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The Gradient Theory of the Phase Transitions in Cahn-Hilliard Fluids
with the Dirichlet boundary conditions

A7E gL (KAZUHIRO ISHIGE)

Department of Mathematics, Faculty of Science Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo, 152, Japan

1. Introduction
In this note we will investigate the asymptotic behavior of minimizer {u.}¢>o (as € — 0)

of the following variational problem :
1 .
(Pe) inf{ / [e|Vul* + =W (z,u)]dz | u € WH2(Q:R™),u =g on 89},
Q €

where ) is a bounded domain in R with C? smooth boundary 9 and g is a Lipschitz
continuous function from 0 into R™. Here W(z,-) is a nonnegative continuous function
which has two potential wells with equal depth. This type of problem is related to the
study of the phase transitions of the Cahn-Hilliard fluids. See [8] and [9].

In [7) R.V.Kohn & P.Sternberg conjectured that minimizer of the variational problem,

which is special case of (P,),

(SF) inf{ /Q[EIWI2 + %(zﬁ —1)°]dx

u € WH(Q), ulag = g}

converges to a solution of

mf{gpﬂ{u 1) 42 /B , 9 = dartn

u € BV(Q), |u] = 1a.e. },

where d(t) = fil |s? — 1|ds. Here Hy_; is the N — 1 dimensional Hausdorff measure.

In this note, we will study the asymptotic behavior of minimizer of (P,), and as a

byproduct, we will state the affirmative results to the conjecture in [7].

Recently using the theory of Gamma-convergence, several authors studied the

asymptotic behavior of the minimizer of the problem:

(E) inf{ /Q[e]Vu|2 + %W(u)]dx u € WHH(Q : R"), /Qu(:c)da: =m },
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where m is a constant vector in R™. For the scalar case (i.e. n = 1), see [8] and [9]. For the
vector case (i.e. n > 2), see [1] and [4]. Our results on the problem ( P,) depend mainly on
the study of asymptotic behavior of minimizer of (E,). However there are several different
aspects between the asymptotic behavior of minimizer of (P.) and that of (E.). In fact,
minimizer of (E.) generates the only interior layer, but minimizer of (P.) generates both
the interior and the boundary layers as ¢ — 0.

On the other hand, we can easily see that minimizer of (SP,) satisfies the equation:

Ay —u(u—1)u+1)=0 in £,

(CF) { u(z) = g((J,) e on ON.
Then there exist several results for the solutions of (CP,) obtained by using the method

of matched expansion. Our results also seem to be closely related to [2] and [3].

We will give the precise conditions of the functions W(z,u) and g(z). Let W(z,u) :
€l x R® — R be a continuous nonnegative function, and for any z € @ W(z,u) = 0 if and
only if v = a or 8. Here we note « and 3 are constant vectors independent of z. We

assume that there exist two constants K; and K, such that

(1.1) sup  W(z,u) < W(z,v) forall z € Q, v & [K;, K»]"
uEG[Kl,Kg]"
and
(1.2) g(z) € [Ky, Ko)" for all z € 9N.
Moreover we set W (-) = inf W(z, ) and assume that for any € > 0 there exists a positive
z€Q
constant 6 such that
(13) W2 (@) = W2y, )l < eWod(u)

for all z,y € @ with |z — y| < ¢ and all v € R™. Here from the definition of W,(u) and

(1.3) we have the following relation
(1.3%) (W2 (z,u) = W2 (y, u)| < WV (z, u)

for all z,y € Q with |z — y| < § and for all u € R™.
We think that the conditions (1.1) and (1.3) are not restrictive. In fact, consider
continuous functions W(u), h(z), where W(u) satisfies the condition (1.1) and where h(z)

is positive function in Q. If the function W(z,u) has a form of h(z)W (u), then we can see

that W(z,u) satisfies the conditions (1.1) and (1.3).
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In order to state the main theorem, we will introduce a Riemannian metric on R™,
d(z,a,b) which depends on = € Q. For x € Q and a,b € R", let d(z,a,b) be the metric
defined by

(1.4) d(z,a,b) = inf{ / WY 2(z, 4 ()| 4(t) | dt ‘ v € C(]0,1] : R™),

0

(0 = 0, 5(1) = 8}
For example, in the case of W(z,u) = (u? — 1)? and n = 1, we have

b
d(z,-1,b) = / |s2 — 1]ds for b > —1.

-1

We now state our main theorem of this note.

Theorem 1. (See [6].) Suppose that function W satisfies (1.1) and (1.3) and that g

satisfies (1.2). For e > 0, let u, be a solution of the variational problem:
1 : 5 . :
inf{/ [e|Vul? + - W(z,u)ldz | uwe W' (Q:R"™), ulsa(z) = g(z)}.
Q
If there exist a positive sequence {¢;}52, and a function ug(z) € L'(Q : R™) such that

(1.5) lime; =0 and limu,, =uy in L'(Q:R"™),

11— 00 11— 00

then the function ug is characterized by
W(z,ug(z)) = 0 for almost all x € Q, that is, ug(z) = « or § for almost all z € Q.

Moreover the set Ey = {x € Q| uo(x) = a} is a solution of the variational problem (Py):

(Py) inf{ d(z, o, B)dHN 1+ / d(z,v]o0(z), g(z))dHy_s |
QNo*FE N

ECQ, Po(E) < o0, v=axe + Bxa\E},

where Pq(FE) is a perimeter of E in Q and v|sq is the trace of v to 02. Furthermore we

have

1
lim [ [&|Vue)? + = W(z,u,)]de = 2/ d(z,a,8)dHy_,
=00 Jq ’ € QNé* Eqy

o / ooy +2 [ de,Bg(a)dHor,
NNo* Ey OQ\o* Ey
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Here 0* Ey is the reduced boundary of Ey.

Remark. It is not restrictive to assume that there exists a subsequence {u,, }{2, satisfying
(1.5). In fact, the following is proved in [4] and [5]: if there exist constants C and R such
that

(1.6) Weolu) > Clu| for |u| > R,

then there exists a subsequence {u., }$2, satisfying (1.5).

It 1s worth noting that the study of asymptotic behavior of minimizer of (P,) occurs
a completely different difficulty from that of (SP). One of the difficulties is that the
selection of minimizing sequence {vi}7o, achieving the value of d(z, a, g(z)) depends on
the space variable z. In order to overcome this difficulty, we approximate W(-,u) and ¢(-)

by suitable piecewise smooth functions near the transition layer and the boundary 90X2.

2. The Main Propositions
At first, we will give functionals F, and Fy from L'(Q : RY) into [0, 00]. Foru € L*(Q2 : R™)
and € > 0, we define F,(u), Fy(u) by

/[6|Vul2 + lI/V(fc,u)]dlt, ifue WH3(Q:R") and u = g on 99,
Fe(u) = Q €

+00, otherwise ,

2/ d(z,a, B)IVX {u(z)=a}l + 2/ d(z,ulsn(x), g(x))dH N_1,
Q N
if w e BV(Q:R") and W(z,u(z)) = 0 for almost all z € €,

+00, otherwise .

Fo(u) =

In order to prove our main theorem, we need the following two propositions which

are crucial in our analysis.
Proposition A. Suppose that {v.}c>o is a sequence in L'() : R™) which converges in

LY(Q:R") as e — 04 to a function vy. If

liminf F,(v¢) < +o0,

1
6—>0+
then vg is a function in BV (Q : R™) such that

Fo(vo) < liminf F.(v,).

e—04
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Proposition B. Suppose that wy € L'(Q2 : R™) is a function with wo = axg + Bxa\E
where E is a measurable subset in §) with finite perimeter. Then there exists a sequence
{we}eso in WH2(Q : R™) which converges in L'(Q : R®) as € — 04 to wq such that

(2.1) lim sup Fi(w,) < Fo(wo).

e—04
Using Propositions A and B, we can prove Theorem 1 as in the same matter with
in [8]. Therefore we have only to prove Proposition A and B. In this note, we will only
prove Proposition B for the special case.
On the other hand, in Theorem 1, the minimizers {u,}e>o do not always generate
interior layers. For example, if we consider the problem (SP.) with ¢ = 0, we have Ey = Q
or . In contrast, considering the family of local minimizers, from Theorem 1 and the

results of [7], we obtain the following theorem.

Theorem 2. Let ug € L*(Q : R™) be a isolated L'-local minimizer of Fy, that is,

there exists a positive constant § such that Fy(ug) < Fo(v)

whenever w#v and ||ug —v|p1.rr) < 6.

Then there exist a constant g > 0 and a sequence {u. }¢<e, such that u. is a local minimizer

of F. and u — ug in L} (2 : R™) as e — 0.

3. Proof of Proposition B
In this section, we will only prove Proposition B for the special case that wy = a in Q. In
order to prove Proposition B for the case of wy = «a, we need the following two lemmas.

The first lemma is obtained easily by the inverse mapping theorem.

Lemma 3-1. Let Q be a bounded domain with C?-smooth boundary 8. For z € 8%
let v(z) be a inner normal vector to O at . Define a mapping m : 9§ x [0,00) — RY by
(3.1) n(z,t) = m(z) = 2 + tv(z).

Then there exists a-constant so such that the image of m in 02 x (0, so] is contained in
and the C'-smooth inverse mapping n~1 of n exists in m(9 x [0, s¢]).

Lemma 3-2. (See [8] and [9].) Let Q be an open bounded subset of R with Lipschitz-

continuous boundary. Let A be an open subset of RN with C?, compact, nonempty
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boundary such that Hy_1(0A N 90Q) = 0. Define a distance function to A, dsa : ! — R,
by daa(z) = dist (z, A). Then, for some s1 > 0, dga is a C*-function in {0 < dsa(z) < 51}
with

(3.2) |Vdaal = 1.
Furthermore, lims—o Hyn_1({dsa(z) = s}) = HN_1(0AN Q) and
(33) {z [ldaa(z)] < s}l = O(s).

By dsa(z) we denote a function dist(z,02). From Lemma 3-2, we can see that dsq
is a C2-function. We set s* = min{sy,s;}. For any v € S$¥~! we denote by @, the open
unit cube centered at the origin with two of its surfaces normal to v. Furthermore for
z € 00, n > 0, and sufficiently small 6 with 0 < ¢ < s*, we set I, (z) = NN (z+1Qu (1))
and Qf,(a:) = (0Q,(z)).

We will start to prove Proposition B for the special case wy = a. The proof of

U Tt
S<t<s*

Proposition B for the case of wy = « requires three steps.

The First Step: Let z¢ be any point in 9. In this step, for any sufficiently small n > 0
we will construct a family {w®} 550 C W1'2(Qf,(:co) : R™) such that

(3.4) lim sup / [e]Vw?|? + %W’(:ro,wf)]da: < 2d(xo, 0, 9(x0))HN-1(02,(0))-
€,6—0 Qf}

In this step, for simplicity, we set Qf] = Qf,(:co).
In order to construct {w’} 550, we fix €, > 0, and consider the following ordinary
differential equation:
d [€172 + W (o, v(ye(t)))]*/?
(35) A A0 R
ye(6) =0.

Here by 4 we denote dv(t)/dt, and assume that y € C!([0,1] : [K;, K2]"), 7(0) = «,

v(1) = g(zo). We set o)
: a t ely(t
0= [ s

for t € (0,1). Then t(t) is a monotone increasing function and

(3.6) Te = (1) < €/* - length of 5.
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Here we set §.(t) = ¥ (t — §), and we can see that f(t) satisfies (3.5) in [6,6 + 7] and
we define y.(t) by

(3.7) ye(t) = max{0, min{1, g.(¢)}}.

We separate 95 to three domains Qz .t =1,2,3 as follows:

771—{CC€Q daQ( )<5+T€,d5(1')<777'€}
(3.8) ,}2__{:1:69 tdpq(z) < 6+ 7e, ds(z) > n1e};

173_{1'696 Cl;)Q( )>(5+T€}

where ds(z) is a distance function to s T (02N (29 +n0Q (1) )] Here we define w(z)
<t<s®

on U 95 i as follows:

(39) w(z) = { (), D

6
, if z € Qn,i’»'

and extend w, to Qfm such that for any © € Qg with ds(z) = 0 or dag(z) = 6§ + 7o,

we(z) = « and
|Vwe| <2/(Ky — Ky)pre + Cle < C(nre) ™+ Ce .

For sufficiently small € > 0, we have the length of v < e~!/® and 7, < €*/8. Therefore we

obtain

. .
(3.10) / [e|Vw|* + EVV(:L'O,wf)]d;L' < Cle/n*rE + 1/l N Hn_1(0%,)
Q¢ 1

< Cle/n? + /)N "2Hy 1 (09,).

Here we note that constants C' are independent of € and 7. On the other hand, for
sufficiently small § > 0 and € > 0 we have é + 7. < s* = min{so,s;} and obtain from
Lemma 3-2 and (3.9)

/ [e]Vw|? + =W (g, we)]da < / Z[e'? + W(zo, v(ye(daa())))]|Vdaoa(z)lda,
u Qf € Q€

< i=2,3 !

and from the co-area formula in BV functions, we get
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Te+6
: 2/ dt/ e e ? + W(zo, ¥(ye(t)|dHN -1
6 Qflﬁ{dag(l')=t}

Te+6
< 2&?/ e (€2 + W (2o, ¥(ye(2))))dt,
6

where k¢ = sup (2% N1 (9Q)). Then from (3.5) we obtain
6<ds(z)<b+e

2, 1 ! .
(3.11) / o [l Vel + =W (2o, we)Jdw < 27 / [ + W (o, v/ *|5(1)]dt.
U .

i=1,2
From the regularity of 92 and the definition of Q%(:co), there exist a constant 7y
independent of zy (dependent only on 0f) such that for any 0 < n < 7y, we have
Hy-1(89(zo) N ) = 0. So from Lemma 3-2 we have lim k! = Hy_1(0Q,(z0))

for any n € (0,79). Here we set w®” = w,. Therefore from (3.10) and (3.11), for any
n € (0,m¢) we obtain

(3.12) / [e|] Vw2 + lI/V(:L'o,wf"’)]d:c
22 (z0) €

< 2Hn_1(39) / W2 (20, 4(1))] 3(8) |dt
+ Hn-1(00,)[0(e/n*) + 0('*) + 0 /zggz(1)]-

Here by 0.(1) we mean lim._¢0c(1) = 0. Since for any € > 0 there exist a sequence of

~1/8

C'-curves {v;}%2, such that the length of v; < ¢ and

) v
lim / PVI/Q(@"O,'Y.,-(‘t)/)I 7i(t) | dt = d(z9, a,b),
[Zamde o] 0

by the diagonal argument and (3.12), we can construct a sequence {w?}. s-o satisfying

(3.4). Therefore the aim of the first step is completed. §
The Second Step: Let Qs be a domain {x € Q: 6 < dag(z) < s*} = ;Y 7 (0). At
<t<s

the second step, we construct a sequence {w®}. sso in W12(Qs, R") such that
X ~ 1 .
(3.13) hmsup/ [e|Vwl|* + =W (a,w!)]de < 2/ dlxz,a,g(x))dHn_y.
b,e—oc0 JQ € a0
In order to construct a sequence _{wf}f,5>0, we will separate OS2 into small pieces.
From the regularity of 99, for sufficiently small n > 0, there exist p points {z;}!_, C 99Q

and a subset w, of 0} such that

(314) oQ \ 1<LiJ<paQ"I($i) C Wy, OQU(‘,Ui) N aQ’I(rJ) = ®7 ? # j? Za] = 1727 Y 2
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and lin%)’HN_l(w,,) = 0. Here we note that p depends on n and lir%p(n) =
For any n,6,e > 0, fix n, §, and e. Then for any : € {1,2,--- | p}, from (3.10) we can

construct functions w?®7 € Wl’Q(Qf](l,)) such that

(3.15) / [e|Vw!|> + -1—VV(:C,-,wi)]d;1:
Q8 (x:) €
S 2HN_1(02(z;))d(z;, a, g(z;))
+ Hn-1(09(2:))[0(e/n?) + 0(e'/*) + 0 yerggz (1)].
Then we define w?" € W12(Qs : R™) as follows:
O

a, otherwise .

By the argument of Step 1, we can see w?” € W1?(Qs : R™) easily. Then we have

p . 1 o
(3.16) [eIVw& "|2 + = W (z, wé M) dz E / [e‘Vwé’é’"P + -W(z, wé’é’”)]dx
Qs QI (xi) €

On the other hand, we have (for simplicity we omit the index 8,7 of wh®7.)

A”qkwwﬁ+;www@wx
1

: 1 .
=/ [e|Vw|* + —W'(a;i,wi)]d;v+/ —[W(z,w') — W(z;,w')|da
Q5 (zi) € Qé(zi) €

EI{ +I§.

From (3.15) we obtain

p(n) p(n)
(B817) Y L <2 ld(ws, o g Hnoa(92 (@) +0e/n?) + 0(e/) + 0, rge(D),

and from (1.2) and (3.15)

p(n) p(n)

Z|P|<Z/ 0,1 G! W(t“u ydz < 0, ZI’

We set n? = €3/4. Then combinating (3.16) and (3.17), we obtain

1
(3.18) limsup/ [ Vw2 4 ZW (2, wP ™) ]dz
6,e—0 JQs €
p(n)
< limsup 2 Z dzg, o, g(a)Hy_1(0,(2;)).
e—0

=1
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From the continuity of the function d(z, a, ¢g(z)), we obtain

p(n)

Z d(zj,a,g(z;))Hy-1(02,(z;)) < / - d(x,a, g(x))dHn—_1 + 0,(1)
= lsfs;)m" o

g/ d(z,a,g(z))dHn_1 + 0,(1).
ET)

Therefore combinating (3.18), we can see that the sequence {wf’"(f)}f’gx, satisfies (3.13).

8,m(e)

Hence we set w® = w , and so the purpose of Step 2 is completed. §

The Third Step: In this step, we will complete th proof of Proposition B for the special

case wy = a. For any §,e > 0 we define w?® as follows:

w

s {a, ifz € Q\Q,
w, =
¢ *8 if z € Qs

€

where Q¢ = O<U 7(0Q) and where w*® is a function constructed in Step 2. In Q° =
t<s*

Qo \ Qs, we construct w® by combinating between g(z) and w*®(7s(z)) i.e. for & € Qo \ Qs,

319) i) = L2t oy 0wy (24 (1 - LA gz )

Here ns(z) and mq,,(z) are functions appearing in Lemma 3-1. Then we can see easily
w® € WH2(Q) and wb(z) = g(z) for all z € ON.

In order to estimate the gradient of w?, we fix €, 6, and fix {Q2%(x;)}?_, and w,. Then

we set
M ={ce 0”(;31 (2)(%) €. 8(91; 1(zi)},
(3.20) W={zecQ mon] (l)(x) S 8( (7))},
wy = 0<LtJ<&7rt(w">’
and have Q° = QS U QJ U w). Here Qf] (), © = 1,2 is a domain appearing in Step 1.

Furthermore for simplicity, we set

§(2) = g(rg} (@) and  @i(2) = wl@a)(ms 0Ty} ) (2)

for z € Q°. Then from Lemma 3-1 we can see that there exists a constant C such that

|V§(z)| < C for almost all z € Q°.
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Now in the domains ), 0 ,, and Q°, we will estimate the gradient of w?, and

n,1

obtain the inequality (2.1). If z € w’, then from the construction of w, in Step 2 we see

n’

v8" = @ in a neighborhood of z, and so for almost all = € wn we have
V| < C(1+1/6).

So we obtain

(3.21) /6[€|wa’"|'2 VV("L wl ]dr < C <6° +e+ )(5HN_1(w).

For almost all z € Q,’S”l(mi), then we have

Wdoal@l gz 4 20808 gty

Vdsalz dsalx
+\ a;( )|g(x‘)+(1_ BQO( >|V "

|Vw? 7| <

Here from the argument in Step 1, there exists a constant C3 such that |Vvd7(2)| <
C/(%/®n) for all z € Qf |. Moreover we have 12, < Co(> BN 1) Hy_1(09) /9N 1) <
Cée%/®8. So we obtain

2
(3.22) / [e|] Vw2 + T/V(a: whM))dz < C|e l . +1) + E 6€°/8
6 €5/8y €

€ 6 6 5/8
SC(3+W+—6—)6 .

For any z € Q‘S ,(2;), from Step 1 we see w¥(z) = g(a;) in a neighborhood of z. Then

from the Lipschitz continuity of ¢g(2) on 92 and (3.19) we have

Vdasq(a daa(z
vutn) < el — gl (1 - 28 ) vg

< sloa) - g+ C<C3+C.

So we obtain

(3.23) / [e|VwdT|? + %W(x,wf”")]d‘r < C’<e(%> +e+ >OHN 1(00).
‘ Q3

Let o(-) be a positive function with ¢(0) = 0 such that lim'HN 1(wy(ey)/o(€) =0 and
lin%)e"’/s/a(e) = 0. Here we set §, = €o(e), and define w, = w’<. Then from (3.21)~(3.23)

we obtain

1
(3.24) lim [e|Vw|? + =W (z,w.)]dz = 0.
€

€—0 Qeo(e)
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Therefore from (3.13) and (3.24) we obtain

1 ‘ ' .
limsup/ [e|] Vw|* + =W (z,w)]de < 2/ d(z, o, g(x))dHy_1.
Q € oQ

e—0

Hence the proof of Proposition B for the special case wy = « i1s completed. |

Finally we remark that the proof of this section is an essential part of complete proof

of Proposition B.
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