<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>校名</td>
<td>数理解析研究所講究録 1993年1993年1月818号134-140</td>
</tr>
<tr>
<td>作者</td>
<td>Tsuboi, Akito</td>
</tr>
<tr>
<td>著り番号</td>
<td>http://hdl.handle.net/2433/83128</td>
</tr>
<tr>
<td>類別</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版社</td>
<td>出版社</td>
</tr>
<tr>
<td>出版年月</td>
<td>1993-01</td>
</tr>
</tbody>
</table>

View metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository
Large indiscernible sets of a structure

Akito Tsuboi

1 Introduction

An indiscernible set of a given structure is by definition a set I such that every finite subset of the same cardinality has the same type. A singleton $I = \{a\}$ is trivially an indiscernible set, so it is called a trivial one. A transcendental basis of an algebraically closed field K is a good example of a non-trivial indiscernible set. In this example, if K is an uncountable, then it has a large indiscernible set I, i.e. an indiscernible set I with $|I| = |K|$. Generally speaking, if a theory T is ω-stable then every uncountable model of T has such a large indiscernible set. However, in the structure $\mathbb{R} = (\mathbb{R}, 0, 1, +, \cdot)$, there is no non-trivial indiscernible set, i.e. $tp(a) = tp(b)$ implies $a = b$.

In this note we show that every L-structure M can be embedded into a structure M^* of an expanded language L^* such that any L^*-structure $N \equiv M^*$ has a large indiscernible set. We also show that if T is stable and non-ω-stable then there is a model of power \aleph_1 which has no large indiscernible sets.

2 Preliminaries

In what follows, T is a complete theory formulated in a countable language L. We give some necessary definitions and review some basic results.

Definition 1. (1) Let I be a subset of a structure M. I is said to be an indiscernible set if whenever $F \subset I$ and $G \subset I$ are finite sequences of the same length then $tp(F) = tp(G)$.

We will say that an indiscernible set \(I \) in a structure \(M \) is large if \(I \) has the same cardinality as \(M \).

Fact 1 (Theorem 2.8 of [S, CH.I, §2]). If \(T \) is \(\omega \)-stable, then every uncountable model of \(T \) includes a large indiscernible set.

If \(T \) is not \(\omega \)-stable, then any \((a,\omega)\)-model is uncountable. And any \((a,\kappa(T))\)-prime model does not have indiscernible set of power greater than \(\kappa(T) \). So we have:

Fact 2. If \(T \) is a non-\(\omega \)-stable, superstable theory, then there is a model of power \(\aleph_1 \) without a large indiscernible set.

Let \(T \) be the theory of refining equivalence relations. i.e., \(T \) is the theory of the structure \((2^\omega, E_1, E_2, \ldots)\), where \(E_i = \{(\eta_1, \eta_2) \in (2^\omega)^2 : \eta_1|i = \eta_2|i\} \). Then \(T \) is a superstable theory with \(|S(T)| = 2^{\aleph_0} \). Let \(M \) be any uncountable elementary submodel of \((2^\omega, E_1, E_2, \ldots)\). \(M \) has no large indiscernible sets.

Definition 2. A model \(M \supset A \) is said to be \(\ell \)-atomic over \(A \) if for every \(\bar{a} \in M \), and every finite set \(\Delta \) of formulas, \(\text{tp}_\Delta(\bar{a}/A) \) is a principal type.

Fact 3. Let \(T \) be stable.

(1) For every set \(A \), there is an \(\ell \)-atomic model over \(A \).

(2) Let \(a_1 \) and \(a_2 \) be independent over \(M \). Let \(M_i \) be an \(\ell \)-atomic model over \(M \cup \{a_i\} \). Then \(M_1 \) and \(M_2 \) are independent over \(M \).

3 Main Result

We want to extend fact 2 to a non-\(\omega \)-stable, stable theory \(T \). The following lemma will play a crucial role.

Lemma. Let \(T \) be a non-\(\omega \)-stable, stable theory and \(\kappa \leq 2^{\aleph_0} \) an uncountable cardinal. Then there is a set \(R \) of types over a set \(A \), \(|A| < \kappa \) such that whenever \(B \supset A \) is a set with \(|B| < \kappa \) and \(S \) is a set of stationary types over \(B \) with \(|S| < \kappa \) then there is a non-algebraic type \(r \in R \) which is almost orthogonal to any type in \(S \).

Proof. This lemma remains true for a superstable theory, but we concentrate on an unsuperstable theory. (Superstable case is easier.) Since \(T \) is not superstable, there are infinitely long continuous sequence \(\{p_i : i \leq \alpha\} \) of types such that
(1) dom\(p\) is a countable set;
(2) \(p_i\) is a forking extension of \(p_j\), if \(i > j\);
(3) \(\alpha < \omega_1\) is a countable limit ordinal;
(4) \(U(p_\alpha) < \infty\).

By choosing a subsequence of \(\{p_i : i \leq \alpha\}\), we can assume that \(\alpha = \omega\). Now by the definition of forking, we can easily find a countable set \(A_0\), and continuously many types \(\{q_i : i < 2^{\aleph_0}\}\) over \(A_0\) such that each \(q_i\) is \(U\)-ranked \((U(q_i) < \infty)\). We can assume that each type \(q_i\) is stationary.

Suppose that our lemma does not hold. By induction on \(j < \omega\), we define a set \(A_j\) of cardinality < \(\kappa\) and types \(q_{i,j} \in S(A_j)\) \((i < 2^{\aleph_0}\) such that for any \(i < 2^{\aleph_0}, k < j\),

\[q_{i,k}\text{ is algebraic or } q_{i,j}\text{ is a forking extension of } q_{i,k}.$

For each \(i < 2^{\aleph_0}\), let \(q_{i,0} = q_i\). Suppose we have defined \(q_{i,k} \in S(A_k)\) for \(i < 2^{\aleph_0}\) and \(k < j\). Let \(\Lambda = \{i < 2^{\aleph_0} : q_{i,j-1}\text{ is non-algebraic}\}\). Since we are assuming the negation of the statement in our lemma, there are a set \(B \supset A_{j-1}, |B| < \kappa\) and a set \(S \subset S(B), |S| < \kappa\) such that every \(q_{i,j-1}\) \((i \in \Lambda)\) is not almost orthogonal to some \(s_i \in S\). For \(i \in \Lambda\), choose \(a_i \models q_{i,j-1}|B\) and \(b_i \models s_i\) such that \(a_i\) and \(b_i\) are dependent over \(B\). We can assume that if \(s_i = s_j\) then \(b_i = b_j\). Now let

\[A_j = acl(A_{j-1} \cup \{b_i : i \in \Lambda\});
\]

\[q_{i,j} = \begin{cases} \text{tp}(a_i/A_j) & i \in \Lambda \\ \text{arbitrary extension of } q_{i,j-1} & i \notin \Lambda \end{cases} \]

Finally let \(A_\omega = \bigcup_{j < \omega} A_j\). Note that \(|A_\omega| < 2^{\aleph_0}\). (If \(\kappa = 2^{\aleph_0}\), then \(cf(\kappa) > \omega\), so \(|A_\omega| = \kappa = 2^\omega\). If \(\kappa < 2^{\aleph_0}\), then \(|A_\omega| \leq \kappa < 2^{\aleph_0}\).) Since \(q_i\) is \(U\)-ranked by (4), \(q_i^* = \bigcup_{j < \omega} q_{i,j} \in S(A_\omega)\) must be an algebraic type. (Otherwise there is an infinitely long forking sequence starting from \(q_i\).) So we have constructed continuously many distinct algebraic types over a fixed set \(A_\omega, |A_\omega| < 2^\omega\). However this is a contradiction, since we are assuming that \(L\) is countable.
Theorem A. Let T be a non-ω-stable, stable theory. Then for any uncountable cardinal $\kappa \leq 2^{\aleph_0}$, there is a model of power κ without a large indiscernible set.

Proof. Choose a set A and types $R \subseteq S(A)$ which satisfy the condition in the above lemma. Let $\lambda = |A|$. Clearly $\lambda < \kappa$. We construct an elementary chain of models $\{M_i : i \leq \kappa\}$ such that each model M_i has cardinality $\leq |i| + \lambda$. Without loss of generality, A is a model. Let $M_0 = A$, and M_1 an arbitrary proper extension of M_0 with the same cardinality. Suppose that we have constructed $\{M_i : i < \alpha\}$. If α is a limit ordinal, then let $M_\alpha = \bigcup_{i<\alpha} M_i$. So we assume that $\alpha = \beta + 1$, and let

$$S_\beta = \bigcup_{i<\beta} \{q(x) \in S(M_\beta) : q \text{ is based on } M_i, q|M_i \text{ is realized in } M_\beta\}$$

Clearly $|S_\beta| \leq |\beta| + \lambda < \kappa$. By the property of R, there is a type $r \in R$ which is almost orthogonal to each type in S_β. Let $M_{\beta+1}$ be an ℓ-atomic model over $M_\beta \cup \{e_\beta\}$, where e_β is a realization of $r|M_\beta$. Of course we can assume $|M_{\beta+1}| < |\beta + 1| + \lambda$.

Claim. There is no large indiscernible set in M_κ.

Suppose that there was a large indiscernible set $I \subseteq M_\kappa$. By stability, there is a countable set $I_0 \subseteq I$ such that $J = I - I_0$ is a Morley sequence over I_0. Choose M_i $(i < \kappa)$ which includes I_0. Since $M_i < \kappa$, we may assume that J is a Morley sequence over M_i, by choosing a subset of J if necessary. Choose M_j $(j < \kappa)$ which intersects with J. Let $a \in J \cap M_j$. Since $|J| = \kappa$, there is $b \in J$ which is independent from M_j over M_i. Choose the least k such that b and M_k are dependent over M_i. Then k is a successor ordinal greater than j, and

1. b and M_k are dependent over M_{k-1};
2. b and M_{k-1} are independent over M_i.

Remember that M_k is ℓ-atomic over $M_{k-1} \cup \{e_{k-1}\}$. From (1), using fact 3, we know that b and e_{k-1} are dependent over M_{k-1}. By our choice of e_{k-1}, $tp(e_{k-1}/M_{k-1})$ is almost orthogonal to every type in S_{k-1}, hence $tp(b/M_{k-1})$ does not belong to S_{k-1}. Note that $tp(b/M_i)$ is realized by $a \in M_{k-1}$. Then we must have
(3) $tp(b/M_{k-1})$ is a forking extension of $tp(a/M_i)$.

(2) and (3) yield a contradiction.

Next theorem shows that theorem A cannot be extended to an unstable theory.

Theorem B. Let M be an infinite L-structure. Then there is a structure M^* for an expanded language $L^* \supset L$ with the following properties:

(i) M is \emptyset-definable in M^*;

(ii) In any L^*-structure $N \equiv M^*$, there is a large indiscernible set in N.

Proof. For $i < \omega$, let $L_i = L \cup \{F_j(*) : j = 0, \ldots, i\} \cup \{U(*)\} \cup \{R_j(*,*,*) : j = 1, \ldots ,i\}$, where F_i's and U are unary predicate symbols, and R_j's are 3-ary predicate symbols. Let $L^* = \bigcup_{i<\omega} L_i$. We construct inductively countable L_j-structures M_j and countable subgroups S_j of $\text{Aut}(M_j)$ ($j < \omega$) with the following properties:

(1) $M_0 = F_0^{M_0} \cup U^{M_0}$, where $F_0^{M_0} = M$, and U^{M_0} is an infinite set disjoint from $F_0^{M_0}$.

(2) S_0 is a countable subgroup of $\text{Aut}(M_0)$ such that for given finite sequences $\bar{a} \in U^{M_0}$ and $\bar{b} \in U^{M_0}$ of the same length, there is a $\sigma \in S_0$ with $\sigma(\bar{a}) = \bar{b}$. Any two automorphisms $f \in S_0$ and $g \in S_0'$ differ at finitely many points.

(3) $M_{j+1} = M_j \cup F_{j+1}^{M_{j+1}}$,

(4) $S_j = \{\sigma[M_j : \sigma \in S_{j+1}]\}$.

Assume that we have already constructed M_j and S_j for $j < i$. Choose a bijective function $f_0 : F_{i-1}^{M_{i-1}} \to U^{M_{i-1}}$ arbitrarily and let

$$F_i^{M_i} = \{\sigma \circ f_0 \circ \sigma^{-1} : \sigma \in S_{i-1}\}.$$

$F_i^{M_i}$ is a countable set of functions from $F_{i-1}^{M_{i-1}}$ to $U^{M_{i-1}}$. Define $R_i^{M_i} \subset F_i^{M_i} \times F_{i-1}^{M_{i-1}} \times U^{M_{i-1}}$ by

$$(f, a, b) \in R_i^{M_i} \iff f(a) = b.$$
Now let $M_i = M_{i-1} \cup F^M_i$. We can extend each $\tau \in S_{i-1}$ to an automorphism τ^* of M_i. Let $f = \sigma \circ f_0 \circ \sigma^{-1} \in S_{i-1}$. Then define

$$\tau^*(f) = \tau \circ f \circ \tau^{-1} = (\tau \sigma) \circ f_0 \circ (\tau \sigma)^{-1} \in S_{i-1}.$$

The following equivalence shows that τ^* is really an automorphism:

$$M_i \models R(f, a, b) \iff f(a) = b \iff \tau^*(f)(\tau^*(a)) = \tau^*(b) \iff M_i \models R(\tau^*(f), \tau^*(a), \tau^*(b)).$$

Finally we set $M^* = \bigcup_{1<\omega} M_i, \tau^* = \text{Th}_{L^*}(M)$. Now it is sufficient to prove the following two claims.

Claim 1. In any model N of T^*, U^N is an indiscernible set.

It is sufficient to prove the statement for the case $N = M^*$. Let $\overline{a}, \overline{b} \in U^{M^*}$ be given. By the assumption on S_0, there is a $\sigma \in S_0$ such that $\sigma(\overline{a}) = \overline{b}$. σ can be extended to an automorphism of M^*. So $\overline{a} \equiv \overline{b}$.

Claim 2. If $N \models T^*$, then there is a large indiscernible set.

Clearly $U^N \cup \bigcup_i F^N_i$ has the same cardinality as N, or the complement $N - (U^N \cup \bigcup_i F^N_i)$ has the same cardinality as N. The second case clearly implies that $N - (U^N \cup \bigcup_i F^N_i)$ is a large indiscernible set. Let the second case hold. Note that an element in F_{i+1} gives a bijection between F^N_i and U^N. Then we see that U^N has the same cardinality as N. By claim 1, U^N is a large indiscernible set in this case.

Remark. (i) Any model of $T = \text{Th}(\mathbb{Z}, <)$ has a large indiscernible sequence. (ii) The construction of M^* was inspired by [F], in which Fuhrken showed the existence of an uncountable complete theory without the omitting types property. Note that our T^* is not stable: By our choice of S_0 and F_1, there is a sequence $\{(f_i, g_i) : i < \omega\} \subset F^M_1 \times F^M_1$ such that the formulas $\forall y \in F_0(R(f_i, x, y) \leftrightarrow R(g_i, x, y)) (i < \omega)$ define a strictly decreasing subsets of F_0.

Question. Does theorem A remain true, if we we replace 'large indiscernible set' by 'uncountable indiscernible set'?
4 References