<table>
<thead>
<tr>
<th>Title</th>
<th>Extremal Problems and Ramsey Properties of Ball, Box or Orthant containing many points in R^d - And Combinatorics of Permutations (Computational Geometry and Discrete Geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ISHIGAMI, YOSHIYASU</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1994, 872: 79-81</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1994-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/84073</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Extremal Problems and Ramsey Properties of Ball, Box or Orthant containing many points in \mathbb{R}^d — And Combinatorics of Permutations

YOSHIYASU ISHIGAMI*
Department of Mathematics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169, Japan.

1 Ball and Box

For any points $x = (x_1, \ldots, x_d), y = (y_1, \ldots, y_d) \in \mathbb{R}^d$, let $Box_d(x, y)$ be the smallest d-dimensional standard box in \mathbb{R}^d which contains the two points x, y, i.e.

$$Box_d(x, y) := \{z = (z_i) \in \mathbb{R}^d | x_i \leq z_i \leq y_i \text{ or } x_i \geq z_i \geq y_i \text{ for any } 1 \leq i \leq d\} - \{x, y\}.$$

And let $Ball_d(x, y)$ be the smallest d-dimensional ball in \mathbb{R}^d which contains the two points $x, y \in \mathbb{R}^d$, i.e.

$$Ball_d(x, y) := \left\{ \frac{1}{2}(x + y) + r \mid \|r\| \leq \frac{1}{2}\|x - y\| \right\} - \{x, y\},$$

where $\| \cdot \|$ means the euclidean norm.

For any positive integers d, n, if $F = Box$ or $Ball$, then we define $\Pi^F(n, d)$ the largest number which satisfies the condition (*) "For any set P of n points in \mathbb{R}^d, there exist two points $x, y \in P$ such that $F_d(x, y)$ contains $\Pi^F(n, d)$ points of $P."$

When "For any set P" is replaced by "For any convex set P" in (*), we denote $\Pi^F(n, d)$ by $\overline{\Pi}^F(n, d)$.

Clearly, $\Pi^{Box}(n, 1) = \Pi^{Ball}(n, 1) = \Pi^{Ball}(n, 1) = \Pi^{Ball}(n, 1) = n$.

Proposition 1 $\Pi^{Box}(n, 2) = \left\lceil \frac{n-4}{5} \right\rceil$, $\Pi^{Box}(n, 2) = \left\lceil \frac{n}{2} \right\rceil - 1$.

*Partially supported by the Grant in Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan
Theorem 2 \(\Pi^{\text{Ball}}(n, 2) = \overline{\Pi}^{\text{Ball}}(n, 2) = \left\lceil \frac{n}{3} \right\rceil - 1 \).

J.Urrutia conjectured \(\overline{\Pi}^{\text{Ball}}(n) \geq n/2 \). Theorem 2 disproves it.

Theorem 3 For any integer \(n,d(\geq 1) \),
\[
\left(\frac{2}{8^{d-1}} \right) n \leq \Pi^{\text{Box}}(n,d) \leq \left(\frac{9.49}{2^{2^{d-1}}1.47^{d}} \right) n + 2.
\]

Theorem 4 For any integer \(n,d(\geq 1) \),
\[
\left(\frac{2}{8^{d}} \right) n - 2 \leq \Pi^{\text{Ball}}(n,d) \leq \left(\frac{2}{1.15^{d}} \right) n.
\]

It is interesting to compare Theorem 3 with Erdős-Szekeres Theorem (R\(^d+1\)-version).

2 Orthant and Permutation

N.G.de Bruijn extended the Erdős-Szekeres Theorem "Any sequence of integers of length \(n \) contains a monotone subsequence of length \(\lceil \sqrt{n} \rceil \) (best possible) " to a result about sequences of \(d \)-dimensional vectors, which includes the following proposition:

Let \(r(d) \) be the largest number such that there is a set \(P \) of \(r(d) \) points of \(\mathbb{R}^d \) whose boxes are empty, i.e. \(\text{Box}_d(x,y) \cap P = \emptyset \) for any \(x,y \in P \). Then \(r(d) = 2^{2^{d-1}} \).

N. Alon, Z. Füredi and M. Katchalski studied a set of \(n \) points of \(\mathbb{R}^d \) having many empty boxes.

When \(P \) is a finite set of points of \(\mathbb{R}^d \), for \(x = (x_i)_i \in P \) and for \(\epsilon \in \{-1,1\}^d \), consider the \(\epsilon \)-th orthant having \(x \) as the origin,

\[
\text{Orth}_d(x,\epsilon) := \{ z \in \mathbb{R}^d \mid \forall i, \text{ if } \epsilon = 1, z_i \geq x_i, \text{ and if } \epsilon = -1, z_i \leq x_i \} - \{ x \}.
\]

Theorem 5 Let \(l(d) \) be the largest number such that there is a set \(P \) of \(l(d) \) points of \(\mathbb{R}^d \) whose orthants contains at most one point, i.e. \(|\text{Orth}_d(x,\epsilon) \cap P| \leq 1 \) for \(\forall x \in P \) and \(\forall \epsilon \in \{-1,1\}^d \). Then
\[
1.47^d \leq l(d) \leq c \left(\frac{d}{\lceil d/4 \rceil} \right) < 1.76^d
\]

for an absolute constant \(c \) and any sufficiently large \(d \). (The lower bound can be shown constructively.)
Let $t, n(t \leq n)$ be positive integers and A a set of n elements. A finite sequence $\sigma = \sigma(1)\sigma(2) \cdots \sigma(t)$ is a t-permutation of A if and only if $\sigma(i) \in A$ for any $1 \leq i \leq t$ and $\sigma(i) \neq \sigma(j)$ for $1 \leq i < j \leq t$. The inverse of σ is the sequence $\sigma^{-1} = \sigma(t)\sigma(t-1) \cdots \sigma(1)$. Note that the inverse of a t-permutation is a t-permutation. A n-permutation σ of A contains a t-parmutation of A if τ is a subsequence of σ. Let $n_t(d)$ \([n_t^*(d) \] be the largest number n having d n-permutations $\{\sigma_1, \sigma_2, \cdots, \sigma_d\}$ of A such that for any t-permutation τ of A, there exists $\sigma_i(1 \leq i \leq d)$ containing τ \(\nu \) or τ^{-1}]. A simple argument show that

$$l(d) = n_3^*(d).$$

For example, the five orders 1643275, 2654371, 3615472, 4621573, 5632174 of \{1, 2, \cdots, 7\} yields $n_3^*(5) \geq 7$. We will obtain bounds of $n_t(d)$ and $n_t^*(d)$.

Theorem 6

(i) For $t \geq 4$ and $d \geq t!$,

$$\left(1 - \frac{1}{t}\right) \left(\frac{1}{t} \right) \left(\frac{t!}{t! - 1} \right) \left(\frac{t}{t! - 1} \right) \leq n_t(d) \leq t - 3 + \left(\frac{d}{d} \right) \left(\frac{d}{(t-2)!} \right) \left(\frac{t}{t! - 1} \right) \left(\frac{t}{t! - 1} \right).$$

(ii) For $t \geq 6$ and $d \geq t!$,

$$\left(1 - \frac{1}{t}\right) \left(\frac{2}{t} \right) \left(\frac{1}{t! - 1} \right) \left(\frac{t!}{t! - 2} \right) \leq n_t^*(d) \leq t - 4 + \left(\frac{d}{d} \right) \left(\frac{d}{(t-3)!} \right) \left(\frac{t}{t! - 1} \right) \left(\frac{t}{t! - 1} \right).$$

References

[5] Ishigami, Y., An extremal problem of orthants containing at most one point besides the origin. Discrete Mathematics (to appear)