<table>
<thead>
<tr>
<th>Title</th>
<th>On some d-dual hyperovals in $PG(d(d+3)/2,2)$ (Group Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Taniguchi, Hiroaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1564: 27-31</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81149</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On some d-dual hyperovals in $PG(d(d + 3)/2, 2)$

Hiroaki Taniguchi
Takuma National College of Technology

1 Introduction

Let d, m be integers with $d \geq 2$ and $m > d$. Let $PG(m, 2)$ be an n-dimensional projective space over the binary field $GF(2)$.

Definition 1. A family S of d-dimensional subspaces of $PG(m, 2)$ is called a d-dimensional dual hyperoval in $PG(m, 2)$ if it satisfies the following conditions:

1. any two distinct members of S intersect in a projective point,
2. any three mutually distinct members of S intersect in the empty projective set,
3. all members of S generate $PG(m, 2)$, and
4. there are exactly 2^{d+1} members of S.

Known dual hyperovals in $PG(d(d + 3)/2, 2)$ are Huybrechts' dual hyperovals ([3]), Veronesean dual hyperovals ([4]), and Characteristic dual hyperovals ([2]). Huybrechts' dual hyperovals and Characteristic dual hyperovals satisfy the Property (T): for any distinct members X, Y and Z of S, the intersection $\langle X, Y \rangle \cap Z$ is a line, where $\langle X, Y \rangle$ is the projective subspace spanned by X and Y. On the other hand, Veronesean dual hyperovals do not satisfy Property (T). In this note, we show the other construction of d-dimensional dual hyperovals in $PG(d(d + 3)/2, 2)$ based on Veronesean dual hyperovals in section 2, which will appear in [1]. These dual hyperovals are not isomorphic to any Veronesean dual hyperoval, and that they do not satisfy the property (T). Hence, we have a new family of dual hyperovals in $PG(d(d + 3)/2, 2)$. In section 3, we study the automorphism group of S.
2 A construction

Let $n \geq d + 1$ and σ a generator of $Gal(GF(2^n)/GF(2))$. Let H be a $d + 1$-dimensional $GF(2)$-vector subspace of $GF(2^n)$. We may assume that H has a basis $\{e_0, e_1, \ldots, e_d\}$ such that $\{e_i e_j | 0 \leq i \leq j \leq d\}$ are linearly independent over $GF(2)$. Let us denote by \bar{H} the vector space generated by $\{(e_i e_j, e_i^\sigma e_j + e_i e_j^\sigma) | 0 \leq i \leq j \leq d\} \subset GF(2^d) \times GF(2^d)$. For a non-zero vector u of H, its support, denoted as $Supp(u)$, is the subset M of $\{e_0, e_1, e_2, \ldots, e_d\}$ for which $u = \sum_{e_i \in M} e_i$. Let $V \subset H$ be a vector subspace generated by $\{e_1, e_2, \ldots, e_d\}$ over $GF(2)$, and let $H \ni s = \sum_{i=0}^{d} \alpha_i e_i \mapsto \bar{s} = \sum_{i=1}^{d} \alpha_i e_i \in V$ be a natural projection, where $\alpha_i \in GF(2)$ for $0 \leq i \leq d$.

Definition 2. Let $x_{s,t} \in GF(2)$ for $s, t \in H$ which satisfy the following conditions:

1. $x_{s,t} = x_{s,t+e_0} = x_{s+e_0,t} = x_{s+e_0,t+e_0}$,
2. $x_{s,w} = 0$ for $w \in \{0, e_0, e_1, \ldots, e_d\}$,
3. $x_{s,t} = x_{w,t}$ for $w \in Supp(\bar{s}) \setminus Supp(\bar{t})$,
4. $x_{s,t} + x_{t,s} = x_{w,s}$ for $w \in Supp(\bar{s}) \cap Supp(\bar{t})$,
5. $x_{s,s} = x_{w,s}$ for $w \in Supp(\bar{s})$, and
6. $x_{s,t} + x_{s,s} = x_{s,s+t}$.

Using this $\{x_{s,t}\}$, we define $b(s, t)$ for $s, t \in H \setminus \{0\}$ as follows:

Definition 3. In $GF(2^n) \times GF(2^n)$, let us define $b(s, t)$ for $s, t \in H \setminus \{0\}$ as

$$b(s, t) = (st, s^\sigma t + st^\sigma) + x_{s,t} \sum_{w \in Supp(s)} (we_0 + w^2, w^\sigma e_0 + we_0^\sigma) + \sum_{w \in Supp(t)} x_{w,s}(we_0 + w^2, w^\sigma e_0 + we_0^\sigma).$$

We are able to show that $b(s, t) \neq 0$ for $s, t \in H \setminus \{0\}$. So we may regard that $b(s, t) \in PG(2n - 1, 2) = GF(2^n) \times GF(2^n) \setminus \{(0, 0)\}$ for $s, t \in H \setminus \{0\}$. We prove the following $(b1)$–$(b6)$ for $b(s, t)$ with $s, t \in H \setminus \{0\}$ in [1].
(b1) \(b(s, s) = (s^2, 0) \),
(b2) \(b(s, t) = b(t, s) \) for any \(s, t \),
(b3) \(b(s, t) \neq 0 \),
(b4) \(b(s, t) = b(s', t') \) if and only if \(\{s, t\} = \{s', t'\} \),
(b5) \(\{b(s, t) | t \in H \setminus \{0\}\} \cup \{0\} \) is a vector space over \(GF(2) \),
(b6) \(b(w, w') = (ww', w^\sigma w' + ww'^\sigma) \) for \(w, w' \in \{e_0, e_1, \ldots, e_d\} \).

Using (b1)-(b6), we are able to prove the following theorem.

Theorem 1. Inside \(PG(2n-1, 2) = GF(2^n) \times GF(2^n) \setminus \{(0, 0)\} \), let \(X(s) := \{b(s, t) | t \in H \setminus \{0\}\} \) and \(X(\infty) := \{b(s, s) | s \in H \setminus \{0\}\} \). Then \(X(s) \) for \(s \in H \setminus \{0\} \) and \(X(\infty) \) are \(d \)-dimensional subspaces of \(PG(2n-1, 2) \). Moreover, we have that \(S := \{X(s) | s \in H \setminus \{0\}\} \cup \{X(\infty)\} \) is a \(d \)-dimensional dual hyperoval in \(PG(d(d+3)/2, 2) \).

Let \(\chi \) be the characteristic function of \(V \setminus \{0\} \), that is, \(\chi \) is a map from \(V \) to \(GF(2) \) defined by \(\chi(v) = 0 \) or 1 according to whether \(v = 0 \) or not. We use the symbol \(J(u) \) for \(u \in H \) to denote \(\{0\} \) if \(\overline{u} = 0 \), or \(Supp(\overline{u}) \) if \(\overline{u} \neq 0 \). With the above convention, we consider the following function from \(H \times H \) to \(GF(2) \): \(x_{s,t} := \chi(\overline{s} + t) + \sum_{w \in J(t)} \chi(\overline{s} + w) \). Then we have the following Theorem.

Theorem 2. \(\{x_{s,t}\} \) defined above satisfies (1)-(6). Moreover, if \(S \) is a dual hyperoval in Theorem 1 defined by \(\{x_{s,t}\} \) above, we have that

(1) \(S \) is not isomorphic to the Veronesean dual hyperoval, and
(2) \(S \) does not satisfy Property \((T)\).

As a consequence of Theorem 2, we have a new family of dual hyperoval \(S \) in \(PG(d(d+3)/2, 2) \).

We define \(\alpha \{s, t_1, t_2\} \in GF(2) \) as: \(\alpha \{s, t_1, t_2\} := x_{s,t_1} + x_{s,t_2} + x_{s,s} + x_{s,s+t_1+t_2} \). Then we see the following proposition.

Proposition 1. Let \(s, t_1, t_2 \in H \setminus \{0\} \). Assume that \(t_1 \neq t_2 \). Then, we have \(b(s, t_1) + b(s, t_2) = b(s, t_1 + t_2 + \alpha\{s, t_1, t_2\}(s + e_0)) \), where \(\alpha \{s, t_1, t_2\} = \chi(\overline{s} + t_1) + \chi(\overline{s} + t_2) + \chi(\overline{t_1} + \overline{t_2}) \) if \(\overline{t_1} \neq 0, \overline{t_2} \neq 0 \) and \(\overline{s} \neq \overline{t_1} + \overline{t_2} \). Otherwise, we have \(\alpha \{s, t_1, t_2\} = 0 \).
3 The automorphism group

Theorem 3. The automorphism group of S is \(2^d : GL(d, 2)\).

We recall that a automorphism of S is an element \(\Phi\) of \(PGL(d(d+3)/2, 2)\) which permute the members of S in \(PG(d(d+3)/2, 2)\), which means, for any automorphism \(\Phi\), there exists a one-to-one mapping \(\rho\) from \(H\backslash\{0\}\cup\{\infty\}\) onto itself such that \(\Phi\) sends any member \(X(s)\) to \(X(\rho(s))\). We note that, by the definition of dual hyperoval, for any automorphism \(\Phi\), there exists only one \(\rho\) which satisfies that \(\Phi\) sends any member \(X(s)\) to \(X(\rho(s))\). So, to prove Theorem 3, it is sufficient to prove that \(\rho\) is a linear mapping of \(H\) which fixes \(e_0\), and that any such mapping \(\rho\) defines an automorphism \(\Phi\), because the group consists of linear mappings of \(H\) which fixes \(e_0\) is \(2^d : GL(d, 2)\).

In this note, we only prove that, for any linear mapping \(\rho\) from \(H\) onto itself which fixes \(e_0\), there exists an automorphism \(\Phi\) which maps \(X(t)\) to \(X(\rho(t))\) for \(t \in H\backslash\{0\}\) and fixes \(X(\infty)\).

Proof. Recall that the vectors \(b(w, w') = (ww', w^ww'w)\) form a basis of the underlying vectorspace of the ambient space \(\overline{H}\) for \(w, w' \in \{e_0, e_1, \ldots, e_d\}\). We define a map \(\Phi\) from \(\overline{H}\) to itself on this basis as follows; \(\Phi(b(w, w')) = b(\rho(w), \rho(w'))\) for \(w, w' \in \{e_0, e_1, \ldots, e_d\}\). This map is uniquely extended to a linear map on \(\overline{H}\), which we also denote by \(\Phi\). We have to show that, for every \(u, v \in H\),

\[
\Phi(b(u, v)) = b(\rho(u), \rho(v)).
\]

(1)

If \(u = v\), it is easy to see that \(\Phi(b(u, u)) = b(\rho(u), \rho(u))\). From now on, we consider the case that \(u \neq v\). We note that a subspace \(X(u) = \{b(u, v) | v \in H\backslash\{0\}\}\) is generated by the vectors \(b(u, w)\) for \(w \in \{u, e_0, \ldots, e_d\}\), since \(b(u, v) = \sum_{w \in \text{Supp}(v)} b(u, w) + x_{u,v}(b(u, u) + b(u, e_0))\). Let \(m(u, v)\) be the minimal number \(m\) such that \(b(u, v) = \sum_{i=1}^{m} b(u, w_i)\) for some distinct elements \(w_i (i = 1, \ldots, m)\) in \(\{u, e_0, e_1, \ldots, e_d\}\). Any such expression with \(m = m(u, v)\) is called a minimal expression of \(b(u, v)\). We prove claim (1) by induction on \(m(u, v)\).

Step 1: Assume first that \(u \in \{e_0, e_1, \ldots, e_d\}\). If \(m(u, v) = 1\), then \(b(u, v)\) is one of the basis vectors \(b(w, w')(w, w' \in \{e_0, \ldots, e_d\}\) of \(\overline{H}\), and hence claim (1) follows from the definition of \(\Phi\). Assume \(m(u, v) > 1\) and that the claim holds for every \(v' \in H\) with \(m(u, v') < m(u, v)\). Let \(b(u, v) = \sum_{i=1}^{m} b(u, w_i)\) with \(m := m(u, v)\) be minimal expression of \(b(u, v)\). Since \(X(u) \cup \{0\} = \{b(u, h) | h \in H\}\) is a subspace with a bijection \(H \ni h \rightarrow b(u, h) \in X(u)\), there
exists a unique $v_1 \in H$ such that $b(u, v_1) = \sum_{i=1}^{m-1} b(u, w_i)$. We have $b(u, v) = b(u, v_1) + b(u, w_m)$. In particular, we have $v = v_1 + w_m + \alpha\{u, v_1, w_m\}(u + e_0)$, and hence we have $\rho(v) = \rho(v_1) + \rho(w_m) + \alpha\{\rho(u), \rho(v_1), \rho(w_m)\}(\rho(u) + e_0)$. Now, since $u \in \{e_0, \ldots, e_d\}$, we have $\Phi(b(u, w_i)) = b(\rho(u), \rho(w_i))$ by definition. As $m(u, v_1) \leq m - 1$, we have $\Phi(b(u, v_1)) = b(\rho(u), \rho(v_1))$ by the induction hypothesis. Combining these remarks, it follows the linearity of Φ that $\Phi(b(u, v)) = \Phi(b(u, v_1)) + \Phi(b(u, w_m))$. Note that $b(\rho(u), \rho(v_1)) + b(\rho(u), \rho(w_m)) = b(\rho(u), \rho(v_1) + \rho(w_m) + \alpha\{\rho(u), \rho(v_1), \rho(w_m)\}(\rho(u) + e_0))$. Hence we have $\Phi(b(u, v)) = b(\rho(u), \rho(v))$. Thus, the claim is verified.

Step 2: Next, we prove (1) for $u \in H$ with $wt(u) \geq 2$ by induction on $m(u, v)$. The starting point in this case is a minimum number $m(u, v)$ for $u \in H$. Remark that with fixed $u \in H$, the minimality of $m(u, v)$ implies that $v \in \{u, e_0, \ldots, e_d\}$. Then, claim (1) has already been established in Step 1. Then, the verbatim repetition of the proof above goes through, except at one point where we claim $\Phi(b(u, w_m)) = b(\rho(u), \rho(w_m))$. In these case when $wt(u) \geq 2$, this claim holds from the conclusion of Step 1, replacing (u, v) by (w_m, u). Hence we have claim (1) for every $u, v \in H$.

Since ρ is a bijection on H, the vectors $b(\rho(u), \rho(v))$ for $u, v \in H$ generate \overline{H}. Thus claim (1) implies that the linear map Φ is surjective, and hence bijective on \overline{H}. Furthermore, claim (1) shows that Φ maps each member $X(u)$ isomorphically onto a member $X(\rho(u))$. Thus we conclude that Φ is an automorphism with associated bijection ρ.

References

