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Revisiting Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{k}$

稲葉 寿 (Hisashi INABA)
東京大学大学院数理科学研究科

1 Kermack’s and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}_{\Gamma}\mathrm{i}\mathrm{c}\mathrm{k}’ \mathrm{s}$ Epidemic $\mathrm{M}o$dels

It is well known that Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}_{\mathrm{C}\mathrm{k}}$ were most important pioneers in the

field of mathematical epidemiology. Between World War I and II, they published a series

of papers about deterministic structured models for the spread of infectious diseases, which

have been so far referred by many authors again and again as an important origin of idea.

Nevertheless, in my opinion, possibility and implications of their epidemic models have

been so far not necessarily fully examined.
The first paper published in 1927 was especially famous among researchers, in which they

developed, what we call, SIR (susceptible-infected-removed) epidemic model with duration

dependent (variable) infectivity, that is, the infection rate depends on the duration in

the infected and infectious status and the infection happens only one time in the life of

host individual. If the infectivity is assumed to be constant, this structured SIR model is

reduced to the well known ordinary differential equation model. Even now, unfortunately

most people keep referring to the simplest ODE case of Kermack’s and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{k}’ \mathrm{s}$ SIR
epidemic model as if it were the only Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{k}$ model. But this leads

a historical misunderstanding, and should stop (Diekmann, Heesterbeek and Metz 1995).

But reexamination of Kermack’s and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{k}’ \mathrm{S}$ structured SIR model has been started

by Metz (1978) and Diekmann (1977) (see also Metz and Diekmann 1986, Iannelli 1995).

The importance of this kind of structured SIR model is now widely recognized, since it

provides a model for epidemic with long incubation period and variable infectivity such

as $\mathrm{H}\mathrm{I}\mathrm{V}/\mathrm{A}\mathrm{I}\mathrm{D}\mathrm{S}$ epidemic (Thieme and Castillo-Chavez 1993). During the past two decades
SIR-type epidemic models have been well studied and extended to various kind of epidemic-

demographic situations (Anderson and May 1991).

On the other hand, as far as I know, Kermack’s and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{k}’ \mathrm{S}$ general complex
models developed in two papers written in 1932 and 1933 have been still neglected. In

those papers they have proposed a kind of duration-dependent epidemic model, where the

transmission rate depends on both duration of infected host (disease-age) and duration
of susceptible host. The total population is decomposed into three compartments, the

never infected, infected and recovered. The host population is structured by duration

variable in each status, but the chronological age is neglected. We call this model as
variable svsceptibility model, since the infection rate from infecteds to recovered population
depends on not only the disease.age but also the duration variable of recovered host. That
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is, in this model, recovered individuals can be reinfected repeatedly, and their reinfection
probability depend on how long it takes since the last infection. Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}_{\mathrm{C}\mathrm{k}}$

concentrated to the problem of endemicity of this model, that is, they examined conditions
under which existence and uniqueness of the endemic steady state can be established.

Why so far has their variable susceptibility model been paid less attention and neglected
? Though one reason would be that their model was too complex to be analyzed without
computer, another important reason would be that they did not answer the question what
kind of real epidemic could be well described by this type of model and whether it is worth
while studying this complex model. However, today we can recognize that their idea of
variable susceptibility is very much important, since their formulation is so flexible that
we can take into account the genetic change of virus or the variation of host immunity
structure. Their exists at least two main reasons that the host imrnunity will decay though
time, one possibility is that there is a natural decay of host immunity, another reason
is the antigenic change in virus. The second reason is now becoming more and more
important, because we are conhonting with difficulty to control epidemic in which by the
genetic changes in virus the vaccination and the host immunity becomes less effective. The
evolutionary mechanism would be one of most important factors which reemerge infectious
diseases.

In this short note, we reformulate Kermack’s and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{k}’ \mathrm{S}$ variable susceptibility
model by using modern mathematical expressions, and prove an existence and uniqueness
result for the endemic steady state. Subsequently we discuss its applications to evolutionary
epidemic model.

2 Variable susceptibility model

Here we formulate the variable susceptibility model as an initial-boundary value problem
for $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{k}$ partial differential equation system, which would be useful to make the
mathematical essence of the model clear.

Let $s_{0}(t, \mathcal{T})$ be the density of never infected population (susceptible population, which is
also called as virgin population in the terminology of Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{C}\mathrm{k}$) at time $t$

and duration $\tau$ . Let $i(t, \tau)$ be the density of infected and infectious population at time $t$

and duration (disease-age) $\tau$ and let $s(t, \mathcal{T})$ be the density of recovered population (partially
susceptible population) at time $t$ and duration $\tau$ . Let $\mu$ denotes the natural death rate, $b(t)$

the birth rate at time $t,$ $v(\tau)$ the recovery rate at $\mathrm{d}\mathrm{i}_{\mathrm{S}\mathrm{e}\mathrm{a}}\mathrm{S}\mathrm{e}- \mathrm{a}\mathrm{g}\mathrm{e}\tau,$ $\gamma 1(\mathcal{T})\gamma_{2}(\zeta)$ the infection
rate bom infected individual at disease-age $\zeta$ to recovered host at duration $\tau$ . For the
transmission rate, we adopt the following intuitively reasonable assumption:

Assumption 2. 1 $\gamma_{1}(\tau)$ is a bounded, nonnegative, monotone non-decreasing function,
and the infection rate from infecteds at disease-age $\zeta$ to never infected individuals is given
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by $\gamma_{1}(\infty)\gamma_{2}(\zeta)$ .

That is, $\gamma_{2}(\zeta)$ reflects the variable infectivity of infected individual and $\gamma_{1}(\tau)$ denotes the

variable susceptibility of recovered individual. Since it could be assumed that there is no

correlation between those two forces, the transmission rate is assumed to be given by the

proportionate mixing assumption.
Then the variable susceptibility model is formulated as follows:

$\frac{\partial s_{0}(t,\mathcal{T})}{\partial t}+\frac{\partial s_{0}(t,\tau)}{\partial\tau}$ $=$ $- \mu s_{0}(t, a)-s0(t, \tau)\gamma_{1}(\infty)\int_{0}^{\infty}\gamma_{2}(\zeta)i(t, \zeta)d\zeta$, (2.1)

$\frac{\partial s(t,\tau)}{\partial t}+\frac{\partial s(t,\tau)}{\partial\tau}$ $=$ $- \mu s(t, \tau)-s(t, \mathcal{T})\gamma 1(\tau)\int_{0}^{\infty}\gamma_{2}(\zeta)i(t, \zeta)d\zeta$ , (2.2)

$\frac{\partial i(t,\tau)}{\partial t}+\frac{\partial i(t,\tau)}{\partial\tau}$ $=$ $-(\mu+\delta+v(\tau))i(t, \mathcal{T})$ , (2.3)

$s_{0}(t, \mathrm{o})$ $=$ $b(t)$ (2.4)

$s(t, 0)$ $=$ $\int_{0}^{\infty}v(\tau)i(t, \mathcal{T})d_{\mathcal{T}}$ (2.5)

$i(t, 0)$ $=$ $\int_{0}^{\infty}\{\gamma_{1}(\infty)s\mathrm{o}(t, \tau)+\gamma_{1}(\tau)s(t, \tau)\}d\mathcal{T}\int_{0}^{\infty}\gamma_{2}(\zeta)i(t, \zeta)d\zeta$ , (2.6)

Let $N(t)$ be the total size of host population as

$N(t):= \int_{0}^{\infty}s_{0}(t, \mathcal{T})d_{\mathcal{T}}+\int_{0}^{\infty}S(t, \mathcal{T})d_{\mathcal{T}}+\int_{0}^{\infty}i(t, \mathcal{T})d_{\mathcal{T}}$. (2.7)

Then it follows that

$N’(t)=b(t)-\mu N(t)-\delta I(t)$ , (2.8)

where $I(t):= \int_{0}^{\infty}i(t, \mathcal{T})d\mathcal{T}$ . In the following we mainly consider a simple case that $b(t)=$

$b=$ const. and $\delta=0$ . Therefore without loss of generality we can assume in advance

that the total size of population is constant $N=b/\mu$ . If an initial condition is added
to $(2.1)-(2.6)$ , the existence and uniqueness result for this system could be established by

semigroup method developed by Webb (1985).

3 The problem of endemicity

Papers written in the $1930\mathrm{s}$ , Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{k}$ were mainly concerned with the

problem of endemicity for the variable susceptibility model under various kind of conditions.

Since their treatment of that problem was not necessarily rigorous and their mathematical
expressions were difficult to follow for modern readers, we here try to give a new formulation

and a clear proof for the existence and uniqueness result for the endemic steady state of

the variable susceptibility model under simple conditions.
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Let $(s_{0}^{*}(\tau), S^{*}(\tau),i*(\tau))$ be the steady state for system $(2.1)-(2.6)$ . Then we have

$i^{*}(\tau)$ $=$ $i^{*}(0)\Gamma(\tau)$ , (3.1)
$s_{0}^{*}(\tau)$ $=$

$be^{-\mu(}\mathcal{T}-i*0)<\gamma 2,\Gamma>\gamma 1(\infty)\tau$ (3.2)
$s^{*}(\tau)$ $=i^{*}(0)<v,$ $\Gamma>e^{-\mu\tau}-i*(0)<\gamma 2,\Gamma>\int 0d\mathcal{T}\gamma 1(\sigma)\sigma$ (3.3)

where $<u,$ $v>:= \int_{0}^{\infty}u(x)v(x)dX$ and $\Gamma(\tau)$ is the survival rate of the infected hosts given
by

$\Gamma(\tau):=e^{-\mu\int}\mathrm{o}\tau-\tau v(\sigma)d\sigma$

Then corresponding to $i^{*}(\mathrm{O})=0$ , there exists a disease-free steady state as

$(s_{0}^{*}(\tau), s^{*}(\tau),i\star(\tau))=(be-\mu\tau, \mathrm{o}, 0)$ (3.4)

In the initial invasion phase at the disease.free steady state, the number of newly infected
individuals per unit time, denoted by $B(t)$ , is described by the linearized equation (renewal
integral equation) as follows:

$B(t)=N \gamma_{1}(\infty)\int^{t}\mathrm{o}(\gamma 2\zeta)\Gamma(\zeta)B(t-\zeta)d\zeta+N\gamma 1(\infty)\int_{t}^{\infty}\frac{\gamma_{2}(\zeta)\Gamma(\zeta)}{\Gamma(\zeta-t)}i(0, \zeta-t)d\zeta$ . (3.5)

Then we know that the basic reproduction number for this epidemic system is defined by

$R_{0}=N \gamma(\infty)\int_{0}^{\infty}\gamma_{2}(\zeta)\Gamma(\zeta)d\zeta$ . (3.6)

It is easily seen from $i(t, \mathrm{O})\leq B(t)$ that the following stability result holds:

Proposition 3. 1 If $R_{0}<1_{\rangle}$ then the $di_{Sea}Se$-he steady state is globally asymptotically
stable.

Next in order to investigate existence and uniqueness of endemic steady state, we prepare
the following technical lemma, which was essentially observed by Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{C}\mathrm{k}$:

Lemma 3. 2 If $i^{*}(\mathrm{O})\neq 0$ , it follows that

$\int_{0}^{\infty}s_{\mathrm{o}(\mathcal{T}}^{*})d\tau=\frac{1-<v,\Gamma>(1-\mu\Phi(i^{*}(\mathrm{o})))}{\gamma_{1}(\infty)<\gamma_{2},\Gamma>}’$ . (3.7)

where

$\Phi(x):=\int_{0}^{\infty}e^{-\mu_{\mathcal{T}}\gamma 2}-x<,\Gamma>\int^{T}0)\gamma 1(\sigma d\sigma_{d\tau}$. (3.8)

Proof. We can observe that

$\frac{b}{\mu}=\int_{0}^{\infty}S_{0}^{*}(_{\mathcal{T}})d\tau+\int_{0}^{\infty}s^{*}(\mathcal{T})d\tau+\int_{0}^{\infty}i^{*}(\mathcal{T})d\mathcal{T}$ (3.9)
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$= \frac{b}{\mu+<\gamma_{2},\Gamma>\gamma 1(\infty)i*(0)}+i^{*}(0)<v,$ $\Gamma>\Phi(i^{*}(\mathrm{o}))+i^{*}(0)||\Gamma||$

where $||u||:= \int_{0}^{\infty}u(x)dX$ . If $i^{*}(\mathrm{O})\neq 0$ , we can solve the above equation for $b$ , hence we
obtain that

$b= \frac{\mu+<\gamma_{2},\Gamma>\gamma 1(\infty)i*(0)}{<\gamma_{2},\Gamma>\gamma 1(\infty)}\mu\{||\Gamma||+<v, \Gamma>\Phi(i^{*}(0))\}$ (3.10)

If we note that

$\mu||\Gamma||=1-<v,$ $\Gamma>$ , $\int_{0}^{\infty}s_{0(\tau}^{*})d_{\mathcal{T}}=\frac{b}{\mu+<\gamma_{2},\Gamma>\gamma_{1}(\infty)i*(0)}$ ,

then we arrive at the expression (3.7). $\square$

It follows from (3.7) and (3.9) that

$N= \frac{1-<v,\Gamma>}{<\gamma_{2},\Gamma>\gamma_{1}(\infty)}$ $(3.1\sim 1)$

$+ \frac{<v,\Gamma>}{<\gamma_{2},\Gamma>\gamma 1(\infty)}\Phi(i^{*}(0))\{\mu+i*(\mathrm{o})<\gamma_{2}, \mathrm{r}>\gamma_{1}(\infty)\}+i^{*}(0)||\Gamma||$ .

Now we define a function $F(x)$ by

$F(x):= \frac{1-<v,\Gamma>}{<\gamma_{2},\Gamma>\gamma_{1}(\infty)}+\frac{<v,\Gamma>}{<\gamma_{2},\Gamma>\gamma_{1}(\infty)}G(x)+x||\Gamma||$ , (3.12)

where $G(x)$ is defined by

$G(x):=\Phi(X)\{\mu+x<\gamma_{2}, \Gamma>\gamma_{1}(\infty)\}$ . (3.13)

Then we know that if the equation $F(x)=N$ has a positive solution $x^{*}\in(0, N/||\Gamma||]$ , the

endemic steady state is given by $(3.1)-(3.3)$ with $i^{*}(\mathrm{O})=x^{*}$ . Since $F(x)$ is a continuous
function and it is easy to see that $F( \mathrm{O})=\frac{N}{R_{0}}$ and $F( \frac{N}{||\Gamma||})>N$ . Therefore we can conclude
that

Proposition 3. 3 If $R_{0}>1$ , there exists at least one endemic steady state.

Note that we here do not need to assume the monotonicity of $\gamma_{1}(\tau)$ to show the above
existence theorem of endemic steady state. On the other hand, if we adopt the Assump-
tion 1.1 and improve the original proof by Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{k}$ , we can show the
uniqueness result as follows:

Proposition 3. 4 Under the Assumption 1.1, ihere exists a unique endemic steady state.

Proof. It is sufficient to show that under the Assumption 1.1, $F(x)$ is monotone increasing
for $x\in(\mathrm{O}, N/||\Gamma||]$ . Integrating by parts, we can observe that
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$\mu\Phi(x)=1-x<\gamma 2,$ $\mathrm{r}>\int_{0}^{\infty}\gamma_{1}(\tau)e^{-\mu-x<,\Gamma}\int^{\mathcal{T}}20)\mathcal{T}\gamma>\gamma 1(\sigma d\sigma d\mathcal{T}$.

Then we have

$G(x)=1+X<\gamma_{2},$ $\Gamma>\int_{0}^{\infty}(\gamma_{1}(\infty)-\gamma_{1}(\tau))e^{-\mu-x}\int^{\mathcal{T}}\gamma 2,\gamma 1(\sigma)d\sigma d\mathcal{T}<\mathrm{r}>\mathcal{T}0$. (3.14)

Here we can assume without loss of generality that there exists a number $\tau_{0}\geq 0$ such that
$\gamma_{1}(\tau)=0$ for $\tau\in[0, \tau_{0}]$ and $\gamma_{0}(\tau)>0$ for $\tau>\tau_{0}$ . That is, the recovered individuals can
keep a complete immunity for the time interval $[0, \tau_{0}]$ . Let $h>0$ be an arbitrary small
number. Then we have

$\int_{0}^{\infty}(\gamma_{1}(\infty)-\gamma_{1}(\mathcal{T}))e^{-}-x<\gamma 2\Gamma>\int \mathrm{o}d\mu \mathcal{T},\gamma_{1}(\sigma)d\sigma \mathcal{T}\tau$

$= \{\int_{0}^{a_{\mathrm{O}}}+\int_{a}0+\int_{a_{0}+h}a_{0+}h\infty\}(\gamma 1(\infty)-\gamma 1(\tau))e-\mu_{\mathcal{T}}-x<\gamma 2,\mathrm{r}>\int_{\mathrm{o}^{\gamma(}d}^{\tau}1\sigma)d\sigma \mathcal{T}$.

Then in (3.14) we can calculate the integral as follows:

$J_{1}(x):=x<\gamma_{2},$ $\Gamma>\int_{0}^{a_{0}}\gamma 1(\infty)e-\mu \mathcal{T}d\mathcal{T}=\gamma(\infty)X<\gamma_{2},$ $\Gamma>\frac{1-e^{-\mu a}\mathrm{o}}{\mu}$ ,

$J_{2}(x):=x<\gamma_{2},$ $\mathrm{r}>\int_{a_{0}}^{a_{0}}+h)(\gamma 1(\infty)-\gamma(\mathcal{T})e^{-}a0^{\gamma_{1}}-x<\gamma 2,\Gamma>\int \mathcal{T}d(\sigma)\sigma d\mu\tau \mathcal{T}$ ,

$J_{3}(x):=x<\gamma_{2},$ $\mathrm{r}>\int_{a_{0}+h}^{\infty}(\gamma 1(\infty)-\gamma(\mathcal{T}))e^{-}a\mathrm{o}-x<\gamma 2,\Gamma>\int\tau d\gamma_{1}(\sigma)\sigma d\mathcal{T}\mu\tau$

$=- \int_{a_{0}+h}^{\infty}\frac{\gamma_{1}(\infty)-\gamma_{1}(\tau)}{\gamma_{1}(\tau)}e-\mu \mathcal{T}_{\frac{\partial}{\partial\tau}}e^{-}d\int_{a}^{\tau_{0}}\gamma_{1}(\sigma)d\sigma\tau x<\gamma_{2},\mathrm{r}>$

$= \frac{\gamma_{1}(\infty)-\gamma_{1}(a_{0}+h)}{\gamma_{1}(a_{0}+h)}e^{-\mu_{T-}x}\mathrm{o}+<\gamma 2,\Gamma>\int_{Q}^{a}0+hd\gamma_{1(\sigma)}\sigma H(x)$ ,

where $H(x)$ is define as

$H(x):= \int_{a_{0}+}^{\infty}h\frac{\partial}{\partial\tau}\{\frac{\gamma_{1}(\infty)-\gamma_{1}(\tau)}{\gamma_{1}(\tau)}e^{-\mu r}\}e-x<\gamma 2,\Gamma>\int^{\tau}0\gamma 1(\sigma)d\sigma_{d\tau}$.

It follows from the monotonicity of $\gamma_{1}(\tau)$ that

$\frac{\partial}{\partial\tau}\{\frac{\gamma_{1}(\infty)-\gamma_{1}(\tau)}{\gamma_{1}(\tau)}e^{-\mu\tau\}\leq}0$ .

Then we have $H’(x)\geq 0$ . Observe that

$F’(X)= \frac{<v,\Gamma>}{<\gamma_{2},\Gamma>\gamma_{1}(\infty)}(J1(/X)+J_{2}’(_{X})+J’(3X))+||\mathrm{r}||$
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$=||\Gamma||+<v,$ $\Gamma_{\text{ノ}}>\frac{1-e^{-\mu a}0}{\mu}+\frac{<v,\Gamma>}{\gamma_{1}(\infty)}\int_{a0}^{a}0+h-x\gamma 2,>\gamma_{1}(\sigma)\tau d\sigma(\gamma 1(\infty)-\gamma(\tau))e^{-\mu<\mathrm{r}\int_{ad\mathcal{T}}}T0$

$- \frac{x<v,\Gamma><\gamma_{2},\Gamma>}{\gamma_{1}(\infty)}\int_{a\mathrm{o}}^{a_{0}+}(\gamma 1(\infty)-\gamma(_{\mathcal{T}}))h\{\int_{a0}^{\tau}\gamma_{1}(\sigma)d\sigma\}e’ a0-\mu \mathcal{T}-x<\gamma 2\Gamma>\int \mathcal{T})\gamma 1(\sigma d\sigma d\tau$

$+ \frac{<v,\Gamma>}{\gamma_{1}(\infty)<\gamma_{2},\Gamma>}$

$\cross\{-\frac{\gamma_{1}(\infty)-\gamma_{1}(a0+h)}{\gamma_{1}(a_{0}+h)}<\gamma_{2},$
$\Gamma>[\int_{a_{0}}^{a\mathrm{o}+h}\gamma 1(\sigma)d\sigma]^{-}e’ a\mu \mathcal{T}-x<\gamma 2\mathrm{r}>\int^{a}0(0+h\sigma\gamma 1)d\sigma+H/(X)\}$

The minus parts of the above expression can be estimated as follows:

$| \frac{x<v,\Gamma><\gamma 2,\Gamma>}{\gamma_{1}(\infty)}\int_{a\mathrm{o}}^{a_{0}}+h\gamma_{1}((\infty)-\gamma(\mathcal{T}))\{\int a0d\gamma 1(\sigma)\sigma\}\mathcal{T}-\mu\tau-x<\gamma 2,\mathrm{r}>\int ae\mathrm{o}\gamma 1\tau d_{\mathcal{T}1}(\sigma)d\sigma$

$\leq\frac{N<v,\Gamma><\gamma 2,\Gamma>}{||\Gamma||\gamma 1(\infty)}\gamma_{1}(\infty)^{2_{\frac{h^{2}}{2}}}$ ,

$|- \frac{\gamma_{1}(\infty)-\gamma_{1}(a_{0^{+h}})}{\gamma_{1}(a_{0}+h)}<\gamma_{2},$
$\Gamma>[\int_{a\mathrm{o}}^{a\mathrm{o}+h}\gamma 1(\sigma)d\sigma]e\mathrm{o}-\mu \mathcal{T}-x<\gamma 2,\Gamma>\int_{\mathit{0}}^{a+h}0(\sigma)d\gamma_{1}\sigma|$

$\leq<v,$ $\mathrm{r}>h$ .

Therefore if we choose a $h>0$ small enough in advance, we can conclude that $F’(x)\geq$

$0$ , hence that $F(x)$ is a monotone non-decreasing function. Thus the endemic steady state

exists uniquely. $\square$

4 Discussion: Toward Evolutionary Epidemic Model

As is pointed out above, the variable susceptibility model could be a very useful tool

to take into account the effect of changes in the host immunity structure or the antigenic

change of virus. As an example, let us consider the Pease’s influenza model (1987).

In the type A influenza epidemic, genetic changes in the virus are thought to play an
important role in causing recurrent epidemic. The virus changes genetically, and hence

immunologically from one epidemic to the next. Therefore a descendant virus strain can
infect hosts who are immune to the progenitor strain diseases, and hence reinvade commu-
nities that recently suffered an epidemic of the progenitor strain. It is $\mathrm{a}\mathrm{J}\mathrm{s}\mathrm{o}$ observed that

the more a virus has changed genetically from its progenitor, the more easily it will be able

to reinfect a host that is immune to its progenitor.
In order to formulate the influenza model, Pease makes three major biological assump-

tions: First the probability of reinfection is a monotone increasing function of the number
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of amino acid substitutions between the immunizing and challenge virus strains. In fact
Pease’s original assumption is that the probability is proportional to the number of amino
acid substitutions, but we assume that the infection rate is upper bounded, since the arbi-
trarily large susceptibilities seem unrealistic as Pease pointed out. Second, only one virus
strain circulates in a human community at any one time. Third, random drift, and not
frequency-dependent selection by the host, causes amino acid substitutions to occur in
the infiuenza virus. Random drift occurs continually and causes gradual changes in the
virus antigens, thereby genetic changes in the pathogen from epidemic to epidemic cause
previously immune hosts to become susceptible.

Under the above assumptions, the Pease model is formulated as follows: Let $I(t)$ be
the number of infected hosts at time $t$ and let $S(t, a)$ be the density of uninfected hosts,
so that $\int_{a_{0}}^{a_{1}}S(t, a)da$ is the number of uninfected hosts that were last infected by a virus
which differed by more than $a_{0}$ and less than $a_{1}$ amino acid substitution from the virus
strain prevailing at time $t$ . We assume that the number of amino acid substitution is a
continuous variable, and it is causing the antigenic drift in the virus strain. Then the Pease’s
evolutionary epidemic model is formulated by the following integrodifferential equations:

$\frac{\partial S(t,a)}{\partial t}+k\frac{\partial S(t,a)}{\partial a}$ $=$ $-\gamma(a)s(t, a)I(t)$ , (4.1)

$\frac{dI(t)}{dt}$ $=$ $-vI(t)+I(t) \int_{0}^{\infty}\gamma(a)S(t, a)da$ , (4.2)

$kS(t, \mathrm{O})$ $=$ $vI(t)$ , (4.3)

where $v$ is the rate at which infected hosts recover, $k$ is the (constant) rate at which amino
acid substitutions occur in the virus population and $\gamma(a)$ specifies how amino acid substi-
tutions affect the probability of reinfection. Though the Pease model does not consider
the never infected population and neglect the demography, it is easily observed that it is a
special case of the variable susceptibility model with constant recovery rate.

The analysis of Pease model suggests that there exists a correlation between the preva-
lence at the endemic steady state and its stability, and the recurrent outbreak (periodic
solution) could be produced by the evolutionary mechanism, that is, the decay of host
immunity by the antigenic drift of the type A virus. Though in the rigorous sense, the
question whether the sustained oscillation can be realized for realistic value of the preva-
lence is still open (Inaba 1998, 1999), those observations suggest potential abilities of the
variable susceptibility model.

For the general variable susceptibility model, under appropriate conditions we can estab-
lish the endemic threshold criteria, that is, the basic reproduction number $R_{0}$ is less than
one, the infected population will be eradicated through time, otherwise $R_{0}$ is grater than
the unity, there exists unique endemic steady state. But up to now there are no results for
stability of the endemic steady state. Moreover, even in the full model $(2.1)-(2.6)$ , there
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are many neglected factors, for example, the chronological age, the disease induced death

rate, vaccination term, etc. To analyze the model including those factors will be difficult

but important future challenge. That is, we can say that the possibilities of Kermack’s and
$\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{k}’ \mathrm{s}$ models have not yet been exhausted, which is the reason why we still have

to continue to revisit Kermack and $\mathrm{M}\mathrm{c}\mathrm{K}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{k}$ again and again, though even more than

60 years have passed since their work.
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