<table>
<thead>
<tr>
<th>title</th>
<th>Bioorganic Chemistry: Organoelement Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>author</td>
<td>Citation</td>
</tr>
<tr>
<td></td>
<td>ICR annual report (2004), 10: 32-33</td>
</tr>
<tr>
<td>issue date</td>
<td>2004-03</td>
</tr>
<tr>
<td>url</td>
<td>http://hdl.handle.net/2433/65399</td>
</tr>
<tr>
<td>type</td>
<td>Article</td>
</tr>
<tr>
<td>text version</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Bioorganic Chemistry
- Organoelement Chemistry -

http://boc.kuicr.kyoto-u.ac.jp/index.html

Scope of Research

Organic chemistry has been developed as that of second-row elements such as carbon, oxygen, and nitrogen so far, while the synthesis and isolation of the heavier congeners of typical organic molecules as stable compounds have been one of "dreams" for organic chemists. Our main research interest is the elucidation of the resemblance and difference in structures and reactivities between organic compounds and the corresponding heavier congeners. These studies are interesting from the standpoints of not only fundamental chemistry but also opening the way to more extensive application of main group chemistry. Organic synthesis mediated by biocatalysts is also studied.

Research Activities (Year 2003)

Presentations

Recent Progress in the Chemistry of Stable Silaromatic and Related Species, Tokitoh N, Kyushu International Symposium on Physical Organic Chemistry IX, 30 September - 3 October, Fukuoka, Japan.

Grants

Kawai Y, Development of methods for the determination of the absolute configuration of chiral compounds using a novel crystalline agent, Grant-in-Aid for Scientific Research (C)(2), 1 Apr 2003 - 31 March 2005.

Takeda N, Synthesis of double bond species between group 10 metals and chalcogens and the elucidation of...
Photochemical valence isomerization reaction of kinetically stabilized 9-silaanthracene

In recent decades, there has been much interest in the chemistry of [4n+2]π-electron ring systems containing heavier group 14 elements, heavy aromatics, from the viewpoint of not only fundamental chemistry but also applied chemistry. Recently, we have succeeded in the synthesis and characterization of the first stable heavy aromatics, that is, silabenzene, 1- and 2-silannaphthalene, 9-silaanthracene, germabenzene, and 2-germanannaphthalene utilizing an efficient steric protection group, Tbt group (vide infra). In addition, we have reported the photochemical isomerization of the silabenzene leading to the corresponding sila benzvalene derivative. Now, we investigated photochemical reaction of the 9-silaanthracene 1.

When a C₆D₆ solution of 1 in a sealed tube was irradiated with light of λ = 300-500 nm through a UV cut filter at room temperature, the orange color of 1 disappeared and a new species, 9,10-Dewar-9-silaanthracene 2 was formed exclusively. 2 was found to undergo gradual thermal tautomerization into 1 even at -180°C in hexane. Kinetic studies using UV/vis spectroscopy suggested that this reaction was a first-order reaction as well as thermal isomerization of 9,10-Dewar-9-silaanthracene to anthracenes. In addition, the half-life time of 2 in hexane at 10°C was estimated to be about 5 minutes. On the other hand, heating of a C₆D₆ solution of 1 at 110°C in a sealed tube for 15 days or thermolysis of 1 in the solid state at 180°C for 1 h afforded the corresponding [4+4]dimmer 3. 3 is thermally very stable and no cycloreversion to 1 was observed in the 1,2-dichlorobenzene-d₄ solution even at 200°C.

These results are very interesting because it was experimentally demonstrated for the first time that 9-silaanthracene can afford either the Dewar-type isomer or [4+4] dimer depending on the reaction conditions.

The first examples of stable benzenes fused with two three-membered rings: synthesis and structures of the two stereoisomers of bis(silacyclopropa)benzenes

Structures and properties of cyclopropabenzenes derivatives have fascinated many organic chemists so far, because a competition between preservation of aromatic ring skeleton and angular strain in the three-membered ring fused to their aromatic ring results in unique properties. Recently, we have succeeded in the synthesis of the first stable diaryl silica- and germacyclopropabenzenes, heavier analogues of a cyclopropabenzenes derivative, and reported their structures and physical properties. Now, we describe the synthesis of two stereoisomers of the first stable bis(silacyclopropa)benzenes, in which two silacyclopropene skeletons are fused to one benzene ring.

The reaction of dilithiosilane 4, which was prepared by the exhaustive reduction of dibromosilane 5 using lithium naphthalenide, with 1,2,4,5-tetrabromobenzene at -78°C in THF afforded the first stable bis(silacyclopropa)benzenes 6a (cis-form) and 6b (trans-form). The structures of 6a,b were revealed by the X-ray crystallographic analysis. It was found that both of 6a,b have no distinct bond alternation in their central benzene rings.