A convergence property for quasisuperminimizers on metric measure spaces

Takayori ONO (小野太幹)
Fukuyama University (福山大学)

§1. Preliminaries

We assume that $X = (X, d, \mu)$ be a complete metric space with a metric d and a positive Borel regular measure μ which is finite on a bounded set.

Let u be a real valued function on X. A nonnegative Borel measurable function g on X is said to be an upper gradient of u if for every rectifiable path γ joining x and y in X,

$$|u(x) - u(y)| \leq \int_{\gamma} g \, ds. \quad (1.1)$$

The p-modulus of a family Γ of paths in X is defined by

$$\inf_{\rho} \int_{X} \rho^p \, d\mu,$$

where the infimum is taken over all nonnegative Borel measurable functions ρ such that for all rectifiable paths γ in Γ

$$\int_{\gamma} \rho \, ds \geq 1.$$

We say that a property holds for p-almost every path if the family of paths on which the property does not hold is of zero the p-modulus. If (1.1) holds for p-almost every path γ, then we say that g is a p-weak upper gradient of u.

Let $1 < p < \infty$ and $L^p(X)$ be the space of functions f on X such that $|f|^p$ is integrable with respect to the measure μ. A function u belongs the space $\tilde{N}^{1,p}(X)$ if $u \in L^p(X)$ and u has a p-weak upper gradient g such that $g \in L^p(X)$. For a function $u \in \tilde{N}^{1,p}(X)$, we define

$$\|u\|_{\tilde{N}^{1,p}(X)} = \|u\|_{L^p(X)} + \inf_{g} \|g\|_{L^p(X)},$$
where the infimum is taken over all \(p \)-weak upper gradients of \(u \). For functions \(u, v \in \tilde{N}^{1,p}(X) \), we define the relation \(u \sim v \) if and only if \(||u - v||_{\tilde{N}^{1,p}(X)} = 0 \). We define the Newtonian space \(N^{1,p}(X) = \tilde{N}^{1,p}(X)/\sim \) equipped with the norm \(||\cdot||_{N^{1,p}(X)} \).

Following properties of the Newtonian spaces are known (see [S1]):

(i) \(N^{1,p}(X) \) is a Banach space.
(ii) Lipschitz functions are dense in \(N^{1,p}(X) \).
(iii) Every \(u \in N^{1,p}(X) \) has a unique minimal \(p \)-weak upper gradient \(g_u \in L^p(X) \) in the sense that for every \(p \)-weak upper gradient \(g \) of \(u \), \(g_u \leq g \mu\text{-a.e} \) in \(X \).

For a set \(E \) in \(X \), the \(p \)-capacity of \(E \) is defined by

\[
C_p(E) = \inf_u ||u||_{N^{1,p}(X)},
\]

where the infimum is taken over all \(u \in N^{1,p}(X) \) such that \(u = 1 \) on \(E \), and the Newtonian space with zero boundary values is defined by

\[
N_0^{1,p}(E) = \{u \in N^{1,p}(X) \mid C_p(\{x \in X \mid u(x) \neq 0\}) = 0\}.
\]

Let \(\Omega \) be an open subset in \(X \). If \(u \in N^{1,p}(E) \) for every measurable set \(E \subseteq \Omega \), we write \(u \in N_{1\text{oc}}^{1,p}(\Omega) \). For more various properties of Newtonian spaces, see [S1].

In addition, we assume following two conditions:

(I) The measure \(\mu \) is doubling, that is, there exists a constant \(C > 0 \) such that

\[
0 < \mu(2B) \leq C \mu(B)
\]

whenever \(B = B(x_0, r) = \{x \in X \mid d(x, x_0) < r\} \) is a ball in \(X \) and \(\lambda B = B(x_0, \lambda r) \) for \(\lambda \in \mathbb{R} \).

(II) \(X \) supports a weak \((1, p) \)-Poincaré inequality, that is, there exist constants \(C > 0 \) and \(\lambda \geq 1 \) such that for all balls \(B \subset X \), all measurable functions \(f \) on \(X \) and all upper gradients \(g \) of \(f \),

\[
\frac{1}{\mu(B)} \int_B |f - f_B| d\mu \leq C(dim A B) \left(\frac{1}{\mu(\lambda B)} \int_{\lambda B} g^p d\mu \right)^{1/p},
\]

where \(f_B = \frac{1}{\mu(B)} \int_B f d\mu \).
In [B] there are various examples of spaces equipped with a doubling measure and supporting Poincaré inequality.

§2. Quasisuperminimizers

Let a constant $Q \geq 1$. A function $u \in N_{1oc}^{1,p}(\Omega)$ is said to be a (Q,p)-quasiminimizer in Ω if for all open $\Omega' \Subset \Omega$ and all $\varphi \in N_{0}^{1,p}(\Omega')$ we have

$$\int_{\Omega'} g_{u}^{p} d\mu \leq Q \int_{\Omega'} g_{u+\varphi}^{p} d\mu.$$

A function $u \in N_{1oc}^{1,p}(\Omega)$ is said to be a (Q,p)-quasisuperminimizer if and only if u is a (Q,p)-quasiminimizer and a (Q,p)-quasisubminimizer.

A (Q,p)-quasiminimizer (respectively, (Q,p)-quasisuperminimizer) has a continuous (respectively, lower semicontinuous) representative (see [KM1; Theorem 5.1], [KM2; Lemma 5.3] and [KS; Proposition 3.3 and Theorem 5.2]). If u is a $(1,p)$-quasiminimizer (respectively, $(1,p)$-quasisuperminimizer), we say that u is a minimizer (respectively, superminimizer). A continuous minimizer is said to be p-harmonic. Potential theory for p-harmonic functions on metric measure spaces has been studied in [C], [S2], [KM1], [BBS1] and [BBS2] etc.

If u is a (Q,p)-quasisuperminimizer and $\lambda \geq 0$, τ are constants, then $\lambda u + \tau$ is a (Q,p)-quasisuperminimizer.

§3. A convergence property for quasisuperminimizers

In [KM2; Theorem 6.1] the following convergence result for quasisuperminimizers was established:

Proposition. Let Ω be an open set in X and let $\{u_{n}\}$ be a nondecreasing sequence of (Q,p)-quasisuperminimizers in Ω and $u = \lim_{n \to \infty} u_{n}$. If either u is locally bounded above or $u \in N_{loc}^{1,p}(\Omega)$, then u is a (Q,p)-quasisuperminimizer in Ω.

We can relax the condition in the above proposition as follows.

Theorem. Let Ω be an open set in X and let $\{u_{n}\}$ be a nondecreasing sequence of (Q,p)-quasisuperminimizers in Ω. If there is a function $f \in \ldots$
$N^{1,p}_{\text{loc}}(\Omega)$ such that $u_n \leq f \mu$-a.e. for all n, then $u = \lim_{n \to \infty} u_n$ is a (Q,p)-quaisuperminimizer in Ω.

Let Ω be an open subset of X. A function $u : \Omega \to \mathbb{R} \cup \{\infty\}$ is said to be (Q,p)-quaisuperharmonic in Ω in the sense of [KM2] if

(i) u is lower semicontinuous,
(ii) $u \not\equiv \infty$ in Ω, and
(iii) there exist an exhaustion $\{\Omega_n\}$ of Ω and a nondecreasing sequence $\{u_n\}$ of (Q,p)-quaisuperminimizers in Ω_n such that $u = \lim_{n \to \infty} u_n^*$, where $u_n^*(x) = \text{ess lim inf}_{y \to x} u_n(y)$.

If u is a (Q,p)-quaisuperminimizers, then u has a (Q,p)-quaisuperharmonic representative (see [KM2; Proposition 7.2]).

From the above theorem the next corollary follows immediately.

Corollary. Let Ω be an open set in X and let u be a (Q,p)-quaisuperharmonic function in the sense of [KM2] in Ω. If there is a function $f \in N^{1,p}_{\text{loc}}(\Omega)$ such that $u \leq f \mu$-a.e., then u is a (Q,p)-quaisuperminimizers in Ω.

References

[O] T. Ono, A convergence property for quasisuperminimizers, in preparation
