Syntactic Congruences of some Codes

Tetsuo MORIYA

Department of Electrical Engineering, Faculty of Engineering
Kokushikan University
Setagaya 4-28-1, Setagaya-ku, Tokyo 154-8515, Japan
Electric Mail: moriya@kokushikan.ac.jp

Abstract

We consider syntactic congruences of some codes. As a main result, for an infix code L, it is proved that the following (i) and (ii) are equivalent and that (iii) implies (i), where P_L is the syntactic congruence of L.

(i) L is a P_{L^2}-class.
(ii) L^m is a P_{L^k}-class, for two integers m and k with $1 \leq m \leq k$.
(iii)L^* is a P_{L^1}-class.

Next we show that every (i), (ii) and (iii) holds for a strongly infix code L. Moreover we consider properties of syntactic congruences of a residue $W(L)$ for a strongly outfix code L.

Keywords: prefix code, suffix code, infix code, syntactic congruence
1 Introduction

The theory of codes has been studied in algebraic direction in connection to automata theory, combinatorics on words, formal languages, and semigroup theory. A lot of classes of codes have been defined and studied ([1], [2]). Among those codes, prefix codes, suffix code, bifix codes, infix codes and outfix codes have many remarkable algebraic properties ([2], [3], [4]). Recently a strongly infix code and a strongly outfix code were defined and the closure property under composition operation for these code was proved ([5][6]).

In this paper we study syntactic congruences of some codes, especially, (strongly) infix codes and (strongly) outfix codes. Several properties of the syntactic congruence P_L of L, for L infix or outfix, have been presented in [2] and [3] and moreover some interesting characterizations have been presented on the syntactic monoid and the syntactic congruence P_L of L for an infix code L([7]). We mainly deal with the syntactic congruence P_{L^n} of L^n, $n > 1$, and P_{L^*} of L^* in this paper below.

In section 2 some basic definitions and results are presented.

In section 3, first we prove that the following (i) and (ii) are equivalent for an infix code L, and that (iii) implies (i), where P_L is the syntactic congruence of L.

(i) L is a P_{L^2}-class.
(ii) L^m is a P_{L^k}-class, for two integers m and k with $1 \leq m \leq k$.
(iii) L^* is a P_L-class.

Next we show that every (i), (ii) and (iii) holds for a strongly infix code L, and moreover we show that L^* is contained in a $P_{W(L^*)}$-class, where $W(L)$ is a residue of L. Last we consider a relation between P_{L^n}-class and $W(L)$ for a strongly outfix code L.

2 Preliminaries

Let Σ be an alphabet. Σ^* denotes the free monoid generated by Σ, that is, the set of all finite words over Σ, including the empty word 1, and $\Sigma^+ = \Sigma^* - 1$. For w in Σ^*, $|w|$ denotes the length of w.

A word $x \in \Sigma^*$ is a factor or an infix of a word $w \in \Sigma^*$ if there exists $u, v \in \Sigma^*$ such that $w = u x v$. A factor x of w is proper if $w \neq x$. A catenation xy of two words
x and y is an outfix of a word $w \in \Sigma^*$ if there exists $u \in \Sigma^*$ such that $w = xuy$.

A word $u \in \Sigma^*$ is a left factor of a word $w \in \Sigma^*$ if there exists $x \in \Sigma^*$ such that $w = u x$. A left factor u of w is called proper if $u \neq w$. A right factor is defined symmetrically. An outfix xy of w is proper if $xy \neq w$. The set of all left factors (resp. right factors) of a word x is denoted by $\text{Pref}(x)(\text{Suf}(x))$.

A language over Σ is a set $L \subseteq \Sigma^*$. A language $L \subseteq \Sigma^*$ is a code if L freely generates the submonoid L^* of Σ^* (See [1] about the definition.). A language $L \subseteq \Sigma^*$ is a prefix code (resp. suffix code) if no word in L has a proper left factor (a proper right factor) in L. A language $X \subseteq \Sigma^+$ is a bifix code if L is both a prefix code and a suffix code. A language $L \subseteq \Sigma^+$ is an infix code (resp. outfix code) if no word $x \in X$ has a proper infix (a proper outfix) in L.

A language $L \subseteq \Sigma^+$ is in-catenatable (resp. out-catenatable) if a catenation of two words in L has a proper infix (proper outfix) in L which is neither a proper prefix nor a proper suffix. Formally, L is in-catenatable if there exist $u_1, u_2, u_3, u_4 \in \Sigma^+ - X$ such that $u_1 u_2, u_3 u_4$ and $u_2 u_3$ is in L, and L is out-catenatable if there exist $u_1, u_2, u_3, u_4 \in \Sigma^+ - X$ such that $u_1 u_2, u_3 u_4$ and $u_1 u_4$ is in L with $u_1 u_2 \neq u_3 u_4$. A language $L \subseteq \Sigma^+$ is a strongly infix code (resp. strongly outfix code) if L is an infix code (outfix code) and is not in-catenatable (out-catenatable). A strongly infix (resp. outfix) code may be abbreviated to an s-infix (s-outfix) code.

Let M be a monoid and let N be a submonoid of M. Then N is right unitary (resp. left unitary) in M if for all $u, v \in M$, $u \in N$ and $uv \in N$ ($vu \in N$) together imply $v \in N$. The submonoid N is biunitary if it is both left and right unitary. The submonoid N is double unitary in M if for all $u, x, y \in M$, $u \in N$ and $xuy \in N$ together imply x and $y \in N$. The submonoid N is mid-unitary in M if for all $u, x, y \in M$, $xy \in N$ and $xuy \in N$ together imply $u \in N$.

Proposition 1 [1] Let $L \subseteq \Sigma^+$ be a code. A language L is a prefix code (resp., suffix code, bifix code, s-infix code) iff L^* is right unitary (left unitary, biunitary, double unitary).

Proposition 2 [6] Let $L \subseteq \Sigma^+$ be a code. If a language L is a strongly outfix code, then L^* is mid-unitary.

Proposition 3 Let $L \subseteq \Sigma^+$ be a code. If L^* is mid-unitary, then L is an outfix code.
Proof. Suppose that L would not be outfix with L^* mid-unitary. There exist $x, y \in \Sigma^*$ and $u \in \Sigma^+$ such that both xuy and xy are in L. Since L^* is mid-unitary, we have that $u \in L^*$, and thus $u \in L^+$. It is easily obtained that both uxy and yxu are in L^*, since both xuy and $uxyuxy$ are in L^*. Thus $uxyux$ has two factorization. This contradicts the fact that L is a code. \[\square\]

For a language L over Σ and u in Σ^*, let

$$L..u = \{(x,y) | x,y \in \Sigma^* \text{ and } xuy \in L\}.$$

The syntactic congruence P_L is defined by

$$u \equiv v(P_L) \iff L..u = L..v.$$

The syntactic monoid $\text{Syn}(L)$ of L is the quotient monoid Σ^*/P_L. For any language $L \subseteq \Sigma^*$, let $W(L)$ denote the residue of L, that is,

$$W(L) = \{u \in \Sigma^* | L..u = \phi\}.$$

3 Syntactic congruences of some codes

In this section we consider properties of syntactic congruences of some codes.

Before discussing, we give some basic results.

Proposition 4 [3] Every infix code L is a P_L-class.

Proposition 5 [3] Let L be an outfix code. Then every P_L-class different from $W(L)$ is an outfix code.

Lemma 6 For languages L, $K \subseteq \Sigma^*$, if L is a P_K-class, then $P_K \subseteq P_L$.

Proof. Suppose that L is a P_K-class, and that $u \equiv v(P_K)$. Then one has that $xuy \equiv xvy(P_K)$ for every x, y. If xuy is in L, then it is in a class of P_K. Thus xvy is in the same class of P_K, that is, in L. Similarly we can easily obtained that $xvy \in L$ implies $xuy \in L$. Hence $u \equiv v(P_L)$. \[\square\]
Lemma 7 Let L be a code, and let m and k be integers with $1 \leq m \leq k$. If $u \in L^m$, $xuv \in L^k$ and $x, y \in L^*$, then $x \in L^i$ and $y \in L^j$ for integers $i, j \geq 0$ such that $i + j = k - m$.

Proof. Let $u = u_1 \ldots u_m; u_1, \ldots, u_m \in L$, $x, y \in L^*$, and $xuv = v_1 \ldots v_k; v_1, \ldots, v_k \in L$. Since L is a code, $a_1 = v_1, \ldots, a_i = v_i; u_1 = v_i+1, \ldots, u_m = v_i+m-1; b_1 = v_{i+m}, \ldots, b_j = v_{i+m+j}$. It is obvious that $i + m + j = k$. Thus the result holds. \qed

Lemma 8 For a languages L and K, if $P_L \subseteq P_K$ and K is contained in a P_L-class, then K is equal to a P_L-class.

Proof. It is obvious from the fact that L is a union of P_L-classes. \qed

Now we consider properties of a syntactic congruence P_{L^n} of L^n and a syntactic congruence P_{L^*} of L^* for an infix code L and a positive integer n. The first result holds for a prefix code or a suffix code.

Proposition 9 Let L be a prefix code or a suffix code. For an integer $n \geq 2$, $P_{L^n} \subseteq P_{L^{n-1}}$.

Proof. Let L be a prefix code. Suppose that $u \equiv v(P_{L^n})$ and $xuv \in L^{n-1}$. Taking an arbitrary word $w \in L$, we have that $wxuv \in L^n$. It follows that $wxuv \in L^n$, by $u \equiv v(P_{L^n})$. Hence xuv is in L^* since L^* is right unitary. By Lemma 7, xuv is in L^{n-1}. Similarly we have that $xuv \in L^{n-1}$ implies $xuv \in L^{n-1}$. Thus $u \equiv v(P_{L^{n-1}})$. In the case of a suffix code, we can similarly prove the result. \qed

Proposition 10 Let L be an infix code. Then the following conditions are equivalent:

(i) L is a P_{L^2}-class.

(ii) L^m is a P_{L^k}-class, for two integers m and k with $1 \leq m \leq k$.

Proof. (i) \implies (ii) : Suppose that L is a P_{L^2}-class. First we prove that L is a P_{L^k}-class for every $k \geq 2$. Let u and v be in L and $xuv \in L^k$ for $x, y \in \Sigma^*$. If one of
the two words x and y is in L^*, then the other is also in L^*, since L is an infix code. Then xvy is in L^k by Lemma 7. So assume that neither x nor y is in L^*. Since L is infix, the word u has no proper factor in L. Then there exist $u_1, u_2, z, w \in \Sigma^+$ such that $wu_1, u_2z \in L$, $u = u_1u_2$, $w \in Suf(x), z \in Pre(y)$. We have that wuz is in L^2, so xvy is in L^k since L is a P_{L^2}-class. Similarly we have that $xvy \in L^k$ implies $xuy \in L^k$. Hence L is contained in a P_{L^k}-class for $k \geq 2$. Since $P_{L^k} \subseteq P_L$, L is a P_{L^k}-class by Lemma 8.

Next suppose that $u, v \in L^m$ and $xuy \in L^k$ with $m \leq k$ for $x, y \in \Sigma^*$. Let $u = u_1...u_m$ for $u_1, ..., u_m \in L$ and $v = v_1...v_m$ for $v_1, ..., v_m \in L$. Since L is a P_{L^k}-class, $xu_1u_2...u_my$ is in L^k for $v_1 \in L$. Furthermore, for $v_2 \in L$, $xu_1v_2u_3...u_my \in L^k$. Continuing this process, we can prove that for $v \in L^m$, $xvy \in L^k$. Similarly as above, we have that L^m is contained in a P_{L^k}-class. By Lemma 8, L^m is a P_{L^k}-class since $P_{L^k} \subseteq P_{L^m}$.

$(ii) \implies (i)$: trivial.

Proposition 11 For an infix code L, if L^* is a P_{L^*}-class, then L is a P_{L^2}-class.

Proof. Let $u, v \in L$, and $xvy \in L^2$. There exist u_1 and $u_2 \in \Sigma^+$ such that $u_1u_2 = u$, $xu_1, u_2y \in L$. By the hypothesis, we have that $xvy \in L^*$. Suppose that $xvy \in L^k$ for $k > 2$. Let $xvy = w_1...w_k$ for $w_1, ..., w_k \in L$. Since L is infix, we have that $|x| < |w_1| < |xv|$ and $|y| < |w_k| < |vy|$. Hence $w_2...w_{k-1}$ is a proper factor of v. This is a contradiction. Thus $xvy \in L^2$. By symmetry, we have that $xvy \in L^2$ implies $xvy \in L^2$, and thus L is contained in a P_{L^2}-class. By Lemma 8 and the fact that $P_{L^2} \subseteq P_L$, the result holds.

Unfortunately, the converse of Proposition 11 does not holds. For an alphabet $\Sigma = \{a_1^{(1)}, a_1^{(2)}, a_2, b_1, b_2, c_1^{(1)}, c_1^{(2)}, c_2, d_1, d_2\}$, consider the infix code $L = xx_2\Sigma \cup x\Sigma y_1$ $\cup x\{x_1, u, v_1\} \cup x_2x_3\Sigma y \cup x_2\Sigma y_1 y \cup x_2\{x_1, u, v_1\} y \cup \Sigma y y \cup \{uv, vy\}$, where $x_1 = a_1^{(1)}, x_2 = a_2, u = b_1b_2, v_1 = c_1^{(1)} c_1^{(2)}, v_2 = c_2, y = d_1d_2, x = x_1x_2$. It can be easily checked that L an infix code, and L is a P_{L^2}-class. Although both $uvuv$ and $xuvy$ are in L^2, $xuvuvy$ is not in L^2 since vu is not in L. Alternatively, $xuvy$ and $xuvvy$ are not in the same class of P_{L^*}.

Next we consider P_{L^k}, $n \geq 1$, and P_{L^*} for s-infix code L.

Proposition 12 For every s-infix code L, L is a P_{L^2}-class.

Proof. Let $u, v \in L$. Suppose that $xuy \in L^2$. Since L^* is double unitary, one has that both x and y are in L^*. Then it follows that $x \in L^i$ and $y \in L^j$ with $i + j = 1$ by Lemma 7. That is, either $x = 1$ and $y \in L$, or $y = 1$ and $x \in L$. Thus $xvy \in L^2$. Similarly, it is easily obtained that $xvy \in L^2$ implies $xuy \in L^2$. Thus $u \equiv v(P_{L^2})$. Hence L is contained in a P_{L^2}-class. By Lemma 8 and Proposition 9, L is a P_{L^2}-class. \square

Corollary 13 For every s-infix code L, and two integers m and k with $1 \leq m \leq k$, L^m is a P_{L^k}-class.

Proof. It is obvious by Propositions 12 and 14. \square

Proposition 14 Let L be a s-infix code over Σ. Then L^* is a P_{L^*}-class.

Proof. Let $u, v \in L^*$. Suppose that xuy is in L^* for $x, y \in \Sigma^*$. Since L^* is double-unitary, both x and y are in L^*. Hence xvy is in L^*. Similarly we have that $xvy \in L^*$ implies $xuy \in L^*$. Thus $u \equiv v(P_{L^*})$, and so L^* is contained in a P_{L^*}-class. Since L^* is a union of P_{L^*}-classes, the result holds. \square

Proposition 15 Let L be a s-infix code over Σ. Then L^* is contained in a $P_{W(L^*)^*}$-class.

Proof. Let $u, v \in L^*$. Suppose that $xuy \notin W(L^*)$, that is, $L^*xuy \neq \phi$. Then immediately we have that $\Sigma^*x \cap L^* \neq \phi$ and $y\Sigma^* \cap L^* \neq \phi$ since L^* is double unitary. Hence $xvy \notin W(L^*)$. Similarly we can obtained that $xvy \notin W(L^*)$ implies $xuy \notin W(L^*)$. Thus the result holds. \square

Remark 1 The result such as Proposition 12 does not hold in general for an infix code: For an infix code $L = \{aba, bab\}$, which is not a strongly infix code, we have that $P_{L^2} \subseteq P_{L^{n-1}}$. However L is not a P_{L^2}-class since the two words aba and bab are not in the same class of P_{L^2}. 197
Last we consider the syntactic congruence P_{L^n} of L^n for a strongly outfix code L.

Proposition 16 Let L be a s-outfix code over Σ. Then every P_{L^n}-class $(1 \leq n)$ not contained in $W(L)$ is a s-outfix code.

Proof. Since the class of outfix codes is closed under concatenation [2], we have that P_{L^n}-class different from $W(L^n)$ is an outfix code by Proposition 5. Moreover it follows that P_{L^n}-class not contained in $W(L)$ is an outfix code by that $W(L^n) \subseteq W(L)$.

Suppose that such a P_{L^n}-class is not s-outfix, that is, there exist $x_1, x_2, z_1, z_2 \in \Sigma^+$ such that $x_1z_1 \equiv x_2z_2 \equiv x_1z_2 (P_L)$ and $x_1z_1 \neq x_2z_2$. Since $P_{L^n} \subseteq P_L$, these three words are in the same P_L-class different from $W(L)$. So there exist $w_1, w_2 \in \Sigma^*$ such that $w_1x_1z_1w_2 \in L$, $w_1x_2z_2w_2 \in L$ and $w_1x_1z_2w_2 \in L$. Then we have that $w_1x_1z_1w_1x_2z_2w_2 \in L^2$, $w_1x_1z_1w_2z_2 \in \Sigma^+$ and $w_1x_1z_1w_2 \neq w_1x_2z_2w_2$. This contradicts the fact that L is s-outfix. Thus the result holds. \square

Remark 2 In Proposition 16, a similar result as Proposition 5 for an s-outfix code L does not hold. That is, P_{L^n}-class different from $W(L^n)$, but contained in $W(L)$, is not necessarily s-outfix. For an s-outfix code $L = \{abba, baaab, caaac\}$, let $w_1 = abbbabaa$, $w_2 = caaacba$, and $w_3 = baaaba$. Then $w_1 \equiv w_2 \equiv w_3 (P_L)$, but w_1w_2 has a proper outfix $abbbabaa = w_1$ "in L. Thus the class which contains w_1, w_2 and w_3 is not s-outfix.

References

