

· · · · · · · · · · · · · · · · · · ·	
Title	The Gradient Theory of the Phase Transitions in Cahn-Hilliard Fluids with the Dirichlet boundary conditions(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)
Author(s)	ISHIGE, KAZUHIRO
Citation	数理解析研究所講究録 (1994), 862: 219-230
Issue Date	1994-03
URL	http://hdl.handle.net/2433/83851
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

The Gradient Theory of the Phase Transitions in Cahn-Hilliard Fluids with the Dirichlet boundary conditions

石毛 和弘 (KAZUHIRO ISHIGE)

Department of Mathematics, Faculty of Science Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo, 152, Japan

1. Introduction

In this note we will investigate the asymptotic behavior of minimizer $\{u_{\epsilon}\}_{{\epsilon}>0}$ (as ${\epsilon}\to 0$) of the following variational problem:

$$(P_{\epsilon}) \qquad \inf \bigg\{ \int_{\Omega} [\epsilon |\nabla u|^2 + \frac{1}{\epsilon} W(x, u)] dx \ \bigg| \ u \in W^{1,2}(\Omega : \mathbb{R}^n), \ u = g \text{ on } \partial \Omega \bigg\},$$

where Ω is a bounded domain in \mathbb{R}^N with C^2 smooth boundary $\partial\Omega$ and g is a Lipschitz continuous function from $\partial\Omega$ into \mathbb{R}^n . Here $W(x,\cdot)$ is a nonnegative continuous function which has two potential wells with equal depth. This type of problem is related to the study of the phase transitions of the Cahn-Hilliard fluids. See [8] and [9].

In [7] R.V.Kohn & P.Sternberg conjectured that minimizer of the variational problem, which is special case of (\mathcal{P}_{ϵ}) ,

$$(SP_{\epsilon}) \qquad \inf\left\{ \int_{\Omega} [\epsilon |\nabla u|^2 + \frac{1}{\epsilon} (u^2 - 1)^2] dx \, \middle| \, u \in W^{1,2}(\Omega), \, u|_{\partial\Omega} = g \right\}$$

converges to a solution of

$$\inf \left\{ \frac{8}{3} P_{\Omega} \{ u = 1 \} + 2 \int_{\partial \Omega} |d(u) - d(g)| d\mathcal{H}_{N-1} \, \middle| \, u \in BV(\Omega), \, |u| = 1 \text{ a.e.} \right\},$$

where $d(t) = \int_{-1}^{t} |s^2 - 1| ds$. Here \mathcal{H}_{N-1} is the N-1 dimensional Hausdorff measure.

In this note, we will study the asymptotic behavior of minimizer of (P_{ϵ}) , and as a byproduct, we will state the affirmative results to the conjecture in [7].

Recently using the theory of Gamma-convergence, several authors studied the asymptotic behavior of the minimizer of the problem:

$$(E_{\epsilon}) \qquad \inf \bigg\{ \int_{\Omega} \left[\epsilon |\nabla u|^2 + \frac{1}{\epsilon} W(u) \right] dx \ \bigg| \ u \in W^{1,2}(\Omega : \mathbb{R}^n), \int_{\Omega} u(x) dx = m \bigg\},$$

where m is a constant vector in \mathbb{R}^n . For the scalar case (i.e. n=1), see [8] and [9]. For the vector case (i.e. $n \geq 2$), see [1] and [4]. Our results on the problem (P_{ϵ}) depend mainly on the study of asymptotic behavior of minimizer of (E_{ϵ}) . However there are several different aspects between the asymptotic behavior of minimizer of (P_{ϵ}) and that of (E_{ϵ}) . In fact, minimizer of (E_{ϵ}) generates the only interior layer, but minimizer of (P_{ϵ}) generates both the interior and the boundary layers as $\epsilon \to 0$.

On the other hand, we can easily see that minimizer of (SP_{ϵ}) satisfies the equation:

(CP_{\epsilon})
$$\begin{cases} \epsilon^2 \Delta u - u(u-1)(u+1) = 0 & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \partial \Omega. \end{cases}$$

Then there exist several results for the solutions of (CP_{ϵ}) obtained by using the method of matched expansion. Our results also seem to be closely related to [2] and [3].

We will give the precise conditions of the functions W(x,u) and g(x). Let W(x,u): $\overline{\Omega} \times \mathbb{R}^n \to \mathbb{R}$ be a continuous nonnegative function, and for any $x \in \overline{\Omega}$ W(x,u) = 0 if and only if $u = \alpha$ or β . Here we note α and β are constant vectors independent of x. We assume that there exist two constants K_1 and K_2 such that

(1.1)
$$\sup_{u \in \partial [K_1, K_2]^n} W(x, u) \le W(x, v) \quad \text{for all } x \in \overline{\Omega}, v \notin [K_1, K_2]^n$$

and

(1.2)
$$g(x) \in [K_1, K_2]^n$$
 for all $x \in \partial \Omega$.

Moreover we set $W_{\infty}(\cdot) = \inf_{x \in \overline{\Omega}} W(x, \cdot)$ and assume that for any $\epsilon > 0$ there exists a positive constant δ such that

$$|W^{1/2}(x,u) - W^{1/2}(y,u)| \le \epsilon W_{\infty}^{1/2}(u)$$

for all $x, y \in \overline{\Omega}$ with $|x - y| \le \delta$ and all $u \in \mathbb{R}^n$. Here from the definition of $W_{\infty}(u)$ and (1.3) we have the following relation

$$|W^{1/2}(x,u) - W^{1/2}(y,u)| \le \epsilon W^{1/2}(x,u)$$

for all $x, y \in \overline{\Omega}$ with $|x - y| \le \delta$ and for all $u \in \mathbb{R}^n$.

We think that the conditions (1.1) and (1.3) are not restrictive. In fact, consider continuous functions W(u), h(x), where W(u) satisfies the condition (1.1) and where h(x) is positive function in $\overline{\Omega}$. If the function W(x,u) has a form of h(x)W(u), then we can see that W(x,u) satisfies the conditions (1.1) and (1.3).

In order to state the main theorem, we will introduce a Riemannian metric on \mathbb{R}^n , d(x,a,b) which depends on $x \in \overline{\Omega}$. For $x \in \overline{\Omega}$ and $a,b \in \mathbb{R}^n$, let d(x,a,b) be the metric defined by

(1.4)
$$d(x, a, b) = \inf \left\{ \int_0^1 W^{1/2}(x, \gamma(t)) |\dot{\gamma}(t)| dt \, \middle| \, \gamma \in C^1([0, 1] : \mathbb{R}^n), \right.$$

$$\gamma(0) = a, \, \gamma(1) = b \right\}.$$

For example, in the case of $W(x, u) = (u^2 - 1)^2$ and n = 1, we have

$$d(x, -1, b) = \int_{-1}^{b} |s^2 - 1| ds$$
 for $b \ge -1$.

We now state our main theorem of this note.

Theorem 1. (See [6].) Suppose that function W satisfies (1.1) and (1.3) and that g satisfies (1.2). For $\epsilon > 0$, let u_{ϵ} be a solution of the variational problem:

$$\inf \{ \int_{\Omega} [\epsilon |\nabla u|^2 + \frac{1}{\epsilon} W(x, u)] dx \mid u \in W^{1,2}(\Omega : \mathbb{R}^n), u|_{\partial\Omega}(x) = g(x) \}.$$

If there exist a positive sequence $\{\epsilon_i\}_{i=1}^{\infty}$ and a function $u_0(x) \in L^1(\Omega : \mathbb{R}^n)$ such that

(1.5)
$$\lim_{i \to \infty} \epsilon_i = 0 \quad and \quad \lim_{i \to \infty} u_{\epsilon_i} = u_0 \quad in \ L^1(\Omega : \mathbb{R}^n),$$

then the function u_0 is characterized by

 $W(x, u_0(x)) = 0$ for almost all $x \in \Omega$, that is, $u_0(x) = \alpha$ or β for almost all $x \in \Omega$.

Moreover the set $E_0 = \{x \in \Omega \mid u_0(x) = \alpha\}$ is a solution of the variational problem (P_0) :

(P₀)
$$\inf \{ \int_{\Omega \cap \partial^* E} d(x, \alpha, \beta) d\mathcal{H}_{N-1} + \int_{\partial \Omega} d(x, v|_{\partial \Omega}(x), g(x)) d\mathcal{H}_{N-1} \mid E \subset \Omega, P_{\Omega}(E) < \infty, v = \alpha \chi_E + \beta \chi_{\Omega \setminus E} \},$$

where $P_{\Omega}(E)$ is a perimeter of E in Ω and $v|_{\partial\Omega}$ is the trace of v to $\partial\Omega$. Furthermore we have

$$\lim_{i \to \infty} \int_{\Omega} \left[\epsilon_{i} |\nabla u_{\epsilon_{i}}|^{2} + \frac{1}{\epsilon_{i}} W(x, u_{\epsilon_{i}}) \right] dx = 2 \int_{\Omega \cap \partial^{*} E_{0}} d(x, \alpha, \beta) d\mathcal{H}_{N-1}$$

$$+ 2 \int_{\partial \Omega \cap \partial^{*} E_{0}} d(x, \alpha, g(x)) d\mathcal{H}_{N-1} + 2 \int_{\partial \Omega \setminus \partial^{*} E_{0}} d(x, \beta, g(x)) d\mathcal{H}_{N-1}.$$

Here $\partial^* E_0$ is the reduced boundary of E_0 .

Remark. It is not restrictive to assume that there exists a subsequence $\{u_{\epsilon_i}\}_{i=1}^{\infty}$ satisfying (1.5). In fact, the following is proved in [4] and [5]: if there exist constants C and R such that

(1.6)
$$W_{\infty}(u) \ge C|u| \quad \text{for} \quad |u| \ge R,$$

then there exists a subsequence $\{u_{\epsilon_i}\}_{i=1}^{\infty}$ satisfying (1.5).

It is worth noting that the study of asymptotic behavior of minimizer of (P_{ϵ}) occurs a completely different difficulty from that of (SP_{ϵ}) . One of the difficulties is that the selection of minimizing sequence $\{\gamma_k\}_{k=1}^{\infty}$ achieving the value of $d(x, \alpha, g(x))$ depends on the space variable x. In order to overcome this difficulty, we approximate $W(\cdot, u)$ and $g(\cdot)$ by suitable piecewise smooth functions near the transition layer and the boundary $\partial\Omega$.

2. The Main Propositions

At first, we will give functionals F_{ϵ} and F_0 from $L^1(\Omega : \mathbb{R}^N)$ into $[0, \infty]$. For $u \in L^1(\Omega : \mathbb{R}^n)$ and $\epsilon > 0$, we define $F_{\epsilon}(u)$, $F_0(u)$ by

$$F_{\epsilon}(u) = \begin{cases} \int_{\Omega} [\epsilon |\nabla u|^2 + \frac{1}{\epsilon} W(x, u)] dx, & \text{if } u \in W^{1,2}(\Omega : \mathbb{R}^n) \text{ and } u = g \text{ on } \partial\Omega, \\ +\infty, & \text{otherwise }, \end{cases}$$

$$F_{0}(u) = \begin{cases} 2 \int_{\Omega} d(x, \alpha, \beta) |\nabla \chi_{\{u(x) = \alpha\}}| + 2 \int_{\partial\Omega} d(x, u|_{\partial\Omega}(x), g(x)) d\mathcal{H}_{N-1}, \\ & \text{if } u \in BV(\Omega : \mathbb{R}^n) \text{ and } W(x, u(x)) = 0 \text{ for almost all } x \in \Omega, \\ +\infty, & \text{otherwise }. \end{cases}$$

In order to prove our main theorem, we need the following two propositions which are crucial in our analysis.

Proposition A. Suppose that $\{v_{\epsilon}\}_{{\epsilon}>0}$ is a sequence in $L^1(\Omega:\mathbb{R}^n)$ which converges in $L^1(\Omega:\mathbb{R}^n)$ as ${\epsilon}\to 0_+$ to a function v_0 . If

$$\liminf_{\epsilon \to 0_+} F_{\epsilon}(v_{\epsilon}) < +\infty,$$

then v_0 is a function in $BV(\Omega : \mathbb{R}^n)$ such that

$$F_0(v_0) \le \liminf_{\epsilon \to 0_+} F_{\epsilon}(v_{\epsilon}).$$

Proposition B. Suppose that $w_0 \in L^1(\Omega : \mathbb{R}^n)$ is a function with $w_0 = \alpha \chi_E + \beta \chi_{\Omega \setminus E}$ where E is a measurable subset in Ω with finite perimeter. Then there exists a sequence $\{w_{\epsilon}\}_{{\epsilon}>0}$ in $W^{1,2}(\Omega : \mathbb{R}^n)$ which converges in $L^1(\Omega : \mathbb{R}^n)$ as ${\epsilon} \to 0_+$ to w_0 such that

(2.1)
$$\limsup_{\epsilon \to 0_+} F_{\epsilon}(w_{\epsilon}) \leq F_0(w_0).$$

Using Propositions A and B, we can prove Theorem 1 as in the same matter with in [8]. Therefore we have only to prove Proposition A and B. In this note, we will only prove Proposition B for the special case.

On the other hand, in Theorem 1, the minimizers $\{u_{\epsilon}\}_{{\epsilon}>0}$ do not always generate interior layers. For example, if we consider the problem (SP_{ϵ}) with $g\equiv 0$, we have $E_0=\Omega$ or \emptyset . In contrast, considering the family of *local* minimizers, from Theorem 1 and the results of [7], we obtain the following theorem.

Theorem 2. Let $u_0 \in L^1(\Omega : \mathbb{R}^n)$ be a isolated L^1 -local minimizer of F_0 , that is,

there exists a positive constant δ such that $F_0(u_0) < F_0(v)$ whenever $u \neq v$ and $||u_0 - v||_{L^1(\Omega : \mathbb{R}^n)} \leq \delta$.

Then there exist a constant $\epsilon_0 > 0$ and a sequence $\{u_{\epsilon}\}_{{\epsilon}<{\epsilon_0}}$ such that u_{ϵ} is a local minimizer of F_{ϵ} and $u_{\epsilon} \to u_0$ in $L^1(\Omega:\mathbb{R}^n)$ as ${\epsilon} \to 0$.

3. Proof of Proposition B

In this section, we will only prove Proposition B for the special case that $w_0 \equiv \alpha$ in Ω . In order to prove Proposition B for the case of $w_0 \equiv \alpha$, we need the following two lemmas. The first lemma is obtained easily by the inverse mapping theorem.

Lemma 3–1. Let Ω be a bounded domain with C^2 -smooth boundary $\partial\Omega$. For $x \in \partial\Omega$ let $\nu(x)$ be a inner normal vector to $\partial\Omega$ at x. Define a mapping $\pi:\partial\Omega\times[0,\infty)\to\mathbb{R}^N$ by

(3.1)
$$\pi(x,t) = \pi_t(x) = x + t\nu(x).$$

Then there exists a constant s_0 such that the image of π in $\partial\Omega \times (0, s_0]$ is contained in Ω and the C^1 -smooth inverse mapping π^{-1} of π exists in $\pi(\partial\Omega \times [0, s_0])$.

Lemma 3–2. (See [8] and [9].) Let Ω be an open bounded subset of \mathbb{R}^N with Lipschitz-continuous boundary. Let A be an open subset of \mathbb{R}^N with C^2 , compact, nonempty

boundary such that $\mathcal{H}_{N-1}(\partial A \cap \partial \Omega) = 0$. Define a distance function to ∂A , $d_{\partial A}: \Omega \to \mathbb{R}$, by $d_{\partial A}(x) = \operatorname{dist}(x, A)$. Then, for some $s_1 > 0$, $d_{\partial A}$ is a C^2 -function in $\{0 < d_{\partial A}(x) < s_1\}$ with

$$(3.2) |\nabla d_{\partial A}| = 1.$$

Furthermore, $\lim_{s\to 0} \mathcal{H}_{N-1}(\{d_{\partial A}(x)=s\}) = \mathcal{H}_{N-1}(\partial A \cap \Omega)$ and

$$(3.3) |\{x \mid |d_{\partial A}(x)| < s\}| = O(s).$$

By $d_{\partial\Omega}(x)$ we denote a function $\operatorname{dist}(x,\partial\Omega)$. From Lemma 3–2, we can see that $d_{\partial\Omega}$ is a C^2 -function. We set $s^* = \min\{s_0,s_1\}$. For any $\nu \in \mathbb{S}^{N-1}$ we denote by Q_{ν} the open unit cube centered at the origin with two of its surfaces normal to ν . Furthermore for $x \in \partial\Omega$, $\eta > 0$, and sufficiently small δ with $0 < \delta < s^*$, we set $\partial\Omega_{\eta}(x) = \partial\Omega \cap (x + \eta Q_{\nu(x)})$ and $\Omega^{\delta}_{\eta}(x) = \bigcup_{\delta \leq t \leq s^*} \pi_t(\partial\Omega_{\eta}(x))$.

We will start to prove Proposition B for the special case $w_0 \equiv \alpha$. The proof of Proposition B for the case of $w_0 = \alpha$ requires three steps.

The First Step: Let x_0 be any point in $\partial\Omega$. In this step, for any sufficiently small $\eta > 0$ we will construct a family $\{w_{\epsilon}^{\delta}\}_{\epsilon,\delta>0} \subset W^{1,2}(\Omega_{\eta}^{\delta}(x_0):\mathbb{R}^n)$ such that

(3.4)
$$\limsup_{\epsilon,\delta\to 0} \int_{\Omega_n^{\delta}} [\epsilon |\nabla w_{\epsilon}^{\delta}|^2 + \frac{1}{\epsilon} W(x_0, w_{\epsilon}^{\delta})] dx \leq 2d(x_0, \alpha, g(x_0)) \mathcal{H}_{N-1}(\partial \Omega_{\eta}(x_0)).$$

In this step, for simplicity, we set $\Omega_{\eta}^{\delta} = \Omega_{\eta}^{\delta}(x_0)$.

In order to construct $\{w_{\epsilon}^{\delta}\}_{\epsilon,\delta>0}$, we fix $\epsilon,\delta>0$, and consider the following ordinary differential equation:

(3.5)
$$\begin{cases} \frac{d}{dt} y_{\epsilon}(t) = \frac{\left[\epsilon^{1/2} + W(x_0, \gamma(y_{\epsilon}(t)))\right]^{1/2}}{\epsilon |\dot{\gamma}(y_{\epsilon}(t))|}, \\ y_{\epsilon}(\delta) = 0. \end{cases}$$

Here by $\dot{\gamma}$ we denote $d\gamma(t)/dt$, and assume that $\gamma \in C^1([0,1]:[K_1,K_2]^n), \ \gamma(0)=\alpha,$ $\gamma(1)=g(x_0).$ We set

$$\psi_{\epsilon}(t) = \int_0^t \frac{\epsilon |\dot{\gamma}(t)|}{[\epsilon^{1/2} + W(x_0, \gamma(t))]^{1/2}} dt$$

for $t \in (0,1)$. Then $\psi_{\epsilon}(t)$ is a monotone increasing function and

(3.6)
$$\tau_{\epsilon} \equiv \psi_{\epsilon}(1) \leq \epsilon^{3/4} \cdot \text{ length of } \gamma.$$

Here we set $\tilde{y}_{\epsilon}(t) = \psi_{\epsilon}^{-1}(t - \delta)$, and we can see that $\tilde{y}_{\epsilon}(t)$ satisfies (3.5) in $[\delta, \delta + \tau_{\epsilon}]$ and we define $y_{\epsilon}(t)$ by

$$(3.7) y_{\epsilon}(t) \equiv \max\{0, \min\{1, \tilde{y}_{\epsilon}(t)\}\}.$$

We separate Ω_{η}^{δ} to three domains $\Omega_{\eta,i}^{\delta}$, i=1,2,3 as follows:

(3.8)
$$\Omega_{\eta,1}^{\delta} \equiv \{x \in \Omega_{\eta}^{\delta} : d_{\partial\Omega}(x) < \delta + \tau_{\epsilon}, d_{S}(x) \leq \eta \tau_{\epsilon}\};$$
$$\Omega_{\eta,2}^{\delta} \equiv \{x \in \Omega_{\eta}^{\delta} : d_{\partial\Omega}(x) < \delta + \tau_{\epsilon}, d_{S}(x) \geq \eta \tau_{\epsilon}\};$$
$$\Omega_{\eta,3}^{\delta} \equiv \{x \in \Omega_{\eta}^{\delta} : d_{\partial\Omega}(x) \geq \delta + \tau_{\epsilon}\},$$

where $d_S(x)$ is a distance function to $\bigcup_{\delta < t < s^*} \pi_t [\partial \Omega \cap (x_0 + \eta \partial Q_{\nu(x_0)})]$. Here we define $w_{\epsilon}(x)$ on $\bigcup_{i=2,3} \Omega_{\eta,i}^{\delta}$ as follows:

(3.9)
$$w_{\epsilon}(x) = \begin{cases} \gamma(y_{\epsilon}(d_{\partial\Omega}(x))), & \text{if } x \in \Omega_{\eta,2}^{\delta}, \\ \alpha, & \text{if } x \in \Omega_{\eta,3}^{\delta}. \end{cases}$$

and extend w_{ϵ} to $\Omega_{\eta,1}^{\delta}$ such that for any $x \in \Omega_{\eta}^{\delta}$ with $d_{S}(x) = 0$ or $d_{\partial\Omega}(x) = \delta + \tau_{\epsilon}$, $w_{\epsilon}(x) = \alpha$ and

$$|\nabla w_{\epsilon}| \le 2/(K_2 - K_1)\eta \tau_{\epsilon} + C/\epsilon \le C(\eta \tau_{\epsilon})^{-1} + C\epsilon^{-1}.$$

For sufficiently small $\epsilon > 0$, we have the length of $\gamma < \epsilon^{-1/8}$ and $\tau_{\epsilon} \leq \epsilon^{5/8}$. Therefore we obtain

(3.10)
$$\int_{\Omega_{\eta,1}^{\delta}} \left[\epsilon |\nabla w_{\epsilon}|^{2} + \frac{1}{\epsilon} W(x_{0}, w_{\epsilon}) \right] dx \leq C \left[\epsilon / \eta^{2} \tau_{\epsilon}^{2} + 1/\epsilon \right] \tau_{\epsilon}^{N} \mathcal{H}_{N-1}(\partial \Omega_{\eta})$$
$$\leq C \left(\epsilon / \eta^{2} + \epsilon^{1/4} \right) \tau_{\epsilon}^{N-2} \mathcal{H}_{N-1}(\partial \Omega_{\eta}).$$

Here we note that constants C are independent of ϵ and η . On the other hand, for sufficiently small $\delta > 0$ and $\epsilon > 0$ we have $\delta + \tau_{\epsilon} < s^* \equiv \min\{s_0, s_1\}$ and obtain from Lemma 3–2 and (3.9)

$$\int_{\bigcup_{i=2,3}^{\delta} \Omega_{\eta,i}^{\delta}} \left[\epsilon |\nabla w_{\epsilon}|^{2} + \frac{1}{\epsilon} W(x_{0}, w_{\epsilon}) \right] dx \leq \int_{\Omega_{\eta,2}^{\delta}} \frac{2}{\epsilon} \left[\epsilon^{1/2} + W(x_{0}, \gamma(y_{\epsilon}(d_{\partial\Omega}(x)))) \right] |\nabla d_{\partial\Omega}(x)| dx,$$

and from the co-area formula in BV functions, we get

$$\leq 2 \int_{\delta}^{\tau_{\epsilon} + \delta} dt \int_{\Omega_{\eta}^{\delta} \cap \{d_{\partial\Omega}(x) = t\}} \epsilon^{-1} [\epsilon^{1/2} + W(x_{0}, \gamma(y_{\epsilon}(t)))] d\mathcal{H}_{N-1}$$

$$\leq 2\kappa_{\epsilon}^{\delta} \int_{\delta}^{\tau_{\epsilon} + \delta} \epsilon^{-1} (\epsilon^{1/2} + W(x_{0}, \gamma(y_{\epsilon}(t)))) dt,$$

where $\kappa_{\epsilon}^{\delta} = \sup_{\delta \leq d_S(x) \leq \delta + \epsilon} (\Omega_{\eta}^{\delta} \cap \pi_t(\partial \Omega))$. Then from (3.5) we obtain

$$(3.11) \qquad \int_{\substack{0 \\ i=1,2}} \Omega_{\eta,i}^{\delta} \left[\epsilon |\nabla w_{\epsilon}|^{2} + \frac{1}{\epsilon} W(x_{0}, w_{\epsilon}) \right] dx \leq 2\kappa_{\epsilon}^{\delta} \int_{0}^{1} \left[\epsilon^{1/2} + W(x_{0}, \gamma(t)) \right]^{1/2} |\dot{\gamma}(t)| dt.$$

From the regularity of $\partial\Omega$ and the definition of $\Omega^0_{\eta}(x_0)$, there exist a constant η_0 independent of x_0 (dependent only on $\partial\Omega$) such that for any $0<\eta<\eta_0$, we have $\mathcal{H}_{N-1}(\partial\Omega^0_{\eta}(x_0)\cap\partial\Omega)=0$. So from Lemma 3-2 we have $\lim_{\epsilon,\delta\to 0}\kappa^{\delta}_{\epsilon}=\mathcal{H}_{N-1}(\partial\Omega_{\eta}(x_0))$ for any $\eta\in(0,\eta_0)$. Here we set $w^{\delta,\gamma}_{\epsilon}=w_{\epsilon}$. Therefore from (3.10) and (3.11), for any $\eta\in(0,\eta_0)$ we obtain

$$(3.12) \qquad \int_{\Omega_{\eta}^{\delta}(x_{0})} [\epsilon |\nabla w_{\epsilon}^{\delta,\gamma}|^{2} + \frac{1}{\epsilon} W(x_{0}, w_{\epsilon}^{\delta,\gamma})] dx$$

$$\leq 2\mathcal{H}_{N-1}(\partial \Omega_{\eta}) \int_{0}^{1} W^{1/2}(x_{0}, \gamma(t)) |\dot{\gamma}(t)| dt$$

$$+ \mathcal{H}_{N-1}(\partial \Omega_{\eta}) [0(\epsilon/\eta^{2}) + 0(\epsilon^{1/4}) + 0_{\sqrt{\epsilon^{2}+\delta^{2}}}(1)].$$

Here by $0_{\epsilon}(1)$ we mean $\lim_{\epsilon \to 0} 0_{\epsilon}(1) = 0$. Since for any $\epsilon > 0$ there exist a sequence of C^1 -curves $\{\gamma_i\}_{i=1}^{\infty}$ such that the length of $\gamma_i \leq \epsilon^{-1/8}$ and

$$\lim_{i \to \infty} \int_0^1 W^{1/2}(x_0, \gamma_i(t)) |\dot{\gamma}_i(t)| dt = d(x_0, a, b),$$

by the diagonal argument and (3.12), we can construct a sequence $\{w_{\epsilon}^{\delta}\}_{\epsilon,\delta>0}$ satisfying (3.4). Therefore the aim of the first step is completed.

The Second Step: Let Ω_{δ} be a domain $\{x \in \Omega : \delta < d_{\partial\Omega}(x) < s^*\} = \bigcup_{\delta < t < s^*} \pi_t(\partial\Omega)$. At the second step, we construct a sequence $\{w_{\epsilon}^{\delta}\}_{\epsilon,\delta>0}$ in $W^{1,2}(\Omega_{\delta},\mathbb{R}^n)$ such that

(3.13)
$$\limsup_{\delta,\epsilon \to \infty} \int_{\Omega_{\delta}} \left[\epsilon |\nabla w_{\epsilon}^{\delta}|^{2} + \frac{1}{\epsilon} W(x, w_{\epsilon}^{\delta}) \right] dx \leq 2 \int_{\partial \Omega} d(x, a, g(x)) d\mathcal{H}_{N-1}.$$

In order to construct a sequence $\{w_{\epsilon}^{\delta}\}_{\epsilon,\delta>0}$, we will separate $\partial\Omega$ into small pieces. From the regularity of $\partial\Omega$, for sufficiently small $\eta>0$, there exist p points $\{x_i\}_{i=1}^p\subset\partial\Omega$ and a subset ω_{η} of $\partial\Omega$ such that

$$(3.14) \quad \partial\Omega \setminus \bigcup_{1 \leq i \leq p} \partial\Omega_{\eta}(x_i) \subset \omega_{\eta}, \quad \partial\Omega_{\eta}(x_i) \cap \partial\Omega_{\eta}(x_j) = \emptyset, \ i \neq j, i, j = 1, 2, \cdots, p$$

and $\lim_{\eta \to 0} \mathcal{H}_{N-1}(\omega_{\eta}) = 0$. Here we note that p depends on η and $\lim_{\eta \to 0} p(\eta) = \infty$.

For any $\eta, \delta, \epsilon > 0$, fix η, δ , and ϵ . Then for any $i \in \{1, 2, \dots, p\}$, from (3.10) we can construct functions $w_{\epsilon}^{i,\delta,\eta} \in W^{1,2}(\Omega_{\eta}^{\delta}(x_i))$ such that

$$(3.15) \qquad \int_{\Omega_{\eta}^{\delta}(x_{i})} \left[\epsilon |\nabla w_{\epsilon}^{i}|^{2} + \frac{1}{\epsilon} W(x_{i}, w_{\epsilon}^{i}) \right] dx$$

$$\leq 2\mathcal{H}_{N-1}(\partial \Omega_{\eta}(x_{i})) d(x_{i}, \alpha, g(x_{i}))$$

$$+ \mathcal{H}_{N-1}(\partial \Omega_{\eta}(x_{i})) \left[0(\epsilon/\eta^{2}) + 0(\epsilon^{1/4}) + 0\sqrt{\epsilon^{2} + \delta^{2}}(1) \right].$$

Then we define $w^{\delta,\eta}_{\epsilon} \in W^{1,2}(\Omega_{\delta}:\mathbb{R}^n)$ as follows:

$$w_{\epsilon}^{\delta,\eta} = \begin{cases} w_{\epsilon}^{i,\delta,\eta}, & \text{if } x \in \Omega_{\eta}^{\delta}(x_i), \\ \alpha, & \text{otherwise} \end{cases}$$

By the argument of Step 1, we can see $w_{\epsilon}^{\delta,\eta} \in W^{1,2}(\Omega_{\delta}:\mathbb{R}^n)$ easily. Then we have

$$(3.16) \qquad \int_{\Omega_{\delta}} \left[\epsilon |\nabla w_{\epsilon}^{\delta,\eta}|^{2} + \frac{1}{\epsilon} W(x,w_{\epsilon}^{\delta,\eta}) \right] dx = \sum_{i=1}^{p} \int_{\Omega_{\epsilon}^{\delta}(x_{i})} \left[\epsilon |\nabla w_{\epsilon}^{i,\delta,\eta}|^{2} + \frac{1}{\epsilon} W(x,w_{\epsilon}^{i,\delta,\eta}) \right] dx$$

On the other hand, we have (for simplicity we omit the index δ, η of $w_{\epsilon}^{i,\delta,\eta}$.)

$$\begin{split} &\int_{\Omega_{\eta}^{\delta}(x_{i})} \left[\epsilon |\nabla w_{\epsilon}^{i}|^{2} + \frac{1}{\epsilon} W(x, w_{\epsilon}^{i}) \right] dx \\ &= \int_{\Omega_{\eta}^{\delta}(x_{i})} \left[\epsilon |\nabla w_{\epsilon}^{i}|^{2} + \frac{1}{\epsilon} W(x_{i}, w_{\epsilon}^{i}) \right] dx + \int_{\Omega_{\eta}^{\delta}(x_{i})} \frac{1}{\epsilon} \left[W(x, w_{\epsilon}^{i}) - W(x_{i}, w_{\epsilon}^{i}) \right] dx \\ &\equiv I_{1}^{i} + I_{2}^{i}. \end{split}$$

From (3.15) we obtain

$$(3.17) \quad \sum_{i=1}^{p(\eta)} I_1^i \le 2 \sum_{i=1}^{p(\eta)} [d(x_i, \alpha, g(x_i)) \mathcal{H}_{N-1}(\partial \Omega_{\eta}(x_i))] + 0(\epsilon/\eta^2) + 0(\epsilon^{1/4}) + 0_{\sqrt{\epsilon^2 + \delta^2}}(1),$$

and from (1.2) and (3.15)

$$\sum_{i=1}^{p(\eta)} |I_2^i| \leq \sum_{i=1}^{p(\eta)} \int_{\Omega_{\eta}^{\delta}(x_i)} 0_{|x-x_i|}(1) \frac{1}{\epsilon} W(x_i, w_{\epsilon}^i) dx \leq 0_{\eta}(1) \sum_{i=1}^{p(\eta)} I_1^i.$$

We set $\eta^2 = \epsilon^{3/4}$. Then combinating (3.16) and (3.17), we obtain

(3.18)
$$\limsup_{\delta,\epsilon \to 0} \int_{\Omega_{\delta}} \left[\epsilon |\nabla w_{\epsilon}^{\delta,\eta(\epsilon)}|^{2} + \frac{1}{\epsilon} W(x, w_{\epsilon}^{\delta,\eta(\epsilon)}) \right] dx$$

$$\leq \limsup_{\epsilon \to 0} 2 \sum_{i=1}^{p(\eta)} d(x_{i}, \alpha, g(x_{i})) \mathcal{H}_{N-1}(\partial \Omega_{\eta}(x_{i})).$$

From the continuity of the function $d(x, \alpha, g(x))$, we obtain

$$\sum_{i=1}^{p(\eta)} d(x_j, \alpha, g(x_j)) \mathcal{H}_{N-1}(\partial \Omega_{\eta}(x_i)) \leq \int_{\substack{0 \\ 1 \leq j \leq p}} \frac{\partial \Omega_{\eta}(x_i)}{\partial \Omega_{\eta}(x_i)} d(x, \alpha, g(x)) d\mathcal{H}_{N-1} + 0_{\eta}(1)$$

$$\leq \int_{\partial \Omega} d(x, \alpha, g(x)) d\mathcal{H}_{N-1} + 0_{\eta}(1).$$

Therefore combinating (3.18), we can see that the sequence $\{w_{\epsilon}^{\delta,\eta(\epsilon)}\}_{\epsilon,\delta>0}$ satisfies (3.13). Hence we set $w_{\epsilon}^{\delta} = w_{\epsilon}^{\delta,\eta(\epsilon)}$, and so the purpose of Step 2 is completed.

The Third Step: In this step, we will complete th proof of Proposition B for the special case $w_0 \equiv \alpha$. For any $\delta, \epsilon > 0$ we define w_{ϵ}^{δ} as follows:

$$w_{\epsilon}^{\delta} = \begin{cases} \alpha, & \text{if } x \in \Omega \setminus \Omega_{0}, \\ w_{\epsilon}^{*\delta}, & \text{if } x \in \Omega_{\delta} \end{cases}$$

where $\Omega_0 = \bigcup_{0 < t < s^*} \pi_t(\partial \Omega)$ and where $w^{*\delta}_{\epsilon}$ is a function constructed in Step 2. In $\Omega^{\delta} \equiv \Omega_0 \setminus \Omega_{\delta}$, we construct w^{δ}_{ϵ} by combinating between g(x) and $w^{*\delta}_{\epsilon}(\pi_{\delta}(x))$ i.e. for $x \in \Omega_0 \setminus \Omega_{\delta}$,

$$(3.19) w_{\epsilon}^{\delta}(x) = \frac{d_{\partial\Omega}(x)}{\delta} w_{\epsilon}^{*\delta}|_{(\partial\Omega)_{\delta}}(\pi_{\delta} \circ \pi_{d_{\partial\Omega}(x)}^{-1}(x)) + \left(1 - \frac{d_{\partial\Omega}(x)}{\delta}\right) g(\pi_{d_{\partial\Omega}(x)}^{-1}(x)).$$

Here $\pi_{\delta}(x)$ and $\pi_{d_{\theta\Omega}}(x)$ are functions appearing in Lemma 3–1. Then we can see easily $w^{\delta}_{\epsilon} \in W^{1,2}(\Omega)$ and $w^{\delta}_{\epsilon}(x) = g(x)$ for all $x \in \partial\Omega$.

In order to estimate the gradient of w_{ϵ}^{δ} , we fix ϵ, δ , and fix $\{\Omega_{\eta}^{\delta}(x_i)\}_{i=1}^{p}$ and ω_{η} . Then we set

$$\Omega_{1}^{\delta} = \{x \in \Omega^{\delta} : \pi_{\delta} \circ \pi_{d_{\partial\Omega}(x)}^{-1}(x) \in \bigcup_{1 \leq i \leq p} \partial(\Omega_{\eta,1}^{\delta}(x_{i}))\},
\Omega_{2}^{\delta} = \{x \in \Omega^{\delta} : \pi_{\delta} \circ \pi_{d_{\partial\Omega}(x)}^{-1}(x) \in \bigcup_{1 \leq i \leq p} \partial(\Omega_{\eta,2}^{\delta}(x_{i}))\},
\omega_{\eta}^{\delta} = \bigcup_{0 < t < \delta} \pi_{t}(\omega_{\eta}),$$

and have $\Omega^{\delta} = \Omega_1^{\delta} \cup \Omega_2^{\delta} \cup \omega_{\eta}^{\delta}$. Here $\Omega_{\eta,i}^{\delta}(x)$, i = 1, 2 is a domain appearing in Step 1. Furthermore for simplicity, we set

$$\hat{g}(x) = g(\pi_{d_{\partial\Omega}(x)}^{-1}(x)) \qquad \text{and} \qquad \hat{w}_{\epsilon}^{\delta}(x) = w_{-\epsilon}^{*\delta}|_{(\partial\Omega)_{\delta}}(\pi_{\delta} \circ \pi_{d_{\partial\Omega}(x)}^{-1}(x))$$

for $x \in \Omega^{\delta}$. Then from Lemma 3–1 we can see that there exists a constant C such that $|\nabla \hat{g}(x)| \leq C$ for almost all $x \in \Omega^{\delta}$.

Now in the domains $\Omega_{\eta,1}^{\delta}$, $\Omega_{\eta,2}^{\delta}$, and Ω^{δ} , we will estimate the gradient of w_{ϵ}^{δ} , and obtain the inequality (2.1). If $x \in \omega_{\eta}^{\delta}$, then from the construction of w_{ϵ} in Step 2 we see $v_{\epsilon}^{\delta,\eta} \equiv \alpha$ in a neighborhood of x, and so for almost all $x \in \omega_{\eta}^{\delta}$ we have

$$|\nabla w_{\epsilon}^{\delta,\eta}| \le C(1+1/\delta).$$

So we obtain

(3.21)
$$\int_{\omega^{\delta}} \left[\epsilon |\nabla w_{\epsilon}^{\delta,\eta}|^2 + \frac{1}{\epsilon} W(x, w_{\epsilon}^{\delta,\eta}) \right] dx \le C \left(\frac{\epsilon}{\delta^2} + \epsilon + \frac{1}{\epsilon} \right) \delta \mathcal{H}_{N-1}(\omega).$$

For almost all $x \in \Omega_{\eta,1}^{\delta}(x_i)$, then we have

$$\begin{split} |\nabla w^{\delta,\eta}_{\epsilon}| & \leq \frac{|\nabla d_{\partial\Omega}(x)|}{\delta} \hat{w}^{\delta,\eta}_{\epsilon}(x) + \frac{d_{\partial\Omega}(x)}{\delta} |\nabla \hat{w}^{\delta,\eta}_{\epsilon}(x)| \\ & + \frac{|\nabla d_{\partial\Omega}(x)|}{\delta} \hat{g}(x) + \left(1 - \frac{d_{\partial\Omega}(x)}{\delta}\right) |\nabla \hat{g}(x)|. \end{split}$$

Here from the argument in Step 1, there exists a constant C_2 such that $|\nabla v_{\epsilon}^{\delta,\eta}(x)| \leq C/(\epsilon^{5/8}\eta)$ for all $x \in \Omega_{\eta,1}^{\delta}$. Moreover we have $|\Omega_{\eta,1}^{\delta}| \leq C\delta(\epsilon^{5/8}\eta^{N-1})(\mathcal{H}_{N-1}(\partial\Omega)/\eta^{N-1}) \leq C\delta\epsilon^{5/8}$. So we obtain

$$(3.22) \qquad \int_{\Omega_{1}^{\delta}} [\epsilon |\nabla w_{\epsilon}^{\delta,\eta}|^{2} + \frac{1}{\epsilon} W(x, w_{\epsilon}^{\delta,\eta})] dx \leq C \left[\epsilon \left(\frac{1}{\delta} + \frac{1}{\epsilon^{5/8} \eta} + 1 \right)^{2} + \frac{1}{\epsilon} \right] \delta \epsilon^{5/8}$$

$$\leq C \left(\frac{\epsilon}{\delta} + \frac{\delta}{\eta^{2} \epsilon^{1/4}} + \frac{\delta}{\epsilon} \right) \epsilon^{5/8}.$$

For any $x \in \Omega_{\eta,2}^{\delta}(x_i)$, from Step 1 we see $w_{\epsilon}^*(x) \equiv g(x_i)$ in a neighborhood of x. Then from the Lipschitz continuity of g(x) on $\partial\Omega$ and (3.19) we have

$$\begin{split} |\nabla w_{\epsilon}^{\delta,\eta}| &\leq \frac{|\nabla d_{\partial\Omega}(x)|}{\delta} |g(x_i) - \hat{g}(x)| + \left(1 - \frac{d_{\partial\Omega}(x)}{\delta}\right) |\nabla \hat{g}| \\ &\leq \frac{C}{\delta} |g(x_i) - \hat{g}(x)| + C \leq C \frac{\eta}{\delta} + C. \end{split}$$

So we obtain

$$(3.23) \qquad \int_{\Omega_{\epsilon}^{\delta}} \left[\epsilon |\nabla w_{\epsilon}^{\delta,\eta}|^{2} + \frac{1}{\epsilon} W(x, w_{\epsilon}^{\delta,\eta}) \right] dx \leq C \left(\epsilon \left(\frac{\eta}{\delta} \right)^{2} + \epsilon + \frac{1}{\epsilon} \right) \delta \mathcal{H}_{N-1}(\partial \Omega).$$

Let $\sigma(\cdot)$ be a positive function with $\sigma(0) = 0$ such that $\lim_{\epsilon \to 0} \mathcal{H}_{N-1}(\omega_{\eta(\epsilon)})/\sigma(\epsilon) = 0$ and $\lim_{\epsilon \to 0} \epsilon^{5/8}/\sigma(\epsilon) = 0$. Here we set $\delta_{\epsilon} = \epsilon \sigma(\epsilon)$, and define $w_{\epsilon} = w_{\epsilon}^{\delta_{\epsilon}}$. Then from (3.21)–(3.23) we obtain

(3.24)
$$\lim_{\epsilon \to 0} \int_{\Omega^{\epsilon \sigma(\epsilon)}} \left[\epsilon |\nabla w_{\epsilon}|^2 + \frac{1}{\epsilon} W(x, w_{\epsilon}) \right] dx = 0.$$

Therefore from (3.13) and (3.24) we obtain

$$\limsup_{\epsilon \to 0} \int_{\Omega} [\epsilon |\nabla w_{\epsilon}|^{2} + \frac{1}{\epsilon} W(x, w)] dx \leq 2 \int_{\partial \Omega} d(x, \alpha, g(x)) d\mathcal{H}_{N-1}.$$

Hence the proof of Proposition B for the special case $w_0 = \alpha$ is completed.

Finally we remark that the proof of this section is an essential part of complete proof of Proposition B.

REFERENCES

- S.Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluid, Ann.
 Inst. H. Poincaré Anal. Non Lin eaire 7 (1990), 67-90.
- M.S.Berger & L.E.Fraenkel, On the asymptotic solution of a nonlinear dirichlet problem, Jour. Math. Mech. 19 (1970).
- 3. P.C.Fife & W.M.Greenlee, Interior transition layers for elliptic boundary value problems with a small parameter, Russian Math. Surveys 29(4) (1974), 103-131.
- 4. I.Fonseca & L.Tartar, The gradient theory of phase transitions for systems with two potential wells, Proc. Roy. Soc. Edinburgh A-111 (1989), 89-102.
- 5. K.Ishige, Singular perturbations of variational problems of vector valued functions, to appear in Nonlinear Anal. T.M.A..
- 6. K.Ishige, The gradient theory of the phase tranditions in Cahn-Hilliard fluids with the Dirichlet boundary conditions, preprint.
- 7. R.V.Kohn & P.Sternberg, Local minimizer and singular perturbations, Proc. Roy. Soc. Edinburgh A-111 (1989), 69-84.
- 8. L.Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal 98 (1987), 123-142.
- P.Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal. 101 (1988), 209-260.