Superconductivity and Electric Field Effects in Ultrathin YBa$_2$Cu$_3$O$_{7-\delta}$ Films

Yoshichika Bando and Takahito Terashima

Effect of adjacent insulating cap oxide layers on superconductivity of one unit cell thick (1-UCT) YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) layers in PrBa$_2$Cu$_3$O$_{7-\delta}$/YBCO/insulating oxide trilayers has been studied. It is found that the small lattice mismatch between YBCO and the cap oxides, in addition to divalent A ions in atomic AO layers subsequent to the CuO$_1$ layer terminated surface, is a requirement for superconductivity in 1-UCT YBCO layers. The change in the normal state resistance is well explained by the field-induced change of carrier density.

Keywords: High-T_c superconductivity / YBa$_2$Cu$_3$O$_{7-\delta}$ / Ultrathin film / One-unit-cell / Charge reservoir block / Electric field effect

Ultrathin films and superlattices of high-T_c superconductors have been extensively studied to elucidate the minimum unit for the occurrence of high-T_c superconductivity and interlayer coupling of the CuO$_2$ layers. High-T_c superconductors are characterized by two dimensional CuO$_2$ layers, which are separated by the charge reservoir blocks. An stringent test of the intrinsic nature of the high-T_c superconductors characterized by layered structures can be obtained from transport measurements on one unit cell thick (1-UCT) layer of the superconductor. The smaller carrier density of high-T_c superconductor than that in metal superconductor enables the change of carrier density by applying electric fields. The ultrathin films are expected to exhibit remarkable field effects in T_c and other properties.

In the preparation of such ultrathin layers, we need the deposition technique which enables us to prepare epitaxial films with excellent superconducting properties, precise layer thicknesses and smooth surfaces. We have used a molecular beam epitaxy (MBE) system equipped with reflection high energy electron diffraction (RHEED), which enables real-time, in situ layer thickness monitoring by specular beam intensity oscillations [1].

We have found that superconductivity can occur at finite temperatures in the single layer of 1-UCT YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) sandwiched between nonsuperconducting PrBa$_2$Cu$_3$O$_{7-\delta}$ (PrBCO) layers [2] and the minimum unit needed for the occurrence of superconductivity is the CuO$_2$ bilayer sandwiched between the charge reservoir blocks, as shown in Fig. 1(a) [3]. It has been reported that the terminating surface of...
the YBCO layer grown by MBE is the CuO$_{1.5}$ layer. As a result, the 1-UCT YBCO layer on the buffer PrBCO layer needs an addition of the BaO layer for the completion of the charge reservoir block, as shown in Fig. 1(b). It is found that the capping of the 1-UCT YBCO layer with BaO makes the 1-UCT layer superconducting.

In place of BaO layers, the effects of other alkaline-earth metal oxide "AO" caps on the superconductivity of the samples have been examined. The experimental results are summarized as a function of lattice mismatch value in Fig. 2. We can conclude that divalent metal in AO layer adjacent to the CuO$_{1.5}$ layer, in systems with mismatch values (~6%) exhibit superconductivity in PrBCO/1-UCT YBCO/cap oxide trilayers.

We have studied electric field effects in ultrathin YBCO films using heterostructures of Ag/BaTiO$_3$(200nm)/SrTiO$_3$(1.5nm)/YBCO/SrTiO$_3$(substrate)[4]. Gate voltage, V_{gate}, dependence for 2-UCT YBCO at 72.8K is shown in Fig. 3. The application of negative voltage to the Ag electrode, i.e. the YBCO layer is positively charged, lowers the resistance of YBCO layer linearly in V_{gate}, while a positive V_{gate} having the opposite effect. The field induced change of the resistance $\Delta R/R$ is 0.5% for the applied field of 0.5V.

Observed $\Delta R/R$ in the normal state can be explained by the field induced carriers (ΔN). In the present experiment, field induced charge ΔN in the areal density is evaluated as follows:

$$\Delta N = \Delta Q/e, \quad \Delta Q = CV_{\text{gate}}/S, \quad N = nd,$$

where S is area of electrode, N is total carrier of YBCO layer, d is the thickness of YBCO layer and n is carrier density of bulk YBCO. $\Delta N/N$ is evaluated to be 0.55% by using the values of $n=5 \times 10^{20}$ (cm$^{-3}$), $C=500$(nF) and $S=2.2 \times 10^{-4}$ (cm2). The observed $\Delta R/R$ is in good agreement with the change of the carrier density, $\Delta N/N$.

References