FOURIER-JACOBI TYPE SPHERICAL FUNCTIONS ON $Sp(2, \mathbb{R})$;
THE CASE OF P_J-PRINCIPAL SERIES AND DISCRETE SERIES

東大・数理 平野 幹 (MIKI HIRANO)

Contents
1. Introduction
2. Preliminaries
3. Fourier-Jacobi type spherical functions
4. Differential equations
5. Result

1. Introduction
In this note, we study a kind of generalized Whittaker models, or equally, of generalized spherical functions associated with automorphic forms on the real symplectic group of degree two. We call these spherical functions 'Fourier-Jacobi type', since these are closely connected with the coefficients of the 'Fourier-Jacobi expansions' of (holomorphic or non-holomorphic) automorphic forms. Also these can be considered as a non-holomorphic analogue of the local Whittaker-Shintani functions on $Sp(2, \mathbb{R})$ of Fourier-Jacobi type in the paper of Murase and Sugano [6].

2. Preliminaries

2.1. Groups and algebras. We denote by $\mathbb{Z}_{\geq m}$ the set of integers n such that $n \geq m$. Moreover, we use the convention that unwritten components of a matrix are zero.

Let G be the real symplectic group $Sp(2, \mathbb{R})$ of degree two given by

$$Sp(2, \mathbb{R}) = \left\{ g \in M_4(\mathbb{R}) \mid {}^t g J_2 g = J_2 = \begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix}, \det g = 1 \right\}.$$

Let $\theta(g) = {}^t \bar{g}^{-1} (g \in G)$ be a Cartan involution of G and K be the set of fixed points of θ. Then K becomes a maximal compact subgroup of G which is isomorphic to the unitary group $U(2)$.

Let $\mathfrak{g} = \{ X \in M_4(\mathbb{R}) \mid J_2 X + {}^t X J_2 = 0 \}$ be the Lie algebra of G. If we denote the differential of θ again by θ, then we have $\theta(X) = -{}^t \bar{X} (X \in \mathfrak{g})$. Let \mathfrak{t} and \mathfrak{p} be the $+1$ and -1 eigenspaces of θ in \mathfrak{g}, respectively, and hence

$$\mathfrak{t} = \left\{ X \in \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \mid A, B \in M_2(\mathbb{R}), {}^t A = -A, {}^t B = B \right\},$$

$$\mathfrak{p} = \left\{ X \in \begin{pmatrix} A & B \\ B & -A \end{pmatrix} \mid A, B \in M_2(\mathbb{R}), {}^t A = A, {}^t B = B \right\}.$$
Then we have a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Of course, \mathfrak{k} is the Lie algebra of K which is isomorphic to the unitary algebra $\mathfrak{u}(2)$.

For a Lie algebra \mathfrak{l}, we denote by $\mathfrak{l}_{\mathbb{C}} = \mathfrak{l} \otimes_{\mathbb{R}} \mathbb{C}$ the complexification of \mathfrak{l}. Let \mathfrak{h} be a compact Cartan subalgebra of \mathfrak{g} given by

$$\mathfrak{h} = \left\{ H(\theta_1, \theta_2) = \begin{pmatrix} \theta_1 & & \\ -\theta_1 & \theta_2 \\ & -\theta_2 \end{pmatrix} \mid \theta_i \in \mathbb{R} \right\}.$$

Now we identify a linear form $\beta : \mathfrak{h}_{\mathbb{C}} \to \mathbb{C}$ with $(\beta_1, \beta_2) \in \mathbb{C}^{2}$ via $\beta = \beta_1 e_1 + \beta_2 e_2$, where $e_i(H(\theta_1, \theta_2)) = \sqrt{-1} \theta_i$. Then the set of roots $\Delta = \Delta(\mathfrak{h}_{\mathbb{C}}, \mathfrak{g}_{\mathbb{C}})$ of $(\mathfrak{h}_{\mathbb{C}}, \mathfrak{g}_{\mathbb{C}})$ is given by

$$\Delta = \{ \pm(2,0), \pm(0,2), \pm(1,1), \pm(1,-1) \}.$$

Fix a positive root system $\Delta^{+} = \{ (2,0), (0,2), (1,1), (1,-1) \}$, and put Δ^{+}_{c} and Δ^{+}_{n} the set of compact and non-compact positive roots, respectively. Then

$$\Delta^{+}_{c} = \{ (1,-1) \}, \quad \Delta^{+}_{n} = \{ (2,0), (0,2), (1,1) \}.$$

If we denote the root space for $\beta \in \Delta$ by \mathfrak{g}_{β}, then we have a decomposition $\mathfrak{p}_{\mathbb{C}} = \mathfrak{p}_{+} \oplus \mathfrak{p}_{-}$ with $\mathfrak{p}_{+} = \sum_{\beta \in \Delta^{+}_{c}} \mathfrak{g}_{\beta}$ and $\mathfrak{p}_{-} = \sum_{\beta \in \Delta^{+}_{n}} \mathfrak{g}_{\beta}$.

Put P_J the Jacobi maximal parabolic subgroup of G with the Langlands decomposition $P_J = M_J A_J N_J$, where

$$M_J = \left\{ \begin{pmatrix} \varepsilon & b \\ a & \varepsilon \\ c & d \end{pmatrix} \right\} \varepsilon \in \{ \pm 1 \}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R}) \right\} \simeq \{ \pm I \} \times SL(2, \mathbb{R}),$$

$$N_J = \left\{ n(x, y; z) = \begin{pmatrix} 1 & y & x \\ 1 & 1 & 1 \\ 1 & -y & 1 \end{pmatrix} \right\}, \quad x, y, z \in \mathbb{R}.$$

and $A_J = \{ \text{diag}(a, 1, a^{-1}, 1) \mid a > 0 \}$. Remark that the unipotent radical N_J of P_J is isomorphic to the 3-dimensional Heisenberg group \mathcal{H}_1. The Levi part $M_J A_J$ of P_J acts on N_J via the conjugate action, and M_J gives the centralizer of the center $Z(N_J) = \{ n(0, 0; z) \mid z \in \mathbb{R} \} \simeq \mathbb{R}$ of N_J in $M_J A_J$. Now we define the Jacobi group R_J by the semidirect product $M_J^{\circ} \ltimes N_J \simeq SL(2, \mathbb{R}) \ltimes \mathcal{H}_1$, where $M_J^{\circ} \simeq SL(2, \mathbb{R})$ is the identity component of M_J.

2.2. Representations. First we investigate the irreducible unitary representations of the Jacobi group R_J. Since $Z(R_J) = Z(N_J) \simeq \mathbb{R}$, the central characters of elements in \hat{R}_J and \hat{N}_J are parametrized by the real numbers. Then we call an irreducible unitary representation of R_J and N_J of type m if its central character is of the form $z \mapsto e^{2\pi \sqrt{-1} m z}$ with $m \in \mathbb{R}$. Let $\nu \in \hat{N}_J$ of type m. According to the
theorem of Stone-von Neumann (cf. Corwin-Greenleaf [1; pp.46-47, 51-52]), \(\nu \) is a character if \(m = 0 \) and \(\nu \) is infinite dimensional if \(m \neq 0 \). More over \(\nu \) of type \(m \neq 0 \) is uniquely determined by \(m \) up to unitary equivalence. Now we fix an irreducible unitary representation \((\nu_m, U_m)\) of \(N_J \) of type \(m \neq 0 \). From the theory of the Weil representation, \((\nu_m, U_m)\) can be extended to a continuous true projective unitary representation \((\tilde{\nu}_m, U_m)\) of \(R_J \) by \(\tilde{\nu}_m(\tilde{n}) = W_m(g)\nu_m(n) \) for \(\tilde{n} = g \cdot n \in M_J \ltimes N_J \). With the Weil representation \(W_m \) on \(M_J \). Here \(\tilde{\nu}_m \) has a factor set \(\alpha \) which is a proper 2-cocycle.

Lemma 2.1. (Satake [7; Appendix I, Proposition 2]) Let \(\tilde{\nu}_m \) \((m \neq 0)\) as above. For every irreducible projective unitary representation \(\pi \) of \(M_J \) with factor set \(\alpha^{-1} \), put \(\rho(\tilde{n}) = \pi(g) \otimes \tilde{\nu}_m(\tilde{n}) \) for \(\tilde{n} = g \cdot n \in M_J \ltimes N_J \). Then \(\rho \) is an irreducible unitary representation of \(R_J \). Conversely, all irreducible unitary representations of \(R_J \) of type \(m \neq 0 \) are obtained in this manner. Moreover \(\rho \) is square-integrable iff \(\pi \) is so.

Let \((\rho, F_\rho)\) be an irreducible unitary representation of \(R_J \) of type \(m \neq 0 \). From the above lemma, we can regard \((\rho, F_\rho) \in \hat{R}_J\) as a tensor product representation \((\pi_1 \otimes \tilde{\nu}_m, \mathcal{W}_{\pi_1} \otimes U_m)\). Here, if we write \(\tilde{M}_J \) for the double cover of \(M_J \simeq SL(2, \mathbb{R}) \), \((\tilde{\nu}_m, U_m)\) is a unitary representation of \(\tilde{M}_J \ltimes N_J \) which is extended from \((\nu_m, U_m) \in N_J \) as above and \((\pi_1, \mathcal{W}_{\pi_1})\) is a unitary representation of \(\tilde{M}_J \) which does not factor through \(M_J \). On the other hand, the unitary dual of \(\tilde{M}_J \) is given as follows.

Proposition 2.2. (cf. Gelbert[2; Lemma 4.1, 4.2]) The following representations exhaust a set of representatives for the equivalence classes of irreducible unitary representations of \(SL(2, \mathbb{R}) \).

1. (unitary principal series) \(\mathcal{P}_s^\tau \), \(s \in \sqrt{-1} \mathbb{R} \), \(\tau = 0, 1, 1/2 \) except for the case \((s, \tau) = (0, 1)\).
2. (complementary series) \(\mathcal{C}_s^\tau \), \(0 < s < 1 \) for \(\tau = 0, 1 \) and \(0 < s < 1/2 \) for \(\tau = \pm 1/2 \).
3. ((limit of) discrete series) \(\mathcal{D}_k^\pm \), \(k \in 1/2 \mathbb{Z}_{\geq 2} \).
4. (quotient representation) \(\mathcal{D}_{1/2}^\pm, \mathcal{D}_{1/2}^+ \).
5. The trivial representation of \(SL(2, \mathbb{R}) \).

In the above, the representations \(\mathcal{P}_s^\tau, \mathcal{C}_s^\tau \) for \(\tau = 0, 1 \), \(\mathcal{D}_k^\pm \) for \(k \in \mathbb{Z}_{\geq 1} \) and (5) factor through \(SL(2, \mathbb{R}) \), and the otherwise not.

Hence we take as \((\pi_1, \mathcal{W}_{\pi_1})\) one of the irreducible unitary representations \(\mathcal{P}_s^\tau, \mathcal{C}_s^\tau \) with \(\tau = \pm 1/2 \) and \(\mathcal{D}_k^\pm \) with \(k \in 1/2 \mathbb{Z} \setminus \mathbb{Z}, k \geq 1/2 \).

Remark 2.3. The Weil representation \(W_m \) considered as the representation of \(\tilde{M}_J \) has the following irreducible decomposition:

\[
W_m = \begin{cases}
\mathcal{D}_{1/2}^+ + \mathcal{D}_{1/2}^-, & \text{if } m > 0, \\
\mathcal{D}_{1/2}^- + \mathcal{D}_{1/2}^+, & \text{if } m < 0.
\end{cases}
\]

Next, we treat the irreducible unitary representations of \(K \). Since \(\Delta_+ \) is also a positive system of \(\Delta(\mathfrak{k}_C, \mathfrak{h}_C) \), then the set of the \(\Delta_+ \)-dominant weights, and thus
\(\hat{K} \), is parametrized by the set

\[
\Lambda = \{ (\lambda = (\lambda_1, \lambda_2) \mid \lambda_i \in \mathbb{Z}, \lambda_1 \geq \lambda_2 \}
\]

(cf. Knapp[4; Theorem 4.28]). We denote by \((\tau(a), V_{a})\) the element of \(\hat{K} \) corresponding to \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \). Here \(\dim V_{\lambda} = d_{\lambda} + 1 \) with \(d_{\lambda} = \lambda_1 - \lambda_2 \).

Both of \(p_{\pm} \) become \(K \)-modules via the adjoint representation of \(K \), and we have isomorphisms \(p_{+} \simeq V_{(2, 0)} \) and \(p_{-} \simeq V_{(0, -2)} \). For a given irreducible \(K \)-module \(V_{\lambda} \) with the parameter \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \), the tensor product \(K \)-modules \(V_{\lambda} \otimes p_{+} \) and \(V_{\lambda} \otimes p_{-} \) have the irreducible decompositions

\[
V_{\lambda} \otimes p_{+} \simeq \bigoplus_{\beta \in \Delta_{n}^{+}} V_{\lambda+\beta}, \quad V_{\lambda} \otimes p_{-} \simeq \bigoplus_{\beta \in \Delta_{n}^{-}} V_{\lambda-\beta}.
\]

For each \(\beta \in \Delta_{n}^{+} \), let \(P_{\beta} : V_{\lambda} \otimes p_{+} \to V_{\lambda+\beta} \) and \(P_{-\beta} : V_{\lambda} \otimes p_{-} \to V_{\lambda-\beta} \) be the projectors into the irreducible factors of \(V_{\lambda} \otimes p_{\pm} \).

In this note, we consider the following two series of representations of \(G \): one is the principal series induced from \(P_{J} \), and the other is the discrete series. We explain these representations in the remaining of this section.

Let \(\sigma = \epsilon, D \) be a representation of \(M_{J} \simeq \{ \pm I \} \times SL(2, \mathbb{R}) \) with a character \(\epsilon : \{ \pm I \} \to \mathbb{C}^{\times} \) and a discrete series representation \(D = D_{n}^\pm (n \in \mathbb{Z}_{\geq 2}) \) of \(SL(2, \mathbb{R}) \), and take a quasi-character \(\nu_{z} (z \in \mathbb{C}) \) of \(A_{J} \) such that \(\nu_{z}(\text{diag}(a, 1, a^{-1}, 1)) = a^{z} \). Then we can construct a induced representation \(\text{Ind}_{P_{J}}^{G}(\sigma \otimes \nu_{z} \otimes 1_{N_{J}}) \) of \(G \) from the Jacobi maximal parabolic subgroup \(P_{J} = M_{J}A_{J}N_{J} \) by the usual manner (cf. Knapp[4; Chapter VII]), and call \(\text{Ind}_{P_{J}}^{G}(\sigma \otimes \nu_{z} \otimes 1_{N_{J}}) \) the \(P_{J} \)-principal series representation of \(G \). The following lemma is derived from the Frobenius reciprocity for induced representations.

Lemma 2.4. \(\tau_{\lambda} \in \hat{K} \) with the parameter \(\lambda = (\lambda_1, \lambda_2) \in \Lambda \) such that \(\lambda_1 < n \) (resp. \(\lambda_2 > -n \)) does not occur in the \(K \)-type of \(\text{Ind}_{P_{J}}^{G}(\sigma \otimes \nu_{z} \otimes 1_{N_{J}}) \) for \(D = D_{n}^{+} \) (resp. \(D_{n}^{-} \)). The 'corner' \(K \)-types \(\tau_{\lambda} \in \hat{K} \) of \(\text{Ind}_{P_{J}}^{G}(\sigma \otimes \nu_{z} \otimes 1_{N_{J}}) \) with the parameter \(\lambda \in \Lambda \) given below occur with multiplicity one:

1. \(\lambda = (n, n) \) for \(\epsilon(\gamma) = (-1)^{n} \) and \(D = D_{n}^{+} \),
2. \(\lambda = (n, n-1) \) for \(\epsilon(\gamma) = (-1)^{n} \) and \(D = D_{n}^{-} \),
3. \(\lambda = (-n, -n) \) for \(\epsilon(\gamma) = (-1)^{n} \) and \(D = D_{n}^{-} \),
4. \(\lambda = (-n+1, -n) \) for \(\epsilon(\gamma) = (-1)^{n} \) and \(D = D_{n}^{-} \).

Here \(\gamma = \text{diag}(-1, 1, -1, 1) \).

In order to parametrize the discrete series representations of \(G \), we enumerate all the positive root systems compatible to \(\Delta_{c}^{+} \):

1. \(\Delta_{I}^{+} = \{(1, -1), (2, 0), (1, 1), (0, 2)\} \),
2. \(\Delta_{II}^{+} = \{(1, -1), (2, 0), (1, 1), (0, -2)\} \),
3. \(\Delta_{III}^{+} = \{(1, -1), (2, 0), (0, -2), (-1, -1)\} \),
4. \(\Delta_{IV}^{+} = \{(1, -1), (0, -2), (-1, -1), (-2, 0)\} \).
Let \(J \) be a variable running over the set of indices I, II, III, IV, and let us denote the set of non-compact positive roots for the index \(J \) by \(\Delta^+_J = \Delta^+_J - \Delta^+_c \). Define a subset \(\Xi_J \) of \(\Delta^+_c \)-dominant weights by

\[
\Xi_J = \{ \Lambda = (\Lambda_1, \Lambda_2), \Delta^+_c \text{- dominant weight} \mid \langle \Lambda, \beta \rangle > 0, \forall \beta \in \Delta^+_J \}.
\]

The set \(\bigcup_{J=1}^{IV} \Xi_J \) gives the Harish-Chandra parametrization of the discrete series representation of \(G \). Let us write by \(\pi_J \) the discrete series representation of \(G \) with the Harish-Chandra parameter \(\Lambda \in \bigcup_{J=1}^{IV} \Xi_J \). Then \(\pi_\Lambda \) is called the holomorphic discrete series representation if \(\Lambda \in \Xi_I \) and the anti-holomorphic one if \(\Lambda \in \Xi_{IV} \). Moreover if \(\Lambda \in \Xi_{III} \cup \Xi_{III} \), a discrete series representation \(\pi_\Lambda \) is called large (in the sense of Vogan[8]).

The Blattner formula gives the description of the \(K \)-types of \(\pi_\Lambda \). In particular, the minimal \(K \)-type \((\tau_\Lambda, V_\Lambda)\) of \(\pi_\Lambda \) is given by the formula \(\lambda = \Lambda - \rho_c + \rho_n \), where \(\rho_c \) (resp. \(\rho_n \)) is the half sum of compact (resp. non-compact) positive roots in \(\Delta^+_J \).

We call such \(\lambda \) the Blattner parameter of \(\pi_\Lambda \).

3. Fourier-Jacobi type spherical functions

3.1. Radial parts. Let \((\rho, \mathcal{F}_\rho)\) be an irreducible unitary representation of \(R_J \) and let \((\tau, V_\tau)\) be a finite dimensional \(K \)-module. We denote by \(C^\infty_{\rho, \tau}(R_J \backslash G/K) \) the space of smooth functions \(F: G \rightarrow \mathcal{F}_\rho \otimes V_\tau \) with the property

\[
F(rgk) = (\rho(\tau) \otimes \tau(k))^{-1} F(g), \quad (r, g, k) \in R_J \times G \times K.
\]

On the other hand, let \(C^\infty(A_J; \rho, \tau) \) be the space of smooth functions \(\varphi: A_J \rightarrow \mathcal{F}_\rho \otimes V_\tau \) satisfying

\[
(\rho(m) \otimes \tau(m)) \varphi(a) = \varphi(a), \quad m \in R_J \cap K = M_J^\mathsf{o} \cap K, \quad a \in A_J.
\]

Because of an Iwasawa decomposition of \(G \), we have \(G = R_J A_J K \). Also we remark that all elements in \(M_J^\mathsf{o} \cap K \) are commutative with \(a \in A_J \). Then the restriction to \(A_J \) gives a linear map from \(C^\infty_{\rho, \tau}(R_J \backslash G/K) \) to \(C^\infty(A_J; \rho, \tau) \), which is injective. For each \(f \in C^\infty_{\rho, \tau}(R_J \backslash G/K) \), we call \(f|_{A_J} \in C^\infty(A_J; \rho, \tau) \) the radial part of \(f \), where \(f|_{A_J} \) means the restriction to \(A_J \).

Let \((\tau', V_{\tau'})\) be also a finite dimensional \(K \)-module. For each \(\mathsf{C} \)-linear map \(u: C^\infty_{\rho, \tau}(R_J \backslash G/K) \rightarrow C^\infty_{\rho, \tau}(R_J \backslash G/K) \), we have a unique \(\mathsf{C} \)-linear map \(\mathcal{R}(u): C^\infty(A_J; \rho, \tau) \rightarrow C^\infty(A_J; \rho, \tau') \) with the property \((uf)|_{A_J} = \mathcal{R}(u)(f|_{A_J}) \) for \(f \in C^\infty_{\rho, \tau}(R_J \backslash G/K) \). We call \(\mathcal{R}(u) \) the radial part of \(u \).

3.2. Fourier-Jacobi type spherical functions. Let \((\rho, \mathcal{F}_\rho)\) be as above and consider a \(C^\infty \)-induced representation \(C^\infty \text{Ind}^{G}_{R_J}(\rho) \) with the representation space

\[
C^\infty_{\rho}(R_J \backslash G) = \{ F: G \rightarrow \mathcal{F}_\rho, \ C^\infty \mid F(rg) = \rho(r)F(g), \ (r, g) \in R_J \times G \}
\]
on which \(G \) acts by the right translation. Then \(C^\infty_{\rho}(R_J \backslash G) \) becomes a smooth \(G \)-module and a \((\mathfrak{g}_C, K)\)-module naturally. Moreover let \((\tau, V_\tau) \in \hat{K} \) and take an
irreducible Harish-Chandra module π of G with the K-type τ^*, where τ^* is the contragredient representation of τ. Now we consider the intertwining space

$$\mathcal{I}_{\rho,\pi} := \text{Hom}_{(gC, K)}(\pi, C^\infty \text{Ind}_{J}^{G} (\rho))$$

between (gC, K)-modules and its restriction to the K-type τ^* of π.

Let $i : \tau^* \rightarrow \pi|_{K}$ be a K-equivariant map and let i^* be the pullback via i. Then the map

$$\mathcal{I}_{\rho,\pi} \xrightarrow{i^*} \text{Hom}_{K}(\tau^*, C^\infty_{\rho}(R_{J}\backslash G)) \simeq C^\infty_{\rho, \tau^*}(R_{J}\backslash G/K)$$

gives the restriction of $T \in \mathcal{I}_{\rho,\pi}$ to the K-type τ^* and we denote the image of T in $C^\infty_{\rho, \tau^*}(R_{J}\backslash G/K)$ by T_i. Now the space $\mathcal{J}_{\rho,\pi}(\tau)$ of the algebraic Fourier-Jacobi type spherical functions of type $(\rho, \pi; \tau)$ on G is defined by

$$\mathcal{J}_{\rho,\pi}(\tau) := \bigcup_{i \in \text{Hom}_{K}(\tau^*, \pi|_{K})} \{ T_i \mid T \in \mathcal{I}_{\rho,\pi} \}.$$

Moreover put

$$\mathcal{J}_{\rho,\pi}^\circ(\tau) = \{ f \in \mathcal{J}_{\rho,\pi}(\tau) \mid f|_{A_{J}}(\text{diag}(a, 1, a^{-1}, 1)) \text{ is of moderate growth as } a \to \infty \}.$$

We call $f \in \mathcal{J}_{\rho,\pi}^\circ(\tau)$ a Fourier-Jacobi type spherical functions of type $(\rho, \pi; \tau)$.

In this note, we investigate the space $\mathcal{J}_{\rho,\pi}^\circ(\tau)$ for the following triplet $(\rho, \pi; \tau)$: As $\pi \in \hat{G}$ and $\tau^* \in \hat{K}$, we take either the P_{J}-principal series representation and the corner K-type or the discrete series representation and the minimal K-type, and also as $\rho \in \hat{R}_{J}$ the one with the non-trivial central character, i.e. of type $m \neq 0$.

4. Differential equations

4.1. Differential operators. In this subsection, we introduce some differential operators acting on $C^\infty_{\rho, \tau}(R_{J}\backslash G/K)$.

Take an orthonormal basis $\{X_{i}\}$ of \mathfrak{p} with respect to the Killing form of g. Now we define a first order gradient type differential operator

$$\nabla_{\rho, \tau} : C^\infty_{\rho, \tau}(R_{J}\backslash G/K) \to C^\infty_{\rho, \tau \otimes \text{Ad}_{gC}}(R_{J}\backslash G/K)$$

by

$$\nabla_{\rho, \tau} f = \sum_{i} R_{X_{i}} f \otimes X_{i}, \quad f \in C^\infty_{\rho, \tau}(R_{J}\backslash G/K),$$

where

$$R_{X} f(g) = \frac{d}{dt} f(g \cdot \exp(tX)) \bigg|_{t=0}, \quad X \in gC, \ g \in G.$$

This differential operator $\nabla_{\rho, \tau}$ is called the Schmid operator. Then $\nabla_{\rho, \tau}$ can be decomposed as $\nabla_{\rho, \tau}^+ \oplus \nabla_{\rho, \tau}^-$ with $\nabla_{\rho, \tau}^\pm : C^\infty_{\rho, \tau}(R_{J}\backslash G/K) \to C^\infty_{\rho, \tau \otimes \text{Ad}_{p_{C, \pm}}(R_{J}\backslash G/K)}$ corresponding to the decomposition $p_{C} = p_{+} \oplus p_{-}$. For each $\beta \in \Delta_{n}^+$, the shift operator $\nabla_{\rho, \tau_{\lambda}}^{\pm \beta} : C^\infty_{\rho, \tau_{\lambda}}(R_{J}\backslash G/K) \to C^\infty_{\rho, \tau_{\lambda} \pm \beta}(R_{J}\backslash G/K)$ is defined as the composition of
\[\nabla_{\rho,\tau}^{\pm\beta} \text{ with the projector } P^{\pm\beta} \text{ from } V_{\tau} \otimes p_{\pm} \text{ into the irreducible component } V_{\tau \lambda \pm \beta}; \]
\[\nabla_{\rho,\tau}^{\pm\beta} \equiv (1_{F_{\rho}} \otimes P^{\pm\beta}) \nabla_{\rho,\tau}^{\pm}. \]

On the other hand, the Casimir element \(\Omega \) is defined by \(\Omega = \sum X_i - \sum Y_j \), where \(\{Y_j\} \) is an orthonormal basis of \(\mathfrak{f} \) with respect to the Killing form of \(\mathfrak{g} \). It is well known that \(\Omega \) is in the center \(Z(\mathfrak{g}_C) \) of the universal enveloping algebra of \(\mathfrak{g}_C \).

4.2. Differential equations. In this subsection, we consider the system of differential equations satisfied by the Fourier-Jacobi type spherical functions.

First we discuss the case of the \(P_J \)-principal series representation \(\pi \in \hat{G} \) and the corner \(K \)-type \(\tau^* \). It is well known that the Casimir element \(\Omega \in Z(\mathfrak{g}_C) \) acts on \(\pi \), hence on \(J_{\rho,\pi}(\tau) \), as the scalar operator \(\chi_{\Omega} \) (cf. Knapp[4; Corollary 8.14]). Let \(\pi = \text{Ind}_{P_J}^{G}(\sigma \otimes \nu_z \otimes 1_{N_J}) \) with data \(\sigma = (\epsilon, D_n^+) \), \(\epsilon(\gamma) = (-1)^n \), and \(\tau^* = \tau^*_h \) be the corner \(K \)-type of \(\pi \), i.e. \(\lambda = (-n, -n) \). Since \(\tau^* \lambda = \tau^* \lambda_{(2,2)} \in \hat{K} \) does not occur in the \(K \)-types of \(\pi \) from Lemma 2.4, an element in \(J_{\rho,\pi}(\tau) \) is annihilated by the action of the composition of the shift operators

\[\nabla_{\rho,\tau}^{(0,2)} \circ \nabla_{\rho,\tau}^{(2,0)} : C_{\rho,\tau}^{\infty}(R_J \backslash G/K) \to C_{\rho,\tau}^{\infty}(R_J \backslash G/K). \]

Hence we have a system of differential equations satisfied by \(f \) in \(J_{\rho,\pi}(\tau); \)

\[\begin{align*}
\Omega f &= \chi_{\Omega} f, \\
\nabla_{\rho,\tau}^{(0,2)} \circ \nabla_{\rho,\tau}^{(2,0)} f &= 0.
\end{align*} \]

Let \(\pi = \text{Ind}_{P_J}^{G}(\sigma \otimes \nu_z \otimes 1_{N_J}) \) with data \(\sigma = (\epsilon, D_n^+) \), \(\epsilon(\gamma) = (-1)^n \), and \(\tau^* = \tau^*_h \) be the corner \(K \)-type of \(\pi \), i.e. \(\lambda = (-n+1, -n) \). Since \(\tau^* \lambda_{(1,1)} = \tau^* \lambda_{(2,n-1)} \in \hat{K} \) does not occur in the \(K \)-types of \(\pi \) from Lemma 2.4, therefore an element in \(J_{\rho,\pi}(\tau) \) vanishes by the action of the shift operator

\[\nabla_{\rho,\tau}^{(1,1)} : C_{\rho,\tau}^{\infty}(R_J \backslash G/K) \to C_{\rho,\tau}^{\infty}(R_J \backslash G/K). \]

Hence we have a system of differential equations satisfied by \(f \) in \(J_{\rho,\pi}(\tau); \)

\[\begin{align*}
\Omega f &= \chi_{\Omega} f, \\
\nabla_{\rho,\tau}^{(1,1)} f &= 0.
\end{align*} \]

For the case with the data \(\sigma = (\epsilon, D_n^-) \), we have similar systems of equations from the Casimir operator and the shift operators.

Let \(\pi = \pi^{\Lambda} \) be a discrete series representation of \(G \) with the Harish-Chandra parameter \(\Lambda \in \mathbb{Z}_J \) and \(\tau^* = \tau^*_{\lambda} \in \hat{K} \) be the minimal \(K \)-type of \(\pi \). Now we refer the following proposition which enables us to identify the intertwining space \(I_{\rho,\pi} \) with a solution space of differential equations for any \(\rho \in \hat{K}_J \).

Proposition 4.1. (Yamashita [9; Theorem 2.4]) Let \(\pi = \pi^{\Lambda} \in \hat{G} \) and \(\tau^* = \tau^*_{\lambda} \in \hat{K} \) be as above. Then we have a linear isomorphism

\[I_{\rho,\pi} \simeq \bigcap_{\beta \in \Delta^J_{\rho,\tau}} \ker(\nabla^{-\beta}_{\rho,\tau}) \subset C_{\rho,\tau}^{\infty}(R_J \backslash G/K) \]
for any $\rho \in \hat{R}_J$. In particular,
\[J_{\rho,\pi}(\tau) = \{ F \in C^\infty_c(R_J \backslash G/K) \mid \nabla_{\rho,\tau}^{-\beta} F = 0, \ \forall \beta \in \Delta_{J,n}^+ \}. \]

Here the index J^* means IV, III, II and I for $J = I$, II, III and IV, respectively.

5. Result

Solving the systems of the differential equations given by (4.1), (4.2) and Proposition 4.1, we obtain the following theorem.

Theorem 5.1. Let π be a P_J-principal series representation (resp. a discrete series representation) of $G = Sp(2, \mathbb{R})$ and τ^* be the 'corner' K-type (resp. the minimal K-type) of π. For each irreducible unitary representation ρ of R_J of type $m \neq 0$, we have
\[\dim J_{\rho,\pi}^o(\tau) \leq 1. \]

Moreover the radial parts of the functions in $J_{\rho,\pi}^o(\tau)$ are expressed by the Meijer's G-function $G_{2,3}^{3,0}(x \mid a_{1,2} \mid b_{1,2,3})$ or more degenerate similar functions.

Here the Meijer's G-function $G_{2,3}^{3,0}(x) = G_{2,3}^{3,0}(x \mid a_{1,2} \mid b_{1,2,3})$ with the complex parameters $a_i, b_j (1 \leq i \leq 2, 1 \leq j \leq 3)$ is the many-valued function defined by the integral
\[G_{2,3}^{3,0}(x) = \frac{1}{2\pi \sqrt{-1}} \int_L \frac{\prod_{j=1}^3 \Gamma(b_j-t)}{\prod_{i=1}^2 \Gamma(a_i-t)} x^t dt \]

of Mellin-Barnes type, where the contour L is a loop starting and ending at $+\infty$ and encircling all poles of $\Gamma(b_j-t)$ ($1 \leq j \leq 3$) once in the negative direction. It is known that, up to constant multiple, $G_{2,3}^{3,0}(x)$ is the unique solution of the linear differential equation of 3-rd order
\[\{ x^3 \frac{d^3}{dx^3} + \alpha_2(x) x^2 \frac{d^2}{dx^2} + \alpha_1(x) x \frac{d}{dx} + \alpha_0(x) \} y = 0 \]

with
\begin{align*}
\alpha_2(x) & = 3 - b_1 - b_2 - b_3 + x, \\
\alpha_1(x) & = (1-b_1)(1-b_2)(1-b_3) + b_1b_2b_3 + (3-a_1 - a_2)x, \\
\alpha_0(x) & = -b_1b_2b_3 + (1-a_1)(1-a_2)x,
\end{align*}

which decays exponentially as $|x| \to \infty$ in $-\frac{3}{2} \pi < \arg x < \frac{1}{2} \pi$ (See the Meijer's original paper [5] for details).

Remark 5.2. Let π be a holomorphic discrete series representation of G and τ^* be the minimal K-type of π. Moreover, put $\rho = \pi_1 \otimes \tilde{\nu}_m \in \hat{R}_J$ as in §2. For each $m \neq 0$, there is at most finitely many ρ such that $\dim J_{\rho,\pi}^o(\tau) = 1$, and then the π_1-factors of such ρ's are the holomorphic discrete series representations of $\tilde{SL}(2, \mathbb{R})$. Moreover, the radial parts of the functions in $J_{\rho,\pi}^o(\tau)$ are expressed by the function of the form $x^p e^{qx}$ for some constant p, q.
REFERENCES

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, TOKYO, 153, JAPAN

E-mail address: hirano@ms406ss5.ms.u-tokyo.ac.jp