<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE RUMIN COMPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>AKAHORI, TAKAO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (1998), 1037: 63-68</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/61952</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON THE RUMIN COMPLEX

TAKAO AKAHORI

Dept. of Math., Himeji Institute of Technology

As is well known, Rumin introduced his complex for contact manifolds. Obviously, his method is applicable to the strongly pseudo convex boundary case (see [Ru], and also [A-M1]). Namely, let \((M,^0T'')\) be a strongly pseudo convex CR manifold in a complex manifold \(N\), then by Rumin we have a differential complex on \(M\),

\[
\begin{align*}
\Lambda^{n-1}(^0T')^* & \xrightarrow{D} \theta \wedge \Lambda^{n-2}(^0T')^* \wedge^1(^0T'')^* \xrightarrow{\overline{\partial}_b^{(1)}} \theta \wedge \Lambda^{n-2}(^0T')^* \wedge^2(^0T'')^* \\
\xrightarrow{\overline{\partial}_b^{(p-1)}} \theta \wedge \Lambda^{n-2}(^0T')^* \wedge^p(^0T'')^* \xrightarrow{\overline{\partial}_b^{(p)}} \theta \wedge \Lambda^{n-2}(^0T')^* \wedge^{p+1}(^0T'')^*,
\end{align*}
\]

which recovers the Kohn-Rossi cohomology.

\[
\begin{align*}
\text{for } p = 1, \quad & \text{Ker } \partial^{(1)}_b / \text{Im } D \cong H^{(1)}_b(M, \Lambda^{(n-1)}(T')^*), \\
\text{for } p > 1, \quad & \text{Ker } \overline{\partial}_b^{(p)} / \text{Im } \overline{\partial}_b^{(p-1)} \cong H^{(p)}_b(M, \Lambda^{(n-1)}(T')^*),
\end{align*}
\]

where \(D\) is a second order differential operator which is introduced by Rumin, and \(^0T' = \overline{^0T''}\) and \(\theta\) means a contact form (this is a part of Rumin’s result but a typical one. More precisely, see Sect.1 in this paper).

However this differential complex has an essential weak point. Namely, \(\overline{\partial}_b^{(p)}\) has a natural extension to an ambient space \(N\), but it is not clear if the above second order differential operator \(D\) has a natural extension to an operator on \(N\) or not. By this reason, we propose a new complex, based on Rumin complex, which is applicable to several complex variables (see Sect.2).

Sect.1. CR structures and Rumin complex
Let \((M, ^{0}T'')\) be a CR structure. This means that: \(M\) is a real 2n-1 dimensional \(C^\infty\) manifold and \(^{0}T''\) is a complex subbundle of the complexified tangent bundle satisfying:

1) \(^{0}T'' \cap ^{0}T' = 0\), \(\dim_C(C \otimes TM/(^{0}T'' + ^{0}T')) = 1\)

2) \([\Gamma(M, ^{0}T''), \Gamma(M, ^{0}T'')] \subset \Gamma(M, ^{0}T'')\),

where \(^{0}T' = \overline{^{0}T''}\). In this paper we assume more. Namely, we assume that there is a real global \(C^\infty\) vector bundle \(\xi\) satisfying:

3) \(\xi_p \notin ^{0}T''_p + ^{0}T'_p\) for every point \(p\) of \(M\),

For brevity, we use the following notation.

4) \(T' = C \otimes \xi + ^{0}T'\).

Now we set a real one form \(\theta\) by

\[
\theta(\xi) = 1, \\
\theta|_{^{0}T'' + ^{0}T'} = 0.
\]

Let

\[
\Omega = d\theta.
\]

If this 2-form is positive or negative definite, then our CR-structure \((M, ^{0}T'')\) is called strongly pseudo convex. From now on, we assume that our CR is strongly pseudo convex. By using these notations, we can introduce a \(C^\infty\) vector bundle decomposition:

5) \(\wedge^k(C \otimes TM)^* = \sum_{p+q=k-1, p,q \geq 0} \theta \wedge \wedge^p(^{0}T')^* \wedge \wedge^q(^{0}T'')^* \\
\sum_{r+s=k, r,s \geq 0} \wedge^r(^{0}T')^* \wedge \wedge^s(^{0}T'')^*
\]

We fix this decomposition. And we would like to consider a double complex (for the precise definition, see [A4]). For \(u \in \Gamma(M, \theta \wedge \wedge^{p-1}(^{0}T')^* \wedge \wedge^{q-1}(^{0}T'')^*)\), we set an element of \(\Gamma(M, \wedge^p(^{0}T')^* \wedge \wedge^q(^{0}T'')^*)\) by

\[
u \rightarrow (du)_{\wedge^p(^{0}T')^* \wedge \wedge^q(^{0}T'')^*}
\]

Proposition 1.1. This map is a bundle map.

(The proof is a direct computation, and more precisely, see Sect.3.)
Proposition 1.2. If $p + q \geq n$, then this map is surjective and especially, if $p + q = n$, then by comparing dimensions, this is isomorphic.

(For the proof, see lemma 3.3 in [A4])

We use the notation κ^p for this isomorphic map from $\theta \wedge^p \wedge q^{-1}(0 T'')$ to $\wedge^p(0 T')^* \wedge q(0 T'')^*$, where $q = n - p$. By using this κ^p, we set an element ψ_u of $\Gamma(M, \theta \wedge \wedge^p \wedge q^{-1}(0 T'')^*)$ by

$$\psi_u = (\kappa^p)^{-1}((\bar{\partial} b u) \wedge \wedge^p (0 T')^*)$$

where $(\bar{\partial} u) \wedge (0 T')^* \wedge \wedge \wedge (0 T')^*$ means the projection of $\bar{\partial} u$ to $\wedge^p(0 T')^* \wedge \wedge \wedge \wedge (0 T')^*$ according to (5). So by the definition of ψ_u, our ψ_u includes the first derivative of u.

Sect.2. New complex

Now we introduce a new complex. For a simplicity, we discuss only in the case $p = n - 2$, which is quite related to deformation theory. We set

$$H^0 = \{u : u \in \Gamma(M, \wedge^{n-1}(T')^*), (\bar{\partial} b u) \wedge \wedge^{n-1}(0 T')^* = 0\}$$

$$H^1 = \{u : u \in \Gamma(M, \theta \wedge \wedge^{n-2}(0 T')^* \wedge (0 T'')^*), (\bar{\partial} b^{(1)} u) \wedge \wedge^{n-1}(0 T')^* \wedge \wedge (0 T')^* = 0\}$$

$$H^2 = \{u : u \in \Gamma(M, \theta \wedge \wedge^{n-2}(0 T')^* \wedge \wedge (0 T'')^*), (\bar{\partial} b^{(2)} u) \wedge \wedge^{n-1}(0 T')^* \wedge \wedge (0 T')^* = 0\}$$

Then by definition our $(H^i, \bar{\partial} b)$ is a differential complex

$$\begin{array}{ccc}
H^0 & \xrightarrow{\bar{\partial} b} & H^1 \\
\bar{\partial} b^{(1)} & \xrightarrow{} & H^2
\end{array}$$

Of course H^1 (resp. H^2) is nothing but our $F^{n-2,1}$ (resp. $F^{n-2,2}$) (see [A-M1], [A4]). And we note that our H^0 doesn’t come from C^∞ sections of any C^∞ vector bundle on M. This is purely a vector space of some $\wedge^{n-1}(0 T')^*$-valued C^∞ sections. We put an L^2 norm on these spaces and discuss the Kodaira Hodge type decomposition theorem on H^1. For this, we have to show an a priori estimate. And a difficult problem is to compute the adjoint operator of $\bar{\partial} b$. By the definition of H^0, H^0 is a subspace of

$$\Gamma(M, \wedge^{n-1}(T')^*) = \Gamma(M, \wedge^{n-1}(0 T')^*) + \Gamma(M, \theta \wedge \wedge^{n-2}(0 T'')^*)$$

And in this canonical decomposition of $\Gamma(M, \wedge^{n-1}(T')^*)$, our H^0 can be regarded as a graph of the following map.

For $u \in \Gamma(M, \wedge^{n-1}(0 T')^*)$,

we set
\[\psi_u \in \Gamma(M, \theta \wedge \wedge^{n-2}(0T')^*) \]
where \(\psi_u \) is introduced in Sect. 1 in this paper. So
\[H^0 = \{ v : v = u + \psi_u, u \in \Gamma(M, \wedge^{n-1}(0T')^*) \} \subset \Gamma(M, \wedge^{n-1}(T')^*) \]
For this correspondence, we call the graph map \(i \). On \(\Gamma(M, \wedge^{n-1}(T')^*) \), and \(\Gamma(M, \theta \wedge \wedge^{n-2}(0T')^* \wedge \wedge^p(0T''^*)^*), p = 1, 2, \ldots \), we put \(L_2 \) norm and consider the Kodaira Hodge decomposition theorem on \((H^p, \overline{\partial}_b) \). The problem is to show an a priori estimate. In proving an a priori estimate, we have to compute, explicitly the adjoint operator " on \(H^p \) spaces (namely we have to write down the term of the adjoint operator "), otherwise, it is impossible to obtain an a priori estimate. We discuss this in the next section.

Sect. 3. The adjoint operators on \(H^p \) spaces

We consider the projection of \(\Gamma_2(M, \wedge^{n-1}(T')^*) \) to \(\tilde{H}^0 \), where \(\Gamma_2(M, \wedge^{n-1}(T')^*) \) means the \(L_2 \) - completion of \(\Gamma(M, \wedge^{n-1}(0T')^*) \), and \(\tilde{H}^0 \) means the \(L_2 \) closure of \(H^0 \) in \(\Gamma_2(M, \wedge^{n-1}(T')^*) \). We recall the graph map \(i \).

\[
\Gamma(M, \wedge^{n-1}(0T')^*) \xrightarrow{\text{graph map } i} H^0
\]

We use the notation \(A \) for the composition map of this graph map \(i \) and the inclusion map of \(H^1 \) to \(\Gamma(M, \wedge^{n-1}(T')^*) \). So \(A \) is a map from \(\Gamma(M, \wedge^{n-1}(0T')^*) \) to \(\Gamma(M, \wedge^{n-1}(T')^*) \). By the way, if we put a \(L_2 \) norm on \(\Gamma(M, \wedge^{n-1}(0T''^*) \) by :

\[
\|v\|^2_{\Gamma(M, \wedge^{n-1}(0T'')^*)} = \|v\|^2 + \|\psi_v\|^2 \quad \text{(a graph norm)}
\]

our \(i \) is a norm preserving map (almost tautology). Therefore

\[
(i^*iv, w)_{\Gamma(M, \wedge^{n-1}(0T'')^*)} = (iv, iw)
\]

\[
= (v, w) + (\psi_v, \psi_w)
\]

\[
= (v, w)_{\Gamma(M, \wedge^{n-1}(0T'')^*)}
\]

Namely

\[i^*i = \text{identity on } \Gamma(M, F) \]

Especially,

\[i^*(v + \psi_v) = v, \text{ for } v \in \Gamma(M, \wedge^{n-1}(0T''^*) \]

Here \(i^* \) means the adjoint operator of \(i \) with respect to this graph norm (on \(\Gamma(M, \wedge^{n-1}(0T')^*) \), we use the graph norm defined by \(i \), and on \(\Gamma(M, \wedge^{n-1}(T')^*) \), the standard \(L_2 \) is used). Then, our main theorem is
Main Theorem. The projection map $= i \cdot A^*$ on $\Gamma(M, T')$.

Proof. For this, it suffices to show that:

1. for $w = w_1 + w_2$, which is orthogonal to H^0, we have $i \cdot A^* w = 0$,
2. for $u \in \Gamma(M, \theta \wedge \wedge^{n-2}(0T')^*)$, we have $i \cdot A^*(u + \psi_u) = u + \psi_u$.

where

\begin{align*}
w &\in \Gamma(M, \wedge^{n-1}(T')^*), \\
w_1 &\in \Gamma(M, \wedge^{n-1}(0T')^*), \\
w_2 &\in \Gamma(M, \theta \wedge \wedge^{n-2}(0T''')^*).
\end{align*}

For the proof of (1), by the definition of $w = w_1 + w_2$,

\[(w_1, v) + (w_2, \psi_v) = 0 \text{ for } v \in \Gamma(M, \wedge^{n-1}(0T')^*),\]

But this means

\[(w, Av) = 0 \text{ for } v \in \Gamma(M, \wedge^{n-1}(0T')^*).\]

So

\[(A^*w, v) = 0 \text{ for } v \in \Gamma(M, \wedge^{n-1}(0T')^*).\]

So we have (1).

For the proof of (2),

\[(i \cdot A^*(u + \psi_u) - (u + \psi_u), v + \psi_v) = ((u + \psi_u, Av) - (u + \psi_u, u + \psi_u), \]

\[= (u + \psi_u, Av) - (u + \psi_u, u + \psi_u)\]

for $u, v \in \Gamma(M, \wedge^{n-1}(0T')^*)$. This becomes

\[(A^*(u + \psi_u) - u, v) = (u + \psi_u, v + \psi_v) - (u + \psi_u, v + \psi_v)\]

\[= 0.\]

Sect.4. Kodaira – Hodge type decomposition theorem

In order to establish a Kodaira-Hodge type decomposition theorem on H^1, we have to show the following two conditions.

1) $H^1 \cap Dom S$ is dense in \tilde{H}^1.
2) The following type a priori estimate.

\[\|S\phi\| + \|\partial_{\bar{b}}^{(1)}\phi\| + \|\phi\| \geq C\|\phi\|_{1/2}\]
for \(\phi \in H^1 \cap \text{Dom } S \), where \(S \) means the adjoint operator of \(\partial_b \) in \((H^p, \partial_b)\) complex, and \(C \) is a positive constant. While, by the result in Sect.2, we have

\[
S = \text{the composition of } \partial_b^* \text{ and } \text{the projection operator of } \Gamma_2(M, \wedge^{n-1}(T')^*) \text{ to } H^0,
\]

where \(\partial_b^* \) means the adjoint operator \(\partial_b \) in the standard complex. Because our complex is a subcomplex, this result follows from functional analysis. Namely, \(S \) is nothing but the adjoint operator of \(D \), which Rumin finds. So, by his estimate (1) is now obvious), we have a Kodaira-Hodge type decomposition theorem over \(H^1 \).

References

