<table>
<thead>
<tr>
<th>Title</th>
<th>Borel classes dimensions (General Topology, Geometric Topology and Their Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chatyrko, Vitalij; Hattori, Yasunao</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2007), 1531: 31-40</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58942</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Borel classes dimensions

1 Introduction and results.

The classes of topological spaces are assumed to be

1. non-empty (we suppose that at least the empty space \emptyset is a member), and
2. monotone with respect to closed subsets.

The letter \mathcal{P} is used to denote a such class and the following classes of spaces satisfy the conditions 1 and 2 above.

- The class of compact metrizable spaces \mathcal{K}.
- The class of σ-compact metrizable spaces \mathcal{S}.
- The class of completely metrizable spaces \mathcal{C}.
- The class of separable completely metrizable spaces \mathcal{C}_0.
Let X be a space and A, B disjoint subsets of X. We recall that a closed set $C \subset X$ is said to be a partition between A and B in X if there are disjoint open subsets U and V of X such that $A \subset U$, $B \subset V$ and $C = X \setminus (U \cup V)$.

In [4] Lelek introduced the small inductive dimension modulo a class \mathcal{P}, \mathcal{P}-ind, which is a natural generalization of well known dimension functions such as the small inductive dimension \ind and the small inductive compactness degree \cmp.

Definition 1.1 Let X be a regular T_1-space and \mathcal{P} a class of spaces. Then we define the small inductive dimension modulo a class \mathcal{P}, \mathcal{P}-ind X, of X as follows.

(i) \mathcal{P}-ind $X = -1$ iff $X \in \mathcal{P}$.

(ii) For a natural number n, \mathcal{P}-ind $X \leq n$ if for any point $x \in X$ and any closed subset A of X with $x \notin A$ there exists a partition C between x and A in X such that \mathcal{P}-ind $C < n$.

The small inductive dimension modulo a class \mathcal{P} has a natural transfinite extension.

Definition 1.2 Let X be a regular T_1-space and α either an ordinal number or the integer -1. Then the small transfinite inductive dimension modulo \mathcal{P}, \mathcal{P}-trind X, of X is defined as follows.

(i) \mathcal{P}-trind $X = -1$ iff $X \in \mathcal{P}$;

(ii) \mathcal{P}-trind $X \leq \alpha$ if for any point $x \in X$ and any closed subset A of X with $x \notin A$ there exists a partition C between x and A in X such that \mathcal{P}-trind $C < \alpha$.

(iii) \mathcal{P}-trind $X = \alpha$ if \mathcal{P}-trind $X \leq \alpha$ and \mathcal{P}-trind $X > \beta$ for any ordinal $\beta < \alpha$;

(iv) \mathcal{P}-trind $X = \infty$ if \mathcal{P}-trind $X > \alpha$ for any ordinal α.

We notice the following.

- \emptyset-trind $X = \trind X$, i.e., the small transfinite dimension.
• \(\kappa\)-ind \(X = \text{cmp} X\) (and \(\kappa\)-trind \(X = \text{trcmp} X\)), i.e., the small (transfinite) compactness degree.

• \(C\)-ind \(X = \text{id} X\) (and \(C\)-trind \(X = \text{trid} X\)), i.e., the small (transfinite) completeness degree.

• If \(P_2 \subset P_1\), then \(P_1\)-trind \(X \leq P_2\)-trind \(X\); in particular, \(\text{id} X \leq \text{trcmp} X \leq \text{trid} X\) holds.

Here, we shall consider on the absolute Borel classes. For each ordinal number \(\alpha\), let \(A(\alpha)\) and \(M(\alpha)\) be the absolute additive class \(\alpha\) and the absolute multiplicative classe \(\alpha\), respectively. Further, \(A(\alpha) \cap M(\alpha)\) is said to be the absolute ambiguous class \(\alpha\) and we write \(AB = \cup\{A_\alpha : \alpha < \omega_1\}\).

We notice that the absolute Borel classes in the universe of metrizable spaces satisfy the conditions 1 and 2.

Recall that in the universe of separable metrizable spaces, we have the following.

• \(A(0) = \{\emptyset\}\).

• \(M(0) = \kappa\).

• \(A(1) = S\).

• \(M(1) = C_0\).

• A diagram of the hierarchy of absolute Borel classes:

\[
\begin{align*}
\{\emptyset\} & \subseteq \mathcal{K} \subseteq A(1) \cap M(1) \\
A(1) & = S \\
& \subseteq A(2) \cap M(2) \\
M(1) & = C_0 \\
& \subseteq M(2)
\end{align*}
\]

We have a trivial example which shows the difference between trind and trcmp: The Hilbert cube \(\mathbb{I}\) has trind \(\mathbb{I}\) = \(\infty\) and cmp \(\mathbb{I}\) (\(= \text{id} \mathbb{I}\) = \(S\)-ind \(\mathbb{I}\)) = \(-1\). Furthermore, E. Pol constructed the following example.
Example 1.1 (E. Pol, [5]) There exists a σ-compact, completely metrizable space P such that trcmp $P = \infty$ (i.e., trind $P = \text{trcmp} P = \infty$ and tricd $P = S\text{-trind } P = A(1) \cap M(1)\text{-trind } P = -1$).

Thus, we may ask whether we can generalize Pol's example to every ordinal number $\alpha < \omega_1$.

It is well known that the small compactness degree cmp is related to an extension property, i.e., de Groot proved that a separable metrizable space X is rim-compact (i.e., cmp $X \leq 0$) iff X has a metric compactification Y such that dim($Y \setminus X$) ≤ 0. Connect with this theorem, we introduce other two dimension-like functions.

Definition 1.3 Let \mathcal{P} be a class of spaces. We recall that a separable metrizable space Y is a \mathcal{P}-hull (resp. \mathcal{P}-kernel) of a separable metrizable space X if $Y \in \mathcal{P}$ and $X \subset Y$ (resp. $Y \subset X$). Then the small transfinite \mathcal{P}-deficiency, \mathcal{P}-trdef X, and the small transfinite \mathcal{P}-surplus, \mathcal{P}-trsur X, of a separable metrizable space X are defined by

$$\mathcal{P}\text{-trdef } X = \min\{\text{trind } (Y \setminus X) : Y \text{ is an } \mathcal{P}\text{-hull of } X\},$$

$$(\mathcal{P}\text{-def } X = \min\{\text{ind } (Y \setminus X) : Y \text{ is an } \mathcal{P}\text{-hull of } X\}),$$

$$\mathcal{P}\text{-trsur } X = \min\{\text{trind } (X \setminus Y) : Y \text{ is an } \mathcal{P}\text{-kernel of } X\},$$

$$(\mathcal{P}\text{-sur } X = \min\{\text{ind } (X \setminus Y) : Y \text{ is an } \mathcal{P}\text{-kernel of } X\}).$$

It is clear that the functions \mathcal{P}-trdef and \mathcal{P}-trsur are transfinite extensions of the functions \mathcal{P}-def and \mathcal{P}-sur, respectively, which are discussed in [1]. It is also clear that if $\mathcal{P}_2 \subset \mathcal{P}_1$, then $\mathcal{P}_1\text{-trdef } X \leq \mathcal{P}_2\text{-trdef } X$ and $\mathcal{P}_1\text{-trsur } X \leq \mathcal{P}_2\text{-trsur } X$.

Recall also that for the function \mathcal{K}-def is the well known compact deficiency def. We will denote the transfinite extension \mathcal{K}-trdef of the compact deficiency def by trdef.

Facts (cf. [1]). Let X be a separable metrizable space and α an ordinal number. Then we have the following.
1. If $\alpha = 0$, then $\mathcal{M}(0)-\text{ind} X \leq \mathcal{M}(0)-\text{def} X \leq \mathcal{M}(0)-\text{sur} X$ holds and the converse of the inequalities do not hold. (We notice that $\mathcal{M}(0) = \mathcal{K}$ and so $\mathcal{M}(0)-\text{ind} X = \text{cmpl} X$ and $\mathcal{M}(0)-\text{def} X = \text{def} X$.) We also notice that $\mathcal{A}(0) = \{\emptyset\}$ and hence $\mathcal{A}(0)-\text{ind} X = \mathcal{A}(0)-\text{sur} X$ trivially holds and $\mathcal{A}(0)-\text{def} X$ can not be defined if $X \neq \emptyset$.

2. If $\alpha = 1$, then $\mathcal{A}(1)-\text{ind} X \leq \mathcal{A}(1)-\text{def} X = \mathcal{A}(1)-\text{sur} X$ and $\mathcal{M}(1)-\text{ind} X = \mathcal{M}(1)-\text{def} X \leq \mathcal{M}(1)-\text{sur} X$ hold. The converses of the inequalities above do not hold. (We notice that $\mathcal{A}(1) = \mathcal{S}$ and $\mathcal{M}(1) = \mathcal{C}_0$ and so $\mathcal{M}(1)-\text{ind} X = \text{id} X$.)

3. If $\alpha \geq 2$, then $\mathcal{A}(\alpha)-\text{ind} X = \mathcal{A}(\alpha)-\text{def} X = \mathcal{A}(\alpha)-\text{sur} X$ and $\mathcal{M}(\alpha)-\text{ind} X = \mathcal{M}(\alpha)-\text{def} X = \mathcal{M}(\alpha)-\text{sur} X$ hold.

M. Charalambous [2] showed that the equality $\mathcal{M}(\alpha)-\text{def} X = \mathcal{M}(\alpha)-\text{ind} X$ can not be extended to the transfinite dimension for the case of $\alpha = 1$.

Example 1.2 (M. Charalambous, [2]) There exists a separable metrizable space C such that $C-\text{trdef} C (= \mathcal{M}(1)-\text{trdef} C) = \omega_0$ and $\text{tricd} C (= \mathcal{M}(1)-\text{trind} C) = \infty$. (We notice that $\mathcal{C}_0-\text{trdef} \leq \text{tricd} X$ holds for every separable metrizable space.)

Thus, it seems to be natural that we ask whether for each ordinal number $\alpha < \omega_1$ there exists a separable metrizable space X such that $\mathcal{M}(\alpha)-\text{trdef} X = \omega_0$ and $\mathcal{M}(\alpha)-\text{trind} X = \infty$ or $\mathcal{A}(\alpha)-\text{trdef} X = \omega_0$ and $\mathcal{A}(\alpha)-\text{trind} X = \infty$.

Connect with the questions above, we have the following.

Theorem 1.1 Let α be any ordinal with $1 \leq \alpha < \omega_1$.
(1) There exist separable metrizable spaces X_α, Y_α and Z_α such that

(a) $f X_\alpha, f Y_\alpha, f Z_\alpha \leq \omega_0$, where f is either trdef or \mathcal{K}-trisur;

(b) $\mathcal{M}(\alpha)-\text{trind} X_\alpha = -1$ and $\mathcal{A}(\alpha)-\text{trind} X_\alpha = \infty$ (and hence $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)-\text{trind} X_\alpha = \infty$);

(c) $\mathcal{A}(\alpha)-\text{trind} Y_\alpha = -1$ and $\mathcal{M}(\alpha)-\text{trind} Y_\alpha = \infty$ (and hence $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)-\text{trind} Y_\alpha = \infty$);

(d) $\mathcal{M}(\alpha)-\text{trind} Z_\alpha = \mathcal{A}(\alpha)-\text{trind} Z_\alpha = \infty$ and $\mathcal{A}(\alpha + 1) \cap \mathcal{M}(\alpha + 1)-\text{trind} Z_\alpha = -1$.
(2) There does not exist a separable metrizable space W_{α} such that $A(\alpha)$-trind $W_{\alpha} \neq \infty$, $M(\alpha)$-trind $W_{\alpha} \neq \infty$ and $A(\alpha) \cap M(\alpha)$-trind $W_{\alpha} = \infty$.

Theorem 1.2 There exists a separable metrizable space X with trdef $X = K$-trsur $X = \omega_{0}$ such that for each $1 \leq \alpha < \omega_{1}$ we have B-trind $X = \infty$ and B-trdef $X = B$-trsur $X = \omega_{0}$, where $B = A(\alpha), M(\alpha)$ or $A(\alpha) \cap M(\alpha)$.

Remark 1.1 By Theorems 1.1 and 1.2, it follows that the equalities $M(\alpha)$-def $X = M(\alpha)$-ind X and $A(\alpha)$-sur $X = A(\alpha)$-ind X can not be extended to transfinite-dimensional cases. For the spaces X_{α}, Y_{α} and Z_{α} in Theorem 1.1, we additionally have that

- $M(\alpha)$-trdef $X_{\alpha} = A(\alpha)$-trs $Y_{\alpha} = -1$;
- $M(\alpha)$-trdef $Y_{\alpha} = M(\alpha)$-trdef $Z_{\alpha} = A(\alpha)$-trs $X_{\alpha} = A(\alpha)$-trs $Z_{\alpha} = \omega_{0}$.

We refer the readers to the books [1], [3] and [7] for the dimensions modulo classes, dimension theory and the theory of Borel sets, respectively.

2 Outline of proofs.

All classes of topological spaces considered here are additionally assumed to be finitely additive. We will follow some idea of E. Pol [5]. Let P be a class of topological spaces. A space X is said to have the property $(\ast)_{P}$ if for every sequence $\{(A_{i}, B_{i})\}_{i=1}^{\infty}$ of pairs of disjoint compact subsets of X there exist partitions L_{i} between A_{i} and B_{i} in X and an integer N such that $\cap_{i=1}^{N} L_{i} \in P$.

It is evident that the property $(\ast)_{P}$ is closed hereditary.

We have two propositions on the property $(\ast)_{P}$.

Proposition 2.1 If a space X is covered by a finite family of closed sets such that each element of this cover possesses property $(\ast)_{P}$ then X also possesses this property.

Proposition 2.2 Let X be a space. If P-trind $X \neq \infty$ then X possesses property $(\ast)_{P}$.
Let $\mathbb{I}^\infty = \{(x_i) : 0 \leq x_i \leq 1, i = 1, 2, \ldots\}$ be the Hilbert cube and $Z = \{0, \frac{1}{2}, \frac{1}{3}, \ldots\}$ a subspace of the unit interval \mathbb{I}. For each $n \geq 1$ we denote the subset $\{(x_i) \in \mathbb{I}^\infty : x_j = 0 \text{ for } j \geq n + 1\}$ of \mathbb{I}^∞ by \mathbb{I}^n. For each $n \geq 1$ and each $i = 1, \ldots, n$, we put

$$A_i^n = \{(x_i) \in \mathbb{I}^n \subset \mathbb{I}^\infty : x_i = 0\}, \ B_i^n = \{(x_i) \in \mathbb{I}^n \subset \mathbb{I}^\infty : x_i = 1\}.$$

Choose for each $n \geq 1$ a subset E_n of \mathbb{I}^n and put

$$X = (\{0\} \times \mathbb{I}^\infty) \cup \left(\bigcup_{n=1}^\infty \{\frac{1}{n}\} \times E_n \right). \tag{1}$$

Furthermore, we put $Y = (\{0\} \times \mathbb{I}^\infty) \cup \left(\bigcup_{n=1}^\infty \{\frac{1}{n}\} \times \mathbb{I}^n \right)$. It is clear that $X \subset Y \subset Z \times \mathbb{I}^\infty$, Y is compact, and $Y \setminus X$ is a subspace of the topological sum $\bigoplus_{n=1}^\infty \mathbb{I}^n$. Thus, trind $(Y \setminus X) \leq \omega_0$. Observe also that trind $(X \setminus (\{0\} \times \mathbb{I}^\infty)) \leq \omega_0$. Hence

$$\text{trdef} \ X \leq \omega_0 \text{ and } \mathcal{K}-\text{trsur} \ X \leq \omega_0. \tag{2}$$

Lemma 2.1 If for each $m \geq 1$ there exists an integer $k(m) \geq m + 1$ such that for any $n \geq k(m)$ and any partition L_i^n between A_i^n and B_i^n in \mathbb{I}^n, $i \leq m$, we have $E_n \cap \bigcap_{i=1}^N L_i^n \notin \mathcal{P}$, then \mathcal{P}-trind $X = \infty$.

Proof. By Proposition 2.2, it suffices to show that X does not have the property $(*)_\mathcal{P}$. For each $i = 1, 2, \ldots$ let L_i be a partition between compact sets $A_i = \{(0, (x_j)) \in \{0\} \times \mathbb{I}^\infty : x_i = 0\}$ and $B_i = \{(0, (x_j)) \in \{0\} \times \mathbb{I}^\infty : x_i = 1\}$ We shall show that $\bigcap_{i=1}^N L_i \notin \mathcal{P}$ for every natural number N. Let N be a natural number. For each $i \geq 1$ let us consider a partition L_i' between A_i and B_i in Y such that $L_i = L_i' \cap X$. Note that for every i there exists a natural number $n_i \geq 2$ such that for any $n \geq n_i$ $L_i^n = L_i' \cap (\{\frac{1}{n_i}\} \times \mathbb{I}^n)$ is a partition between $\{\frac{1}{n_i}\} \times A_i^n$ and $\{\frac{1}{n_i}\} \times B_i^n$ in $\{\frac{1}{n_i}\} \times \mathbb{I}^n$. Let n a fixed integer with $n \geq \max\{n_1, \ldots, n_N, k(N)\}$. Then $C = (\bigcap_{i=1}^N L_i^n) \cap (\{\frac{1}{n}\} \times E_n) = (\bigcap_{i=1}^N L_i) \cap (\{\frac{1}{n}\} \times E_n)$ is a closed subset of $\bigcap_{i=1}^N L_i$, and $C \notin \mathcal{P}$ by the assumption. So $\bigcap_{i=1}^N L_i \notin \mathcal{P}$.

We shall also use the following.

Lemma 2.2 ([8, Lemma 5.2]) Let L_{ij} be partitions between the opposite faces A_{ij}^n and B_{ij}^n in \mathbb{I}^n, where $1 \leq i_1 < i_2 \ldots < i_p \leq n$ and $1 \leq p < n$. Then for any $k \neq i, j = 1, \ldots, p$, there is a continuum $C \subset \bigcap_{j=1}^p L_{ij}$ meeting the faces A_k^n and B_k^n.

Lemma 2.3 Let α be an ordinal number with $1 \leq \alpha < \omega_1$. Then there exist subsets Q_α, P_α and D_α of \mathbb{I} such that

1. $Q_\alpha \in A(\alpha) - M(\alpha)$,
2. $P_\alpha \in M(\alpha) - A(\alpha)$,
3. $D_\alpha \in A(\alpha+1) \cap M(\alpha+1) - (A(\alpha) \cup M(\alpha))$.

Proof of Theorem 1.1. (1) We shall prove for Y_α only. We put

$$Y_\alpha = \left(\{0\} \times \mathbb{I}^\infty\right) \cup \left(\bigcup_{n=2}^{\infty} \left\{\frac{1}{n}\right\} \times \pi_n^{-1}(Q_\alpha)\right),$$

where Q_α is the subspace \mathbb{I} described in Lemma 2.3 and $\pi_n : \mathbb{I}^n \to \mathbb{I}$ be the projection onto the n-th factor. By the construction of Y_α, it is clear that $M(\alpha)$-trdf $Y_\alpha \leq \operatorname{trdf} Y_\alpha \leq \omega_0$, and $M(\alpha)$-trsur $Y_\alpha \leq \omega_0$. Since the absolute Borel classes are preserved under perfect preimages, it follows that $\pi_n^{-1}(Q_\alpha) \in A(\alpha)$. Thus, $Y_\alpha \in A(\alpha)$ and hence $A(\alpha)$-trind $Y_\alpha = -1$. Now, it suffices to show that $M(\alpha)$-trind $Y_\alpha = \infty$. To apply Lemma 2.1, for every natural number m let $k(m) = m + 1$. For each $n \geq k(m)$ and each $i \leq n$ let L_i^n be a partition between A_i^n and B_i^n in \mathbb{I}^n. By Lemma 2.2, there exists a continuum C such that $C \subset \bigcap_{i=1}^{n} L_i^n$ and $C \cap A_i^n \neq \emptyset \neq C \cap B_i^n$. Let $\pi_n^C = \pi|C : C \to \mathbb{I}$ be the restriction of the projection π_n over C. Then $C \cap \pi_n^{-1}(Q_\alpha) = (\pi_n^C)^{-1}(Q_\alpha) \subset \bigcap_{i=1}^{n} L_i^n \cap \pi_n^{-1}(Q_\alpha)$. Since $C \cap \pi_n^{-1}(Q_\alpha)$ is closed set of $\bigcap_{i=1}^{n} L_i^n \cap \pi_n^{-1}(Q_\alpha)$ and $(\pi_n^C)^{-1}(Q_\alpha) \notin M(\alpha)$, it follows that $\bigcap_{i=1}^{n} L_i^n \cap \pi_n^{-1}(Q_\alpha) \notin M(\alpha)$. Thus, it follows from Lemma 2.1 that $M(\alpha)$-trind $Y_\alpha = \infty$. This completes the proof.

(2) The second part of Theorem 1.1 is a direct consequence of the following proposition.

Proposition 2.3 Let X be a separable metrizable space with $A(\alpha)$-trind $X \leq \mu_1$ and $M(\alpha)$-trind $X \leq \mu_2$. Then

$$A(\alpha) \cap M(\alpha)$$

$$\begin{cases} \mu_1 + n(\mu_2) + 1, & \text{if } \lambda(\mu_1) = \lambda(\mu_2), \\ \mu_1, & \text{if } \lambda(\mu_1) > \lambda(\mu_2). \end{cases}$$

Proof. The proposition can be proved by a standard transfinite induction on $\nu = \max\{\mu_1, \mu_2\}$.

Connect with Proposition 2.1, we ask the following question.
Question 2.1 Does there exist a separable metrizable space X_α such that $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha) \text{-trind } X_\alpha > \max\{\mathcal{A}(\alpha) \text{-trind } X_\alpha, \mathcal{M}(\alpha) \text{-trind } X_\alpha\}$ for each ordinal number α? In particular, does there exist a separable metrizable space X such that $C_0 \cap \mathcal{S} \text{-ind } X = 1$ and $C_0 \text{-ind } X = \mathcal{S} \text{-trind } X = 0$?

Recall from M.G. Charalambous ([2]) that we call a subset A of a space X a Bernstein set if $|A \cap B| = |(X \setminus A) \cap B| = c$ for every uncountable Borel set B of X, where c denotes the cardinality of the continuum. It is known that every uncountable completely metrizable space X has countably many disjoint Bernstein sets. We notice that $A \notin AB$ for every Bernstein set A of an uncountable completely metrizable space X.

Proof of Theorem 1.2. Let F be a Bernstein set of \mathbb{I}. We put $X = (\{0\} \times \mathbb{I}^\infty) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times \pi_n^{-1}(F))$. Then, we can show that X is the desired space by an argument similar to Theorem 1.1.

Connect with Theorem 1.1, we may ask the following question.

Question 2.2 For each ordinal numbers α and β with $1 \leq \alpha < \omega_1$ and $0 \leq \beta < \omega_1$ do there exist separable metrizable spaces $X_{\alpha,\beta}$ and $Y_{\alpha,\beta}$ which satisfy the following conditions?

1. $\mathcal{A}(\alpha) \text{-trind } X_{\alpha,\beta} = \beta$,
2. $\mathcal{M}(\alpha) \text{-trind } Y_{\alpha,\beta} = \beta$, and
3. $\mathcal{M}(\alpha) \text{-trind } X_{\alpha,\beta} = \mathcal{A}(\alpha) \text{-trind } Y_{\alpha,\beta} = -1$.

References

(V.A. Chatyrko)
Department of Mathematics, Linköping University, 581 83 Linkeping, Sweden.
vitja@mai.liu.se

(Y. Hattori)
Department of Mathematics, Shimane University, Matsue, Shimane, 690-8504 Japan
hattori@riko.shimane-u.ac.jp