HAUSDORFF HYPERSPACES OF EUCLIDEAN SPACES
AND THEIR DENSE SUBSPACES

シフェントクシスカ学院 Wiesław Kubis
Instytut Matematyki, Akademia Świętokrzyska
Kielce, Poland

筑波大学 数学系 酒井克郎 (Katsuro Sakai)
Institute of Mathematics, University of Tsukuba

Here, we introduce the results obtained in the paper [11] and related problems. We consider metric spaces and their hyperspaces endowed with the Hausdorff metric. Specifically, given a metric space $X = (X, d)$, we shall denote by $\text{Cld}(X)$ and $\text{Bd}(X)$ the hyperspaces consisting of all nonempty closed sets and of all nonempty bounded closed sets in X respectively and we denote by d_H the Hausdorff metric, which is infinite-valued on $\text{Cld}(X)$ if X is unbounded. When X is compact, the space $\text{Cld}(X) (= \text{Bd}(X))$ is equal to the hyperspace $\exp(X)$ of all nonempty compact sets with the Vietoris topology. Even if X is noncompact, on the space $\exp(X)$, the Hausdorff metric topology coincides with the Vietoris topology. However, in case X is noncompact, these topologies are very different on the spaces $\text{Cld}(X)$ and $\text{Bd}(X)$.

Vietoris hyperspaces $\exp(X)$ have been studied extensively for many years. Among the known results, let us mention the theorem of Curtis and Schori [8] (cf. [13, Chapter 8]), saying that $\exp(X)$ is homeomorphic to (\cong) the Hilbert cube $Q = [-1, 1]^{\omega}$ if and only if X is a Peano continuum, that is, it is compact, connected and locally connected. Later, Curtis [7] characterized non-compact metric spaces X for which $\exp(X)$ is homeomorphic to the Hilbert cube minus a point $Q \setminus 0 (= Q \setminus \{0\})$ or the pseudo-interior $s = (-1, 1)^{\omega}$ of Q. In particular, $\text{Bd}(\mathbb{R}^m) = \exp(\mathbb{R}^m)$ is homeomorphic to $Q \setminus 0$. For more information concerning Vietoris hyperspaces, we refer to the book of Ilanes and Nadler [10].

It is well known that the hyperspace $\exp(X)$ is an ANR (AR) if and only if X is locally connected (and connected). On the other hand, it is proved in [6] that the space $\text{Bd}(X)$ is an ANR (AR) whenever the metric on X is almost convex, that is,

\footnote{It is well known that s is homeomorphic to the separable Hilbert space ℓ_2.}
for every $\alpha > 0, \beta > 0$ and for every $x, y \in X$ such that $d(x, y) < \alpha + \beta$, there exists $z \in X$ with $d(x, z) < \alpha$ and $d(z, y) < \beta$. This condition was further weakened in [12], which has turned out to be actually a necessary and sufficient one by Banakh and Voytsitskyy [3]. In the last paper, several equivalent conditions are given, which are too technical to mention them here. We refer to [3] for the details. On the other hand, Cld(X) is not connected whenever X is a metric space which is not totally bounded. For example, Cld(\mathbb{R}) has 2^{\aleph_0} many components.

The completion of a metric space $X = \langle X, d \rangle$ is denoted by $\tilde{X} = \langle \tilde{X}, d \rangle$. Then $\text{Bd}(X)$ can be identified with the subspace of $\text{Bd}(\tilde{X})$, via the isometric embedding $A \mapsto \text{cl}_{\tilde{X}} A$. Thus we shall often write $\text{Bd}(X) \subseteq \text{Bd}(\tilde{X})$, having in mind this identification. In this case, $\text{Bd}(\tilde{X})$ is the completion of $\text{Bd}(X)$. By such a reason, we also consider a dense subspace D of a metric space $X = \langle X, d \rangle$. For each $0 \leq k < m$, let

$$\nu_k^m = \{x = (x_i)_{i=1}^m \in \mathbb{R}^m : x_i \in \mathbb{R} \setminus \mathbb{Q} \text{ except for at most } k \text{ many } i\},$$

which is the universal space for completely metrizable subspaces in \mathbb{R}^m of dim $\leq k$. In case $2k + 1 < m$, ν_k^m is homeomorphic to the k-dimensional Nöbeling space ν_k^{2k+1}, which is the universal space for all separable completely metrizable spaces. Note that $\nu_0^m = (\mathbb{R} \setminus \mathbb{Q})^m \cong \mathbb{R} \setminus \mathbb{Q}$.

Theorem 1. Suppose $\langle m, k \rangle = \langle 1, 0 \rangle$ or $0 \leq k < m - 1$. Then,

$$\langle \text{Bd}(\mathbb{R}^m), \text{Bd}(\nu_k^m) \rangle \cong \langle Q \setminus 0, s \setminus 0 \rangle.$$

Consequently, $\text{Bd}(\nu_k^m) \cong \ell_2$.

This can be derived from the following:

Theorem 2. Let D be a dense G_δ set in \mathbb{R}^m such that $\mathbb{R}^m \setminus D$ is also dense in \mathbb{R}^m and in case $m > 1$ it is assumed that $D = p[D] \times \mathbb{R}$, where $p : \mathbb{R}^m \to \mathbb{R}^{m-1}$ is the projection onto the first $m - 1$ coordinates. Then, $\langle \text{Bd}(\mathbb{R}^m), \text{Bd}(D) \rangle \cong \langle Q \setminus 0, s \setminus 0 \rangle$.

Question 1. In case $m > 1$, under the only assumption that $D \subseteq \mathbb{R}^m$ is a dense G_δ set and $\mathbb{R}^m \setminus D$ is also dense in \mathbb{R}^m, is the pair $\langle \text{Bd}(\mathbb{R}^m), \text{Bd}(D) \rangle$ homeomorphic to $\langle Q \setminus 0, s \setminus 0 \rangle$? In particular, is the pair $\langle \text{Bd}(\mathbb{R}^m), \text{Bd}(\nu_m^m) \rangle$ homeomorphic to $\langle Q \setminus 0, s \setminus 0 \rangle$?

We also consider the following dense subspaces of $\text{Bd}(X)$:

- $\text{Nwd}(X)$ — all nowhere dense closed sets;
- $\text{Perf}(X)$ — all perfect sets;\(^2\)

\(^2\)I.e., completely metrizable closed sets which are dense in itself.
• Cantor(\(X\)) — all compact sets homeomorphic to the Cantor set.

In case \(X = \mathbb{R}^m\), we can also consider the following subspace:

• \(\mathcal{N}(\mathbb{R}^m)\) — all closed sets of the Lebesgue measure zero.

For these spaces, we have the following:

Theorem 3. Let \(\mathcal{F}\) be one of the following subspaces of \(\text{Bd}(\mathbb{R}^m)\):

\[
\text{Nwd}(\mathbb{R}^m), \text{Perf}(\mathbb{R}^m), \text{Cantor}(\mathbb{R}^m) \text{ and } \mathcal{N}(\mathbb{R}^m).
\]

Then, \(\langle \text{Bd}(\mathbb{R}^m), \mathcal{F} \rangle \cong \langle Q \setminus 0, s \setminus 0 \rangle\), hence \(\mathcal{F} \cong \ell_2\).

To prove Theorems 2 and 3 above, we adopt the characterization of the pseudo-boundary \(Q \setminus s\) of the Hilbert cube \(Q\), see [5].

We also study the space \(\text{Cld}(\mathbb{R})\). It is very different from the hyperspace \(\exp(\mathbb{R})\). It is not hard to see that \(\text{Cld}(\mathbb{R})\) has \(2^{\aleph_0}\) many components, \(\text{Bd}(\mathbb{R})\) is the only separable one and any other component has weight \(2^{\aleph_0}\). Applying Toruńczyk's Characterization of Hilbert space [14] (cf. [15]), we can prove

Theorem 4. Let \(\mathcal{H}\) be a nonseparable component of \(\text{Cld}(\mathbb{R})\) which does not contain \(\mathbb{R}, [0, +\infty), (-\infty, 0]\). Then \(\mathcal{H} \cong \ell_2(2^{\aleph_0})\).

Question 2. Does Theorem 4 hold even if \(\mathcal{H}\) contains \(\mathbb{R}, [0, \infty)\) or \((-\infty, 0]\)?

Question 3. For \(m > 1\), is \(\text{Cld}(\mathbb{R}^m) \setminus \text{Bd}(\mathbb{R}^m)\) an \(\ell_2(2^{\aleph_0})\)-manifold?

Now, we consider the subspaces \(\mathcal{N}(\mathbb{R}), \text{Nwd}(\mathbb{R}), \text{Perf}(\mathbb{R})\) and \(\text{Cld}(\mathbb{R} \setminus Q)\) of \(\text{Cld}(\mathbb{R})\). Similarly to \(\text{Bd}(\mathbb{R})\), it can be shown that those complements are \(Z_\sigma\)-sets in \(\text{Cld}(\mathbb{R})\).

Due to Negligibility Theorem ([1], [9]), if \(M\) is an \(\ell_2(2^{\aleph_0})\)-manifold and \(A\) is a \(Z_\sigma\)-set in \(M\) then \(M \setminus A \cong M\). Thus, the following follows from Theorem 4:

Corollary 5. Let \(\mathcal{H}\) be a nonseparable component of \(\text{Cld}(\mathbb{R})\) which does not contain \(\mathbb{R}, [0, +\infty), (-\infty, 0]\). Then, the following spaces are homeomorphic to \(\ell_2(2^{\aleph_0})\):

\[
\mathcal{H} \cap \mathcal{N}(\mathbb{R}), \mathcal{H} \cap \text{Nwd}(\mathbb{R}), \mathcal{H} \cap \text{Perf}(\mathbb{R}) \text{ and } \mathcal{H} \cap \text{Cld}(\mathbb{R} \setminus Q).
\]

Borel classes. Given a metric space \(\langle X, d \rangle\), let \(\langle \tilde{X}, d \rangle\) be its completion. Then, the hyperspace \(\text{Bd}(\tilde{X})\) is the completion of the hyperspace \(\text{Bd}(X)\). Concerning Borel classes of hyperspaces, the following are also shown in the paper [11]:

1. \(\text{Bd}(X)\) is \(F_{\sigma\delta}\) in \(\text{Bd}(\tilde{X})\) if \(X\) is \(\sigma\)-compact.
2. \(\text{Bd}(X)\) is \(G_\delta\) in \(\text{Bd}(\tilde{X})\) if \(X\) is Polish.\(^3\)

\(^3\)I.e., separable and completely metrizable
(3) $\text{Bd}(X)$ is Polish for every Polish space X in which bounded sets are totally bounded.

(4) $\text{Nwd}(X)$ is G_δ in $\text{Bd}(X)$ for every separable metric space X.

(5) $\text{Perf}(X)$ is G_δ in $\text{Bd}(X)$ if X is separable and locally compact.

(6) $\text{Perf}(X)$ is $F_{\sigma\delta}$ in $\text{Bd}(X)$ for every Polish space X.

(7) $\text{Bd}(X)$ is analytic for every analytic metric space X in which bounded sets are totally bounded.

Fix a dense set X in a separable Banach space E which admits the metric d induced from the norm of E. Then (X,d) is an almost convex metric space and therefore by a result of [6] the space $\text{Bd}(X)$ is an AR. In case X is G_δ, the space $\text{Bd}(X)$ is completely metrizable by (2). If additionally E is finite-dimensional then $\text{Bd}(X)$ is Polish by (3). In case X is σ-compact, by (1), $\text{Bd}(X)$ is absolutely $F_{\sigma\delta}$.

Remarks. Recently, Banakh and Voytsitskyy [4] proved that the space $\text{Cld}(X)$ (resp. $\text{Bd}(X)$) is homeomorphic to ℓ_2 if and only if X is a completely metrizable nowhere locally compact metric space such that each (resp. bounded) subset of X is totally bounded and the completion \breve{X} of X is connected and locally connected.

References

