<table>
<thead>
<tr>
<th>Section</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>UNIFORMLY SHADOWING PROPERTY (Invariants of Dynamical Systems and Applications)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Hanai, Hirofumi; Oka, Masatoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1072: 85-90</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/62582</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Kyoto University
UNIFORMLY SHADOWING PROPERTY

都立大理 花井 博史 (Hirofumi Hanai)
東京理大理工 阪 正俊 (Masatoshi Oka)

Let M be a closed C^∞ manifold and $C^r(M)$ be the set of all C^r-differentiable maps endowed with the C^r-topology ($r \geq 1$). $D_x f$ is the derivative of f at x. Denote as \tilde{M} the topological product space $\prod_{-\infty}^{\infty} M$ and define a compatible metric \tilde{d} on \tilde{M} by $\tilde{d}((x_n), (y_n)) = \sum_{-\infty}^{\infty} d(x_n, y_n)/2^{|n|}$ for $(x_n), (y_n) \in \tilde{M}$, where d is a metric on M induced by a Riemannian metric. We define a continuous map $\tilde{f} : \tilde{M} \rightarrow \tilde{M}$ by

$$\tilde{f}((x_n)) = (f(x_n)).$$

Then the projection $P^0 : \tilde{M} \rightarrow M$ defined by $P^0((x_n)) = x_0$ satisfies $P^0 \circ \tilde{f} = f \circ P^0$. For a subset Λ an \tilde{f}-invariant set Λ_f is defined by

$$\Lambda_f = \{(x_n) \in \tilde{M} : x_n \in \Lambda, f(x_n) = x_{n+1}, n \in \mathbb{Z}\}.$$

If $\Lambda_f \neq \emptyset$ then $\tilde{f}|_{\Lambda_f} : \Lambda_f \rightarrow \Lambda_f$ is a surjective homeomorphism. Remark that $\Lambda_f = M_f \neq \emptyset$ when $\Lambda = M$. We say that each element of M_f is an orbit of f.
For $\delta \geq 0$ a sequence $\{x^i\}_{i \in \mathbb{Z}} \subset M$ is called a δ-pseudo-orbit of f if $d(f(x^i), x^{i+1}) \leq \delta$ for every $i \in \mathbb{Z}$. A sequence $\{x^i\}_{i \in \mathbb{Z}} \subset M$ is said to be ε-traced by an orbit $(y_i) \in M_f$ if $d(x^i, y_i) < \varepsilon$ for every $i \in \mathbb{Z}$. We say that f has the shadowing property if for every $\varepsilon > 0$ there exists $\delta > 0$ such that every δ-pseudo-orbit of f can be ε-traced by an orbit of f.

A sequence $\{\tilde{x}^i\}_{i \in \mathbb{Z}} \subset M_f$ is called an orbit of \tilde{f} if $\tilde{f}(\tilde{x}^i) = \tilde{x}^{i+1}$. For $\delta \geq 0$ a sequence $\{\tilde{x}^i\}_{i \in \mathbb{Z}} \subset M_f$ is a δ-pseudo-orbit of \tilde{f} if $\tilde{d}(\tilde{f}(\tilde{x}^i), \tilde{x}^{i+1}) \leq \delta$ for every $i \in \mathbb{Z}$. A sequence $\{\tilde{x}^i\}_{i \in \mathbb{Z}} \subset \tilde{M}$ is said to be ε-traced by an orbit (\tilde{y}^i) of \tilde{f} if $\tilde{d}(\tilde{x}^i, \tilde{y}^i) < \varepsilon$ for every $i \in \mathbb{Z}$. We say that \tilde{f} satisfies the shadowing property if for every $\varepsilon > 0$ there exists $\delta > 0$ such that every δ-pseudo-orbit of \tilde{f} can be ε-traced by an orbit of \tilde{f}.

We say that \tilde{f} satisfies C^r uniformly shadowing property if there is a neighborhood $\mathcal{U}(f)$ of f in $C^r(M)$ with the property that for $\varepsilon > 0$ there is $\delta > 0$ such that for $g \in \mathcal{U}(f)$ every δ-pseudo-orbit of \tilde{g} is ε-traced by an orbit of \tilde{g}.

Let $\pi : TM \to M$ be a tangent bundle of M and $\| \cdot \|$ be a Riemannian metric on TM. Define a subset of the product topological space $\tilde{M} \times TM$ by

$$T\tilde{M} = \{ (\tilde{x}, v) \in \tilde{M} \times TM : P^0(\tilde{x}) = \pi(v) \}$$
and define a Finsler $|| \cdot ||$ on $T\tilde{M}$ by $||(\tilde{x}, v)|| = ||v||$. Then $\tilde{\pi}: T\tilde{M} \to \tilde{M}$ defined by $\tilde{\pi}(\tilde{x}, v) = \tilde{x}$ is a C^0-vector bundle over \tilde{M}. Define the projection $\tilde{P}^0: T\tilde{M} \to TM$ by $\tilde{P}^0(\tilde{x}, v) = v$. Then,

$$\tilde{P}^0|T_{\tilde{x}}\tilde{M} : T_{\tilde{x}}\tilde{M} \to T_{P^0(\tilde{x})}M$$

is a linear isomorphism where $T_{\tilde{x}}\tilde{M} = \tilde{\pi}^{-1}(\tilde{x})$. A linear bundle map $D\tilde{f} : T\tilde{M} \to T\tilde{M}$ covering \tilde{f} is defined by

$$D\tilde{f}(\tilde{x}, v) = (\tilde{f}(\tilde{x}), D_{P^0(\tilde{x})}f(v)).$$

Then we have $D\tilde{f}(T_{\tilde{x}}\tilde{M}) \subset T_{\tilde{f}(\tilde{x})}\tilde{M}$ and $\tilde{P}^0 \circ D\tilde{f} = Df \circ \tilde{P}^0$. To simplify the notation we write $D_{\tilde{x}}\tilde{f} = D\tilde{f}|T_{\tilde{x}}\tilde{M}$. For a subset $\tilde{\Lambda}$ define

$$T\tilde{M}|\tilde{\Lambda} = \bigcup_{\tilde{x} \in \tilde{\Lambda}} T_{\tilde{x}}\tilde{M}.$$

A closed f-invariant set $\Lambda (f(\Lambda) = \Lambda)$ is said to be hyperbolic if $T\tilde{M}|\Lambda_f$ splits into the Whitney sum $T\tilde{M}|\Lambda_f = E^s \oplus E^u$ of subbundles E^s and E^u, and there are $C > 0$ and $0 < \lambda < 1$ such that

(i) $D\tilde{f}(E^s) \subset E^s$ and $D\tilde{f}(E^u) = E^u$,

(ii) $D\tilde{f}|E^u : E^u \to E^u$ is invertible,

(iii) $||D\tilde{f}^n|E^s|| \leq C\lambda^n$ and $||(D\tilde{f}|E^u)^{-n}|| \leq C\lambda^n$ for $n \geq 0$,

where $|| T ||$ denotes the supremum norm of a linear bundle map T. The number λ is called the skewness of the hyperbolic set Λ. For $\varepsilon > 0$ and
\(\tilde{x} \in M_f \) the local stable and the local unstable manifolds are defined by

\[
W^s_\epsilon(\tilde{x}, f) = \{y \in M : d(x_n, f^n(y)) \leq \epsilon \text{ for } n \geq 0\},
\]
\[
W^u_\epsilon(\tilde{x}, f) = \left\{ y \in M \begin{array}{l}
\text{there exists } \tilde{y} \in M_f \text{ such that } y_0 = y \\
\text{and } d(x_{-n}, y_{-n}) \leq \epsilon \text{ for } n \geq 0
\end{array} \right\}.
\]

Then, \(W^s_\epsilon(\tilde{x}, f) = W^s_\epsilon(\tilde{y}, f) \) for \(\tilde{x}, \tilde{y} \in M_f \) with \(x_0 = y_0 \).

For \(\tilde{x} \in M_f \) the stable and the unstable sets are defined by

\[
W^s(\tilde{x}, f) = \{y \in M : \lim_{n \to \infty} d(x_n, f^n(y)) = 0\},
\]
\[
W^u(\tilde{x}, f) = \left\{ y \in M \begin{array}{l}
\text{there is } \tilde{y} \in M_f \text{ satisfying } y_0 = y \\
\text{and } \lim_{n \to \infty} d(x_{-n}, y_{-n}) = 0
\end{array} \right\}.
\]

Then, \(W^s(\tilde{x}, f) = W^s(\tilde{y}, f) \) for \(\tilde{x}, \tilde{y} \in M_f \) with \(x_0 = y_0 \). If \(\Lambda \) is a hyperbolic set, for \(\tilde{x} \in \Lambda_f \) we have

\[
W^s(\tilde{x}, f) = \bigcup_{n=0}^{\infty} f^{-n}(W^s_\epsilon(f^n(\tilde{x}), f)), \quad W^u(\tilde{x}, f) = \bigcup_{n=0}^{\infty} f^n(W^u_\epsilon(f^{-n}(\tilde{x}), f)).
\]

Remark that \(W^\sigma(\tilde{x}, f) \) (\(\sigma = s, u \)) are not always the manifolds like the stable and unstable manifolds given by diffeomorphisms. However we can define the transversality condition between \(W^s(\tilde{x}, f) \) and \(W^u(\tilde{y}, f) \) as follows.

Let \(\tilde{y} \) and \(\tilde{z} \) be points in \(\Lambda_f \). We say that \(W^s(\tilde{y}, f) \) is transversal to \(W^u(\tilde{z}, f) \) if \(f^{n+m} | W^u_\epsilon(\tilde{f}^{-m}(\tilde{z}), f) \) is transversal to \(W^s_\epsilon(\tilde{f}^n(\tilde{y}), f) \) for \(\epsilon > 0 \) small enough and \(n, m \geq 0 \).
The non-wandering set $\Omega(f)$ is defined by

$$\Omega(f) = \left\{ x \in M \middle| \text{for any neighborhood } U \text{ of } x \text{ there is } n > 0 \right\}.$$

Obviously, $\Omega(f)$ is closed and satisfies that $f(\Omega(f)) \subset \Omega(f)$ and $Per(f) \subset \Omega(f)$, where $Per(f)$ denotes the set of all periodic points of f. A differentiable map f is said to satisfy Axiom A if

(i) $Per(f)$ is dense in $\Omega(f)$,

(ii) $\Omega(f)$ is hyperbolic.

We say that an Axiom A differentiable map f satisfies the strong transversality if $W^s(\tilde{y}, f)$ is transversal to $W^u(\tilde{z}, f)$ for $\tilde{y}, \tilde{z} \in \Omega(f)_f$.

Theorem. If C^1-differentiable map f satisfies both Axiom A and the strong transversality, then \tilde{f} satisfies C^1 uniformly shadowing property.

This result was proved by Sakai for the class of C^1-diffeomorphisms. The full proof of our theorem will appear elsewhere.

REFERENCES

