Springer-Verlag, Berlin-New York, 1980.
[Spi] Spielberg, J. Free-product groups, Cuntz-Krieger algebras, and covariant maps. Internat. J. Math. 2 (1991), no. 4, 457-476.
[Sta] Stacey, P. J. Crossed products of C ${ }^{*}$-algebras by *-endomorphisms. J. Austral. Math. Soc. Ser. A 54 (1993), no. 2, 204-212.
[SZ] Szymański, W. and Zhang, S. Infinite simple C*-algebras and reduced cross products of abelian C^{*}-algebras and free groups. Manuscripta Math. 92 (1997), no. 4, 487-514.
[Was] Wassermann, S. Exact C^{*}-algebras and related topics. Lecture Notes Series, 19. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994.
[W1] Woess, W. Boundaries of random walks on graphs and groups with infinitely many ends. Israel J. Math. 68 (1989), no. 3, 271-301.
[W2] Woess, W. Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000.

TYPE II FACTORS ARISING FROM CUNTZ-KRIEGER ALGEBRAS

RUI OKAYASU

Abstract

Abstracs. We determine the types of factora arifing from GNS-representations of quasi-free KMS stated on Cuntr-Krieger algebrad. Applying our regult to tha Cuntz-Krieger algobras ariong from the boundary actions of some amalgamated free product gronps, we also determine the types of the harmonic measures on the boundaried.

1. Introduction

The Cuntz algebra O_{n} [Cun] and the Cuntz-Kriegor algebra O_{A} [GK], a generalization of \mathcal{O}_{n}, are important examples of C^{*}-algebras. The Cuntz-Krleger algebra O_{A}, associated with a 0 -1 matrix A, is the universal C^{*}-algebra generated by the family of partial isometries $\left\{S_{i}\right\}_{i=1}^{N}$ satiofying the Cumtz-Krieger relations. The universal property of O_{A} allows us to define the ao-called gauge action on O_{A}. The eristence of KMS states for one-parameter automorphisms is one of the natural questions. The KMS states for the gauge actions on O_{n} and O_{A} were obtained by D. Olesen and G. K. Pedersen [OP], and M. Enomoto, M. Fajii and Y. Watatani [EFW], respectively. More generally, D. E. Evand determined the KMS states on \mathcal{O}_{n} for the quasi-free actions in [Eva]. In order to construct examples of subfactors, M. Izumi determined the types of factore obtained by the GNS-representations of quasi-free KMS statea in [zu]. One of the purposes in this paper is to generalize his result to Cuntz-Krieger algebras. The exdstence and the uniqueness of quasi-free KMS states on Cuntz-Krieger algebras were proved by R. Exel and M. Laca in (EL). It implies that the von Neumann algebras arising from their GNS-representations are factors. We will compute the Connes spectrum of the modular automorphism group and determine the types of quasi-free KMS states.

As an application, we can give a construction of type III factors from geometric objects. J. Spielberg proved in [Spi] that some Cuntz-Krieger algebras can be obtsined by the crossed product construction of the boundary action $(\theta \Gamma, \Gamma)$, where I is the free product of cyclic groups and $\partial \Gamma$ is the hyperbolic boundary as a hyperbolic group. This construction was generalized to amalgamated free product groups in [Okal. Under this identiflcation, it was shown that there is one-to-one correspondence between qussi-free KMS states and some class of random walks on T. Namely, by identifying $\partial \Gamma$ with the Poisson boundary, harmonic measures on OC induce quasi-free KMS states. We will apply the main result to the harmonic measures and determine the types of them. It turns out that the resulting factors are either of type III_{1} or of type $\mathrm{III}_{\lambda}(0<\lambda<1)$, where λ is some algebraic number. Therefore, by combining these results, we can make type III factors from boundary actions and harmonic measures on the boundary, which generalizes J. Ramagge and G. Robertson's result in [RR].

Acknowledgment. The author wishes to expreas his gratitude to Masaki Izumi and Yoshimichi Ueda for various comments and important suggestions. He is grateful to Hiroki Matui and Takeahi Katsura for useful discussions. He also thanks the referee for careful reading. The present work was done while the author stayed at the Mathematical Sciences Research Institute from the summer of 2000 to the spring of 2001 . He would like to thank them for their hospitality.

2. Preliminapies

2.1. Perron-Frobenius theorem. Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with non-negative entries. We denote the (i,j)-entry of A^{m} by $A^{m}(i, j)$. A matrix A is irreducible if for every pair of indices i and j there is an $m>0$ with $A^{m}(i, j)>0$. For $1 \leq i, j \leq N$, put $E(i, j)=\left\{m \in N \mid A^{m}(i, j)>0\right\}$ and $p(i)=$ g.c.d. $\{m \in$ $\left.\mathrm{N} \mid A^{m}(i, i) \neq 0\right\}$. Note that if A is irreducible, then $p \equiv p(i)$ for any i and we call it the period of A. An irreduclble matrix A is said to be periodic of period p if $p>1$ and aperiodic if $p=1$. Set $I_{k}=\{i \mid 1 \leq i \leq N, E(i, 1)=k-1(\bmod p)\}$ for $k=1, \ldots, p$. If A is periodic, then the index set $\{1, \ldots, N\}$ can be decomposed into distinct subsets I_{1}, \ldots, I_{p} such that the matrix A translates from I_{k} into $I_{\mathbf{t + 1}}$, (I_{p} into I_{1}), and the restriction of A^{p} to I_{A} is aperiodic. If A is irreducible, the PerronFrobenius theorem guarantees the existence of the strictly positive eigenvector with reapect to the simple root α of the characteriatic polynomial auch that $\alpha \geq|\beta|$ for any other eigenvalue β. Moreover, the following theorem is known.

Theorem 2.1 ([Kit, Theorem 1.3.8]). Let A be an irreducible matrix with nonmegative entries and p the period of A. If $x={ }^{T}\left(x_{1}, \ldots, x_{N}\right)$ and $y=\left(y_{1}, \ldots, y_{N}\right)$ are the right and left Perron eigenvectors of the Perron eigenvalue α such that $\sum_{i=1}^{N} x_{i} y_{i}=p_{1}$ then

$$
\lim _{n \rightarrow \infty} A^{p n}(i, j) / \alpha^{p n}=x_{1} y_{f}
$$

for any $i, j=1, \ldots, N$.
2.2. Cuntz-Krieger algebras. Let A be an $N \times N$ 0-1 matrix without zero rows. Then the Cumtz-Krieger algebra \mathcal{O}_{A} is the universal C^{*}-algebra generated by the family of partial isometries S_{1}, \ldots, S_{N} satisfying:

$$
S_{i}^{*} S_{i}=\sum_{j=1}^{N} A(i, j) S_{j} S_{j}^{*}, \quad \text { and } \quad 1=\sum_{i=1}^{N} S_{i} S_{i}^{*}
$$

For $i=1, \ldots, N$, let us denote the initial projection of S_{i} by Q_{i} and the range projection by P_{i}. We say that $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \prod_{i=1}^{n}\{1, \ldots, N\}$ with $A\left(\xi_{i}, \xi_{i+1}\right) \neq$ 0 is an admissible uord and denote the set of all admissible words by \mathcal{W}_{A}. We define two maps s and r by $s(\xi)=\xi_{1}$ and $r(\xi)=\xi_{n}$. For $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \eta=$ $\left(\eta_{1}, \ldots, \eta_{m}\right) \in \mathcal{W}_{A}$ with $A\left(\xi_{n}, \eta_{1}\right)=1$, we define the concatenation $\xi \cdot \eta$ in \mathcal{W}_{A} by $\left(\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{m}\right)$. Let us Bay that an admissible word $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a loop if $A\left(\xi_{n}, \xi_{1}\right)=1$. We say that a loop ξ is a circle if $\xi_{k} \neq \xi_{l}$ for any $1 \leq k, l \leq n$, $(k \neq l)$.

Let $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right) \in \mathbb{R}_{+}^{N}$. We define the action α^{ω} of \mathbf{R} on \mathcal{O}_{A} by $\alpha_{\dot{t}}^{\omega}\left(S_{i}\right)=$ $e^{\sqrt{-1} \omega_{i} d} S_{i}$ for $t \in \mathbb{R}$ and $i=1, \ldots, N$. If $\omega=(1, \ldots, 1)$, then α^{ω} is the gauge action. We define two word-length functions. For $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathcal{W}_{A}$, we denote the canonical one by $|\xi|=n$ and the other by $\omega_{\xi}=\omega_{\xi_{1}}+\cdots+\omega_{\xi_{n}}$ Let $\Omega_{A}=\left\{\left\{a_{k}\right)_{i=k}^{\infty}!A\left(a_{k}, a_{k+1}\right)=1\right\}$ be the set of all one-sided infinite admissible words. Note that there is the faithful conditional expectation Φ from \mathcal{O}_{A} onto

立ana $\left\{S_{\xi} S_{\xi}^{*} \mid \xi \in \mathcal{W}_{A}\right\} \simeq C\left(\Omega_{A}\right)$ (bee [CK]). We assume that there is $\beta \in \mathbf{R}_{\boldsymbol{H}}$ and $x_{i}>0$ that satisfies:

$$
x_{i}=\sum_{j=1}^{N} e^{-\beta \omega_{i}} A(i, j) x_{j}, \quad \text { and } \quad 1=x_{1}+\cdots+x_{N}
$$

We can define a probability measure ν on Ω_{A} by

$$
\nu\left(\Omega_{A}\left(\xi_{1}, \ldots, \xi_{n-1}, \xi_{n}\right)\right)=e^{-\beta \omega_{\varepsilon_{1}}} \cdots e^{-\beta \omega_{\varepsilon_{n-1}} x_{\xi_{n}}}
$$

where $\Omega_{A}\left(\xi_{1}, \ldots, \xi_{n}\right)$ is the cylinder set $\left\{\left(a_{k}\right)_{k=1}^{\infty} \in \Omega_{A} \mid a_{1}=\xi_{1}, \ldots, a_{n}=\xi_{n}\right\}$. This probability mearure induces a β-KMS state for α^{ω} on O_{A} by $\phi^{\omega}=\nu$ a Φ. Set $A_{\omega}(i, j)=e^{-\beta \omega \prime} A(i, j)$. Note that the vector $x={ }^{T}\left(x_{1}, \ldots, x_{N}\right)$ is the right Perron eigenvector of the matrix A_{ω} with reapect to the Perron eigenvalue 1. R. Exel and M. Laca, in fact, showed the following in [EH].

Theorem 2.2 ([EL, Theorem 18.5]). If A is irreducible, then there exists the unigue $\beta-K M S$ state ϕ^{ω} of the Cuntw-Krieger algebra O_{A} for the action α^{ω} and the inverse temperatese β is aloo unigwe.

Throughout this paper, we assume that A is irreducible and not a permutation matrix Let $\left(\pi_{\phi \omega}, H_{\phi \omega}, \xi_{\psi}\right)$ be the GNS-triple of ϕ^{ω} The above theorem, in particular, says that the won Neumann algebra $M=\pi_{\phi}\left(O_{A}\right)^{\prime \prime}$ beccomes a factor.
2.3. AF-algebras. The following remults are based on [SV, Theorem I.3.12.]. Consider an AF-algebra $B=\overline{\bigcup_{n \geq 0} \bar{B}_{n}}$ where $\left\{B_{n}\right\}_{n=0}^{\infty}$ is an increasing family of finite C^{*}-subalgebras. We assume that $B_{0}=C$. We define a maximal abelian subalgebra C of B as follows. Let $C_{0}=B_{0}$ and C_{n+1} the $C^{\text {r toubalgebrs genarated by } C_{n}}$ and D_{n+1}, where D_{n+1} is a masa of B_{n+1}, containing C_{n}. We define $C=\bigcup_{n>0} C_{n}$. One can check that C is a masa of B. There is a conditional expectation Ψ from B onto C, and there is a topological dynamical system (Ω, Γ) such that $C \simeq C(\Omega)$, $B=\operatorname{span}\{f t \mid f \in C(\Omega), u \in \Gamma\}$ and $\Gamma=U_{n \geq 0} \Gamma_{n}$, where Γ_{n} consists of all unitaries t in B_{n} with $u C_{n} u^{*}=C_{n}$ - Let ν be a Γ-quasi-invariant probability measure on Ω. It induces a state $\psi=\nu$ a $\mathbb{\Psi}$ of B. Let $\left(\pi_{\psi}, F_{\phi}, \xi_{\phi}\right)$ be the GNS-triple of ϕ. Then we obtain the following:
(1) $\pi_{\psi}(C)^{\prime \prime}$ is a masa in $\pi_{\psi}(B)^{\prime \prime}$.
(2) $\mathrm{x}_{\psi}(C)^{\prime \prime} \simeq L^{\infty}(\Omega, \nu)$.
(3) The conditional expectation Ψ can extend to $\boldsymbol{\pi}_{\psi}(B)^{\prime \prime}$ whose image is $\pi_{\psi}(C)^{\prime \prime}$

3. Lemmata

We denote by $O_{A}^{\alpha^{\prime \prime}}$ the fixed-point algebra under α^{ω}. We first introduce an equivalence reiation on the index set $I=\{1, \ldots, N\}$. We say that i is equivalent to j if there are $\xi, \eta \in W_{A}$ such that $s(\xi)=i, s(\eta)=j, r(\xi)=r(\eta)$ and $\omega_{\xi}=\omega_{\eta}$. It is easy to check that this is an equivalence celation. We obtain the corresponding disjoimt union $I=\Gamma_{1}^{\omega} \cup \cdots \cup I_{* \sim}^{w}$. Note that if α^{ψ} is the gauge action, then this decomposition coincides with the one with respect to the period of A. Set $P_{r_{4}}=$ $\sum_{i \in I_{h}^{\prime}} P_{i}$. Onr goal in this section is to prove the following lemma.
Lemma 3.1.

$$
Z\left(\pi_{\phi}\left(O_{A}^{\alpha^{\omega}}\right)^{\prime \prime}\right)=\pi_{\phi \omega}\left(O_{A}^{\alpha^{\omega}}\right)^{\prime \prime} \cap \pi_{\phi \omega}\left(O_{A}^{\alpha^{\omega}}\right)^{\prime}=\bigoplus_{k=1}^{n_{\omega}} \mathrm{C}_{\phi_{\phi}}\left(P_{f_{h}}\right)
$$

We need some lemmata to show the above.
Lemma 3.2. The fixed-point algebre $O_{A}^{\alpha^{*}}$ is an AF-algebra
Proof. Set $F_{\xi}^{i}=\operatorname{span}\left\{S_{\xi} P_{i} S_{\eta}^{*} \mid \omega_{\xi}=\omega_{\eta}=t\right\}$ for $t \in\left\{\omega_{\xi} \mid \xi \in \mathcal{W}_{A}\right\}$. Since $\left\{S_{\xi} P_{i} S_{\eta}^{*}\right\}$ gives the matrix units, F_{t}^{4} is a simple finite-dimensional C^{*}-algebra. We can define finite-dimensional C^{*}-algebras F_{n} as follows:

$$
\begin{aligned}
F_{-1} & =C l_{1} \\
F_{n} & =\bigvee_{i \in I} \bigvee_{t \in K_{n}^{i}} F_{i}^{i}=\bigoplus_{t \in I} \bigoplus_{t \in K_{n}^{i}} F_{i}^{i} \text { for } n \geq 0
\end{aligned}
$$

where $\omega_{\min }=\min \left\{\omega_{i} \mid i \in I\right\}$ and

$$
K_{n}^{i}=\left\{\omega_{\xi} \mid \xi \in \mathcal{W}_{A}, A(r(\xi), i)=1, n \omega_{\min }-\omega_{i}<\omega_{\xi} \leq n \omega_{\min }\right\}
$$

Indeed, let $S_{\xi_{1}} P_{i} S_{\eta_{1}}^{*} \in F_{t}^{i}$ for $t \in K_{n}^{i}$ and $S_{\xi_{2}} P_{j} S_{\eta_{2}}^{*} \in F_{;}^{j}$ for $s \in K_{n}^{j}$. We assume that $S_{\xi_{1}} P_{i} S_{\eta_{2}}^{*} S_{\xi_{2}} P_{j} S_{\eta_{2}}^{*} \neq 0$. If $\left|\eta_{1}\right|=\left|\xi_{2}\right|$, then $\eta_{1}=\xi_{2}$ and thus $s=t$ and $i=j$. We now suppose that $\left|\eta_{1}\right| \neq\left|\xi_{2}\right|$. Without loss of generality, we may assume that $\left|\eta_{1}\right|<\left|\xi_{2}\right|$. Since $P_{i} S_{m_{1}}^{*} S_{\xi_{2}} P_{f} \neq 0$, we have $P_{i} S_{m_{1}}^{*} S_{\xi_{3}} P_{j}=S_{\xi} P_{j}$ for some ξ with $\xi_{2}=\eta_{1} \cdot \xi$ and $\varepsilon(\xi)=i$. Hence we obtain $\omega_{i} \leq \omega_{\xi}$. However,

$$
\omega_{\xi_{2}}=\omega_{m_{1}}+\omega_{\xi}>n \omega_{\min }-\omega_{i}+\omega_{i}=n \omega_{\min }
$$

Thus $n \omega_{\text {maln }}<\omega_{\ell_{z}} \leq n \omega_{\text {min }}$ and this is a contradiction.
We next show that F_{n} is a C^{*}-subalgebra of F_{n+1}. Let $S_{\xi} P_{i} S_{\eta}^{*} \in F_{i}^{f}$ with $t \in K_{n}^{i}$. If $(n+1) \omega_{m i n}-\omega_{i}<t$, then we have $S_{f} P_{i} S_{\eta}^{*} \in F_{n+1}$. If $t \leq(n+1) \omega_{\text {min }}-\omega_{i}$, then we have

$$
S_{\xi} P_{i} S_{\eta}^{*}=\sum_{j \in I} A(i, j) S_{\xi} S_{i} P_{j} S_{i}^{*} S_{\eta}^{*} \in F_{n+1}
$$

We can define an AF-algbera $F=\square_{n} F_{n}$.
We claim that $F=\mathcal{O}_{A}^{\alpha^{\prime \prime}}$ It is clear that $F \subseteq \mathcal{O}_{\boldsymbol{A}}{ }^{\prime \prime}$ To show the converse, we need the conditional expectation. If $\omega_{i} / \omega_{j} \in \mathbf{Q}$ for all $i, j \in I$, then we can define the faithful conditional expectation from O_{A} onta \mathcal{O}_{A}^{α} by the integration on T. If not, we consider an action $\bar{\alpha}$ of T^{N} such that $\tilde{\alpha}_{z}\left(S_{i}\right)=z_{i} S_{i}$ for $z \in\left(z_{1}, \ldots, z_{N}\right) \in T^{N}$ Since there is the embedding of \mathbf{R} into $\mathbf{T}^{N}, t \mapsto\left(e^{\sqrt{-1} \omega_{1} t}, \ldots, e^{\sqrt{-1} \omega_{N} t}\right)$, we can consider the closure of \mathbf{R} in $\mathbf{T}^{\boldsymbol{N}}$ via this embedding. Therefore the conditional expectation is given by the integration on the compact group $\overline{\mathbf{R}}$. One can easily check that the fixed-point algebra under $\bar{\alpha} \mid{ }_{5}$ coinsides with $\mathcal{O}_{A}^{\alpha^{*}}$ and thus we can show that $\mathcal{O}_{A}^{\circ}=F$ by using this conditional expectation.

We will need one more lemma. Let p be the period of the matrix A. We define partial isometries for $m \in \mathbb{N}, i \in I$ by

$$
\theta_{m}^{(i)}=\sum_{\xi, \eta \in L_{i}(m p)} S_{\xi} S_{\eta} P_{i} S_{\xi}^{*} S_{\eta}^{*}
$$

where $L_{i}(n)=\left\{\xi \in W_{A}|a(\xi)=i, A(r(\xi), i)=1,|\xi|=n\}\right.$ is the set of all loops of i with length n. Note that $\theta_{\mathrm{m}}^{(i)}$ is self-adjoint. We define the tracial state by $\psi^{\omega}=\phi^{\omega} \log _{\boldsymbol{A}}^{\omega}$ on $\mathcal{O}_{A}^{\alpha^{\omega}}$, and use the same symbol ψ^{ω} for its normal extension to $\pi_{\psi \omega}\left(\mathcal{O}_{A}^{\mu "}\right)^{\prime \prime}$ for simplicity.

Lemma s.3. Let $f \in \pi_{\phi \sim}\left(C\left(\Omega_{A}\right)\right)^{\prime \prime}$ and $a \in \pi_{\psi}\left(O_{A}^{\alpha^{\prime \prime}}\right)^{\prime \prime}$. Then for any i $\in I$,

$$
\lim _{m \rightarrow \infty} \psi^{\omega}\left(\theta_{m}^{(0)} f \theta_{m}^{(0)} a\right)=\psi^{\omega}\left(P_{i} f\right) \psi^{\omega}\left(P_{i} a\right) x_{i} \xi_{i}^{2}
$$

where $y=\left(y_{1}, \ldots, y_{N}\right)$ is the left Perron eigenvector of A_{ω} with $\sum_{i \in I} x_{i y k}=p$.
Proof. Note that $C\left(\Omega_{A}\right) \simeq$ spani $\left\{S_{\xi} S_{\xi}^{*} \mid \xi \in \mathcal{W}_{A}\right\}$ is a masa in the $A F$-algebra $O_{A}^{0^{\prime \prime}}$ We denote by Ψ the conditional expectation from $\pi_{\psi^{\prime \prime}}\left(O_{A}^{\prime}\right)^{\prime \prime}$ onto $\pi_{\psi}\left(C\left(\Omega_{A}\right)\right)^{\prime \prime} \simeq$ $L^{\infty}\left(\Omega_{A}, \nu\right)$. We first prove the lemma for $f \in C\left(\Omega_{A}\right)$ and $a \in \mathcal{O}_{A}^{\alpha}$ Remark that $\psi^{\omega}=\nu \circ \mathbf{I}$. We may assume that $a \in C\left(\Omega_{A}\right)$. Indeed, if the statement holds for $\Psi(a)$ instead of a, then since $\theta_{m}^{(9)} f \theta_{m}^{(i)} \in C\left(\Omega_{A}\right)$, we will have

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \psi^{\omega}\left(\theta_{m}^{(i)} f \theta_{m}^{(i)} a\right) & =\lim _{m \rightarrow \infty} \psi^{\omega}\left(\theta_{m}^{(i)} f \theta_{m}^{(i)} \Psi(a)\right) \\
& =\psi^{*}\left(P_{i} f\right) \psi^{\omega}\left(P_{i} \Psi(a)\right) x_{i} \dot{y}_{i}^{2} \\
& =\psi^{\omega}\left(P_{i} f\right) \psi^{\omega}\left(P_{i} a\right) x_{i} \phi_{i}^{2}
\end{aligned}
$$

It suffices to check the statement for $f=S_{\zeta_{1}} P_{f_{2}} S_{\zeta_{1}}^{*}, a=S_{\zeta_{3}} P_{\zeta_{2}} S_{\zeta_{2}}^{*}$ with $\left|\zeta_{1}\right|=$ $k p,\left|\zeta_{2}\right|=l p$ and $s\left(\zeta_{1}\right)=s\left(\zeta_{2}\right)=i$. In this case, for sufficiently large m we have

$$
\theta_{m}^{(d)} f \theta_{m}^{()_{n}} a=\sum_{\xi^{\prime}, \eta^{\prime}} S_{G_{2}} S_{\xi^{\prime}} S_{G_{1}} S_{\eta^{\prime}} P_{1} S_{\eta^{\prime}}^{*} S_{G_{1}}^{*} S_{\xi^{\prime}}^{*} S_{\zeta_{2}}^{*}
$$

where ξ^{\prime} and η^{\prime} run over all admissible words from j_{2}, j_{n} to ; with $\left|\xi^{\prime}\right|=(m-$ l) $p,\left|\eta^{\prime}\right|=(m-k) p$. Therefore

$$
\begin{aligned}
\psi^{\omega}\left(\theta_{m}^{(i)} f \theta_{m}^{(i)} a\right) & =e^{-\beta \omega_{c_{2}}} A_{\omega}^{(m-1) p}\left(j x_{1}, i\right) e^{-\beta \omega_{c_{1}}} A^{(m-k) p}\left(j_{1}, i\right) x_{i} \\
& \longrightarrow e^{-\beta \omega_{c_{2}} x_{j n} y_{l} e^{-\beta \omega_{c_{1}} x_{j} y y_{1} x_{i}}(m \rightarrow \infty)} \\
& =\psi^{\omega}(f) \psi^{\omega}(c) x_{i j} y_{i}^{2} .
\end{aligned}
$$

Next let $f \in L^{\infty}\left(\Omega_{A}, \nu\right)$. We choose $g \in C\left(\Omega_{A}\right)$ with $\left\|(f-g) \xi_{\psi}\right\| \|<\varepsilon$. Then

$$
\begin{aligned}
\left|\psi^{\omega}\left(\theta_{m}^{(i)} f \theta_{m}^{(i)} a\right)-\psi^{\omega}\left(P_{i} f\right) \psi^{\omega}\left(P_{i} a\right) x_{i} y_{i}^{2}\right| & \leq\left|\psi^{\omega}\left(\theta_{m}^{(j)}(f-g) \theta_{m}^{(i)} a\right)\right| \\
& +\left|\psi^{\omega}\left(\theta_{m}^{(i)} g \theta_{m}^{(0)} a\right)-\psi^{\omega}\left(P_{i} g\right) \psi^{\omega}\left(P_{i} a\right) x_{i} y_{i}^{2}\right| \\
& +\left|\psi^{\omega}\left(P_{i}(f-g)\right) \psi^{\omega}\left(P_{i} a\right) x_{i} y_{i}^{2}\right|
\end{aligned}
$$

and we get the following estimate of the first term:

$$
\begin{aligned}
\left|\psi^{\omega}\left(\theta_{\mathrm{m}}^{(i)}(f-g) \theta_{m}^{(i)} a\right)\right| & =\left|\psi^{\omega}\left(\theta_{\mathrm{m}}^{(j)} a \theta_{\mathrm{m}}^{(i)}(f-g)\right\rangle\right| \\
& \leq \psi^{\omega}\left(\theta_{\mathrm{m}}^{(i)} a \theta_{\mathrm{m}}^{(i)} \theta_{\mathrm{m}}^{(i)} a^{*} \theta_{m}^{(i)}\right)^{1 / 2} \psi^{\omega}\left((f-g)^{*}(f-g)\right)^{1 / 2} \\
& \leq\|a\|\left\|(f-g) \xi_{\psi}\right\|,
\end{aligned}
$$

because ψ^{ω} is tracial. In a similar way, we call show the statement for a \in $\pi \psi^{-m}\left(\mathcal{O}_{A}^{\alpha}\right)^{\prime \prime}$

We will use the following folclore among specislists, (e.g. Bee [Izu]).
Lemma 3.4 ([Lzu, Lemma 4.1]). Let B be a wnital C^{*}-algebro, ϕ a state of B and ($\pi_{\phi}, H_{\phi}, \xi_{\phi}$) the GNS-triple of ϕ. We assume that the cyclic vector ξ_{ϕ} is a separating vector for $\pi_{\phi}(B)^{\prime \prime}$ Let C be a unital C^{*} sublagebra of B and ψ the restriction of ϕ to C. Then ($\pi_{\phi} \mid \sigma, H_{\psi}$) is quasi-equivalent to the GNS-representation (π_{ψ}, H_{ψ}) of ψ.

Now we have the necessary ingredients for the proof of Lemma 3.1.

Proof of Lemma s.1. It is easy to show that $\left.\pi_{\phi^{\prime}}\left(P_{h}\right) \in Z\left(\pi_{\psi}\right)\left(O_{A}^{\alpha^{\prime \prime}}\right)^{\prime \prime}\right)$ for $k=$ $1, \ldots, \pi_{\omega}$. By Lemma 3.4, $\pi_{\phi^{\prime}}\left(\mathcal{O}_{A}^{\alpha^{*}}\right)^{\prime \prime}$ is isomorphic to $\pi_{\psi^{-n}}\left(\mathcal{O}_{A}^{\alpha^{\prime}}\right)^{\prime \prime}$. It therefore suffices to show that $Z\left(\pi_{\psi}\left(\mathcal{O}_{A}^{\alpha^{-}}\right)^{\prime \prime}\right)=\oplus_{k=1}^{n_{w}} \mathbb{C} P_{I_{\psi}}$. Let $z \in Z\left(\pi_{\psi^{\prime \prime}}\left(\mathcal{O}_{A}^{*}\right)^{n t}\right)$ be a non-trivial projection. Since $L^{\infty}\left(\Omega_{A}\right)$ is a masa in $\pi_{\psi}\left(O_{A}^{\alpha}\right)^{\prime \prime}$; we have $z \in$ $L^{\infty}\left(\Omega_{A}\right)$. We can apply Lemma 3.3 to $f=P_{i} z$:

$$
\lim _{m \rightarrow \infty} \psi^{\omega}\left(\theta_{m}^{(i)} z \theta_{m}^{(i)} a\right)=\psi^{\omega}\left(P_{i} z\right) \psi^{\omega}\left(P_{i} a\right) x_{i} y_{i}^{2}
$$

On the other hand, since z is centered, we get

$$
\lim _{m \rightarrow \infty} \psi^{\omega}\left(\theta_{\mathrm{m}}^{(i)} z \theta_{\mathrm{m}}^{(i)} a\right)=\lim _{m \rightarrow \infty} \psi^{\omega}\left(\theta_{m}^{(i)} \theta_{m}^{(i)} z a\right)=\psi^{\omega}\left(P_{i}\right) \psi^{\omega}\left(P_{i} z a\right) x_{i} \nu_{i}^{2}
$$

Therefore

$$
\psi^{\omega}\left(P_{i}\right) \psi^{\omega}\left(P_{i} z a\right)=\psi^{\omega}\left(P_{i} z\right) \psi^{\omega}\left(P_{i} a\right) .
$$

Since ψ^{v} is faithful on $\pi_{\psi^{\prime \prime}}\left(O_{A}^{\alpha^{\prime}}\right)^{\prime \prime}$ and a is arbitrary, we get

$$
P_{i} z=\frac{\psi^{\omega}\left(P_{i} z\right)}{\psi^{\omega}\left(P_{i}\right)} P_{i} .
$$

Therefore we obtain $z=\sum_{i \in I} c_{i} P_{i}$ for $c_{4} \in\{0,1\}$. If $c_{i} \neq 0$ for $i \in I_{k}^{v}$, then there are admissible words ξ, η with $s(\xi)=i, s(\eta)=j, r(\xi)=r(\eta)$ and $\omega_{\xi}=\omega_{\eta}$ for $j \in I_{k}^{*}$, and z must commute with $S_{\xi} S_{\eta}^{*} \in \mathcal{O}_{A}^{\alpha} \quad$ Hence we have $z=\sum_{k=1}^{n_{k}^{\omega}} c_{k} P_{r_{k}}$ for $c_{k} \in\{0,1\}$.

4. Main theorem

We first review some notations in [Con]. Let (M, \mathbb{R}, σ) be a W^{*}-dynamical system. For $f \in L^{1}(\mathbf{R})$, we define a σ-weakly contimuous linear map on M by

$$
\sigma_{f}(x)=\int f(t) \sigma_{t}(x) d t \quad \text { for } x \in M
$$

The Arveson spectrum of a is defined by

$$
\operatorname{Sp}(\sigma)=\bigcap\left\{Z(f) \mid f \in L^{1}(\mathbb{R}), \sigma_{f}=0\right\}
$$

where $Z(f)=\{r \in \hat{\boldsymbol{R}} \mid \hat{f}(r)=0\}$ and $\hat{\mathbb{R}}$ is the dual group of \boldsymbol{R}. Then the Connes spectrom of σ is defined by

$$
\Gamma(\sigma)=\bigcap_{p} \operatorname{Sp}\left(\left.\sigma\right|_{\mathrm{p} M \mathrm{p}}\right),
$$

where p runs over all non-zero projections in $Z\left(M^{\sigma}\right)=M^{\sigma} \cap\left(M^{\sigma}\right)^{\prime}$ Note that $\Gamma(\sigma) \subseteq \mathrm{Sp}\left(\left.\sigma\right|_{\mathrm{p} M \mathrm{p}}\right)$ holds for any non-zero projection p in M^{σ}

For each $i \in I$, let G_{i} be the closed additive subgroup of \mathbf{R} generated by $\boldsymbol{\beta} \omega_{\xi}$ for all loops ξ with $s(\xi)=i$ and G the closed additive subgroup generated by $\beta \omega_{\xi}$ for all circles ξ.

Lemma 4.1. For any $i \in I, G=G_{i}$.
Proof. It is clear that $G \subseteq G_{i}$. Conversely, let ξ be a loop with $s(\xi)=i$. Then there are circles $\xi(1), \ldots, \xi(n)$ such that $\omega_{\xi}=\omega_{\xi(1)}+\cdots+\omega_{\xi(n)}$. Thus $G_{i} \subseteq G$.

We will prove the following main theorem.
Theorem 4.2. (1) If $\omega_{\xi} / \omega_{\eta} \in Q$ for all circles ξ, η, then $M=\pi_{\psi^{\mu}}\left(O_{A}\right)^{\prime \prime}$ is the $A F D$ type \amalg_{λ} factor for $\lambda=\mathrm{e}^{-r}$, where $G=\tau \mathbb{Z}$ for some $r \in \mathbb{R}_{+}$.
(2) If $\omega_{\xi} / \omega_{\boldsymbol{q}} \notin Q$ for some circles ξ, η, then $M=\pi_{\psi}\left(\mathcal{O}_{A}\right)^{t \prime}$ is the $A F D$ type III_{1} factor.
Proof. Since $\phi^{\phi \omega}$ is α^{ω}-invariant, α^{ω} can be extended to an action on M. We use the same symbol ϕ^{ω} for ita normal extension. Let $\sigma^{*}{ }^{\prime \prime}$ be the modular automorphism group for ϕ^{ω}, which matisfies $\sigma_{i}^{\phi^{\omega}}=\alpha_{-\beta t}^{\omega}$ for $t \in \mathbf{R}$. We first claim that $M^{\alpha}=$ $\pi_{j}\left(O_{A}^{\sigma}\right)^{\prime \prime}$ One can check that the conditional expectation from O_{A} onto $O_{A}^{\prime \prime}$ in the proof of Lemma 3.2 can extend to the one on $x_{\phi \prime \prime}\left(\mathcal{O}_{A}\right)^{\prime \prime}$ Thus by the approximation arguments, we can obtain our claim.

By Lemma 3.1, we obtain $\Gamma\left(\sigma^{\phi^{\prime \prime}}\right)=\bigcap_{k} \mathrm{Sp}\left(\left.\sigma^{\alpha^{\prime \prime}}\right|_{P_{\text {Kh }}} M P_{P_{h}^{\prime \prime}}\right)$. Since $\operatorname{Sp}\left(\left.\sigma^{\alpha^{\prime \prime}}\right|_{P_{R} M P_{i}}\right) \subseteq$

We now claim that $\operatorname{Sp}\left(\left.\sigma^{\phi}\right|_{P_{3} M P_{i}}\right)=G_{i}$ for each $i \in I$. Let ξ, η be loope with $s(\xi)=s(\eta)=i$. If $\left.f \in \operatorname{Ker} \sigma^{\boldsymbol{\phi}}\right|_{\boldsymbol{P}_{7} M P_{i}}$, then

$$
0=\sigma_{f}^{\phi \psi}\left(P_{i} S_{\xi} S_{p}^{*} P_{i}\right) \doteq \hat{f}\left(\beta\left(\omega_{\xi}-\omega_{p}\right)\right) P_{i} S_{\xi} S_{p}^{*} P_{i}
$$

Since $P_{i} S_{\xi} S_{7}^{*} P_{i} \neq 0$, we have $\beta\left(\omega_{\xi}-\omega_{\eta}\right) \in \mathrm{Sp}\left(\left.\sigma^{\phi^{\prime \prime}}\right|_{R_{i} M P_{i}}\right)$. Thus a group geperated by $\beta \omega_{\xi}$ for all loops ξ with $s(\xi)=i$ is contained in $S_{p}\left(\left.\sigma^{*}\right|_{P_{i} M B_{1}}\right)$. Since $\mathrm{Sp}\left(\left.\sigma^{\phi \phi^{\sigma}}\right|_{P_{M} M P_{i}}\right)$ is closed, $\boldsymbol{G}_{i} \subseteq \mathrm{Sp}\left(\left.\sigma^{\phi}\right|_{P_{1} M P_{i}}\right)$ holds. Corversely let $r \in \mathbf{R} \backslash G_{i}$. Choose a function $f \in L^{1}(\mathbb{R})$ with $\hat{f}(r) \neq 0$ and $\left.\hat{f}\right|_{G_{i}}=0$. We have

$$
\left.\sigma_{f}^{\phi}\right|_{A_{i} M P}\left(P_{i} S_{\xi} S_{\eta}^{*} P_{i}\right)=f\left(\beta\left(\omega_{\xi}-\omega_{\eta}\right)\right) P_{i} S_{\xi} \mathcal{S}_{\eta}^{*} P_{i}
$$

If $P_{i} S_{\xi} S_{\eta}^{*} P_{i} \neq 0$, then we have $s(\xi)=s(\eta)=i$ and $A(r(\xi), j)=A(r(\eta), j)=1$ for some $j \in I$. Since A is irreducible, there is an admiasible word ζ with $g(\zeta)=j$ and $A(r(\zeta), i)=1$. Two admiasible words $\xi \cdot \zeta, \eta \cdot \zeta$ are loops with $s(\xi \cdot \zeta)=s(\eta \cdot \zeta)=i$. Hence

$$
\beta\left(\omega_{\xi}-\omega_{\eta}\right)=\beta\left(\omega_{\xi}+\omega_{\zeta}-\omega_{\eta}-\omega_{\zeta}\right)=\beta\left(\omega_{\xi \cdot G}-\omega_{1 \cdot \zeta}\right) \in G_{i} .
$$

We therefore obtain $\left.f \in \mathrm{Kera}^{\boldsymbol{\phi}}\right|_{\text {AMPR }}$. It follows from Lemma 4.1 that $\Gamma\left(\sigma^{* *}\right)=$ G. In the case (1), we have $G=r \mathbf{Z}$ for some $r \in \mathbf{R}_{+}$and λ is determined by e^{-r}

Example 4.3. Let $F_{i n}$ be the free group with the canonical generators a_{1}, \ldots, a_{n} and $S=\left\{a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right\}$ the generating set. The corresponding Cayley graph is the homogeneous tree with degree 2 n . We define a compact space by

$$
\Omega=\left\{\left(x_{i}\right)_{i=1}^{\infty} \mid x_{i} \neq x_{i+1}^{-1}\right\} \subseteq \prod_{i=1}^{\infty} S
$$

Note that Ω is compact and Γ acta on Ω by left multiplications. We remark that Ω coinsides with the hyperbolic boundary $\mathcal{O F}_{n}$ of F_{n}. In [Spi], Spielberg showed the identification $O_{A} \simeq C(\Omega) \times F_{n}$, where

$$
A=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 1 & \cdots & 1 & 1 \\
0 & 1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 1 & 1 & 0 & \cdots & 1 & 1 \\
1 & 1 & 0 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & 1 & 1 & 1 & \cdots & 1 & 0 \\
1 & 1 & 1 & 1 & \cdots & 0 & 1
\end{array}\right)(2 n \times 2 n \text {-matrix })
$$

We now apply Theorem 4.2 to $O_{A} \simeq C(\Omega) \times \mathbb{F}_{n}$. Note that the canonical masa $C\left(\Omega_{A}\right)$ of \mathcal{O}_{A} coinsides with $C(\Omega)$. Let $\omega=\left(\omega_{x}\right)_{x \in S} \in \mathbf{R}_{+}^{2 n}$ and ν the corresponding probability measure on Ω, which induces the KMS state for α^{ω} By Theorem 4.2, we have the following:
(1) If $\omega_{x} / \omega_{\nu} \in Q$ for all $x, y \in S$, then $L^{\infty}(\Omega, \nu) \times \mathbf{N}_{n}$ is the AFD type III ${ }_{\lambda}$ foctor for some $0<\lambda<1$.
(2) If $\omega_{z} / \omega_{1} \& Q$ for some $x, y \in S_{t}$ then $L^{\infty}(\Omega, \nu) \times \mathbb{F}_{n}$ is the $A F D$ type Π_{1} factor.
Let μ be a probability measure on \mathbf{F}_{n} with supp $\mu=S$. By [Oka], the random walk with law μ induces the harmonic measure ν on Ω such that the modular automorphism group of the state $\nu 0 \Phi$ has the form α^{ω} for some $\omega=\left(\omega_{x}\right)_{x \epsilon \mathcal{S}} \in \mathbf{R}_{+}^{2 n}$ Therefore the above result almo means that we determine the type of harmonic measures on Ω (cf. [RR]).
Remark 4.4. We can also prove the same results for \mathcal{O}_{r} in [Oka] in the same way, where Γ is an amalgamated free product group * ${ }_{B} G_{i}$. Here, we will give a sketch of the proof.

Let I be a finite index set and G_{i} a group containing a copy of a group H as a subgroup for $i \in I$. We assume that G_{i} is finite for simplicity. O_{T} is the universal C^{*}-algebra generated by partial isometriea $S_{g}, g \in \bigcup_{t \in I} G_{i} \backslash H$ and unitaries U_{h}, $h \in H$ satisfying certain conditions (see [Okz]). We use some symbols in [Oks]. For $\omega=\left(\omega_{i}\right)_{i \in I} \in \mathbf{R}_{+}^{|\Gamma|}$, we consider the action α^{ω} of \mathbf{R} given by

$$
\begin{array}{ll}
\alpha_{t}^{\psi}\left(S_{g}\right)=e^{\sqrt{-1 \omega_{i} t}} S_{g} & \text { for } i \in I, g \in G_{i} \backslash H, \\
\alpha_{i}^{*}\left(U_{h}\right)=U_{h} & \text { for } h \in H,
\end{array}
$$

where $|I|$ is the cardinality of I. Remark that there is an identification $O_{T} \simeq$ $C(\Omega) \times \Gamma$ for some compact space Ω ($[0 \mathrm{ka}$, Theorem 5.3]). Let Φ be the canonical conditional expectation from $C(\Omega) \rtimes \Gamma$ onto $C(\Omega)$. It, was shown that there is the unique β-KMS state $\phi=\nu \circ \Phi$ for α^{ω}, where ν is the corresponding probability measure on Ω. However the difference from the above example is that $C(\Omega)$ may be not a masa of the fixed-point algebra under α^{ω}. Therefore we need some arguments to obtain the similar result for O_{T}. Choose a masa $C_{\text {, containing }}^{C(\Omega)}$. We assume that $\Gamma=*_{H} G_{i}$ satisfies the following condition:

For any $i \in I$, there is an element $\gamma_{i}=g_{1} \cdots g_{n} \in \Gamma$ such that $h \gamma_{i} H \neq \gamma_{i} H$ for any $(e \neq) h \in H$, where $g_{k} \in G_{i_{4}} \backslash H$ with $i=i_{1} \neq i_{2}, i_{3} \neq i_{s_{1}} \ldots, i_{n-1} \neq i_{n}$.

We remark that the above assumption holds if $\Gamma={ }^{*} H_{H} G_{i}$ satisfies the condition of [Oka, Corollary 6.4]. Fix γ_{i} satisfying the above. Let ψ be the restriction of ϕ on the fixed-point algebra under $\mathcal{O}_{\Gamma}^{\alpha+}$ For $g \in G_{i} \backslash H$, we set

$$
\theta_{m}^{\prime g}=\sum_{\xi, \eta} S_{\xi} S_{\gamma_{i}} S_{\eta} P_{s} S_{\xi}^{*} S_{\psi}^{*} S_{\eta}^{*}
$$

where ξ, ग run over all words from g to an element, which is not in G_{i}, with length m if $|I|>2$ and length $2 m$ if $|I|=2$. Let π_{ψ} be the GNS-representation of ψ. Then we will get the similar result of Lemma 3.3.
Lemma 4.5. For $f \in \pi_{\psi}(C)^{\prime \prime}$ and $a \in \pi_{\psi}\left(O_{\Gamma}^{\alpha}\right)^{\prime \prime}$, we have

$$
\lim _{m \rightarrow \infty} \psi\left(\theta_{m}^{(g)} f \theta_{m}^{(g)} a\right)=\psi\left(P_{g} f\right) \psi\left(P_{g} a\right) x_{g} y_{g}^{2} z_{\gamma_{i}}
$$

where $x_{g}, y_{g}, z_{\gamma_{i}}$ are some constants.

Using this lemma, we can prove the following similarly.
Proposition 4.6.

$$
Z\left(\pi_{申}\left(O_{\Gamma}^{\alpha^{*}}\right)^{\prime \prime}\right)=\left\{\begin{array}{cc}
\Theta_{i \in I} C P_{i} & \text { f }|I|=2, \\
C 1 & \text { if }|I|>2 .
\end{array}\right.
$$

Hence we can compute the Connes spectrom of the modular automorphism group in the similar way. This gives a generalization on [RR].
Corollary 4.7. Let $\mathcal{O}_{\Gamma}, \omega, \phi_{,} \nu$ be the above and π_{ϕ} the GNS-representation of ϕ. Then
(1) If $\omega_{i} / \omega_{j} \in \mathbb{Q}$ for any $i, j \in I$, then $\pi_{\rho}\left(O_{T}\right)^{n} \simeq L^{\infty}(\Omega, \nu) \times \Gamma$ is the $A F D$ type III ${ }_{\lambda}$ factor for some $0<\lambda<1$.
(2) If $\omega_{i} / \omega_{j} \notin Q$ for some $i, j \in I$, then $\pi_{\phi}\left(O_{\Gamma}\right)^{\prime \prime} \simeq L^{\infty}(\Omega, \nu) \times \Gamma$ is the AFD type Π_{1} factor.

References

[Con] A. Connee, Une clastifiation det facteurs de type III, (French) Ann. Sch. Erols Norm. Sup. 6 (1973), 13S-252.
[Cun] J. Cunts, Simple C^{+}-algebras generated by isometriss, Commun. Math. Phyar 57 (1977), 173-185.
[CK] J. Cunts and W. Krfeger, A clase of C" algebrad and Copalogical Markav chadne, Invent. Math 56 (1980) 251-288.
[EL] R. Erel and M. Lace, Portiol Dynomteal Suatems and the KMS Condidon, proprint (2000)
[सFW] M. Enomoto, M. Fujii and Y. Watatani, KMS atates for gatpe antion on O_{A}. Math. Japon. 99 (1984), no. 4, 607-619.
[Eva] D.E. Evane, $O_{n} O_{n}$, Publ. RMMB, Kyoto Unlv. 16 (1980) 915-927.
[Istu] M.Isumi, Subalgebrns of Infinite C"-atgebren with finita Watatoni indices. I. Cuntr algebras, Comm. Math. Phys, 155 (1993), no. 1, 157-182.
 shifth, Univerultert. Springer-Verlag, Berlin, 1998.
[Oka] A. Okayan, Cundr-Krieger-Pinmer algebras asmociated with analganated fros product groeps, to appear in Publ. RIMS, Kyoto Untv.
[OP] D. Olesen and G.K. Pederson, Some G^{n}-dpanmical aystams with a single KMS atate, Math. Scand. 42 (1878), no. 1, 111-118.
[RR] J. Remagge and G. Robartaon, Factore from trees, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2051-2005.
[Spi] J. Spialberg, Frep product grousp, Cwnt-Krieger algebraf, and copardant mapp, Intarnat. J. Math. 2 (1991) 457-478.
[SV] S. Siritilix, and D. Voiculeacu, ficpresentations of AP-algebras and of the growp $U(\infty)$, Lecture Notes In Mathematica, Vol. 486. Springer-Verlog, Berlin-New York, 1975. vili+169 pp.

Deparimbent of Mathimatiog, Kyoto Universimy, Kyoto 606-8502, JAPAN

[^0]: 2000 Mathematics Subject Classification．Primary 47B10；Secondary 47B06，37B10，37B40．
 Key Word and Phases．perturbation theory，Macaev ideal，symbolic dynamics．

