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1 Introduction and main results

We consider the Cauchy problem of the Klein-Gordon-Zakharov

equations in three space dimensions:

(11 Ou— Au+u = —nu, t>0, z€R
(1.2) 0in — An = Alul?, t>0,zeR’
(13) _ : U(O,ZII) = Uo(:r), atu(oa "B) = ull(w))

n(0, z) = ne(z), 9n(0, z) = ny(z),

where 8, = 0/0t, and u(t,z) and n(t, z) are functions from R, x R®
to C® and from R4 x R® to R, respectively. The system (1.1)-(1.2)
describes the propagation of strong turbulence of the Langmuir wave
in a high frequency plasma (see [15]).

The usual Zakharov system

(1.4) idu+Au=nu, t>0, zeR3
(1.5) O2n — An = Alul?, t> 0, zeR?

is derived from (1.1)-(1.2) through the physical approximation proce-

dure.



In the present paper we consider solving (1.1)-(1.3) around the zero
solutions. There are many papers concerning the global existence of
small solutions for the coupled systems of the Klein-Gordon and wave
equations with quadratic nonlinearity (see, e.g., [1], [5]-{7], [9], [10],
[12] and [13]). The methods to solve those systems can be classified
into two groups (foi a good review of this matter, see Strauss [14]).
One is to use the Sobolev space with weight related to the genera-
tors of the Lorentz group. This was developed by Klainerman [9] and
[10]. The combination of this method and the null condition technique
has produced several nice applications to the hyperbolic systems of
physical importance (see, e.g., Bachelot [1] and Georgiev [6]). How-
ever, this method does not seem to be directly applicable to (1.1)-(1.3).
In fact, since the system (1.1)-(1.2) consists of the Klein-Gordon and
wave equations with quadratic nonlinearity in three space dimensions,
we need to use not only the Sobolev norms with weights related to the
generators of the Lorentz group but also the null condition technique
(see, e.g., Georgiev [5] and [6]), while the nonlinear terms in (1.1) and
(1.2)‘ do not seem to satisfy the null condition as they are. Another
method is based on the theory of normal forms introduced by Shatah
[12], which is an extension of Poincaré’s theory of normal forms to the
partial differential equations. In [16] the authors have applied the ar-
gument of normal form to (1.1)-(1.2) and proved the global existence
of solutions to(1.1)-(1.3) for small initial data. In [16] the authors have
also shown that these global solutions to (1.1)-(1.3) with small initial
data approach the free solutions asymptotically as ¢ — +o00. In this
note we briefly describe the results obtained in [16].

Before we state the main results in this paper, we give several no-
tations. For 1 < p < oo and a nonnegative integer m, let L? and W™?

denote the standard L? and Sobolev spaces on R>, respectively. We
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put H™ = W™2. For m € R, we let H™ = (-A)"™2[2. We put
w=(1-A)"Y2 and wy = (—A)Y2.
We have the following theorem concerning the global existence and

asymptotic behavior of solutions to (1.1)-(1.3) for small initial data.

Theorem 1.1 Let 0 < € < 107, Assume that ug € H® N
Ws6/(5+62) oy ¢ 2t O WI6/(5+60) o e H2 A WISB/2T \ -1 gpd
ni € HB¥ N W32/27 0 =2, Then, there exists a 6 > 0 such that if

(1.6) ||u0||st nW1515/(5*"6') + ”Ul ”H“ NW14,6/(5+6¢)

+“n0HH24nW“:”/27nH-i+”n1”H23nW13v28/27nH—2 < 5,

(1.1)-(1.8) have the unique global solutions (u,n) satisfying

(1.7) u € [ ([0, 00); H*7),

0y ne|A cfao,oo);ﬂ%-f)}n A o071,

1

(1.9) P lAtu®)llws-ssa-sa = OE+)  (t — o0),

3=0

(1.10) §||5‘3n(t)||ww—m =0 (t - o),

where § depends only on e. Furthermbre, the above solutions (u,n)
of (1.1)-(1.8) have the asymptotic sates uro € H2 uyy € H nyp €
H'Y nyy € H such that

(1.11) 2_% 1107 (u(t) — wy (2))|] r2-s

+ 31107 (n(t) = na () llzm-s = 0 (t - o0),

=0
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where

usp(t) = (coswt)uyo+ (Wt sinwt)uyy,

ne(t) = (coswot)nygo + (wytsinwet)ny.

Remark 1.1

(1) In three space dimensions, § C H~! but § C H~2, where § is
the Schwartz space on R>. For the details of the homogeneous Sobolev
space H™, see [2, §6.3 in Chapter 6].

(2) u4(t) and n4(t) are the solutions of the free Klein-Gordon equation
and the free wave equation with the initial conditions (u4(0), 8;u+(0))
= (U39, u41) and (n4+(0), 8:n4(0)) = (n40, n41), respectively. The rela-
tion (1.11) implies that the solutions of (1.1)-(1.3) given by Theorem
1.1 behave like the free solutions as t — .

(3) In connection with the usual Zakharov system (1.4)-(1.5) for three
space dimensions, it is'conjectured that if the initial data are large, the
solutions of (1.1)-(1.3) may not necessarily exist globally in time.

(4) In the case of one or two space dimensions, the global existence
result for small initial data can be proved more easily than the case of
three space dimensions. We do not need the time decay estimates to
show the global existence of solutions in the one and two dimensional

cases.

The following corollary is an immediate consequence of Theorem

1.1.

Corollary 1.2 Let 0 < e < 10~* and let m be a positive integer
with m > 25. Assume that ug € H™ Q W16/G+6e) o ¢ g™
W14,6/(5+65)’ no € Hm—lnwl4,28/27nf{—l, n, € Hm—2nW13,2s/27nf'I—2
and (uo, u1,no,n1) satisfy (1.6). Then, the solutions (u,n) given by
Theorem 1.1 satisfy
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(1.12) u€ ﬁ ¢ ([0, 00); H™),
(1.13) ne N 00, e0) H™10)

In addition, if ug, uy,ng, Ny € ﬂ;‘;lﬂj, then we have

(1.14) u(t, z), n(t,z) € C°([0,00) x R?).

The unique existence and regularity of local solutions for (1.1)-(1.3)
follows from the standard iteration argument. The crucial part of proofs
of Theorem 1.1 and Corollary 1.2 is to establish the a priori estimates
of the solutions for (1.1)-(1.3) in order to extend the local solutions
globa.lly in time. The global behavior of local solutions for (1.1)-(1.3)
can not be controlled directly, since the quadratic nonlinear term in
(1.1) does not provide a sufficient decay property for the three dimen-
sional case. Here we use the argument of normal forms of Shatah [12]

.to transform the quadratic nonlinearity into the cubic one. However,
in our problem the transformed cubic nonlinearity is represented in
terms of the integral operator with singular kernel (see (2.4)-(2.7) in
Section 2). The singularity of the integral kernel makes it difficult to
solve (1.1)-(1.3). This is different form the case of the system contain-
ing only the Klein-Gordon equations, where the integral kernels of the
resulting integral operators are regular (see [12]). Therefore, our main
task in the proof of Theorem 1.1 is to evaluate the singularity of the
integral kernel of the transformed cubic nonlinearity. This enables us
to apply the usual L? — L9 estimate to the transformed system, which
provides us with the sufficient decay properties of solutions to (1.1)-

(1.3) for the proof of Theorem 1.1. In Section 2 we apply the method
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of normal forms to our problem in order to transform the quadratic
nonlinearity into the cubic one. Detailed proof of Theorem 1.1 will be

given somewhere.

2 Normal form

In this section we show that the transformation exists for the system

| (1.1)-(1.2). We write (1.1)-(1.2) as a first order system

dU
(2.1) — = AU + F(D),
dt
where
u 0 0 10 0
n 0 0 0 1 0
U=lou| 2= a-1 0 0 of FO=|
on 0 A 00 Alul?
We consider the transformation with the following form:
v [U, B, U]
m — — — [U) BZ’ U]
) at'U =vV=U [U,B3,U] ’
8tm [U, B4, U]
where B; (j = 1,---,4) are 4 x 4 matrices and
(22) [U,B;,U]
‘ u
A n
= Jos e @m I OB (@ —v,2 - 2) | o | (dyds.
5tn

Let us consider the case j = 1. We put

0 0 0 O
_1G, 0 0 0
B“oooo

0 0 G, O

Here G; and G, are to be thought of as distributions and the integral

representation (2.2) is interpreted in an appropriate way. Then, we

99



100

have
v = u-—[n,Gi,u]—[0n,G2, o]

3 .

3 .
L - 0 Ga(z — — 2)0uy(2)dyd
b Jos s On()Galz =y, 2 = 2)0hu,()dydz,

Uy
u = Us | .
Us

We now compute 07v = 07(u — [n, G1,u] — [0, G3, Osu]):

where

Ov = Owu—[On, Gy, u] — [n,Gy, O]
— [82n, G2, Byu] — [Ben, G, 824]
= B — [On, Gy, u] — [n, G1, O]

—[An + Aluf?, G3, 8u] — [8in, Ga, Au — u+ nul,

Olv = 0}u—[An,G1,u] — 2[8in, Gy, 8]
—[n, Gy, Au — u] — [Adin, Gy, dsu] — 2[An, Gy, Au — u]
—[0in, G2, AByu — Oyu] + (cubic terms).
Moreover,
(-A+1)v = —Au+u+[An,Gi,u]l+ 23: 2[9;n, Gy, 0;u]
+[n, G1, Au] — [n, Gy, u] -:=[1Aam, G, 8]
+ 23: 2[0;0in, Gy, 0;0:u] + [0¢n, G2, Adsu]
—[Jgtln, Gs, Ou).
Theréfore
(2.3) 82v— Av+v = —nu—2[An,G;, Au]+ 2[An, Gy, u]

+ Z 2[ajn, Gl, 6121.] - 2[6tn, Gl, 3tu]
J

+ Y 2[8,0n, G2, 8;8,u] + (cubic terms).
J



We choose the distributions G, and Gz‘so that all quadratic terms in
(2.3) cancel out:

(2.4) —nu — 2[An, Gy, Au] + 2[An, Gy, u] + Y 2[0;n, Gy, B;u]
J

—2[0n, G4, Osu] + Z 2[0,0:n, G2, 0;0,u] = 0.
]
Here we define the Fourier transform of G; by
Gi(p0) = [os, s & TGy, ) dyds.
Then equation (2.4) becomes
—1-2|pP’|gl*Gs(p, 9) — 2lpI*Ca(p,9) — 2 - 4Gi(p,q) = O,
~Gi(p,9) —p-9Galp,q) = O

Thus, we obtain

’ = N p-q
(25) Gpg) = PP~ & 0P+ Y

2{pllgl> — (p- 9)2 + [P}

We next consider the case 7 = 2. Similarly we put

26  Gip9)

m = n — [u, Hy, u] — [Oyu, H,, Oul.

As before, we obtain

(p-g—1lp+4q

(2.7) Hi(p, q) 2{|pl2lgl> — (p- 9)% + |p + 2}’
(2.8) H(p,q) g

2{lpl?lel* — (p- 9)* + [p + al?}
We have thus completed the construction of the normal form, as re-

quired.
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