<table>
<thead>
<tr>
<th>Title</th>
<th>On holomorphic framed vertex operator algebras of rank 24 (Group Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lam, Ching Hung</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録, 2007, 1564: 85-92</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81141</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
On holomorphic framed vertex operator algebras of rank 24

Ching Hung Lam

Department of Mathematics, National Cheng Kung University,
Tainan, Taiwan 701
e-mail: chlam@mail.ncku.edu.tw

1 Framed vertex operator algebra

This article is based on an on-going research project with H. Yamauchi and H. Shimakura. We shall discuss our ideas on how to classify holomorphic framed vertex operator algebras of rank 24 using the structure codes and \mathbb{Z}_2-orbifold constructions.

First, we shall review the notion of a framed vertex operator algebra.

Definition 1.1. A Virasoro vector e is called an Ising vector if the subalgebra $\text{Vir}(e) \simeq L(1/2,0)$. Two Virasoro vectors $u,v \in V$ are called orthogonal if $[Y(u,z_1),Y(v,z_2)] = 0$. A decomposition $\omega = e^1 + \cdots + e^n$ of the conformal vector ω of V is called orthogonal if e^i are mutually orthogonal Virasoro vectors.

Remark 1.2. It is well-known that $L(1/2,0)$ is rational, C_2-cofinite and has three irreducible modules $L(1/2,0), L(1/2,1/2)$ and $L(1/2,1/16)$. The fusion rules of $L(1/2,0)$-modules are computed in [DMZ]:

\[
L(1/2,1/2) \boxtimes L(1/2,1/2) = L(1/2,0), \quad L(1/2,1/2) \boxtimes L(1/2,1/16) = L(1/2,1/16), \\
L(1/2,1/16) \boxtimes L(1/2,1/16) = L(1/2,0) \oplus L(1/2,1/2). \quad (1.1)
\]

Definition 1.3. ([DGH, M3]) A simple vertex operator algebra (V, ω) is called framed if there exists a set $\{e^1, \ldots, e^n\}$ of Ising vectors of V such that $\omega = e^1 + \cdots + e^n$ is an orthogonal decomposition. The full sub VOA F generated by e^1, \ldots, e^n is called an Ising frame or simply a frame of V. By abuse of notation, we sometimes call the set of Ising vectors $\{e^1, \ldots, e^n\}$ a frame, also.
Give a framed VOA V with a frame T, one can associate two binary codes C and D to V and T as follows:

Since $T = L(1/2, 0)^{\otimes n}$ is a rational vertex operator algebra, V is a completely reducible T-module. That is,

$$V \cong \bigoplus_{h_i \in \{0, \frac{1}{2}, \frac{1}{16}\}} m_{h_1, \ldots, h_n} L(h_1, \ldots, h_n),$$

where the nonnegative integer m_{h_1, \ldots, h_n} is the multiplicity of $L(h_1, \ldots, h_n)$ in V. In particular, all the multiplicities are finite and m_{h_1, \ldots, h_n} is at most 1 if all h_i are different from $\frac{1}{16}$.

Let $L = L(1/2, h_1) \otimes \cdots \otimes L(1/2, h_n)$ be an irreducible module for T. The τ-word $\tau(L)$ is a binary word $\beta = (\beta_1, \ldots, \beta_n) \in \mathbb{Z}_2^n$ such that

$$\beta_i = \begin{cases} 0 & \text{if } h_i = 0 \text{ or } 1/2, \\ 1 & \text{if } h_i = 1/16. \end{cases}$$

(1.2)

For any $\beta \in \mathbb{Z}_2^n$, define V^β as the sum of all irreducible submodules L of V such that $\tau(L) = \beta$. Denote $D := \{\beta \in \mathbb{Z}_2^n \mid V^\beta \neq 0\}$. Then D is an even linear subcode of \mathbb{Z}_2^n and $V = \bigoplus_{\beta \in D} V^\beta$.

For any $c = (c_1, \ldots, c_n) \in \mathbb{Z}_2^n$, denote $V(c) = m_{h_1, \ldots, h_n} L(h_1, \ldots, h_n)$ where $h_i = \frac{1}{2}$ if $c_i = 1$ and $h_i = 0$ elsewhere. Set

$$C := \{c \in \mathbb{Z}_2^n \mid V(c) \neq 0\}.$$

Then $V^0 = \bigoplus_{c \in C} V(c) \neq 0$.

Summarizing, there exists a pair (C, D) of even linear codes such that V is an D-graded extension of a code VOA V_C associated to C. We call the pair (C, D) the structure codes of a framed VOA V associated with the frame F. Since the powers of z in an $L(1/2, 0)$-intertwining operator of type $L(1/2, 1/2) \times L(1/2, 1/2) \to L(1/2, 1/16)$ are half-integral, the structure codes (C, D) satisfy $C \subset D^\perp$. Moreover, it is known [DGH, M3] that V is holomorphic if and only if $C = D^\perp$.

Remark 1.4. Let V be a framed VOA with the structure codes (C, D), where $C, D \subset \mathbb{Z}_2^n$. For a binary codeword $\beta \in \mathbb{Z}_2^n$, we define

$$\tau_\beta(u) := (-1)^{\langle \alpha, \beta \rangle}u \quad \text{for } u \in V^\alpha.$$

(1.3)

Then by the fusion rules, τ_β defines an automorphism on V [M1]. Note that the subgroup $P = \{\tau_\beta \mid \beta \in \mathbb{Z}_2^n\}$ is an elementary abelian 2-group and is
isomorphic to \mathbb{Z}_2^n/D^\perp. In addition, the fixed point subspace V^ι is equal to V^0 and all V^α, $\alpha \in D$ are irreducible V^0-modules. Similarly, we can define an automorphism on V^0 by

$$\sigma_{\beta}(u) := (-1)^{\langle \alpha, \beta \rangle} u \quad \text{for} \quad u \in V(\alpha),$$

where $V^0 = \oplus_{\alpha \in C} V(\alpha)$. Note that the group $Q = \{\sigma_{\beta} | \beta \in \mathbb{Z}_2^n\} \cong \mathbb{Z}_2^n/C^\perp$ is elementary abelian and $(V^0)^Q = V(0)$.

The following theorem is very important to our argument and is proved in [LY]

Theorem 1.5. Let $V = \oplus_{\alpha \in D} V^\alpha$ be a framed VOA with structure codes (C, D). Then

1. For every non-zero $\alpha \in D$, the subcode C_α of C contains a doubly even self-dual subcode w.r.t. α.

2. C is even, every codeword of D has a weight divisible by 8, and $D \subset C \subset D^\perp$.

As a corollary, the following theorem is also proved in [LY].

Theorem 1.6. Let $V = \oplus_{\alpha \in D} V^\alpha$ be a framed VOA with structure codes (C, D). Then $V = \oplus_{\alpha \in D} V^\alpha$ is a D-graded simple current extension of the code VOA $V^0 = V_C$.

The following corollaries follow immediately by the standard arguments for simple current extensions.

Corollary 1.7 ([LY, Y2]). Let $V = \oplus_{\alpha \in D} V^\alpha$ be a framed VOA with structure codes (C, D). Let W be an irreducible V^0-module. Then there exists $\eta \in \mathbb{Z}_2^n$, which is unique modulo D^\perp, such that W can be uniquely extended to an irreducible τ_η-twisted V-module which is given by $V \boxtimes_{V^0} W$ as a V^0-module. In particular, every irreducible untwisted V-module is D-stable.

Corollary 1.8 ([L1, Y2]). Let $V = \oplus_{\alpha \in D} V^\alpha$ be a holomorphic framed VOA with structure codes (C, D). For any $\delta \in \mathbb{Z}_2^n$, denote

$$D^0 = \{\alpha \in D | \langle \alpha, \delta \rangle = 0\} \quad \text{and} \quad D^1 = \{\alpha \in D | \langle \alpha, \delta \rangle \neq 0\}.$$
Define
\[
V(\tau_\delta) = \begin{cases}
(\bigoplus_{\alpha \in D^0} V^\alpha) \oplus (\bigoplus_{\alpha \in D^1} M_{\delta+C} \times M_{\delta+C} V^\alpha) & \text{if } \text{wt } \delta \text{ is odd,} \\
(\bigoplus_{\alpha \in L^0} V^\alpha) \oplus (\bigoplus_{\alpha \in L^1} M_{\delta+C} \times M_{\delta+C} V^\alpha) & \text{if } \text{wt } \delta \text{ is even.}
\end{cases}
\]
Then \(V(\tau_\delta)\) is also a holomorphic framed VOA. Moreover, the structure codes of \(V(\tau_\delta)\) are given by \((C, D)\) if \(\text{wt } \delta\) is odd and \((C \cup (\delta+C), D^0)\) if \(\text{wt } \delta\) is even.

The construction of \(V(\tau_\delta)\) is often referred to as a \(\mathbb{Z}_2\)-orbifold construction.

2 Structure codes for holomorphic framed VOAs

If \(V\) is a holomorphic framed VOA with the structure codes \((C, D)\), then \(C\) will satisfy the following conditions:

1. The length of \(C\) is divisible by 16.
2. \(C\) is even, every codeword of \(C^\perp\) has a weight divisible by 8, and \(C^\perp \subset C\).
3. For any \(\alpha \in C^\perp\), the subcode \(C_\alpha\) of \(C\) contains a doubly even self-dual subcode w.r.t. \(\alpha\).

For simplicity, we shall call a code \(C\) \textit{F-admissible} if it satisfies the above conditions (1)-(3). Indeed, one can construct a holomorphic framed VOA starting from an \(F\)-admissible code.

Theorem 2.1 ([LY]). There exists a holomorphic framed VOA with structure codes \((C, C^\perp)\) if and only if \(C\) is \(F\)-admissible, i.e., \(C\) satisfies conditions (1)-(3) above.

Remark 2.2. A linear code \(C\) is \(F\)-admissible if and only if its dual \(C^\perp\) satisfies the following three conditions:

(i) the length of \(C^\perp\) is divisible by 16,

(ii) \(C^\perp\) contains the all-one vector,

(iii) \(C^\perp\) is triply even, that is, \(\text{wt}(\alpha)\) is divisible by 8 for any \(\alpha \in C^\perp\).

For, let \(D\) satisfy the conditions (i), (ii) and (iii) above. Then for any \(\alpha, \beta \in D\), the weight of their intersection \(\alpha \cdot \beta\) is divisible by 4 and so \(\alpha \cdot D\) is doubly even. Then there exists a doubly even code \(E\) containing \(\alpha \cdot D\) such that \(E\) is self-dual w.r.t. \(\alpha\). For any \(\delta \in (\alpha \cdot D)^{\perp_{\alpha}}\), we have \(\langle \delta, D \rangle = \langle \delta \cdot \alpha, D \rangle = \langle \delta, \alpha \cdot D \rangle = 0\), showing \(E \subset (\alpha \cdot D)^{\perp_{\alpha}} \subset (D^\perp)_{\alpha}\). Therefore, \(D^\perp\) is \(F\)-admissible.

Now let us consider some examples of \(F\)-admissible codes.
2.1 \mathbb{Z}_4 codes and framed VOAs

Let Z be a self-orthogonal linear code over \mathbb{Z}_4. Define

$$A_4(Z) = \frac{1}{2} \{(x_1, \ldots, x_n) \in \mathbb{Z}^n | (x_1, \ldots, x_n) \in Z \mod 4\}.$$

Then $A_4(Z)$ is an even lattice. It is also well-known that $A_4(Z)$ is unimodular iff Z is self-dual. Note that if $Z = 0$, then $A_4(Z) \cong \sqrt{2}A_1^n$. Note that the lattice VOA $V_{\sqrt{2}A_1}$ is a framed VOA (cf. [DMZ, M2]) and

$$V_{\sqrt{2}A_1} \cong L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{1}{2}, 0\right) \oplus L\left(\frac{1}{2}, \frac{1}{2}\right) \otimes L\left(\frac{1}{2}, \frac{1}{2}\right)$$

as an $L\left(\frac{1}{2}, 0\right) \otimes L\left(\frac{1}{2}, 0\right)$-module. Hence the lattice VOA $V_{A_4(Z)}$ is framed for any Z.

The positive definite even unimodular lattices of rank 24 have been classified by Niemeier. There are exactly 24 such lattices and they are characterized by their root systems. The following theorem by Kitazume-Harada shows that all positive definite even unimodular lattices of rank 24 can be constructed by \mathbb{Z}_4-codes.

Theorem 2.3 (Kitazume-Harada). Let N be the Leech lattice or a Niemeier lattice. Then there exists a self-dual \mathbb{Z}_4 code Z such that $N \cong A_4(Z)$. In particular, the lattice VOA V_N is framed.

Now let us study the structure codes for the lattice VOA V_N.

Let Z be a self-dual \mathbb{Z}_4 code. Denote

$$Z_0 = \{(\alpha_1, \ldots, \alpha_n) \in \{0, 1\}^n | (2\alpha_1, \ldots, 2\alpha_n) \in Z\},$$

$$Z_1 = \{\alpha \in \{0, 1\}^n | \alpha \equiv \beta \mod 2 \text{ for some } \beta \in Z\}.$$

Then both Z_0 and Z_1 are even binary codes. Moreover, Z_1 is doubly even and $Z_0^\perp = Z_1$.

Proposition 2.4. Let Z be a self-dual linear \mathbb{Z}_4-code and Z_0 and Z_1 defined as above. Then the structure codes of the lattice VOA $V = V_{A_4(Z)}$ are given by

$$D = d(Z_1) \quad \text{and} \quad C = D^\perp,$$

where $d : \mathbb{Z}_2^n \to \mathbb{Z}_2^{2n}$ is given by $d(a_1, a_2, \ldots, a_n) = (a_1, a_1, a_2, a_2, \ldots, a_n, a_n)$. Note that the code $\{(0,0), (1,1)\}^n$ is contained in C.
Let $\delta = (10)^n$. Then τ_δ defines an automorphism on $V_{A_4(Z)}$. In fact, τ_δ is conjugate to the automorphism θ, which is the lift of the -1-map on the lattice $N = A_4(Z)$.

By Corollary 1.8, the structure codes for the τ_δ-twisted orbifold

$$V(\tau_\delta) = \left(\bigoplus_{a \in D^0} V^a \right) \oplus \left(\bigoplus_{a \in D^0} M_{\delta \cdot C} \times_{M_C} V^a \right)$$

are given by $D = \langle d(Z_1), (10)^n \rangle$ and $C = D^\perp$. Note that C contains the code E^+ generated by

$$11110000\ldots$$
$$00111100\ldots$$
$$00001111\ldots$$
$$0000001111\ldots$$

We believe that this case is the typical case and the following holds.

Conjecture 1. Let D be an indecomposable triply even binary code of length $16k$. Then D is a subcode of $\langle d(C), (01)^{8k} \rangle$, where C is a double even self-dual codes of length $8k$.

A code is said to be *indecomposable* if there does not a partition $I \cup J = \{1, \ldots, n\}$ such that $I \cap J = \emptyset$ but $D = D_1 \oplus D_2$ with supp $D_1 \subset I$ and supp $D_2 \subset J$.

The conjecture actually holds for $k = 1, 2$ but is not proved for $k \geq 3$. If the conjecture also holds for $k = 3$, then we have the following classification of holomorphic framed VOAs of rank 24.

Theorem 2.5. Assume that Conjecture 1 holds for $k = 3$. If V is holomorphic framed VOA of rank 24, then V is isomorphic to one of the following:

1. a lattice VOA V_N, or
2. the θ-orbifold of a lattice VOA V_N,
where N is the Leech lattice or a Niemeier lattice.

In particular, V can be characterized by its weight 1 subspace V_1.

Remark 2.6. Note that if $N \subset A_1^{24}$, then τ_δ-orbifold is again a lattice VOA. There are 9 such cases and hence there are exactly 15 holomorphic framed VOAs of rank 24 which are not lattice VOAs. Therefore, there are totally 39 holomorphic framed VOAs of rank 24 – 24 lattice VOAs and 15 θ-twisted orbifolds.
Sketch of the proof

Let \((C, D)\) be the structure codes of \(V\). If the conjecture holds, then \(C \supset E^+\), which is generated by

\[
\begin{align*}
11110000 & \cdots \\
00111100 & \cdots \\
00011111 & \cdots \\
00000000 & \cdots \\
\end{align*}
\]

If \(C\) contains \((00), (11)\)\^{24}, then \(V\) contains a subVOA isomorphic to \(V\otimes_{\sqrt{2}A_1}^{24}\) and hence \(V\) is isomorphic to a lattice VOA associated with a Niemeier lattice.

Otherwise, let \(\alpha = (1100 \ldots 0)\). Then \(\alpha \notin C\) and the \(\tau_\alpha\)-orbifold of \(V\) will have the structure code containing \((00), (11)\)\^{24} and hence the \(\tau_3\)-orbifold \(V(\tau_3)\) is isomorphic to a lattice VOA \(V_N\). By reversing the orbifold construction, one can show that \(V\) is a \(\theta\)-twisted orbifold of \(V_N\).

References

