Title

Extensions of the results on powers of p-hyponormal operators to class wF(p,r,q) operators (Inequalities on Linear Operators and its Applications)

Author(s)

Ito, Masatoshi

Citation

数理解析研究所講究録 2008, 1596: 25-37

Issue Date

2008-04

URL

http://hdl.handle.net/2433/81712

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
Extensions of the results on powers of p-hyponormal operators to class $wF(p, r, q)$ operators

伊藤 公智 (Masatoshi Ito)

This report is based on “M.Ito, Parallel results to that on powers of p-hyponormal, log-hyponormal and class A operators, to appear in Acta Sci. Math. (Szeged).”

Abstract

In this report, we shall show that inequalities
\[(T^{n+1}T^{n+1})^{\frac{n+p}{n+1}} \geq (T^{n}T^{n})^{\frac{n+p}{n}}\]
and
\[(T^{n}T^{n})^{\frac{n+r}{n}} \geq (T^{n+1}T^{n+1})^{\frac{n+r}{n+1}}\]
for $0 < p \leq 1$ and all positive integer n hold for weaker conditions than p-hyponormality, that is, class $F(p, r, q)$ defined by Fujii-Nakamoto or class $wF(p, r, q)$ defined by Yang-Yuan under appropriate conditions of p, r and q.

1 Introduction

In this report, a capital letter means a bounded linear operator on a complex Hilbert space \mathcal{H}. An operator T is said to be positive (denoted by $T \geq 0$) if $(Tx, x) \geq 0$ for all $x \in \mathcal{H}$, and also an operator T is said to be strictly positive (denoted by $T > 0$) if T is positive and invertible.

As an extension of hyponormal operators, i.e., $T^{*}T \geq TT^{*}$, it is well known that p-hyponormal operators for $p > 0$ are defined by $(T^{*}T)^{p} \geq (TT^{*})^{p}$, and also an operator T is said to be p-quasihyponormal for $p > 0$ if $T^{*}(T^{*}T)^{p} - (TT^{*})^{p}T \geq 0$. It is easily obtained that every p-hyponormal operator is q-hyponormal for $p > q > 0$ by Löwner-Heinz theorem “$A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in [0, 1]$. “

On powers of p-hyponormal operators, Aluthge-Wang [1] showed that “If T is a p-hyponormal operator for $0 < p \leq 1$, then T^{n} is $\frac{p}{n}$-hyponormal for any positive integer n.” As a more precise result than theirs, Furuta-Yanagida [8] obtained the following.

Theorem 1.A ([8]). Let T be a p-hyponormal operator for $0 < p \leq 1$. Then
\[(T^{n}T)^{\frac{p+1}{n}} \geq \cdots \geq (T^{2}T^{2})^{\frac{p+1}{2}} \geq (T^{*}T)^{p+1},\]
that is,
\[|T^{n}|^{2(p+1)} \geq \cdots \geq |T^{2}|^{p+1} \geq |T|^{2(p+1)}\]
and
\[(TT^{*})^{p+1} \geq (T^{2}T^{2})^{\frac{p+1}{2}} \geq \cdots \geq (T^{n}T^{n})^{\frac{p+1}{n}},\]
that is,
\[|T^{*}|^{2(p+1)} \geq |T^{2}|^{p+1} \geq \cdots \geq |T^{n}|^{2(p+1)}\]
hold for all positive integer n.
Recently, Gao-Yang [9] obtained the results on comparison of nth power and $(n+1)$th power of p-hyponormal operators for $0 < p \leq 1$.

Theorem 1.B ([9]). Let T be a p-hyponormal operator for $0 < p \leq 1$. Then

\[(T^{n+1}T^{n+1})^{\frac{n+2}{n+1}} \geq (T^{n}T^{n})^{\frac{n+2}{n+1}}, \quad \text{that is,} \quad |T^{n+1}|^{\frac{2(p+n)}{n+1}} \geq |T^{n}|^{\frac{2(p+n)}{n+1}}\]

and

\[(T^{n}T^{n})^{\frac{n+2}{n+1}} \geq (T^{n+1}T^{n+1})^{\frac{n+2}{n+1}}, \quad \text{that is,} \quad |T^{n+1}|^{\frac{2(p+n)}{n+1}} \geq |T^{n+1}|^{\frac{2(p+n)}{n+1}}\]

hold for all positive integer n.

As an extension of hyponormal operators, it is also well known that invertible log-hyponormal operators are defined by $\log T^*T \geq \log TT^*$ for an invertible operator T. We remark that we treat only invertible log-hyponormal operators in this paper (see also [17]). It is easily obtained that every invertible p-hyponormal operator for $p > 0$ is log-hyponormal since $\log t$ is an operator monotone function. We note that log-hyponormality is sometimes regarded as 0-hyponormality since $\frac{X^p-I}{p} \rightarrow \log X$ as $p \rightarrow +0$ for $X > 0$. An operator T is paranormal if $\|T^2x\| \geq \|Tx\|^p$ for every unit vector $x \in \mathcal{H}$. Ando [2] showed that every p-hyponormal operator for $p > 0$ and invertible log-hyponormal operator is paranormal. (Invertibility of a log-hyponormal operator is not necessarily required.)

Yamazaki [18] showed that “If T is an invertible log-hyponormal operator, then T^n is also log-hyponormal for any positive integer $n”, and also he obtained the following results.

Theorem 1.C ([18]). Let T be an invertible log-hyponormal operator. Then

\[(T^nT^n)^{\frac{1}{n}} \geq \cdots \geq (T^2T^2)^{\frac{1}{2}} \geq T^*T, \quad \text{that is,} \quad |T^n|^\frac{2}{n} \geq \cdots \geq |T^2| \geq |T|^2\]

and

\[TT^* \geq (T^2T^2)^{\frac{1}{2}} \geq \cdots \geq (T^nT^n)^{\frac{1}{n}}, \quad \text{that is,} \quad |T^*|^2 \geq |T^2| \geq \cdots \geq |T^n|^\frac{2}{n}\]

hold for all positive integer n.

Theorem 1.D ([18]). Let T be an invertible log-hyponormal operator. Then

\[(T^{n+1}T^{n+1})^{\frac{n+2}{n+1}} \geq T^nT^n, \quad \text{that is,} \quad |T^{n+1}|^{\frac{2(p+1)}{n+1}} \geq |T^n|^2\]

and

\[T^nT^n \geq (T^{n+1}T^{n+1})^{\frac{n+2}{n+1}}, \quad \text{that is,} \quad |T^n|^2 \geq |T^{n+1}|^{\frac{2(p+1)}{n+1}}\]

hold for all positive integer n.
We remark that Theorems 1.C and 1.D correspond to Theorems 1.A and 1.B, respectively. On powers of p-hyponormal and log-hyponormal operators, related results are obtained in [7], [13], [22], [24] and so on.

On the other hand, in [6], we introduced class A defined by $|T^2| \geq |T|^2$ where $|T| = (T^*T)^{1/2}$, and we showed that every invertible log-hyponormal operator belongs to class A and every class A operator is paranormal. We remark that class A is defined by an operator inequality and paranormality is defined by a norm inequality, and their definitions appear to be similar forms.

As we have pointed out in [14], we have the following result by combining [20, Theorem 1] and [15, Theorem 3] as a result on powers of class A operators. We remark that Theorem 1.E in case of invertible operators was shown in [11].

Theorem 1.E ([20][15][14]). If T is a class A operator, then

(i) $|T^{n+1}|^{\frac{2n}{n+1}} \geq |T^n|^2$ and $|T^*|^2 \geq |T^{n+1}|^{\frac{2n}{n+1}}$ hold for all positive integer n.

(ii) $|T^n|^\frac{2}{n} \geq \cdots \geq |T^2| \geq |T|^2$ and $|T^*|^2 \geq |T^{2*}| \geq \cdots \geq |T^n|^\frac{2}{n}$ hold for all positive integer n.

(i) (resp. (ii)) of Theorem 1.E is an extension of Theorem 1.D (resp. Theorem 1.C) since every invertible log-hyponormal operator belongs to class A.

As generalizations of class A and paranormality, Fujii-Jung-S.H.Lee-M.Y.Lee-Nakamoto [3] introduced class $A(p, r)$, Yamazaki-Yanagida [19] introduced absolute-(p, r)-paranormality, and Fujii-Nakamoto [4] introduced class $F(p, r, q)$ and (p, r, q)-paranormality as follows:

Definition.

(i) For each $p > 0$ and $r > 0$, an operator T belongs to class $A(p, r)$ if

$$(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{r}{p+r}} \geq |T^*|^{2r}.$$

(ii) For each $p > 0$ and $r > 0$, an operator T is absolute-(p, r)-paranormal if

$$|||T^p|T^*|^r x||^r \geq |||T^*|^r x||^{p+r}$$

for every unit vector $x \in H$.

(iii) For each $p > 0$, $r \geq 0$ and $q > 0$, an operator T belongs to class $F(p, r, q)$ if

$$(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{1}{q}} \geq |T^*|^{\frac{2(p+q)}{q}}.$$
(iv) For each $p > 0$, $r \geq 0$ and $q > 0$, an operator T is (p, r, q)-paranormal if

$$
\|\|T^p U|T|^r x\|^{\frac{1}{q}} \geq \|\|T^{\frac{p+r}{q}} x\|
$$

(1.1)

for every unit vector $x \in H$, where $T = U|T|$ is the polar decomposition of T. In particular, if $r > 0$ and $q \geq 1$, then (1.1) is equivalent to

$$
\|\|T^p |T^*|^r x\|^{\frac{1}{q}} \geq \|\|T^*^{\frac{p+r}{q}} x\|
$$

for every unit vector $x \in H$ ([12]).

We remark that class $F(p, r, \frac{p+r}{r})$ equals class $A(p, r)$ and also class $F(1, 1, 2)$ (i.e., class $A(1, 1)$) equals class A. Similarly $(p, r, \frac{p+r}{r})$-paranormality equals absolute-(p, r)-paranormality and also $(1, 1, 2)$-paranormality (i.e., absolute-$(1, 1)$-paranormality) equals paranormality.

Inclusion relations among these classes were shown in [3], [4], [12], [14], [15], [19] and so on (see also Theorems 3.A and 3.B). The following Figure 1 represents the inclusion relations among the families of class $F(p, r, q)$ and (p, r, q)-paranormality.

![Inclusion Relations among Paranormal Classes](image)

Figure 1

We can pick up inclusion relations among classes discussed in this report as follows: For $0 < \delta < p < 1$ and $0 < r < 1$,.
\[\delta \text{-hyponormal} \subset \text{class } F(p, r, \frac{p+1}{\delta+1}) \cap \subset \text{class } F(1, 1, \frac{2}{\delta+1}) \]
\[\log \text{-hyponormal} \subset \text{class } A(p, r) \subset \text{class } A \]

We remark that we assume invertibility on log-hyponormal operators.

In this report, as a parallel result to Theorem 1.E, we shall show that inequalities in Theorems 1.A and 1.B hold for weaker conditions than \(p \)-hyponormality, that is, class \(F(p, r, q) \) defined by Fujii-Nakamoto or class \(wF(p, r, q) \) recently defined by Yang-Yuan [23][21] (see Section 3) under appropriate conditions of \(p, r \) and \(q \).

\section{Main results}

In this section, we shall show our main results.

\textbf{Theorem 2.1.} If \((|T^*||T|^2|T^*|)^{\delta+1} \geq |T|^2(\delta+1) \) (i.e., \(T \) belongs to class \(F(1, 1, \frac{2}{\delta+1}) \)) for some \(0 \leq \delta \leq 1 \), then

(i) \[|T^{n+1}|^{\frac{2(\delta+n)}{n}} \geq |T^n|^{\frac{2(\delta+n)}{n}} \] holds for all positive integer \(n \).

(ii) \[|T^n|^{\frac{2(\delta+1)}{n}} \geq \cdots \geq |T^2|^{\delta+1} \geq |T|^{2(\delta+1)} \] holds for all positive integer \(n \).

\textbf{Theorem 2.2.} If \(|T|^{2(\gamma+1)} \geq (|T||T|^2|T|)^{\iota_{\frac{+1}{2}}} \) for some \(0 \leq \gamma \leq 1 \) holds and either

(a) \((|T^*||T|^2|T^*|)^{\frac{1}{2}} \geq |T^*|^2 \) (i.e., \(T \) belongs to class \(A \)) or

(b) \(N(|T|) \subseteq N(|T^*|) \)

holds, then

(i) \[|T^n|^{\frac{2(\gamma+n)}{n}} \geq |T^{n+1}|^{\frac{2(\gamma+n)}{n+1}} \] holds for all positive integer \(n \).

(ii) \[|T^*|^{2(\gamma+1)} \geq |T^2|^\gamma \geq \cdots \geq |T^n|^{\frac{2(\gamma+1)}{n}} \] holds for all positive integer \(n \).

We need the following results in order to prove Theorems 2.1 and 2.2.

\textbf{Theorem 2.A ([15])}. Let \(A \) and \(B \) be positive operators. Then for each \(p \geq 0 \) and \(r \geq 0 \),

(i) If \((B^{\frac{r}{2}}A^{\frac{p}{2}}B^{\frac{r}{2}})^{\frac{r}{r+p}} \geq B^r \), then \(A^p \geq (A^{\frac{r}{2}}B^rA^{\frac{r}{2}})^{\frac{r}{r+p}} \).

(ii) If \(A^p \geq (A^{\frac{r}{2}}B^rA^{\frac{r}{2}})^{\frac{r}{r+p}} \) and \(N(A) \subseteq N(B) \), then \((B^{\frac{r}{2}}A^{\frac{p}{2}}B^{\frac{r}{2}})^{\frac{r}{r+p}} \geq B^r \).
Theorem 2.B ([20]). Let A and B be positive operators. Then

(i) If $(B^\beta A^\alpha B^\alpha)^{\frac{\gamma}{\alpha_0+\beta_0}} \geq B^\beta_0$ holds for fixed $\alpha_0 > 0$ and $\beta_0 > 0$, then

\[(B^\beta A^\alpha B^\alpha)^{\frac{\gamma}{\alpha_0+\beta}} \geq B^\beta \]

holds for any $\beta \geq \beta_0$. Moreover,

\[A^{\alpha_0} B^\beta A^{\alpha_0} \geq (A^{\alpha_0} B^\beta A^{\alpha_0})^{\frac{\alpha_0+\beta_1}{\alpha_0+\beta}} \]

holds for any β_1 and β_2 such that $\beta_2 \geq \beta_1 \geq \beta_0$.

(ii) If $A^\alpha \geq (A^{\alpha_0} B^\beta A^{\alpha_0})^{\frac{\alpha_0+\beta_0}{\alpha_0+\beta}}$ holds for fixed $\alpha_0 > 0$ and $\beta_0 > 0$, then

\[A^\alpha \geq (A^{\alpha_0} B^\beta A^{\alpha_0})^{\frac{\alpha_0+\beta_1}{\alpha_0+\beta_0}} \]

holds for any $\alpha \geq \alpha_0$. Moreover,

\[(B^\beta A^\alpha B^\alpha)^{\frac{\alpha_0+\beta_0}{\alpha_0+\beta_0}} \geq B^\beta A^{\alpha_1} B^\beta \]

holds for any α_1 and α_2 such that $\alpha_2 \geq \alpha_1 \geq \alpha_0$.

Lemma 2.C ([20][16]). Let A, B and C be positive operators. Then for $p > 0$ and $0 < r \leq 1$,

(i) If $(B^p A^p B^p)^{\frac{1}{p+r}} \geq B^p$ and $B \geq C$, then $(C^p A^p C^p)^{\frac{1}{p+r}} \geq C^p$.

(ii) If $A \geq B$, $B^r \geq (B^p C^p B^p)^{\frac{1}{p+r}}$ and $N(A) = N(B)$, then $A^r \geq (A^p C^p A^p)^{\frac{1}{p+r}}$.

Lemma 2.D ([5]). Let $A > 0$ and B be an invertible operator. Then

\[(BAB^*)^\lambda = BA^{\frac{1}{4}} (A^{\frac{1}{4}} B^* B A^{\frac{1}{4}})^{\lambda-1} A^{\frac{1}{4}} B^* \]

holds for any real number λ.

We remark that Lemma 2.D holds without invertibility of A and B when $\lambda \geq 1$.

Proof of Theorem 2.1. Let $T = U |T|$ be the polar decomposition of T, and put $A_k = (T^k T^{*k})^{\frac{1}{2}} = |T^k|^{\frac{1}{2}}$ and $B_k = (T^k T^{*k})^{\frac{1}{2}} = |T^k|^{\frac{1}{2}}$ for a positive integer k. We remark that $T^* = U^* |T^*|$ is also the polar decomposition of T^*.

Firstly we shall show $|T^2|^{\delta+1} \geq |T|^{2(\delta+1)}$. By the hypothesis $$(|T^*||T^2||T^*|)^{\delta+1} \geq |T^*|^{2(\delta+1)}$$ for some $0 \leq \delta \leq 1$, we have

$$|T^2|^{\delta+1} = (U^*|T^*||T^2||T^*|U)^{\frac{\delta+1}{2}}$$
$$= U^*|T^*|^{\frac{\delta+1}{2}}$$
$$\geq U^*|T^*|^{2(\delta+1)}U$$
$$= |T|^{2(\delta+1)}.$$

Next we assume that $|T^{n+1}|^{\frac{2(\delta+n)}{k+1}} \geq |T^n|^{\frac{2(\delta+n)}{k}}$, that is, $A_{n+1}^{\delta+n} \geq A_n^{\delta+n}$ (2.1) holds for $n = 1, 2, \ldots, k$. By (2.1) and Löwner-Heinz theorem, we have

$$A_{k+1} \geq A_k \geq \cdots \geq A_2 \geq A_1$$
(2.2)

since $\frac{1}{\delta+n} \in (0, 1)$ in (2.1). The hypothesis $$(|T^*||T^2||T^*|)^{\frac{\delta+1}{2}} \geq |T^*|^{2(\delta+1)}$$ can be rewritten by $(B_1^{\frac{1}{2}}A_k^\frac{1}{2}B_1^{\frac{1}{2}})^{\frac{\delta+1}{2}} \geq B_1^{\delta+1}$, and also this yields $A_1 \geq (A_1^{\frac{1}{2}}B_1A_1^{\frac{1}{2}})^{\frac{1}{2}}$ by Löwner-Heinz theorem and (i) of Theorem 2.A. (2.2) and $A_1 \geq (A_1^{\frac{1}{2}}B_1A_1^{\frac{1}{2}})^{\frac{1}{2}}$ ensure

$$A_k \geq (A_k^{\frac{1}{2}}B_1A_k^{\frac{1}{2}})^{\frac{1}{2}}$$
(2.3)

by (ii) of Lemma 2.C since $N(A_k) = N(A_1)$ holds. We remark that $N(A_k) \subseteq N(A_1)$ holds by (2.2) and $N(A_k) = N(T^k) \supseteq N(T) = N(A_1)$ always holds. Then we get

$$A_k^\frac{1}{2} \geq (A_k^{\frac{1}{2}}B_1A_k^{\frac{1}{2}})^{\frac{1}{2}}$$
(2.4)

by (2.3) and (ii) of Theorem 2.B. Similarly, (2.2) and $A_1 \geq (A_1^{\frac{1}{2}}B_1A_1^{\frac{1}{2}})^{\frac{1}{2}}$ ensure

$$A_{k+1} \geq (A_{k+1}^{\frac{1}{2}}B_1A_{k+1}^{\frac{1}{2}})^{\frac{1}{2}}.$$
(2.5)

Therefore we have

$$|T^{k+1}|^{\frac{2(\delta+k+1)}{k+1}} = (U^*|T^*||T^k||T^*|U)^{\frac{\delta+k+1}{k+1}}$$
$$= U^*(B_1^{\frac{1}{2}}A_k^\frac{1}{2}B_1^{\frac{1}{2}})^{\frac{\delta+k+1}{k+1}}$$
$$= U^*B_1^{\frac{1}{2}}A_k^\frac{1}{2}(A_k^\frac{1}{2}B_kA_k^\frac{1}{2})^{\frac{\delta+k+1}{k+1}}A_k^\frac{1}{2}B_1^{\frac{1}{2}}U$$
by Lemma 2.D

$$\leq U^*B_1^{\frac{1}{2}}A_k^\frac{1}{2}A_k^\frac{1}{2}A_k^\frac{1}{2}B_1^{\frac{1}{2}}U$$
by (2.4) and Löwner-Heinz theorem

$$= U^*B_1^{\frac{1}{2}}A_k^{\delta+k}B_1^{\frac{1}{2}}U$$
$$\leq U^*B_1^{\frac{1}{2}}A_k^{\delta+k}B_1^{\frac{1}{2}}U$$
by (2.1)

$$\leq U^*(B_1^{\frac{1}{2}}A_k^{k+1}B_1^{\frac{1}{2}})^{\frac{\delta+k+1}{k+1}}U$$
$$= (U^*|T^*||T^{k+1}||T^*|U)^{\frac{\delta+k+1}{k+1}}$$
$$= |T^{k+2}|^{\frac{2(\delta+k+1)}{k+2}}.$$
We remark that the last inequality holds by (ii) of Theorem 2.B since (2.5) holds and $k + 1 \geq \delta + k \geq 1$.

Consequently the proof of (i) is complete. We can easily obtain (ii) by (i) and Löwner-Heinz theorem, so we omit its proof. \(\square\)

Proof of Theorem 2.2. Let $T = U|T|$ be the polar decomposition of T, and put $A_k = (T^k T^k)^{1\over 2}$ and $B_k = (T^k T^k)^{1\over 2} = |T^k|^1$ for a positive integer k. We remark that $T^* = U^*|T^*|$ is also the polar decomposition of T^*.

$|T||T^*|^2 |T|^1 \geq (|T||T^*|^2 |T|)^{1\over 2}$ and condition (b) ensure condition (a) by Löwner-Heinz theorem and (ii) of Theorem 2.A, so that we have only to prove the case where condition (a) holds.

Firstly we shall show $|T^*|^2(|T^*|^2 |T|^1 \geq |T^2|^1$. By the hypothesis $|T|^2(|T^*|^2 |T|^1 \geq (|T||T^*|^2 |T|)^{1\over 2}$ for some $0 \leq \gamma \leq 1$, we have

$$
|T^2|^1 = (U|T||T^*|^2 |T| U^*)^{1\over 2} = U(|T||T^*|^2 |T| U^*)^{1\over 2} \leq |T|^{2(\gamma+1)} U^* = |T^*|^2(\gamma+1).
$$

Next we assume that

$$
|T^n|^2(\gamma+1) \geq |T^n|^2(\gamma+1), \quad \text{that is,} \quad B_n^{\gamma+n} \geq B_{n+1}^{\gamma+n} \quad (2.6)
$$

holds for $n = 1, 2, \ldots, k$. By (2.6) and Löwner-Heinz theorem, we have

$$
B_1 \geq B_2 \geq \cdots \geq B_k \geq B_{k+1} \quad (2.7)
$$

since $1 \over \gamma+n \in (0, 1]$ in (2.6). Condition (a) can be rewritten by $(B_1^{1\over 2} A_1 B_1^{1\over 2})^{1\over 2} \geq B_1$. (2.7) and $(B_1^{1\over 2} A_1 B_1^{1\over 2})^{1\over 2} \geq B_1$ ensure

$$
(B_k^{1\over 2} A_1 B_k^{1\over 2})^{1\over 2} \geq B_k. \quad (2.8)
$$

by (i) of Lemma 2.C Then we get

$$
(B_k^{1\over 2} A_k B_k^{1\over 2})^{1\over 2} \geq B_k. \quad (2.9)
$$

by (2.8) and (i) of Theorem 2.B. Similarly, (2.7) and $(B_1^{1\over 2} A_1 B_1^{1\over 2})^{1\over 2} \geq B_1$ ensure

$$
(B_{k+1}^{1\over 2} A_1 B_{k+1}^{1\over 2})^{1\over 2} \geq B_{k+1}. \quad (2.10)
$$
Therefore we have
\[
|T^{k+1}|^{\frac{2(k+1)}{k+1}} = (U|T||T^k|^{2}|T|^*U^{*})^{\frac{k+1}{k+1}} \\
= U(A^{\frac{1}{2}}B_k A^{\frac{1}{2}})^{\frac{k+1}{k+1}} U^{*} \tag{2.9}
\]
by (2.6) and Löwner-Heinz theorem
\[
= UA^{\frac{1}{2}}B_{k+1} A_{\gamma+k} A^{\frac{1}{2}} U^{*} \tag{2.10}
\]
by (i) of Theorem 2.A.

We remark that the last inequality holds by (i) of Theorem 2.B since (2.10) holds and
\[
k + 1 \geq \gamma + k \geq 1.
\]

Consequently the proof of (i) is complete. We can easily obtain (ii) by (i) and Löwner-Heinz theorem, so we omit its proof.

\[\square\]

\textbf{Remark.} By putting $\delta = 0$ in Theorem 2.1 and $\gamma = 0$ in Theorem 2.2, we get Theorem 1.E since $\frac{1}{2} \geq |T^*|^2$ (i.e., T belongs to class A) ensures $|T|^2 \geq (|T^*|^2|T|)^{\frac{1}{2}}$ by (i) of Theorem 2.A.

\section*{3 Classes $F(p, r, q)$ and $wF(p, r, q)$ operators}

Recently, in order to continue the study of class $F(p, r, q)$, Yang-Yuan \cite{23}\cite{21} introduced class $wF(p, r, q)$ operators as follows: For each $p \geq 0$, $r \geq 0$ and $q \geq 1$ with $(p, r) \neq (0, 0)$ and $(p, q) \neq (0, 1)$, an operator T belongs to class $wF(p, r, q)$ if
\begin{equation}
(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{1}{q}} \geq |T^*|^2 \tag{3.1}
\end{equation}
and
\begin{equation}
|T|^{2(p+r)(1-\frac{1}{q})} \geq (|T^*|^r|T|^2r|T^*|^r)^{1-\frac{1}{q}}, \tag{3.2}
\end{equation}
denoting $(1-q^{-1})^{-1}$ by q^* when $q > 1$ because q and $(1-q^{-1})^{-1}$ are a couple of conjugate exponents. On discussions of class $wF(p, r, q)$ (or class $F(p, r, q)$), we frequently consider class $wF(p, r, \frac{q+r}{q+r})$ (or class $F(p, r, \frac{q+r}{q+r})$) by putting $q = \frac{r+r}{q+r}$ as follows: For $p \geq 0$, $r \geq 0$ and $-r < \delta \leq p$ with $(p, r) \neq (0, 0)$ and $(p, \delta) \neq (0, 0)$, an operator T belongs to class $wF(p, r, \frac{q+r}{q+r})$ if
\begin{equation}
(|T^*|^r|T|^{2p}|T^*|^r)^{\frac{q+r}{q+r}} \geq |T^*|^2(\delta+r) \tag{3.3}
\end{equation}
and
\[|T|^{2(-\delta+p)} \geq (|T|^{p}|T^{*}|^{2r}|T|^{p})^{\frac{\delta+r}{p+r}}. \] (3.4)

We remark that (3.1) is the definition of class \(F(p, r, q) \). We also remark that class \(wF(p, r, \frac{p+r}{r}) \) equals class \(wA(p, r) \) defined in [10], and also it was shown in [15] that class \(wA(p, r) \) (i.e., class \(wF(p, r, \frac{p+r}{r}) \)) coincides with class \(A(p, r) \). On inclusion relations of classes \(A(p, r), F(p, r, q) \) and \(wF(p, r, q) \), the following results were obtained.

Theorem 3.A.

(i) For invertible operator \(T \), \(T \) is log-hyponormal if and only if \(T \) belongs to class \(A(p, r) \) for all \(p > 0 \) and \(r > 0 \) ([3]).

(ii) If \(T \) belongs to class \(A(p_0, r_0) \) for \(p_0 > 0, r_0 > 0 \), then \(T \) belongs to class \(A(p, r) \) for any \(p \geq p_0 \) and \(r \geq r_0 \) ([15]).

We note that log-hyponormality can be regarded as class \(A(0, 0) \) by Theorem 3.A.

Theorem 3.B.

(i) For a fixed \(\delta > 0 \), \(T \) is \(\delta \)-hyponormal if and only if \(T \) belongs to class \(F(2\delta p, 2\delta r, q) \) for all \(p > 0, r \geq 0 \) and \(q \geq 1 \) with \((1 + 2r)q \geq 2(p + r) \), i.e., \(T \) belongs to class \(F(p, r, q) \) for all \(p > 0, r \geq 0 \) and \(q \geq 1 \) with \((\delta + r)q \geq p + r \) ([4]).

(ii) For each \(p > 0 \) and \(r > 0 \), \(T \) is \(p \)-quasihyponormal if and only if \(T \) belongs to class \(F(p, r, 1) \) ([12]).

(iii) If \(T \) belongs to class \(F(p_0, r_0, q_0) \) for \(p_0 > 0, r_0 \geq 0 \) and \(q_0 \geq 1 \), then \(T \) belongs to class \(F(p_0, r_0, q) \) for any \(q \geq q_0 \) ([4]).

(iv) If \(T \) belongs to class \(F(p_0, r_0, \frac{p_0+r_0}{\delta+r_0}) \) for \(p_0 > 0, r_0 \geq 0 \) and \(0 \leq \delta \leq p_0 \), then \(T \) belongs to class \(F(p, r, \frac{p+r_0}{\delta+r_0}) \) for any \(p \geq p_0 \) and \(r \geq r_0 \) ([14]).

(v) If \(T \) belongs to class \(F(p_0, r_0, \frac{p_0+r_0}{\delta+r_0}) \) for \(p_0 > 0, r_0 \geq 0 \) and \(-r_0 < \delta \leq p_0 \), then \(T \) belongs to class \(F(p_0, r_0, \frac{p_0+r_0}{\delta+r}) \) for any \(r \geq r_0 \) ([12]).

Theorem 3.C ([23]).

(i) If \(T \) belongs to class \(wF(p_0, r_0, q_0) \) for \(p_0 > 0, r_0 \geq 0 \) and \(q_0 \geq 1 \), then \(T \) belongs to class \(wF(p_0, r_0, q) \) for any \(q \geq q_0 \) with \(r_0q \leq p_0 + r_0 \).

(ii) If \(T \) belongs to class \(wF(p_0, r_0, q_0) \) for \(p_0 > 0, r_0 \geq 0, q_0 \geq 1 \) and \(N(T) \subseteq N(T^{*}) \), then \(T \) belongs to class \(wF(p_0, r_0, q) \) for any \(q \) such that \(q^* \geq q_0^* \) with \(p_0q^* \leq p_0 + r_0 \).
If T belongs to class $wF(p_0, r_0, \frac{p_0+r_0}{\delta+r_0})$ for $p_0 > 0$, $r_0 \geq 0$ and $-r < \delta \leq p_0$, then T belongs to class $wF(p, r, \frac{p+r}{\delta+r})$ for any $p \geq p_0$ and $r \geq r_0$.

If $p > 0$, $r \geq 0$, $q \geq 1$ with $rq \leq p + r$, then class $wF(p, r, q)$ coincides with class $F(p, r, q)$. In other words, if $p > 0$, $r \geq 0$, $0 \leq \delta \leq p$ and $\delta + r \neq 0$, then class $wF(p, r, \frac{p+r}{\delta+r})$ coincides with class $F(p, r, \frac{p+r}{\delta+r})$.

In this section, firstly we shall get a relation between p-hyponormality and class $wF(p, r, q)$ (or class $F(p, r, q)$). We remark that Theorem 3.1 is a parallel result to (i) of Theorem 3.A.

Theorem 3.1.

(i) For a fixed $\delta > 0$, T is δ-hyponormal (i.e., T belongs to class $F(p_0, 0, \frac{p_0}{\delta})$ for some $p_0 \geq \delta$) if and only if T belongs to class $F(p, r, \frac{p+r}{\delta+r})$ for all $p \geq \delta$ and $r \geq 0$.

(ii) For a fixed $\delta < 0$, T is $(-\delta)$-hyponormal (i.e., T belongs to class $wF(0, r_0, \frac{r_0}{\delta+r_0})$ for some $r_0 > -\delta$) if and only if T belongs to class $wF(p, r, \frac{p+r}{\delta+r})$ for all $p \geq 0$ and $r > -\delta$.

For $0 < \delta < p < 1$ and $0 < -\delta' < r < 1$, inclusion relations among class $wF(p, r, q)$ and other classes can be expressed as the following diagram. We remark that we assume invertibility on log-hyponormal operators, and also $N(T) \subseteq N(T^*)$ is required in ($*$).

\[
\begin{align*}
\delta\text{-hyponormal} & \subset \text{class } F(p, r, \frac{p+r}{\delta+r}) \subset \text{class } F(1, 1, \frac{2}{\delta+1}) \\
\cap & \cap \\
\text{log-hyponormal} & \subset \text{class } A(p, r) \subset \text{class } A \\
\cup & \cup \text{(*)} \\
(-\delta')\text{-hyponormal} & \subset \text{class } wF(p, r, \frac{p+r}{\delta+r}) \subset \text{class } wF(1, 1, \frac{2}{\delta+1}) \cup \text{(*)}
\end{align*}
\]

Next we shall obtain the following corollaries led by Theorems 2.1 and 2.2, and also Theorems 1.A and 1.B follow from these corollaries.

Corollary 3.2. If T belongs to class $F(p, r, \frac{p+r}{\delta+r})$ for some $0 \leq \delta \leq 1$, $0 < p \leq 1$ and $0 \leq r \leq 1$ such that $-r < \delta \leq p$, then

(i) $|T^{n+1}|^{\frac{2(d+n)}{n+1}} \geq |T^n|^{\frac{2(d+n)}{n}}$ holds for all positive integer n.

(ii) $|T^n|^{\frac{2(d+1)}{n}} \geq \cdots \geq |T^{2(d+1)}| \geq |T|^{2(d+1)}$ holds for all positive integer n.
Corollary 3.3. If T belongs to class $wF(p, r, \frac{p+r}{p+r}, \delta, E, \frac{r}{p+r})$ for some $-1 \leq \delta \leq 0$, $0 \leq p \leq 1$ and $0 \leq r \leq 1$ such that $-r < \delta < p$, and T satisfies $N(T) \subseteq N(T^*)$, then

(i) $|T^n|^\frac{2(-\delta+n)}{n} \geq |T^{n+1}|^\frac{2(-\delta+n)}{n+1}$ holds for all positive integer n.

(ii) $|T^n|^{2(-\delta+1)} \geq |T^{2}|^{-\delta+1} \geq \cdots \geq |T^{n}|^\frac{2(-\delta+1)}{n}$ holds for all positive integer n.

We omit proofs of the results in this section.

References

[15] M.Ito and T.Yamazaki, *Relations between two inequalities* \((B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{p}{p+r}} \geq B^{r}\) and \(A^{p} \geq (A^{\frac{r}{2}}B^{r}A^{\frac{r}{2}})^{\frac{p}{p+r}}\) and their applications, Integral Equations and Operator Theory, 44 (2002), 442–450.

