EXISTENCE OF QUASIISOMETRIC MAPPINGS \\
AND ROYDEN COMPACTIFICATIONS

名古屋工大（名誉教授） 中井 三留 (MITSURU NAKAI)

1. Introduction. Consider a d-dimensional $(d \geq 2)$ Riemannian manifold D of class C^∞ which is orientable and countable but not necessarily connected and given an exponent $1 < p < \infty$. The Royden p-algebra $M_p(D)$ of D is defined by $M_p(D) := L^1_p(D) \cap L^\infty(D) \cap C(D)$, which is a commutative Banach algebra, i.e. the so-called normed ring, under pointwise addition and multiplication with $\|u; M_p(D)\| := \|u; L^\infty(D)\| + \|\nabla u; L^p(D)\|$ as norm, where $L^1_p(D)$ is the Dirichlet space, i.e. the space of locally integrable real valued functions u on D whose distributional gradients ∇u of u belong to $L^p(D)$ considered with respect to the metric structure on D. The maximal ideal space D'_p (cf. e.g. p.298 in [20]) of $M_p(D)$ is referred to as the Royden p-compactification of D, which is also characterized as the compact Hausdorff space containing D as its open and dense subspace such that every function in $M_p(D)$ is continuously extended to D'_p and $M_p(D)$ is uniformly dense in $C(D'_p)$ (cf. e.g. [17], [18], [11] and also p.154 in [14]).

Suppose that D and D' are d-dimensional $(d \geq 2)$ Riemannian manifolds of class C^∞ which are orientable and countable but not necessarily connected. Moreover we always assume in this note that none of the components of D and D' is compact, which is however not an essential restriction and postulated only for the sake of simplicity. In 1982, the present author and H. Tanaka [13] (see also [10]) jointly showed that two conformal Royden compactifications D'_d and $(D')'_d$ are homeomorphic if and only if there exists an almost quasiconformal mapping of D onto D'. Here we say that a homeomorphism f of D onto D' is an almost quasiconformal mapping of D onto D' if there exists a compact subset $E \subset D$ such that $f = f|D \setminus E$ is a quasiconformal mapping of $D \setminus E$ onto $D' \setminus f(E)$. There are many ways of defining quasiconformality but the following metric definition is convenient for applying to Riemannian manifolds (cf. e.g. p.113 in [19]): the homeomorphism f of $D \setminus E$ onto $D' \setminus f(E)$ is quasiconformal, by definition, if

$$\sup_{x \in D \setminus E} \left(\limsup_{r \downarrow 0} \frac{\max_{\rho(x,y) = r} \rho'(f(x),f(y))}{\min_{\rho(x,y) = r} \rho'(f(x),f(y))} \right) < \infty,$$

where ρ and ρ' are geodesic distances on $D \setminus E$ and $D' \setminus f(E)$. It has been an open question for a long period since the above result was obtained as for what can be said about the

MAILING ADDRESS: 〒478-0041 知多市日長江口 52 (52 Eguchi, Hinaga, Chita 478-0041, Japan).
E-mail: nakai@dai-do-it.ac.jp
counterpart of the above result for nonconformal case, i.e. if the exponent d in the above result is replaced by $1 < p < d$. The purpose of this note is to settle this question by establishing the main theorem mentioned below.

To state our result we need to introduce a class of special kind of almost quasiconformal mappings. A homeomorphism f of D onto D' is said to be an almost quasiisometric mapping of D onto D' if there exists a compact set $E \subset D$ such that $f = f|D \setminus E$ is a quasiisometric mapping of $D \setminus E$ onto $D' \setminus f(E)$. Here the homeomorphism f of $D \setminus E$ onto $D' \setminus f(E)$ is quasiisometric, by definition, if there exists a constant $K \in [1, \infty)$ such that

$$\frac{1}{K} \rho(x, y) \leq \rho'(f(x), f(y)) \leq K \rho(x, y)$$

for every pair of points x and y in $D \setminus E$, where we always set $\rho(x, y) = \rho'(f(x), f(y)) = \infty$ if the component of $D \setminus E$ containing x and that containing y are different. From (3) it follows that

$$\frac{1}{K} r \leq \min_{\rho(x,y)=r} \rho'(f(x), f(y)) \leq \max_{\rho(x,y)=r} \rho'(f(x), f(y)) \leq Kr$$

for any fixed $x \in D$ and for any sufficiently small positive number $r > 0$, which implies that the left hand side term of (2) is dominated by K^2. Thus a quasiisometric mapping is automatically a quasiconformal mapping but obviously there exists a quasiconformal mapping which is not a quasiisometric mapping. Then our main result of this paper is stated as follows.

4. Main Theorem. When $1 < p < d$, Royden compactifications D_p^* and $(D')_p^*$ are homeomorphic if and only if there exists an almost quasiisometric mapping of D onto D'. More precisely, any almost quasiisometric mapping of D onto D' is uniquely extended to a homeomorphism of D_p^* onto $(D')_p^*$; conversely, the restriction to D of any homeomorphism of D_p^* onto $(D')_p^*$ is an almost quasiisometric mapping of D onto D'.

It may be interesting to compare the above topological result with the former relevant algebraic results obtained by the present author [8] and [9], Lewis [6], and Lelon-Ferrand [5] (cf. also Soderborg [15]): Royden algebras $M_D(D)$ and $M_D(D')$ are algebraically isomorphic if and only if there exists a quasiconformal mapping of D onto D'; when $1 < p < d$, $M_p(D)$ and $M_p(D')$ are algebraically isomorphic if and only if there exists a quasiisometric mapping of D onto D'. All these results including our present main theorem are shown to be invalid when $d < p < \infty$ by giving a counter example, which will be discussed elsewhere. Another important problem related to the above main result is the following: does the existence of an almost quasiisometric (almost quasiconformal, resp.) mapping of D onto D' imply that of a quasiisometric (quasiconformal, resp) mapping of D onto D'? It is affirmative for the quasiconformal case if D is the unit ball in the d-dimensional Euclidean space \mathbf{R}^d (Gehring [2], see also Soderborg [16]); it is also affirmative again for the quasiconformal case if the dimensions of D and D' are 2. Except for these partial results though not easy to prove,
the problem is widely open.

5. Royden compactifications of Riemannian manifolds. By a Riemannian manifold D of dimension $d \geq 2$ we always mean in this note an orientable and countable but not necessarily connected C^∞ manifold D of dimension d with a metric tensor (g_{ij}) of class C^∞. We also assume that any component of D is not compact only for the sake of simplicity.

We say that U or more precisely (U, x) is a parametric domain on D if the following two conditions are satisfied: firstly U is a domain, i.e. a connected open set, in D; secondly x is a C^∞ diffeomorphism of U onto a domain $x(U)$ in the Euclidean space \mathbb{R}^d of dimension $d \geq 2$. The map $x = (x^1, \ldots, x^d)$ is referred to as a parameter on U. We often identify a generic point P of U with its parameter $x(P)$ and denote them by the same letter x, for example. In other words we view U to be embedded in \mathbb{R}^d by identifying U with $x(U)$ so that U itself may be considered as a Riemannian manifold (U, g_{ij}) with metric tensor (g_{ij}) restricted on U and at the same time as an Euclidean subdomain (U, δ_{ij}) with the natural metric tensor (δ_{ij}), δ_{ij} being the Kronecker delta.

Take a parametric domain (U, x) on D. The metric tensor (g_{ij}) on D gives rise to a $d \times d$ matrix $(g_{ij}(x))$ of functions $g_{ij}(x)$ on U. We say that (U, x) is a λ-domain with $\lambda \in [1, \infty)$ if the following matrix inequalities hold:

\begin{equation}
\frac{1}{\lambda}(\delta_{ij}) \leq (g_{ij}(x)) \leq \lambda(\delta_{ij})
\end{equation}

for every $x \in U$. It is important that any point of D has a λ-domain as its neighborhood for any $\lambda \in (1, \infty)$. This comes from the fact that there exists a parametric ball (U, x) at any point $P \in D$ (i.e. a parametric domain (U, x) such that $x(P) = 0$ and $x(U)$ is a ball in \mathbb{R}^d centered at the origin 0) such that $(g_{ij}(x))$ satisfies $g_{ij}(0) = \delta_{ij}$.

The metric tensor (g_{ij}) on D defines the line element ds on D by $ds^2 = g_{ij}(x)dx^i dx^j$ in each parametric domain $(U, x = (x^1, \ldots, x^d))$. Here and hereafter we follow the Einstein convention: whenever an index i appears both in the upper and lower positions, it is understood that summation for $i = 1, \ldots, d$ is carried out. The length of a rectifiable curve γ on D is given by $\int_{\gamma} ds$. The geodesic distance $\rho(x, y)$ between two points x and y in D is given by

$$
\rho(x, y) = \rho_D(x, y) = \inf_{\gamma} \int_{\gamma} ds,
$$

where the infimum is taken with respect to rectifiable curves γ connecting x and y. Needless to say, if there is no such curve γ, i.e. if x and y are in the different components of D, then, as the infimum of empty set, we understand that $\rho(x, y) = \infty$. When (U, x) is a parametric domain and considered as the Riemannian manifold (U, δ_{ij}), then $\rho_U(x, y)$ can also be given by

$$
\rho(x, y) = \rho_U(x, y) = \inf_{i=0}^{n} |x_i - x_{i-1}|,
$$

for any $x = (x_0, \ldots, x_n)$ and $y = (y_0, \ldots, y_n)$ in U.
where the infimum is taken with respect to every polygonal line $x = x_0, x_1, \ldots, x_{n-1}, x_n = y$ such that every line segment $[x_{i-1}, x_i] = \{(1 - t)x_{i-1} + tx_i : 0 \leq t \leq 1\} \subset U$ for each $i = 1, \ldots, n$.

We write $(g^{ij}) := (g_{ij})^{-1}$ and $g := \det(g_{ij})$. We denote by dV the volume element on D so that
\[
dV(x) = \sqrt{g(x)}dx^1 \wedge \cdots \wedge dx^d
\]
in each parametric domain $(U, x = (x^1, \ldots, x^d))$. On (U, δ_{ij}) we also have the volume element (Lebesgue measure) $dx = dx^1 \cdots dx^d$. Sometimes we use dx to mean (dx^1, \ldots, dx^d) but there will be no confusion by context. The Riemannian volume element $dV(x)$ and the Euclidean (Lebesgue) volume element dx are mutually absolutely continuous and the Radon-Nikodym densities $dV(x)/dx = \sqrt{g(x)}$ and $dx/dV(x) = 1/\sqrt{g(x)}$ are locally bounded on U. Thus a.e.dV and a.e.dx are identical and we can loosely use a.e. without referring to dV or dx.

For each $x \in D$, the tangent space to D at x will be denoted by $T_x D$. We denote by $\langle h, k \rangle$ the inner product of two tangent vectors h and k in $T_x D$ and by $|h|$ the length of $h \in T_x D$ so that if (h_1, \ldots, h_d) and (k_1, \ldots, k_d) are covariant components of h and k, then
\[
\langle h, k \rangle = g^{ij}h_i k_j \quad \text{and} \quad |h| = \langle h, h \rangle^{1/2} = (g^{ij}h_i h_j)^{1/2}.
\]

Since we may consider two metric tensors (g_{ij}) and (δ_{ij}) on a parametric domain (U, x), we occasionally write $\langle h, k \rangle_{g_{ij}}$ or $\langle h, k \rangle_{\delta_{ij}}$ and similarly $|h|_{g_{ij}}$ or $|h|_{\delta_{ij}}$ to make clear whether they are considered on (U, g_{ij}) or on (U, δ_{ij}).

Let G be an open subset of D. In this note we use the notation $L^p(G)$ ($1 \leq p \leq \infty$) in two ways. The first is the standard use: $L^p(G) = L^p(G; g_{ij})$ is the Banach space of measurable functions u on G with the finite norm $\|u; L^p(G)\|$ given by
\[
\|u; L^p(G)\| := \left(\int_G |u|^p dV \right)^{1/p} \quad (1 \leq p < \infty)
\]
and $\|u; L^\infty(G)\|$ is the essential supremum of $|u|$ on G. The second use: for a measurable vector field X on G we write $X \in L^p(G) = L^p(G; g_{ij})$ if $|X| = |X|_{g_{ij}} \in L^p(G)$ in the first sense and we set
\[
\|X; L^p(G)\| := \||X|; L^p(G)\|.
\]
The Dirichlet space $L^{1,p}(G) = L^{1,p}(G; g_{ij})$ ($1 \leq p \leq \infty$) is the class of functions $u \in L^1_{\text{loc}}(G)$ with the distributional gradients $\nabla u \in L^p(G)$, where the distributional gradient ∇u is determined by the relation
\[
\int_G (\nabla u, \Psi) dV = -\int_G u \text{div} \Psi dV
\]
for every C^∞ vector field Ψ on G with compact support in G. In the parametric domain (U, x) in G we have $\nabla u = (\partial u/\partial x^1, \ldots, \partial u/\partial x^d)$. If $\Psi = (\psi_1, \ldots, \psi_d)$ in U, then
\[
\text{div} \Psi = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i}(\sqrt{g} g^{ij} \psi_j).
\]
The Sobolev space \(W^{1,p}(G) = W^{1,p}(G, g_{ij}) \) \((1 \leq p \leq \infty)\) is the Banach space \(L^{1,p}(G) \cap L^{p}(G) \) equipped with the norm
\[
\|u; W^{1,p}(G)\| := \|u; L^{p}(G)\| + \|\nabla u; L^{p}(G)\|.
\]

Given a Riemannian manifold \(D \) of dimension \(d \geq 2 \) and given an exponent \(1 < p < \infty \), the Royden \(p \)-algebra \(M_{p}(D) \) is the Banach algebra \(L^{1,p}(D) \cap L^{\infty}(D) \cap C(D) \) equipped with the norm
\[
\|u; M_{p}(D)\| := \|u; L^{\infty}(D)\| + \|\nabla u; L^{p}(D)\|.
\]

By the standard mollifier method we can show that the subalgebra \(M_{p}(D) \cap C^{\infty}(D) \) is dense in \(M_{p}(D) \) with respect to the norm in (7). Hence \(M_{p}(D) \) may also be defined as the completion of \(\{u \in C^{\infty}(D) : \|u; M_{p}(D)\| < \infty\} \) without appealing to the Dirichlet space. It is important that \(M_{p}(D) \) is closed under lattice operations \(\cup \) and \(\cap \) given by \((u \cup v)(x) = \max(u(x), v(x))\) and \((u \cap v)(x) = \min(u(x), v(x))\) (cf. e.g. p.21 in [4]). The maximal ideal space \(D_{p}^{\ast} \) of \(M_{p}(D) \) is referred to as the Royden \(p \)-compactification, which can also be characterized as the compact Hausdorff space containing \(D \) as its open and dense subspace such that every function \(u \in M_{p}(D) \) is continuously extended to \(D_{p}^{\ast} \) and \(M_{p}(D) \), viewed as a subspace of \(C(D_{p}^{\ast}) \) by this continuous extension, is dense in \(C(D_{p}^{\ast}) \) with respect to its supremum norm.

8. Capacities of rings. A ring \(R \) in a Riemannian manifold \(D \) is a subset \(R \) of \(D \) with the following properties: \(R \) is a subdomain of \(D \) so that \(R \) is contained in a unique component \(D_{R} \) of \(D \); \(D_{R} \setminus R \) consists of exactly two components one of which, denoted by \(C_{1} \), is compact and the other of which, denoted by \(C_{0} \), is noncompact. The set \(C_{1} \) will be referred to as the inner part of \(R^{c} := D \setminus R \) and the set \(D \setminus (R \cup C_{0}) \) as the outer part of \(R^{c} \). We denote by \(W(R) \) the class of functions \(u \in W_{1,1}^{1}(R) \cap C(D) \) such that \(u = 1 \) on the inner part of \(R^{c} \) and \(u = 0 \) on the outer part of \(R^{c} \) which includes \(C_{0} \). The \(p \)-capacity \(\text{cap}_{p}R \) \((1 \leq p \leq \infty)\) of the ring \(R \subset D \) is given by
\[
\text{cap}_{p}R := \inf_{u \in W(R)} \|\nabla u; L^{p}(R)\|^{p}
\]
for \(1 \leq p < \infty \) and \(\text{cap}_{\infty}R := \inf_{u \in W(R)} \|\nabla u; L^{\infty}(R)\| \). Note that \(\text{cap}_{p}R \) does not depend upon which Riemannian manifold \(D \) the ring \(R \) is embedded as far as the metric structure on \(R \) is unaltered. The following inequality will be essentially made use of (cf. e.g. p.32 in [4]): if \(1 < p < \infty \) and if \(R \) is a ring in \(D \) and \(R_{k} \) \((1 \leq k \leq n)\) are disjoint rings contained in \(R \) each of which separates the boundary components of \(R \), then
\[
(\text{cap}_{p}R)^{\frac{1}{p}} \geq \sum_{k=1}^{n} (\text{cap}_{p}R_{k})^{\frac{1}{p}}.
\]
Suppose that a ring R is contained in a parametric domain (U, x) on D for which two metric structures (g_{ij}) and (δ_{ij}) can be considered. If the need occurs to indicate that $\text{cap}_p R$ is considered on (U, δ_{ij}), then we write

$$\text{cap}_p R = \text{cap}_p(R, \delta_{ij}) = \inf_{u \in W(R)} \int_R |\nabla u(x)|_{\delta_{ij}}^p dx;$$

if $\text{cap}_p R$ is considered on (U, g_{ij}), then we write

$$\text{cap}_p R = \text{cap}_p(R, g_{ij}) = \inf_{u \in W(R)} \int_R |\nabla u|^p_{g_{ij}} dV$$

for $1 \leq p < \infty$. Similar considerations are applied to $\text{cap}_\infty(R, g_{ij})$ and $\text{cap}_\infty(R, \delta_{ij})$. If moreover U is a λ-domain for any $\lambda \in [1, \infty)$, then (6) implies that

$$\frac{1}{\lambda^{d+p/2}} \text{cap}_p(R, \delta_{ij}) \leq \text{cap}_p(R, g_{ij}) \leq \lambda^{d+p/2} \text{cap}_p(R, \delta_{ij}).$$

In the case $p = \infty$, the inequality corresponding to the above takes the following form:

$$\lambda^{-1/2} \text{cap}_\infty(R, \delta_{ij}) \leq \text{cap}_\infty(R, g_{ij}) \leq \lambda^{1/2} \text{cap}_\infty(R, \delta_{ij}),$$

which however will not be used in this note.

We fix a parametric domain (U, x) in D. It is possible that the parametric domain is the d-dimensional Euclidean space \mathbb{R}^d itself. A ring R contained in U is said to be a spherical ring in (U, x) if

$$R = \{x \in U : a < |x - P| < b\},$$

where $P \in U$ and a and b are positive numbers with $0 < a < b < \inf_U |x - P|$. At this point we must be careful: in the case where the above R happens to be included in another parametric domain (V, y) of D, R may not be a spherical ring in (V, y) even if R is a spherical ring in (U, x). Namely, the notion of spherical rings cannot be introduced to the general Riemannian manifold D and is strictly attached to the parametric domain in question. Let R be a spherical ring in a parametric domain (U, x) with the above expression (12). Then we have (cf. e.g. p.35 in [4])

$$\text{cap}_p R = \text{cap}_p(R, \delta_{ij}) = \begin{cases}
\omega_d \left(\frac{b^q - a^q}{q} \right)^{1-p} & (1 < p < \infty, p \neq d), \\
\omega_d \left(\log \frac{b}{a} \right)^{1-d} & (p = d),
\end{cases}$$

where we have set $q = (p - d)/(p - 1)$ and ω_d is the surface area of the Euclidean unit sphere S^{d-1}. In passing we state that $\text{cap}_1(R, \delta_{ij}) = \omega_d a^{d-1}$ and $\text{cap}_\infty(R, \delta_{ij}) = 1/(b - a)$, which are also not used in this note.
Another important ring in \mathbb{R}^d which we use later is a Teichmüller ring R_T defined by $R_T = \mathbb{R}^d \setminus \{te_1 : t \in [-1, 0] \cup [1, \infty)\}$, where e_1 is the unit vector $(1, 0, \cdots, 0)$ in \mathbb{R}^d. We set

(14) \hspace{1cm} t_d := \text{cap}_d(R_T, \delta_i).

Finally in this section we state a separation lemma on the topology of the Royden compactification. Let $(R_n)_{n \geq 1}$ be a sequence of rings R_n in D ($n = 1, 2, \cdots$) with the following properties: $(R_n \cup C_{n1}) \cap (R_m \cup C_{m1}) = \emptyset$ for $n \neq m$, where C_{n1} is the inner part of $(R_n)^c = D \setminus R_n$; $(R_n)_{n \geq 1}$ does not accumulate in D, i.e. $\{n : E \cap (\overline{R_n} \cup C_{n1}) \neq \emptyset\}$ is a finite set for any compact set E in D. Such a sequence $(R_n)_{n \geq 1}$ will be called an admissible sequence, which defines two disjoint closed sets X and Y in D as follows:

\[X := \bigcup_{n=1}^{\infty} C_{n1} \quad \text{and} \quad Y := \bigcap_{n=1}^{\infty} (D \setminus (R_n \cup C_{n1})). \]

We denote by $\text{cl}(X; D^*_p)$ the closure of X in D^*_p. Although $X \cap Y = \emptyset$ in D, $\text{cl}(X; D^*_p)$ and $\text{cl}(Y; D^*_p)$ may intersect on the Royden p-boundary

\[\Gamma_p(D) := D^*_p \setminus D. \]

Concerning to this we have the following result.

15. LEMMA. The set $\text{cl}(\bigcup_{n=1}^{\infty} R_n; D^*_p)$ for an admissible sequence $(R_n)_{n \geq 1}$ in D separates $\text{cl}(X; D^*_p)$ and $\text{cl}(Y; D^*_p)$ in D^*_p in the sense that

(16) \hspace{1cm} (\text{cl}(X; D^*_p)) \cap (\text{cl}(Y; D^*_p)) = \emptyset

if and only if

(17) \hspace{1cm} \sum_{n=1}^{\infty} \text{cap}_p R_n < \infty.

PROOF: First we show that (16) implies (17). By (16) the Urysohn theorem assures the existence of a function $u \in C(D^*_p)$ such that $u = 3$ on $\text{cl}(X; D^*_p)$ and $u = -2$ on $\text{cl}(Y; D^*_p)$. Since $M_p(D)$ is dense in $C(D^*_p)$, there is a function $v \in M_p(D)$ such that $v > 2$ on X and $v < -1$ on Y. Finally let $w = ((v \cap 1) \cup 0) \in M_p(D)$, which satisfies $w|X = 1$, $w|Y = 0$ and $0 \leq w \leq 1$ on D. Set $w_n = w$ on $R_n \cup C_{n1}$ and $w_n = 0$ on $D \setminus (R_n \cup C_{n1})$ for $n = 1, 2, \cdots$. Clearly $w_n \in W(R_n)$ so that $\text{cap}_p R_n \leq \|\nabla w_n; L^p(R_n)\|_p$ ($n = 1, 2, \cdots$) and $w = \sum_{n=1}^{\infty} w_n$. Since the supports of w_n in D ($n = 1, 2, \cdots$) are mutually disjoint, we see that

\[\sum_{n=1}^{\infty} \text{cap}_p R_n \leq \sum_{n=1}^{\infty} \|\nabla w_n; L^p(R_n)\|_p = \|\nabla w; L^p(D)\|_p \leq \|w; M_p(D)\|_p < \infty, \]

i.e. (17) has been deduced.
Conversely, suppose that (17) is the case. We wish to derive (16) from (17). Choose a function \(w_n \in W(R_n) \) such that \(\| \nabla w_n; L^p(R_n) \|^p < 2 \text{cap}_p R_n \) for each \(n = 1, 2, \cdots \). We may suppose that \(0 \leq w_n \leq 1 \) on \(D \) by replacing \(w_n \) with \((w_n \cap 1) \cup 0 \) if necessary (see e.g. p.20 in [4]). Clearly \(w := \sum_{n=1}^{\infty} w_n \in M_p(D) \) since \(\| w; L^\infty(D) \| = 1 \) and
\[
\| \nabla w; L^p(D) \|^p = \sum_{n=1}^{\infty} \| \nabla w_n; L^p(D_n) \|^p \leq 2 \sum_{n=1}^{\infty} \text{cap}_p R_n < \infty.
\]
Observe that \(w = 1 \) on \(X \) and \(w = 0 \) on \(Y \). Hence, by the continuity of \(w \) on \(D^*_p \), we see that \(w = 1 \) on \(\text{cl}(X; D^*_p) \) and \(w = 0 \) on \(\text{cl}(Y; D^*_p) \), which yields (16).

As a consequence of the separation lemma above we can characterize points in the Royden p-boundary \(\Gamma_p(D) = D^*_p \setminus D \) among points in \(D^*_p \) in terms of their being not \(G_\delta \) for \(1 \leq p \leq d \). This is no longer true for \(d < p \leq \infty \). Recall that a point \(\zeta \in D^*_p \) is said to be \(G_\delta \) if there exists a countable sequence \((\Omega_i)_{i \geq 1} \) of open neighborhoods \(\Omega_i \) of \(\zeta \) such that \(\cap_{i \geq 1} \Omega_i = \{ \zeta \} \).

18. **Corollary to Lemma 15.** A point \(\zeta \) in \(D^*_p \) (1 \leq p \leq d) belongs to \(D \) if and only if \(\zeta \) is \(G_\delta \).

Proof: We only have to show that \(\zeta \in \Gamma_p(D) = D^*_p \setminus D \) is not \(G_\delta \). Contrariwise suppose \(\zeta \) is \(G_\delta \) so that there exists a sequence \((\Omega_i)_{i \geq 1} \) of open neighborhoods of \(\zeta \) such that \(\Omega_i \supset \text{cl}(\Omega_{i+1}; D^*_p) \) \((i = 1, 2, \cdots) \) and \(\cap_{i \geq 1} \Omega_i = \{ \zeta \} \). Since \(D \) is dense in \(D^*_p \), \(H_i := D \cap (\Omega_i \setminus \text{cl}(\Omega_{i+1}; D^*_p)) \) is a nonempty open subset of \(D \) for each \(i \). Hence we can find a sequence \((P_n)_{n \geq 1} \) of points \(P_n \in H_n \) \((n = 1, 2, \cdots) \) and a sequence \(((U_n, x_n))_{n \geq 1} \) of 2-domains \((U_n, x_n) \) contained in \(H_n \) \((n = 1, 2, \cdots) \) such that \(U_n = \{ x_n : |x_n - P_n| < r_n \} \) \((r_n > 0) \) \((n = 1, 2, \cdots) \). Let \(R_n := \{ x_n : a_n < |x_n - P_n| < b_n \} \) \((0 < a_n < b_n := r_n/2) \) be a spherical ring in \((U_n, x_n) \). Clearly \((R_n)_{n \geq 1} \) is an admissible sequence. Since \(\text{cap}_p(R_n, \delta_{ij}) = \omega_d ((1 - (a_n/b_n))^{p-1 - \delta} a_n^{d-\delta} b_n^{\delta}) \) by (13) for \(1 < p < d \), \(\text{cap}_p(R_n, \delta_{ij}) = \omega_d/(b_n/a_n)^{d-1} \) and \(\text{cap}(R_n, \delta_{ij}) = \omega_d b_n^{d-1} \), we can see that \(\text{cap}_p(R_n, \delta_{ij}) < 2^{-n} \) by choosing \(a_n \in (0, r_n/2) \) enough small so that \(\text{cap}_p R = \text{cap}_p(R, g_{ij}) \leq 2^{(d+p)/2} \text{cap}_p(R, \delta_{ij}) < 2^{(d+p)/2} \) \((n = 1, 2, \cdots) \) by (11). Hence (17) is satisfied but (16) is invalid because the intersection on the left hand side of (16) contains \(\zeta \) due to the fact that \(R_n \subset H_n \) \((n = 1, 2, \cdots) \). This is clearly a contradiction to Lemma 15.

19. **Analytic properties of quasiisometric mappings.** A quasiisometric (quasi-conformal, resp.) mapping \(f \) of a Riemannian manifold \(D \) onto another \(D' \) is, as defined in §1 (Introduction), a homeomorphism \(f \) of \(D \) onto \(D' \) such that \(K^{-1} \rho(x, y) \leq \rho(f(x), f(y)) \leq K \rho(x, y) \) for every pair of points \(x \) and \(y \) in \(D \) for some fixed \(K \in [1, \infty) \) \((\sup_{x \in D} \lim \sup_{r \downarrow 0} ((\max_{\rho(x,y)>r}) \rho'(f(x), f(y)))/\min_{\rho(x,y)>r} \rho'(f(x), f(y))) < \infty \), resp.), where \(\rho \) and \(\rho' \) are geodesic distances on \(D \) and \(D' \), respectively. In this case we also say that \(f \) is \(K \)-quasiisometric referring to \(K \). For simplicity, quasiisometric (quasiconformal, resp.) mappings will occasionally be abbreviated as qi (qc, resp.). Consider a \(K \)-qi \(f \) of a \(d \)-
dimensional Riemannian manifold D equipped with the metric tensor (g_{ij}) onto another d-dimensional Riemannian manifold D' equipped with the metric tensor (g'_{ij}). Fix an arbitrary $\lambda \in (0, \infty)$ and choose any λ-domain (U, x) in D and any λ-domain (U', x') in D' such that $f(U) = U'$. The mapping $f : (U, \delta_{ij}) \to (U', \delta_{ij})$ has the representation

(20) $x' = f(x) = (f^1(x), \cdots, f^d(x))$

on U in terms of the parameters x and x'. As the composite mapping of $id. : (U, \delta_{ij}) \to (U, g_{ij}), f : (U, g_{ij}) \to (U', g'_{ij})$, and $id. : (U', g'_{ij}) \to (U', \delta_{ij})$, we see that the mapping $f : (U, \delta_{ij}) \to (U', \delta_{ij})$ is λK-qi since $id. : (U, \delta_{ij}) \to (U, g_{ij})$ and $id. : (U', g'_{ij}) \to (U', \delta_{ij})$ are $\sqrt{\lambda}$-qi as the consequence of $\lambda^{-1}|dx|^2 \leq ds^2 \leq \lambda |dx|^2$, where $dx = (dx^1, \cdots, dx^d)$, $|dx|^2 = \delta_{ij}dx^i dx^j$, and $ds^2 = g_{ij}(x)dx^i dx^j$, which is deduced from $\lambda^{-1}(\delta_{ij}) \leq (g_{ij}) \leq \lambda(\delta_{ij})$. Hence we see that

(21) $\frac{1}{\lambda K}|x - y| \leq |f(x) - f(y)| \leq \lambda K|x - y|$

whenever the line segment $[x, y] := \{(1-t)x + ty : t \in [0,1]\} \subset U$ and $[f(x), f(y)] \subset U'$. In particular (21) implies that

(22) $\limsup_{h \to 0} \frac{|f(x + h) - f(x)|}{|h|} \leq \lambda K < \infty$

for every $x \in U$ and

(23) $\liminf_{h \to 0} \frac{|f(x + h) - f(x)|}{|h|} \geq \frac{1}{\lambda K} > 0$.

As an important consequence of (22), the Rademacher-Stepanoff theorem (cf. e.g. p.218 in [1]) assures that $f(x)$ is differentiable at a.e. $x \in U$, i.e.

(24) $f(x + h) - f(x) = f'(x)h + \varepsilon(x, h)|h| \quad (\lim_{h \to 0} \varepsilon(x, h) = 0)$

for a.e. $x \in U$, where $f'(x)$ is the $d \times d$ matrix $(\partial f^i / \partial x^j)$. Fix an arbitrary vector h with $|h| = 1$. Then for any positive number $t > 0$ we have, by replacing h in(24) with th,

$$|f'(x)h| - |\varepsilon(x, th)| \leq \frac{|f(x + th) - f(x)|}{|th|}$$

and on letting $t \downarrow 0$ we obtain by (22) that $|f'(x)h| \leq \lambda K$. Therefore

(25) $|f'(x)| := \sup_{|h| = 1} |f'(x)h| \leq \lambda K$

for a.e. $x \in U$. Similarly we have

$$|f'(x)h| + |\varepsilon(x, th)| \geq \frac{|f(x + th) - f(x)|}{|th|}$$
and hence by (23) we deduce $|f'(x)h| \geq 1/\lambda K$. Hence

$$l(f'(x)) := \inf_{|h|=1} |f'(x)h| \geq \frac{1}{\lambda K}. \tag{26}$$

From (25) it follows that $|\partial f'(x)/\partial x^i| \leq |f'(x)| \leq \lambda K$ for a.e. $x \in U$ ($i, j = 1, \cdots, d$) and thus $|\nabla f| = (\sum_{i=1}^{d} |\nabla f_i|^2)^{1/2} \in L^\infty(U)$. By (21), $f(x)$ is ACL (absolutely continuous on almost all straight lines which are parallel to coordinate axes). That $f(x)$ is ACL and $\nabla f \in L^\infty(U)$ is necessary and sufficient for f to belong to $L^{1,\infty}(U)$ (cf. e.g. pp.8-9 in [7]) so that, by the continuity of f, we have

$$f \in W^{1,\infty}_{loc}(D). \tag{27}$$

By (25) and (26) we have the matrix inequality

$$l(f'(x))^2(\delta_{ij}) \leq f'(x)^*f'(x) \leq |f'(x)|^2(\delta_{ij})$$

for a.e. $x \in U$, where $f'(x)^*$ is the transposed matrix of $f'(x)$. Let $\lambda_1(x) \geq \cdots \geq \lambda_d(x)$ be the square roots of the proper values of the symmetric positive matrix $f'(x)^*f'(x)$. Then

$$\frac{1}{\lambda K} \leq l(f'(x)) = \lambda_d(x) \leq \cdots \leq \lambda_1(x) = |f'(x)| \leq \lambda K.$$

Observe that $\prod_{i=1}^{d} \lambda_i(x)^2 = \det(f'(x)^*f'(x)) = (\det f'(x))^2$ is the square of the Jacobian $J_f(x)$ of f at x. Hence, by $\lambda K \lambda_i \geq 1$ ($i = 2, 3, \cdots, d$), we see that

$$|f'(x)|^p = \lambda_1(x)^p \leq \lambda_1(x)(\lambda K)^{p-1} \leq \lambda_1(x)(\lambda K)^{p-1} \prod_{i=2}^{d} (\lambda K \lambda_i(x))$$

$$= (\lambda K)^{d+p-2} \prod_{i=1}^{d} \lambda_i(x) = (\lambda K)^{d+p-2}|J_f(x)|,$$

i.e. we have deduced that

$$|f'(x)|^p \leq (\lambda K)^{d+p-2}|J_f(x)| \tag{28}$$

for a.e. $x \in U$. This is used to prove the following result.

29. **Proposition.** The pull-back $v = u \circ f$ of any u in $M_p(D')$ by a K-qi f of D onto D' belongs to $M_p(D)$ and satisfies the inequality

$$\int_{D} |\nabla v(x)|_{g_{ij}}^p \sqrt{g(x)} dx \leq K^{d+p-2} \int_{D'} |\nabla u(x')|_{g'_{ij}}^p \sqrt{g'(x')} dx' \tag{30}$$

and in particular

$$\|v; M_p(D)\| \leq K^{(d+p-2)/p}\|u; M_p(D')\|. \tag{31}$$
PROOF: The inequality (30) is nothing but \(\| \nabla v; L^p(D) \| \leq K^{(d+p-2)/p} \| \nabla v; L^p(D') \| \). This with \(\| v; L^\infty(D) \| = \| u; L^\infty(D') \| \) implies (31). Suppose that Proposition 29 is true if \(u \in M_p(D') \cap C^\infty(D') \). Since \(M_p(D') \cap C^\infty(D') \) is dense in \(M_p(D') \), for an arbitrary \(u \in M_p(D') \), there exists a sequence \((u_k)_{k \geq 1} \) in \(M_p(D') \cap C^\infty(D') \) such that \(\| u - u_k; M_p(D') \| \to 0 \) \((k \to \infty) \). In particular \(\| u_k - u_{k'}; M_p(D') \| \to 0 \) \((k, k' \to \infty) \). By our assumption, \(u_k := u_k \circ f \in M_p(D) \) \((k = 1, 2, \cdots) \). By (31), the inequalities \(\| v_k - v_{k'}; M_p(D) \| \leq K^{(d+p-2)/p} \| u_k - u_{k'}; M_p(D') \| \) assure that \(\| v_k - v_{k'}; M_p(D) \| \to 0 \) \((k, k' \to \infty) \). By the completeness of \(M_p(D) \), since \(\| v - v_k; L^\infty(D) \| \to 0 \) \((k \to \infty) \), we see that \(v \in M_p(D) \).

By the validity of (30) \(\lambda \in (1, \infty) \) for \(u_k \), we see that (30) is valid for \(v \). For this reason we can assume \(u \in M_p(D') \cap C^\infty(D') \) to prove Proposition 29.

It is clear by (25) that \(v = u \circ f \in W^{1,\infty}_{1,\text{loc}} \cap L^\infty(D) \cap C(D) \) if \(u \in M_p(D') \cap C^\infty(D') \). Hence we only have to prove (30) to deduce (30) \(\lambda \). Let \(D = \bigcup_{k=1}^\infty E_k \) be a union of disjoint Borel sets \(E_k \) in \(D \) such that each \(E_k \) is contained in a \(\lambda \)-domain \(U_k \) in \(D \) and \(E_k = f(E_k) \) in a \(\lambda \)-domain \(U_k' = f(U_k) \) in \(D' \) for \(k = 1, 2, \cdots \). Fix a \(k \) and consider the \(\lambda K \)-qi \(f \) of \((U_k, \delta_{ij}) \) onto \((U_k', \delta_{ij}) \) with the representation (20) on \(U_k \) in terms of the parameter \(x \) in \(U_k \) and \(x' \) in \(U_k' \). By the chain rule we have

\[
(32) \quad \nabla v(x) = f'(x)^* \nabla u(f(x))
\]

for a.e. \(x \in U_k \). Since \(|f'(x)|^* = |f'(x)| \), (28) and (32) yield

\[
|\nabla v(x)|^p \leq (\lambda K)^{d+p-2}|\nabla u(f(x))|^p|J_f(x)|
\]

for a.e. \(x \in U_k \). In view of (22), the formula of the change of variables in integrations is valid for \(x' = f(x) \):

\[
\int_{E_k} |\nabla u(f(x))|^p|J_f(x)|dx = \int_{E_k'} |\nabla u(x')|^pdx'.
\]

From the above two displayed relations we deduce

\[
\int_{E_k} |\nabla v(x)|^pdx \leq (\lambda K)^{d+p-2} \int_{E_k'} |\nabla u(x')|^pdx'.
\]

Observe that \(|\nabla v|_{g_{ij}}^p \leq \lambda^{p/2} |\nabla u|^p \) and \(\sqrt{g} \leq \lambda^{d/2} \), and similarly, that \(|\nabla u|^p \leq \lambda^{p/2} |\nabla u|_{g_{ij}}^p \) and \(1 \leq \lambda^{d/2} \sqrt{g} \). The above displayed inequality then implies that

\[
\int_{E_k} |\nabla v(x)|_{g_{ij}}^p \sqrt{g(x)}dx \leq \lambda^{2(d+p-1)} K^{d+p-2} \int_{E_k} |\nabla u(x')|^p \sqrt{g'(x')}dx'.
\]

On adding these inequalities for \(k = 1, 2, \cdots \) we obtain (30) with \(K^{d+p-2} \) replaced by \(\lambda^{2(p+d-1)} K^{d+p-2} \). Since \(\lambda \in (1, \infty) \) is arbitrary, we deduce (30) itself by letting \(\lambda \downarrow 1 \). \(\square \)

33. Distortion of rings and their capacities. Throughout this section we fix two nonempty open sets \(V \) and \(V' \) in \(\mathbb{R}^d \) (or, what amounts to the same, two parametric domains
of

of
Lemma 37 can be proven by suitably modifying the original Gehring proof ([3]) of his theorem. A complete proof of Lemma 37 can be found in [12].

If we assume that f is K_1-qi, then $f, f^{-1} \in Lip(K_1)$, which is the conclusion of Lemma 37, follows immediately. We now prove the converse of this so that $f, f^{-1} \in Lip(K)$ can be used for the definition of K-qi in the case of mappings between space open sets.

39. LEMMA. If $f, f^{-1} \in Lip(K)$, then f is a K-qi of V onto V'.

PROOF: We define positive numbers $s(r) > 0$ for sufficiently small positive numbers $r > 0$ by $\min_{|x-P|=r} |f(x) - f(P)| =: s(r)$ for an arbitrarily fixed $P \in V$. On setting $P' := f(P)$ we see that $\max_{|x'-P'|=s(r)} |f^{-1}(x') - f^{-1}(P')| = r$. Observe that $s(r) \downarrow 0$ as $r \downarrow 0$. Hence, by $f^{-1} \in Lip(K) = Lip(K; V', V)$, we see that

$$\lim_{r \downarrow 0} \sup_{s \downarrow 0} \frac{r}{s(r)} \leq K.$$

Therefore we infer that

$$\lim_{r \downarrow 0} \sup_{s \downarrow 0} \frac{\max_{|x-P|=r} |f(x) - f(P)|}{\min_{|x-P|=r} |f(x) - f(P)|} = \lim_{r \downarrow 0} \left(\frac{\max_{|x-P|=r} |f(x) - f(P)|}{r} \cdot \frac{r}{s(r)} \right) \leq K^2,$$

which concludes that f is a qc of V onto V' by the metric definition (2) of quasiconformality. This assures that f is differentiable a.e. on V and $f \in W_{loc}^{1,d}(V)$ (cf. e.g. pp.109-111 in [19]). The latter in particular implies that f is ACL in an arbitrarily given direction l: f is absolutely continuous on almost all straight lines which are parallel to l. Suppose that f is differentiable at $x \in V$, i.e.

$$f(x + h) - f(x) = f'(x)h + \epsilon(x, h)|h| \quad (\lim_{h \to 0} \epsilon(x, h) = 0).$$

For any $|h| = 1$ and any small $t > 0$, we have

$$|f'(x)h| \leq \frac{|f(x + th) - f(x)|}{|th|} + |\epsilon(x, th)| \leq \frac{\max_{|y-x|=t} |f(y) - f(x)|}{t} + |\epsilon(x, th)|.$$

On letting $t \downarrow 0$ we deduce $|f'(x)h| \leq K$ since $f \in Lip(K)$. We can thus conclude that

$$(40) \quad |f'(x)| = \sup_{|h|=1} |f'(x)h| \leq K.$$
for a.e. $x \in U$. We now maintain that

\begin{equation}
|f(x) - f(y)| \leq K|x - y|
\end{equation}

for any line segment $[x, y] = \{(1-t)x + ty : t \in [0, 1]\} \subset V$. Since f is ACL in the direction of $[x, y]$, we see that f is absolutely continuous in V on almost all straight lines L parallel to $[x, y]$. As a consequence of (40), $|f'(x)| \leq K$ in V on almost all straight lines L parallel to $[x, y]$ a.e. with respect to the linear measure on L. Hence we can find a sequence of line segments $[x_n, y_n] \subset V$ with the following properties: $x_n \rightarrow x$ and $y_n \rightarrow y$ as $n \rightarrow \infty$; f is absolutely continuous on $[x_n, y_n]$; $|f'(x)| \leq K$ a.e. on $[x_n, y_n]$ with respect to the linear measure. Then

\[
|f(x_n) - f(y_n)| \leq \int_{[x_n, y_n]} |df(z)| = \int_{[x_n, y_n]} |f'(z)dz|
\]

\[
\leq \int_{[x_n, y_n]} |f'(z)||dz| \leq K \int_{[x_n, y_n]} |dz| = K|x_n - y_n|,
\]

i.e. $|f(x_n) - f(y_n)| \leq K|x_n - y_n|$ ($n = 1, 2, \cdots$), from which (41) follows by the continuity of f. By the symmetry of the situations for f and f^{-1}, we deduce the same inequality for f^{-1} so that

\[
\frac{1}{K}|x - y| \leq |f(x) - f(y)| \leq K|x - y|
\]

for every x and y in V with $[x, y] \subset V$ and $[f(x), f(y)] \subset V'$. Thus we can show the validity of (3) with respect to δ_{ij}-geodesic distances ρ on V and ρ' on V' so that $f : V \rightarrow V'$ is a K-qi.

Combining Lemmas 37 and 39, we obtain the following result, which will be used in the final part of the proof of the main theorem 4.

42. THEOREM. Suppose that $1 \leq p < d$, $0 < K < \infty$, and $0 < \delta \leq \infty$ are arbitrarily given. Then $f, f^{-1} \in Q_p(K, \delta)$ implies that f is a K_1-qi of V onto V', where $K_1 = K_1(K)$ is given by (38) so that it is independent of δ.

43. Proof of the main theorem. In this section we assume that the exponent p is fixed in $(1, d)$ and we choose two Riemannian manifolds D and D' of the same dimension $d \geq 2$ which are orientable and countable and any component of D and D' is not compact. The proof of the main theorem 4 consists of two parts.

First part: Assume that there exists an almost quasiisometric mapping f of D onto D', i.e. f is a homeomorphism of D onto D' and there exists a compact subset $E \subset D$ such that $f = f|D \setminus E$ is a K-quasiisometric mapping of $D \setminus E$ onto $D' \setminus E'$, where $E' = f(E)$ is a compact subset of D' and K a constant in $[1, \infty)$. We are to show that f can be extended to a homeomorphism f^* of the Royden compactification D_p^* of D onto that $(D')_p^*$ of D'. Choose an arbitrary point ξ in the Royden p-boundary $\Gamma_p(D) = D_p^* \setminus D$. Since D is dense in D_p^*, the point ξ is an accumulation point of D.
We first show that the net \((f(x_{\lambda}))\) in \(D'\) converges to a point \(\xi' \in \Gamma_{p}(D')\) for any net \((x_{\lambda})\) in \(D\) convergent to \(\xi\). Clearly \((f(x_{\lambda}))\) does not accumulate at any point in \(D'\) along with \((x_{\lambda})\) so that the cluster points of \((f(x_{\lambda}))\) are contained in \(\Gamma_{p}(D')\). Contrariwise we assume the existence of two subnets \((x_{\lambda'}^\prime)\) and \((x_{\lambda''}^\prime)\) of \((x_{\lambda})\) such that \((f(x_{\lambda'}))\) and \((f(x_{\lambda''}))\) are convergent to \(\eta'\) and \(\eta''\) in \(\Gamma_{p}(D')\), respectively, with \(\eta' \neq \eta''\). Since \(M_{p}(D')\) is dense in \(C((D')_{p}^{*})\) and forms a lattice, we can find a function \(u \in M_{p}(D')\) such that \(u \equiv 0\) in a neighborhood \(G'\) of \(E'\), \(u(\eta') = 0\), and \(u(\eta'') = 1\). Viewing \(u \in M_{p}(D' \setminus E')\), we see by Proposition 29 that \(v := u \circ f \in M_{p}(D \setminus E)\). Since \(u \equiv 0\) on the neighborhood \(G = f^{-1}(G')\) of \(E = f^{-1}(E')\), we can conclude that \(v \in M_{p}(D)\). From \(v(x_{\lambda'}) = u(f(x_{\lambda'}))\) and \(v(x_{\lambda''}) = u(f(x_{\lambda''}))\) it follows that \(v(\xi') = u(\eta') = 0\) and \(v(\xi'') = u(\eta'') = 1\), which is a contradiction.

We next show that the nets \((f(x_{\lambda}))\) and \((f(y_{\lambda}))\) in \(D'\) converge to a point in \(\Gamma_{p}(D')\) for any two nets \((x_{\lambda})\) and \((y_{\lambda})\) convergent to \(\xi \in \Gamma_{p}(D)\). In fact, let \((x_{\lambda})\) be a net convergent to \(\xi\) such that \((x_{\lambda})\) contains \((x_{\lambda'})\) and \((y_{\lambda''})\) as its subnets. Then we see that \(\lim f(x_{\lambda'}) = \lim f(x_{\lambda}) = \lim f(x_{\lambda})\). Hence we have shown that \(f^*(\xi) := \lim_{\lambda \rightarrow \eta} f(x_{\lambda}) \in \Gamma_{p}(D')\) for any \(\xi \in \Gamma_{p}(D)\). On setting \(f^* = f\) on \(D\), we see that \(f^*\) is a continuous mapping of \(D_{p}^{*}\) onto \((D')_{p}^{*}\). The uniqueness of \(f^*\) on \(D_{p}^{*}\) is a consequence of the denseness of \(D\) in \(D_{p}^{*}\). Similarly we can show that \(f^{-1}\) can also be uniquely extended to a continuous mapping \((f^{-1})^*\) of \((D')_{p}^{*}\) onto \(D_{p}^{*}\). Since \((f^{-1})^* \circ f^*\) and \(f^* \circ (f^{-1})^*\) are identities on \(D_{p}^{*}\) and \((D')_{p}^{*}\), respectively, as the unique extensions of \(id. : D \rightarrow D\) and \(id. : D' \rightarrow D'\), respectively, we see that \(f^*\) is a homeomorphism of \(D_{p}^{*}\) onto \((D')_{p}^{*}\) which is the unique extension of \(f : D \rightarrow D'\).

\(\Box\)

Second part : Suppose the existence of a homeomorphism \(f^*\) of \(D_{p}^{*}\) onto \((D')_{p}^{*}\). We are to show that \(f := f^*|D\) is an almost quasiisometric mapping of \(D\) onto \(D'\), which is the essential part of this note.

Choose an arbitrary point \(x \in D\). Since \(x \in G_{\delta}\), \(f^*(x) \in (D')_{p}^{*}\) is also \(G_{\delta}\) so that \(f^*(x) \in D'\) by Corollary 18. Thus we have shown that \(f^*(D) \subset D'\). Similarly we can conclude that \((f^*)^{-1}(D') \subset D\). These show that \(f^*(D) = D'\) and therefore \(f := f^*|D\) is a homeomorphism of \(D\) onto \(D'\). We are to show that \(f\) is an almost quasiisometric mapping of \(D\) onto \(D'\).

We fix a family \(V = \{V\}\) of open sets \(V\) in \(D\) with the following properties: \(V\) is contained in a 2-domain \(U_{V}\) in \(D\) and \(V' := f(V)\) is contained in the 2-domain \(U_{V'} = f(U_{V})\) in \(D'\); \(\cup_{V \in V'} = D\). This is possible since the family of 2-domains forms a base of open sets on any Riemannian manifold and \(f : D \rightarrow D'\) is a homeomorphism. We set \(V' := \{V' : V' = f(V) (V \in V)\}\), which enjoys the same properties as \(V\) does. We also fix an exhaustion \((\Omega_{n})_{n \geq 1}\) of \(D\), i.e. \(\Omega_{n}\) is a relatively compact open subset of \(D (n = 1, 2, \cdots)\), \(\Omega_{n} \subset \Omega_{n+1} (n = 1, 2, \cdots)\), and \(\cup_{n \geq 1} \Omega_{n} = D\). Then \((\Omega_{n}')_{n \geq 1}\) with \(\Omega_{n}' := f(\Omega_{n}) (n = 1, 2, \cdots)\) also forms an exhaustion of \(D'\). We set \(D_{n} := D \setminus \overline{\Omega_{n}}\) and \(D_{n}' := D' \setminus \overline{\Omega_{n}'}\) \((n = 1, 2, \cdots)\). Then \((D_{n})_{n \geq 1} ((D_{n}')_{n \geq 1}, \text{resp.})\) is a decreasing sequence of open sets \(D_{n}\).
if of of for fact of contradicting proof Assertion the tensor we for not that every case metric every those we Then see that this assertion maintain a a where where inclusion every an resp.) for Take an arbitrary n \{1, 2, \cdots\}. If f \in Q_p(2^{n+p-1}, 2^{-m}; V \cap D_m, V' \cap D_n') (f^{-1} \in Q_p(2^{m+p-1}, 2^{-m}; V' \cap D_n', V \cap D_m), resp.) for every V \in \mathcal{V} with V \cap D_m \neq \emptyset (so that V' \cap D_n' \neq \emptyset), where V' = f(V) and V' \cap D_n' = f(V) \cap f(D_n) = f(V \cap D_n), then we write
\[f \in (n) \quad (f^{-1} \in (n), \text{ resp.}). \]
Hence, for example, f \notin (n) means that there exists a V \in \mathcal{V} with V \cap D_n \neq \emptyset such that f \notin Q_p(2^{n+p-1}, 2^{-n}; V \cap D_n, V' \cap D_n'). We maintain

44. Assertion. If f \in (n) (f^{-1} \in (n), \text{ resp.}) for some n, then f \in (m) (f^{-1} \in (m), \text{ resp.}) for every m \geq n.

In fact, f \in (n) assures that f \in Q_p(2^{n+p-1}, 2^{-n}; V \cap D_n, V' \cap D_n') for every V \in \mathcal{V} with V \cap D_n \neq \emptyset. Choose any V \in \mathcal{V} with V \cap D_m \neq \emptyset. Since D_m \subset D_n, V \cap D_n \neq \emptyset along with V \cap D_m \neq \emptyset and therefore f \in Q_p(2^{m+p-1}, 2^{-m}; V \cap D_m, V' \cap D_n'). In view of the fact that 2^{m+p-1} \leq 2^{m+p-1} and 2^{-n} \geq 2^{-m}, we have the inclusion relation Q_p(2^{m+p-1}, 2^{-m}; V \cap D_m, V' \cap D_n') \supset Q_p(2^{n+p-1}, 2^{-n}; V \cap D_n, V' \cap D_n') so that f \in Q_p(2^{m+p-1}, 2^{-m}; V \cap D_m, V' \cap D_n'), i.e. f \in (m), which completes the proof of Assertion 44. Next we assert

45. Assertion. If f \in (n) and f^{-1} \in (n) for some n, then f = f|D_n is a qi of D_n onto D_n'.

Indeed, by Theorem 42, we see that f : (V \cap D_n, \delta_{ij}) \longrightarrow (V' \cap D_n', \delta_{ij}) is a K_1-qi with K_1 = K_1(2^{n+p-1}) (cf. (38) in Lemma 37). Clearly id. : (V \cap D_n, g_{ij}) \longrightarrow (V \cap D_n, \delta_{ij}) and id. : (V' \cap D_n', \delta_{ij}) \longrightarrow (V' \cap D_n', g_{ij}') are \sqrt{2}-qi, where (g_{ij}') is the metric tensor on D'. Therefore, as the suitable composition of these maps above, we see that f : (V \cap D_n, g_{ij}) \longrightarrow (V' \cap D_n', g_{ij}') is a 2K_1-qi. Since this is true for every V \in \mathcal{V} with V \cap D_n \neq \emptyset and \bigcup_{V \in \mathcal{V}} V = D \supset D_n, we can conclude that f : D_n \longrightarrow D_n' is a 2K_1-qi. The proof of Assertion 45 is thus complete.

To complete the proof of this second part it is sufficient to show that f : D_n \longrightarrow D_n' is a qi for some n. We prove it by contradiction. Contrariwise suppose that f : D_n \longrightarrow D_n' is not qi for every n = 1, 2, \cdots. Then we maintain that either f \notin (n) for every n or f^{-1} \notin (n) for every n. In fact, if f \notin (n) for every n, then we are done. Otherwise, there is a k with f \in (k). Then by Assertion 44 we have f \in (n) for every n \geq k. In this case we must have f^{-1} \notin (n) for every n and the assertion is assured. To see this assume that f^{-1} \in (l) for some l. Then f^{-1} \in (n) for every n \geq l again by Assertion 44. Then f \in (k \cup l) and f^{-1} \in (k \cup l). By Assertion 45 we see that f is a qi of D_{k\cup l} onto D_{k\cup l}, contradicting our assumption. On interchanging the roles of f and f^{-1} (and thus those of D and D') if
necessary, we can assume that

\[f \not\in (n) \quad (n = 1, 2, \cdots), \]

from which we will derive a contradiction.

The fact that \(f \not\in (1) \) implies the existence of a 2-domain \(V \in \mathcal{V}_{D_1} \) such that \(f \not\in Q_p(2^{1+p-1}, 2^{-1}; V, f(V)) \). We can then find a spherical ring \(S_1 \subset V(\subset D_1) \) such that

\[\text{cap}_p S_1 < 2^{-1}, \quad \text{cap}_p, f(S_1) > 2^{1+p-1}\text{cap}_p S_1. \]

Here \(\text{cap}_p S_1 \) means \(\text{cap}_p(S_1, \delta_{ij}) \). We set \(n_1 := 1 \). Let \(n_2 \) be the least integer such that \(n_2 \geq n_1 + 1 \) (and hence \(D_{n_1+1} \supset D_{n_2} \)) and \(\overline{D_{n_2}} \cap \overline{S_{n_1}} = \emptyset \). Since \(f \not\in (n_2) \), there exists a \(V \in \mathcal{V}_{D_{n_2}} \) with \(f \not\in Q_p(2^{n_2+p-1}, 2^{-n_2}; V, f(V)) \). Hence we can find a spherical ring \(S_{n_2} \subset V(\subset D_{n_2}) \) such that

\[\text{cap}_p S_{n_2} < 2^{-n_2}, \quad \text{cap}_p, f(S_{n_2}) > 2^{n_2+p-1}\text{cap}_p S_{n_2}, \]

where \(\text{cap}_p S_{n_2} \) means \(\text{cap}_p(S_{n_2}, \delta_{ij}) \). Repeating this process we can construct a sequence \((S_{n_k})_{k \geq 1}\) of spherical rings \(S_{n_k} \) with the following properties: \(n_k + 1 \leq n_{k+1} \); \(S_{n_k} \subset D_{n_k} \); \(\overline{S_{n_k}} \cap \overline{S_{n_l}} = \emptyset (k \neq l); \)

\[\text{cap}_p S_{n_k} < 2^{-n_k}, \quad \text{cap}_p, f(S_{n_k}) > 2^{n_k+p-1}\text{cap}_p S_{n_k} \quad (k = 1, 2, \cdots). \]

Fix a \(k \) and set \(T = S_{n_k} \). Since it is a spherical ring in a 2-domain \((U_{V_{n_k}}, x)\) and contained in \(V_{n_k} \), \(T \) has a representation \(T = \{x : a < |x - P| < b\} \), where \(P \in V_{n_k} \) and \(0 < a < b < \infty \). Let \(l = [(2^{-n_k}/\text{cap}_p T)^{1/(p-1)}] > 0 \) where \([\cdot]\) is the Gaussian symbol, which means that

\[(47) \quad p^{-1} \leq \frac{2^{-n_k}}{\text{cap}_p T} < (l + 1)^{p-1} \leq 2^{p-1} p^{-1}. \]

Using the notation \(q = (p - d)/(p - 1) \) (cf. (13)) we set

\[t_j := \left(\frac{(l-j)aq + jbj}{l} \right)^{\frac{1}{q}} \quad (j = 0, 1, \cdots, l). \]

We divide the ring \(T \) into \(l \) small spherical rings \(T_j \) given by

\[T_j := \{x : t_{j-1} < |x - P| < t_j\} \quad (j = 0, 1, \cdots, l). \]

By (13) we have \(\text{cap}_p T = \text{cap}_p (T, \delta_{ij}) = \omega_d((b^q - a^q)/q)^{1-p} \). Similarly

\[\text{cap}_p T_j = \omega_d \left(\frac{t_j^q - t_{j-1}^q}{q} \right)^{1-p}. \]
\[
\omega_d \left(\frac{(l-j)a^q + j b^q}{l} - \frac{(l-j+1)a + q(j-1)b^q}{ql} \right)^{1-p} = \omega_d \left(\frac{b^q - a^q}{q} \right) l^{p-1} = l^{p-1} \text{cap}_p T,
\]
i.e. we have shown that \(ext{cap}_p T_j = l^{p-1} \text{cap}_p T\). Therefore we have the following identity for the subdivision \(\{T_j\}_{1 \leq j \leq l}\) of \(T\):

\[
(48) \quad \sum_{j=1}^{l} \left(\text{cap}_p T_j \right)^{1 \over 1-p} = \left(\text{cap}_p T \right)^{1 \over 1-p}.
\]

Concerning the induced subdivision \(\{f(T_j)\}\) of \(f(T)\), the general inequality (10) implies the inequality

\[
(49) \quad \sum_{j=1}^{l} \left(\text{cap}_p f(T_j) \right)^{1 \over 1-p} \leq \left(\text{cap}_p f(T) \right)^{1 \over 1-p}.
\]

Now suppose that \(\text{cap}_p f(T_j) \leq 2^{n_k+p-1} \text{cap}_p T_j\) for every \(1 \leq j \leq l\). Then \(\left(\text{cap}_p f(T_j) \right)^{1/(1-p)} \geq 2^{(n_k+p-1)/(1-p)} \left(\text{cap}_p T_j \right)^{1/(1-p)}\) for every \(1 \leq j \leq l\). By using (49) and (48) we deduce

\[
\left(\text{cap}_p f(T) \right)^{1 \over 1-p} \geq \sum_{j=1}^{l} \left(\text{cap}_p f(T_j) \right)^{1 \over 1-p} \geq 2^{n_k+p-1} \sum_{j=1}^{l} \left(\text{cap}_p T_j \right)^{1 \over 1-p} = 2^{n_k+p-1} \left(\text{cap}_p T \right)^{1 \over 1-p},
\]
which means that \(\text{cap}_p f(T) \leq 2^{n_k+p-1} \text{cap}_p T\). This contradicts (46) since \(T = S_{n_k}\). Therefore there must exist a number \(j_0 \in \{1, \ldots, l\}\) such that

\[
(50) \quad \text{cap}_p f(T_{j_0}) > 2^{n_k+p-1} \text{cap}_p T_{j_0}.
\]

We now set \(R_k := T_{j_0}\). By (47) we have \(l^{p-1} \text{cap}_p T \leq 2^{-n_k} \leq 2^{p-1} l^{p-1} \text{cap}_p T\). Since \(l^{p-1} \text{cap}_p T = \text{cap}_p T_{j_0} = \text{cap}_p R_k\), we see that

\[
\text{cap}_p R_k \leq 2^{-n_k} \leq 2^{p-1} \text{cap}_p R_k.
\]
This is equivalent to \(\text{cap}_p R_k < 2^{-n_k} < 2^{-k}\) (since \(n_k > k\)) and \(\text{cap}_p R_k \geq 2^{-n_k-p+1}\). The latter inequality with (50) implies that \(\text{cap}_p f(R_k) > 2^{n_k+p-1} \text{cap}_p R_k \geq 2^{n_k+p-1} \geq 1\). By (46), \(\text{cap}_p (R_k, g_{ij}) < 2^{(d+p)/2} \cdot 2^{-k}\) and \(\text{cap}_p (f(R_k), g_{ij}) > 2^{(d+p)/2}\).

We have thus constructed an admissible sequence \((R_k)_{k \geq 1}\) of rings \(R_k\) in \(D\) in the sense of §8 (cf. Lemma 15) such that \(\text{cap}_p R_k = \text{cap}_p (R_k, g_{ij})\) and \(\text{cap}_p f(R_k) = \text{cap}_p (f(R_k), g_{ij})\) satisfy

\[
(51) \quad \text{cap}_p R_k < 2^{(d+p)/2} \cdot 2^{-k} \quad \text{and} \quad \text{cap}_p f(R_k) > 2^{(d+p)/2}
\]
for every $k = 1, 2, \cdots$. Let C_{k1} be the inner part of $R_k^c = D \setminus R_k$ and we set

$$X := \bigcup_{k=1}^{\infty} C_{k1} \quad \text{and} \quad Y := \bigcap_{k=1}^{\infty} (D \setminus (R_k \cup C_{k1}))$$

as in §8 (cf. Lemma 15). The first inequality in (51) implies that

$$\sum_{k=1}^{\infty} \text{cap}_p R_k < \sum_{k=1}^{\infty} 2^{\frac{d+p}{2}} \cdot 2^{-k} = 2^{\frac{d+p}{2}} < \infty$$

and therefore Lemma 15 assures that

$$(\text{cl}(X;D^*_p)) \cap (\text{cl}(Y;D^*_p)) = \emptyset.$$

Due to the fact that f^* is a homeomorphism of D^*_p onto $(D')^*_p$, we see that

$$f^*(\text{cl}(X;D^*_p)) \cap f^*(\text{cl}(Y;D^*_p)) = f^*(\emptyset) = \emptyset.$$

Since again $(f(R_k))_{k \geq 1}$ is an admissible sequence of rings $f(R_k)$ on D', the above relation must imply by Lemma 15 that $\sum_{k=1}^{\infty} \text{cap}_p f(R_k) < \infty$. However the second inequality in (51) implies that

$$\sum_{k=1}^{\infty} \text{cap}_p f(R_k) \geq \sum_{k=1}^{\infty} 2^{\frac{d+p}{2}} = \infty,$$

which is a contradiction. This comes from the erroneous assumption that $f : D_n \rightarrow D'_n$ is not a qi for every $n = 1, 2, \cdots$, and thus we have established the existence of an n such that $f = f|D_n$ is a qi of D_n onto D'_n. The second part of the proof for the main theorem 4 is herewith complete. \hfill \square

References

