<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Unbounded C^*-seminorms and *-representations of *-algebras (Recent Topics in Operator Algebras)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Ogi, Hidekazu</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1999年 Vol.1077: 52-61</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62648</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Unbounded C^*-seminorms and $*$-representations of $*$-algebras

Hidekazu Ogi

1. INTRODUCTION

Unbounded C^*-seminorms on $*$-algebras in the sense that they are C^*-seminorms defined on $*$-subalgebras have appeared in many mathematical and physical subjects (for example, locally convex $*$-algebras and the quantum field theory etc.). But this systematical study has not yet done sufficiently. The main purpose of this paper is to do a systematical study of unbounded C^*-seminorms and to apply it to a study of unbounded $*$-representations.

The paper is organized as follows: In Section 2 we construct unbounded $*$-representations of a $*$-algebra from unbounded C^*-seminorms and investigate them. Let A be a $*$-algebra. Let p be a C^*-seminorm defined on A. Every $*$-representation of the Hausdorff completion of (A, p) gives rise to a $*$-representation of A into bounded Hilbert space operators. However, there are a number of situations in which natural C^*-seminorms are defined on $*$-subalgebras of A. Then they should lead to unbounded operator representations of A. An unbounded m^*-(resp. C^*-)seminorm is a submultiplicative $*$ (resp. C^*-) seminorm p defined on a $*$-subalgebra $D(p)$ of A. Then $\mathfrak{M}_p \equiv \{ x \in D(p); ax \in D(p), \forall a \in A \}$ is a left ideal of A. It is shown that any $*$-representation $\Pi_p: A_p \longrightarrow \mathcal{B}(\mathcal{H})$ of the Hausdorff completion A_p of $(D(p), p)$ leads to an unbounded $*$-representation π_p of A such that $\|\pi_p(x)\| \leq p(x)$ for all $x \in D(p)$. We denote by $\text{Rep}(A, p)$ the set of all such $*$-representations π_p of A. In order to investigate representations in $\text{Rep}(A, p)$ in details, we introduce the notions of nondegenerate, finite, uniformly semifinite, semifinite and weakly semifinite unbounded C^*-seminorms, and show that if p is (weakly) semifinite, then there exists a strongly nondegenerate $*$-representation π_p in $\text{Rep}(A, p)$ such
that $\|\pi_p(x)\| = p(x)$ for all $x \in \mathcal{D}(p)$. Such a π_p is called well-behaved. In Section 3 we consider the converse direction of Section 2. We construct an unbounded C^*-seminorm r_π on \mathcal{A} from a *-representation π of \mathcal{A} and a natural representation $\pi_{r_\pi}^N$ of \mathcal{A} constructed from r_π which is the restriction of the closure $\hat{\pi}$ of π. It is shown that π is strongly nondegenerate if and only if $\pi_{r_\pi}^N$ is a well-behaved *-representation of \mathcal{A}. Further, it is shown that if p is a weakly semifinite unbounded C^*-seminorm on \mathcal{A} and π_p is any well-behaved *-representation, then r_{π_p} is a maximal extension of p.

2. REPRESENTATIONS INDUCED BY UNBOUNDED C^*-SEMINORMS

In this section we construct a family of *-representations of a *-algebra \mathcal{A} induced by an unbounded C^*-seminorm on \mathcal{A} and investigate the properties. We begin with the review of (unbounded) *-representations of \mathcal{A}. Throughout this section let \mathcal{A} be a *-algebra. Let \mathcal{D} be a dense subspace in a Hilbert space \mathcal{H} and let $\mathcal{L}^i(\mathcal{D})$ denote the set of all linear operators X in \mathcal{H} with the domain \mathcal{D} for which $X\mathcal{D} \subset \mathcal{D}$, $\mathcal{D}(X^*) \supset \mathcal{D}$ and $X^*\mathcal{D} \subset \mathcal{D}$. Then $\mathcal{L}^i(\mathcal{D})$ is a *-algebra under the usual operations and the involution $X \rightarrow X^* \equiv X^*|\mathcal{D}$. A *-subalgebra of the *-algebra $\mathcal{L}^i(\mathcal{D})$ is said to be an O^*-algebra on \mathcal{D} in \mathcal{H}. A *-representation π of \mathcal{A} on a Hilbert space \mathcal{H} with a domain \mathcal{D} is a *-homomorphism of \mathcal{A} into $\mathcal{L}^i(\mathcal{D})$ and $\pi(1)=I$ if \mathcal{A} has identity 1, and then we write \mathcal{D} and \mathcal{H} by $\mathcal{D}(\pi)$ and \mathcal{H}_π, respectively. Let π_1 and π_2 be *-representations of \mathcal{A}. If \mathcal{H}_{π_1} is a closed subspace of \mathcal{H}_{π_2} and $\pi_1(x) \subset \pi_2(x)$ for each $x \in \mathcal{A}$, then π_2 is said to be an extension of π_1 and denoted by $\pi_1 \subset \pi_2$. In particular, if $\pi_1 \subset \pi_2$ and $\mathcal{H}_{\pi_1} = \mathcal{H}_{\pi_2}$, then π_2 is said to be an extension of π_1 as the same Hilbert space. Let π be a *-representation of \mathcal{A}. If $\mathcal{D}(\pi)$ is complete with the graph topology t_π defined by the family of seminorms $\{\|\bullet\|_{\pi(x)} \equiv \|\bullet\| + \|\pi(x)\bullet\|; x \in \mathcal{A}\}$, then π is said to be closed. It is well known that π is closed if and only if $\mathcal{D}(\pi) = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\pi(x))$. The closure $\hat{\pi}$ of π is defined by $\mathcal{D}(\hat{\pi}) = \bigcap_{x \in \mathcal{A}} \overline{\mathcal{D}(\pi(x))}$ and $\hat{\pi}(x)\xi = \overline{\pi(x)\xi}$ for $x \in \mathcal{A}$, $\xi \in \mathcal{D}(\hat{\pi})$.

Then $\tilde{\pi}$ is the smallest closed extension of π. The weak commutant $\pi(A)'_w$ of π is defined by

$$\pi(A)'_w = \{ C \in \mathcal{B}(H_\pi); C\pi(x)\xi = \pi(x^*)^*C\xi, \forall x \in A, \forall \xi \in \mathcal{D}(\pi) \},$$

where $\mathcal{B}(H_\pi)$ is the set of all bounded linear operators on H_π, and it is a weakly closed $*$-invariant subspace of $\mathcal{B}(H_\pi)$, but it is not necessarily an algebra. It is known that $\pi(A)'_w \mathcal{D}(\pi) \subset \mathcal{D}(\pi)$ if and only if $\pi(A)'_w$ is a von Neumann algebra and $\overline{\pi(x)}$ is affiliated with the von Neumann algebra $\left(\pi(A)'_w\right)$ for each $x \in A$.

Definition 2.1. A mapping p of a subspace $\mathcal{D}(p)$ of A into $\mathbb{R}^+=[0,\infty)$ is said to be an unbounded (semi) norm on A if it is a (semi) norm on $\mathcal{D}(p)$, and p is said to be an unbounded m^*-(resp. C^*-) (semi) norm on A if $\mathcal{D}(p)$ is a $*$-subalgebra of A and p is a submultiplicative $*$-(resp. C^*-) (semi) norm on $\mathcal{D}(p)$.

If a seminorm p on a $*$-algebra A is a C^*-seminorm, that is, it satisfies the C^*-property $p(x^*x) = p(x)^2$, $\forall x \in A$, then it is a m^*-seminorm on A, that is, $p(x^*) = p(x)$ and $p(xy) \leq p(x)p(y)$ for $\forall x, y \in A$.

Let p be an unbounded C^*-seminorm on A. We put

$$N_p = \{ x \in \mathcal{D}(p); p(x) = 0 \} \text{ and } \mathfrak{M}_p = \{ x \in \mathcal{D}(p); ax \in \mathcal{D}(p), \forall a \in A \}.$$

Then N_p is a $*$-ideal of $\mathcal{D}(p)$ and \mathfrak{M}_p is a left ideal of A, and the quotient $*$-algebra $\mathcal{D}(p)/N_p$ is a normed $*$-algebra with the C^*-norm $\|x + N_p\|_p = p(x)$ ($x \in \mathcal{D}(p)$). We denote by A_p the C^*-algebra obtained by the completion of $\mathcal{D}(p)/N_p$, and denote by Rep(A_p) the set of all $*$-representations Π_p of the C^*-algebra A_p on Hilbert space H_{Π_p}. Put

$$\text{FRep}(A_p) = \{ \Pi_p \in \text{Rep}(A_p); \Pi_p \text{ is faithful} \}$$

$$\text{FNRep}(A_p) = \{ \Pi_p \in \text{Rep}(A_p); \Pi_p \text{ is faithful and nondegenerate} \}.$$

It is well known that $\text{FNRep}(A_p) \neq \emptyset$. For each $\Pi_p \in \text{Rep}(A_p)$ we can define a bounded $*$-representation π^0_p of $\mathcal{D}(p)$ on the Hilbert space H_{Π_p} by

$$\pi^0_p(x) = \Pi_p(x + N_p), \quad x \in \mathcal{D}(p).$$

The natural question arises: Can we extend the bounded $*$-representation π^0_p of the
*-algebra $\mathcal{D}(p)$ to a (generally unbounded) *-representation of the *-algebra \mathcal{A}? We show that this question has affirmative answer.

Proposition 2.2. Let p be an unbounded C^*-seminorm on \mathcal{A}. For any $\Pi_p \in \text{Rep}(A_p)$, there exists a *-representation π_p of \mathcal{A} on a Hilbert space \mathcal{H}_{π_p} such that $\|\overline{\pi_p(b)}\| \leq p(b)$ for each $b \in \mathcal{D}(p)$. In particular, if $\Pi_p \in \text{FRep}(A_p)$, then $\|\overline{\pi_p(x)}\| = p(x)$ for each $x \in \mathfrak{R}_p$.

Proof. We put

$$\mathcal{D}(\pi_p) = \text{linear span of } \{\Pi_p(x + N_p)\xi; x \in \mathfrak{R}_p, \text{and } \xi \in \mathcal{H}_{\Pi_p}\}$$

$$\pi_p(a) \left(\sum_k \Pi_p(x_k + N_p)\xi_k \right) = \sum_k \Pi_p(ax_k + N_p)\xi_k \quad \text{(finite sums)}$$

for $a \in \mathcal{A}$, $\{x_k\} \subset \mathfrak{R}_p$ and $\{\xi_k\} \subset \mathcal{H}_{\Pi_p}$.

Since

$$\left(\Pi_p(ax + N_p)\xi \right) \left(\Pi_p(y + N_p)\eta \right) = \left(\xi \left(\Pi_p \left((ax + N_p)^* (y + N_p) \right) \right) \right)$$

$$= \left(\xi \left(\Pi_p \left(x^* a^* y + N_p \right) \right) \eta \right)$$

$$= \left(\xi \left(\Pi_p \left(x^* + N_p \right) \Pi_p \left(a^* y + N_p \right) \right) \eta \right)$$

$$= \left(\Pi_p \left(x + N_p \right) \xi \right) \left(\Pi_p \left(a^* y + N_p \right) \eta \right)$$

for each $a \in \mathcal{A}$, $x, y \in \mathfrak{R}_p$ and $\xi, \eta \in \mathcal{H}_{\Pi_p}$, it follows that $\pi_p(a)$ is a well-defined linear operator on $\mathcal{D}(\pi_p)$ for each $a \in \mathcal{A}$, so that it is easily shown that π_p is a *-representation of \mathcal{A} on the Hilbert space $\mathcal{H}_{\pi_p} = \overline{\mathcal{D}(\pi_p)}$ (the closure of $\mathcal{D}(\pi_p)$ in \mathcal{H}_{Π_p}) with domain $\mathcal{D}(\pi_p)$. Take an arbitrary $b \in \mathcal{D}(p)$. By the definition of π_p we have $\pi_p(b) = \pi_p^o(b)\mathcal{D}(\pi_p)$, and hence

$$\|\overline{\pi_p(b)}\| \leq \|\Pi_p(b + N_p)\| \leq \|b + N_p\| = p(b).$$

Suppose $\Pi_p \in \text{FRep}(A_p)$ and $x \in \mathfrak{R}_p$. It is sufficient to show that $\|\overline{\pi_p(x)}\| \geq p(x)$.

If $p(x) = 0$, then it is obvious. Suppose $p(x) \neq 0$. We put $y = \frac{x}{p(x)} \in \mathfrak{R}_p$. For each $\xi \in \mathcal{H}_{\Pi_p}$ with $\|\xi\| \leq 1$, we have

$$\|\Pi_p(y + N_p)\xi\| \leq \|\Pi_p(y + N_p)\|\|\xi\| = p(y)\|\xi\| \leq 1,$$

and so
Hence, we have \(\|\pi_p(x)\| \geq p(x) \). This completes the proof.

We have the following diagram:

\[
\begin{array}{cccc}
\mathcal{D}(p) & \xrightarrow{\text{completion}} & \mathcal{D}(p)/N_p & \xrightarrow{\Pi_p} A_p \ (C^*-\text{algebra}) \\
\pi_p^0 & \searrow & & \\
\Pi_p \circ (A_p) \ (C^*-\text{algebra on } \mathcal{H}_{\Pi_p}) & \downarrow & \pi_p (A) \ (O^*\text{-algebra in } \mathcal{H}_{\pi_p} \subset \mathcal{H}_{\Pi_p}).
\end{array}
\]

Remark: The *-representation \(\pi_p \) of \(A \) defined above by an unbounded \(C^* \)-seminorm \(p \) on \(A \) and an element \(\Pi_p \) of \(\text{Rep}(A_p) \) is non-zero if and only if \(A \mathfrak{N}_p \not\subset N_p \). In what follows, we discuss several situations keeping this in mind.

Let \(p \) be an unbounded \(C^* \)-seminorm on \(A \). We denote by \(\text{Rep}(A,p) \), \(\text{FRep}(A,p) \) and \(\text{FNRep}(A,p) \) the sets of all *-representations of \(A \) constructed as above by \((A,p) \), that is,

\[
\begin{align*}
\text{Rep}(A,p) &= \{ \pi_p ; \Pi_p \in \text{Rep}(A_p) \}, \\
\text{FRep}(A,p) &= \{ \pi_p ; \Pi_p \in \text{FRep}(A_p) \}, \\
\text{FNRep}(A,p) &= \{ \pi_p ; \Pi_p \in \text{FNRep}(A_p) \}.
\end{align*}
\]
Definition 2.3. An unbounded m^*-seminorm q on A is said to be nondegenerate if $\mathcal{D}(q)^2$ is total in $\mathcal{D}(q)$ with respect to the seminorm q. An unbounded m^*-seminorm q on A is said to be finite if $\mathcal{D}(q)=\mathfrak{M}_q$; and q is said to be uniformly semifinite if there exists a net $\{u_\alpha\}$ in \mathfrak{M}_q such that $u_\alpha^*=u_\alpha$ and $q(u_\alpha)\leq 1$ for each α and $\lim q(xu_\alpha-x)=0$ for each $x \in \mathcal{D}(q)$; and q is said to be semifinite if \mathfrak{M}_q is dense in $\mathcal{D}(q)$ with respect to the seminorm q. An unbounded C^*-seminorm p on A is said to be weakly semifinite if $\text{FRep}^W(A, p) \equiv \{\pi_p \in \text{FRep}(A, p); \mathcal{H}_{\pi_p} = \mathcal{H}_{\pi_p}\} \neq \emptyset$. An element π_p of $\text{Rep}^W(A, p)$ is said to be a well-behaved $*$-representation of A in $\text{Rep}(A, p)$.

Definition 2.4. A $*$-representation π of A is said to be nondegenerate if $[\pi(A)\mathcal{D}(\pi)]=\mathcal{H}_\pi$; and π is said to be strongly nondegenerate if there exists a left ideal \mathcal{I} of A contained in the bounded part $A_\mathcal{I} \equiv \{x \in A; \pi(x) \in \mathfrak{B}(\mathcal{H}_\pi)\}$ of π such that $[\pi(\mathcal{I})\mathcal{H}_\pi]=\mathcal{H}_\pi$.

Proposition 2.5. Let p be an unbounded C^*-seminorm on A. Then the following statements hold:

1. $\text{Rep}^W(A, p) \subset \text{FNRRep}(A, p)$ and every $\pi_p \in \text{Rep}^W(A, p)$ satisfies the following conditions (i), (ii) and (iii):

 (i) $[\pi_p(\mathfrak{M}_p)\mathcal{H}_{\pi_p}]=\mathcal{H}_{\pi_p}$, and π_p is strongly nondegenerate.

 (ii) $\|\pi_p(x)\| = p(x), \forall x \in \mathcal{D}(p)$.

 (iii) $\pi_p(A)'' = \pi_p(\mathcal{D}(p))$ and $\pi_p(A)'' \subset \mathcal{D}(\pi_p)$.

 Conversely suppose $\pi_p \in \text{FRep}(A, p)$ satisfies conditions (i) and (ii) above. Then there exists an element π_p^{WB} of $\text{Rep}^W(A, p)$ which is a representation of π_p.

2. Suppose p is semifinite. Then $\text{Rep}^W(A, p) = \text{FNRRep}(A, p)$ and \mathfrak{M}_p^2 is total in $\mathcal{D}(p)$ with respect to p, and so p is nondegenerate.

3. Suppose p is uniformly semifinite. Then $A^* = A_\mathcal{I} \equiv \{a \in A; \exists k_a > 0 \text{ s.t. } p(ax) \leq k_a p(x), \forall x \in \mathfrak{M}_p\}$, $\|\pi_p(b)\| = \sup\{p(bx); x \in \mathfrak{M}_p \text{ and } p(x) \leq 1\}, \forall b \in A_\mathcal{I}$.
for each $\pi_p \in \text{FRep}(A, p)$.

(4) p is finite if and only if $D(p)$ is a left ideal of A.

3. UNBOUNDED C^*-SEMINORMS DEFINED BY $*$-REPRESENTATIONS

In Section 2 we constructed a family $\text{Rep}(A, p)$ (resp. $\text{Rep}^\text{WB}(A, p)$) of $*$-representation of A from an (resp. weakly semifinite) unbounded C^*-seminorm p on A. Conversely we shall construct an unbounded C^*-seminorm r_π on A from a $*$-representation π of A and the natural representation $\pi^N_{r_\pi}$ of A constructed from r_π, and investigate the relation π and $\pi^N_{r_\pi}$. Let π be a $*$-representation of A on a Hilbert space \mathcal{H}_π. We put

$$A^\pi_b = \{x \in A; \overline{\pi(x)} \in \mathfrak{B}(\mathcal{H}_\pi)\} \text{ and } \pi_b(x) = \overline{\pi(x)}, \ x \in A^\pi_b.$$

Then A^π_b is a $*$-subalgebra of A and π_b is a bounded $*$-representation of A^π_b on \mathcal{H}_π. We denote by $C^*(\pi)$ the C^*-algebra generated by $\pi_b(A^\pi_b)$. We now define an unbounded C^*-seminorm r_π on A as follows;

$$D(r_\pi) = A^\pi_b \text{ and } r_\pi(x) = \|\pi_b(x)\|, \ x \in D(r_\pi).$$

Then we put

$$\Pi(x + N_{r_\pi}) = \pi_b(x), \ x \in A^\pi_b.$$

Since $\|\Pi(x + N_{r_\pi})\| = r_\pi(x) = \|x + N_{r_\pi}\|$, for each $x \in A^\pi_b$, it follows that Π can be extended to a faithful $*$-representation $\Pi^N_{r_\pi}$ of A_{r_π} on the Hilbert space \mathcal{H}_π. The $*$-representation $\pi^N_{r_\pi}$ of A defined by $\Pi^N_{r_\pi}$ as above is called the natural representation of A induced by π. Since $\mathcal{H}_{\Pi^N_{r_\pi}} = \mathcal{H}_\pi$, it follows that $\mathcal{H}_{\Pi^N_{r_\pi}}$ is a closed subspace of \mathcal{H}_π. We simply note the above method of the construction of $\pi^N_{r_\pi}$ by the following diagram:
We have the following results for the relation of π and $\pi^N_{r\pi}$:

Proposition 3.1. Suppose π is a $*$-representation of A on a Hilbert space \mathcal{H}_{π}. Then the following statements hold:

1. $\pi^N_{r\pi} \subseteq \bar{\pi}$.
2. Suppose π_b is nondegenerate. Then $\pi^N_{r\pi} \in \text{FNRep}(A, r\pi)$.
3. π is strongly nondegenerate if and only if $\pi^N_{r\pi} \in \text{Rep}^{WB}(A, r\pi)$. If this is true, then $\pi^N_{r\pi}$ is strongly nondegenerate with $A^\pi_{r\pi} = A^\pi_b$, and $r\pi$ is weakly semifinite.
4. Suppose there exists a net $\{u_\alpha\}$ in $\mathcal{M}_{r\pi}$ such that $s-\lim_{\alpha} \pi(u_\alpha) = I$ and $s-\lim_{\alpha} \pi(a u_\alpha) = \pi(a)$ for each $a \in A$. Then $\pi^N_{r\pi} = \bar{\pi}$.

By Proposition 3.1 we have the following diagram:
We here investigate the relations of unbounded C^*-seminorms p and r_π and the $*$-representation π_p and π_{r_π}. We first define an order relation among unbounded seminorms as follows:

Definition 3.2. Let p and q be unbounded seminorms on A. We say that p is an extension of q (or q is a restriction of p) if $\mathcal{D}(q) \subset \mathcal{D}(p)$ and $q(x) = p(x)$ for each $x \in \mathcal{D}(q)$, and then denote by $q \subset p$.

We denote by $C^*N(A)$ the set of all unbounded C^*-seminorms on A. Then $C^*N(A)$ is an ordered set with the order \subset. For any $p \in C^*N(A)$ we put

$$C^*N(p) = \{ q \in C^*N(A) ; p \subset q \}.$$

Then it follows from Zorn's lemma that $C^*N(p)$ has a maximal element. We show that if p is weakly semifinite then r_π is a maximal element of $C^*N(p)$.

Lemma 3.3. Let p and r be unbounded C^*-seminorms on A. Suppose $p \subset r$. Then, for any $\pi_p \in \text{Rep}(A,p)$ there exists an element π_r of $\text{Rep}(A,r)$ such that $\pi_p \subset \pi_r$.

Proposition 3.4. Suppose p is a weakly semifinite unbounded C^*-seminorm on A and $\pi_p \in \text{Rep}^\text{WB}(A,p)$. Then r_π is a maximal element of $C^*N(p)$ and $r_\pi = r_{\pi'}$ for each $\pi_p, \pi' \in \text{Rep}^\text{WB}(A,p)$.

By Proposition 3.1, (3) and Proposition 3.4 we have the following

Corollary 3.5. Suppose π is a strongly nondegenerate $*$-representation of A. Then r_π is maximal.

For the relation of $*$-representation π_p and $\pi_{r_\pi}^N$ we have the following

Proposition 3.6. Suppose p is a weakly semifinite unbounded C^*-seminorm on A and $\pi_p \in \text{Rep}^\text{WB}(A,p)$. Then $\pi_p \subset \pi_{r_\pi}^N$ and $\pi_{r_\pi}^N = \pi_p$.