On the deformation of A-branes in String theory

Takao Akahori
Department of Mathematics
School of Science, University of Hyogo
Himeji, Hyogo
akahorit@sci.u-hyogo.ac.jp

1 A brief sketch

In this paper, we discuss the deformation theory of A-branes in String theory, from the point of view of CR structures and give an outline of our approach. The full paper will appear in another paper. Let W be a Kaehler manifold and let ω_W be its Kaehler form. Let M be a real hypersurface in W. We assume that our M admits an A-brane structure. Namely, there is a real line bundle L on M, and a connection ∇ on L, satisfying:

[1] The curvature of the connection, F, is an element of $\Gamma(M, \Lambda^2 \mathcal{F}^*)$,

[2] $J := \omega_W^{-1}F$ determines a complex structure on \mathcal{F}, where $\mathcal{F} := \frac{TM}{\mathcal{L}}$, and \mathcal{L} is a characteristic foliation \mathcal{L}, defined by: for $p \in M$, $\mathcal{L}_p = \{Y_p, Y'_p \in T_pW, \omega_W(Y_p,Y'_p) = 0, Y'_p \in T_pM\}$.

In this paper, by using the notion of almost CR structures, we reformulate the notion of A-branes. Our J determines an almost CR structure (M, T'_J) on M. For this almost CR structure, we prove that $C \otimes \mathcal{L} + T'_J$ is integrable on M. And show the deformation complex of A-branes (the Kapustin-Orlov complex)(see (2.7)). This is a natural generalization of the case $M = W$(Kapustin-Orlov consider the case; A-branes wrap the whole W, and obtain the standard $\overline{\partial}$-complex as a deformation complex).

Here we treat A-branes of the type hypersurfaces. Now for a given A-brane, we introduce the notion of family of A-branes, $\{(M,L,\nabla_t)\}_{t \in \mathcal{T}}$. In this paper, we introduce the deformation complex of A-branes, and construct the Kodaira-Spencer map for the given family of A-branes. On the parameter space, a complex structure is given. But, we are relying on the Hamilton deformation, so we can't discuss in the complex analytic category (so we have to use that $\{(M,L,\nabla_t)\}_{t \in \mathcal{T}}$ depends on t, C^∞-ly). And because of this fact, we have to discuss in the category, mod (t^2, \overline{t}).

The author would like to thank Prof.A.Kapustin for allowing me to use the name, the Kapustin-Orlov complex and valuable suggestions during the preparation of this paper (the author learned that Kapustin and his student Yi Li, independently, obtained the integrability of $C \otimes \mathcal{L} + T'_J$).
2 The Kapustin-Orlov complex

In [Kap-Or], Kapustin-Orlov formulate the D-branes of A-type (in their language, A-branes), mathematically. We consider the deformation theory of A-branes in the case real hypersurfaces. For this, we recall the notion of A-branes. Let W be a Kaehler manifold. Let ω_W be its Kaehler metric. Let M be a real submanifold of W. Then, for this M, we have a characteristic foliation \mathcal{L}. This is defined by: for $p \in M$,

$$\mathcal{L}_p = \{Y_p, Y_p' \in T_pW, \omega_W(Y_p, Y'_p) = 0, Y'_p \in T_pM\}.$$

By this definition, \mathcal{L} is a subbundle of $TW |_M$ and the rank of \mathcal{L} is $2n - \dim_R M$, because of ω_W being non-degenerate (here n is the complex dimension of W).

Definition 2.1. If for $p \in M$, $\mathcal{L}_p \subset T_pM$, then M is called coisotropic.

Henceforth we assume that our real submanifold is coisotropic. So, on M, we have a quotient bundle

$$\mathcal{F} := \frac{TM}{\mathcal{L}}.$$

Definition 2.2. (A-branes). Let M be a coisotropic submanifold. Then M admits the A-brane if and only if there is a real line bundle \mathcal{L} and a connection ∇ of L, (L, ∇) which satisfies

[1] The curvature of the connection, F, is an element of $\Gamma(M, \wedge^2 F^*)$,

[2] $J := \omega_W^{-1}F$ determines a "Tac" structure on M (this means that: $J^2 = -1$ and this J is integrable modulo characteristic foliation).

Now for the submanifold M, a CR structure $(M, 0^0 T'^0)$ is introduced by:

$$0^0 T'^0 = C \otimes TM \cap T''W | M,$$

where $C \otimes TM$ means the complexified tangent bundle of M. Let $D = \{Y : Y \in TM, Y = X + \overline{X}, X \in 0^0 T'^0\}$. Then, naturally,

$$D \cong \mathcal{F}.$$

By this identification, J is defined on D, satisfying: $J^2 = -1$. Hence J determines an almost CR structure on M. We study this structure. J is defined on D. We extend this J on $C \otimes D$, naturally. Set

$$T'_j = \{X : X \in C \otimes D, JX = \sqrt{-1}X\},$$

$$T''_j = \{X' : X' \in C \otimes D, JX' = -\sqrt{-1}X'\}.$$

Then, as mentioned in [Kap-Or], we have

Proposition 2.1.

$$C \otimes D = T'_j + T''_j, T'_j \cap T''_j = 0,$$

$$[\Gamma(M, T'_j), \Gamma(M, T''_j)] \subset \Gamma(M, T'_j) \text{ mod } \mathcal{L}. \quad (2.1)$$

Proof. (0.1) is obvious. We see (0.2). By the definition, $dF = 0$, $d\omega_W = 0$, and

$$\omega_W(X, JX') = F(X, X'), X, X' \in C \otimes D.$$
With these, we compute : for $X_1, X_2 \in \Gamma(M, T'_J)$, $X \in \Gamma(M, C \otimes TM)$,

\begin{align*}
 dF(X_1, X_2, X) &= 0, \\
 \omega_W(X_1, X_2, X) &= 0.
\end{align*}

(2.3)

(2.4)

We compute (0.3). Then,

\[X_1 F(X_2, X) - X_2 F(X_1, X) + X F(X_1, X_2) - F([X_1, X_2], X) + F([X_1, X], X_2) - F([X_2, X], X_1) = 0. \]

We rewrite this by using : \(\omega_W(X, JX') = F(X, X'), X, X' \in C \otimes D \).

\[X_1 \omega_W(JX_2, X) - X_2 \omega_W(JX_1, X) + X \omega_W(JX_1, X_2) - \omega_W([X_1, X_2], X) + \omega_W([X_1, X], JX_2) - \omega_W([X_2, X], JX_1) = 0. \]

By \(JX_i = \sqrt{-1}X_i, i = 1, 2 \), this becomes

\[X_1 \omega_W(\sqrt{-1}X_2, X) - X_2 \omega_W(\sqrt{-1}X_1, X) + X \omega_W(\sqrt{-1}X_1, X_2) - \omega_W([X_1, X_2], X) + \omega_W([X_1, X], \sqrt{-1}X_2) - \omega_W([X_2, X], \sqrt{-1}X_1) = 0. \]

While, by (0.4),

\[X_1 \omega_W(X_2, X) - X_2 \omega_W(X_1, X) + X \omega_W(X_1, X_2) - \omega_W([X_1, X_2], X) + \omega_W([X_1, X], X_2) - \omega_W([X_2, X], X_1) = 0. \]

Hence, we have

\[\omega_W(JX_1, X_2) = \omega_W(\sqrt{-1}[X_1, X_2], X) \text{ for any } X \in C \otimes D. \]

This means that: \([X_1, X_2] \in T'_J \) modulo \(\mathcal{L} \).

The following proposition is also mentioned in [Kap-Or].

Proposition 2.2.

\[\omega_W(X_1, X_2) = 0 \text{ for } X_1, X_2 \in T'_J. \]

So, \(J \)-structure is different from the CR structure, naturally, induced from \(W \). Here for the convenience, we give a proof.

Proof. We use \(\omega_W(X, JY) = F(X, Y) \), for any \(X, Y \in C \otimes TM \). For \(X_1 \in T'_J, X_2 \in T'_J \),

\[\omega_W(X_1, JX_2) = F(X_1, X_2). \]

By \(JX_2 = -\sqrt{-1}X_2 \),

\[\omega_W(X_1, -\sqrt{-1}X_2) = F(X_1, X_2), \]

so,

\[\omega_W(X_1, X_2) = \sqrt{-1}F(X_1, X_2). \]

On the other hand,

\[\omega_W(X_2, JX_1) = F(X_2, X_1). \]
So, by $JX_1 = \sqrt{-1}X_1$,
\begin{align*}
\omega(X_2, X_1) &= -\sqrt{-1}F(X_2, X_1).
\end{align*}
Hence
\begin{align*}
\omega(X_1, X_2) &= -\sqrt{-1}F(X_1, X_2).
\end{align*}
This means that $\omega_{W}(X_1, X_2) = 0$. \qed

As is mentioned in [Kap-Or], the following corollary follows from this proposition.

Corollary 2.3.
\begin{align*}
\dim_C T'_J = \text{even}.
\end{align*}

Now we set a C^∞ vector bundle decomposition
\begin{align*}
C \otimes TM &= C \otimes \mathcal{L} + T''_J + T'_J.
\end{align*}
Here $C \otimes \mathcal{L}$ means the complexified \mathcal{L}. While in our case, (M, T''_J) may not be a CR structure (only integrable modulo \mathcal{L}). But,

Proposition 2.4. \mathcal{L} preserves J, namely,
\begin{align*}
[\Gamma(M, T'_J), \mathcal{L}] \subset \Gamma(M, T'_J) \text{ modulo } \mathcal{L}.
\end{align*}

Proof. By the same ways as in Proposition 2, we see this proposition.
For $X \in T'_J, Y \in T''_J, \zeta \in \mathcal{L}$, as F, ω_{W} are closed,
\begin{align*}
dF(X, Y, \zeta) &= 0, \\
d\omega_{W}(X, Y, \zeta) &= 0.
\end{align*}
By the first equation,
\begin{align*}
XF(Y, \zeta) - YF(X, \zeta) + \zeta F(X, Y) \\
- F([X, Y], \zeta) + F([X, \zeta], Y) - F([Y, \zeta], X) &= 0.
\end{align*}
As \mathcal{L} is a characteristic foliation, this becomes
\begin{align*}
\zeta F(X, Y) + F([X, \zeta], Y) - F([Y, \zeta], JX) &= 0.
\end{align*}
With $\omega_{W}(X', JY') = F(X', Y')$ for $X', Y' \in C \otimes D$,
\begin{align*}
\zeta \omega_{W}(JX, Y) + \omega_{W}([X, \zeta], JY) - \omega_{W}([Y, \zeta], JY) &= 0.
\end{align*}
While, by Proposition 2,
\begin{align*}
\omega_{W}(JX, Y) &= \omega_{W}(\sqrt{-1}X, Y) \\
&= 0.
\end{align*}
Hence
\begin{align*}
\omega_{W}([X, \zeta], -\sqrt{-1}Y) - \omega([Y, \zeta], \sqrt{-1}X) &= 0. \quad (2.5)
\end{align*}
While by the second equation,
\[X\omega_W(Y, \zeta) - Y\omega_W(X, \zeta) + \zeta\omega_W(X, Y) \\
- \omega_W([X, Y], \zeta) + \omega_W([X, \zeta], Y) - \omega_W([Y, \zeta], X) = 0. \]

So, by the same way, this becomes
\[\omega_W([X, \zeta], Y) - \omega_W([Y, \zeta], X) = 0. \] (2.6)

With (0.5), (0.6), we have
\[\omega_W([X, \zeta], Y) = 0, \text{ for } X \in T'_J, Y \in T'_J \]

This means that: the T''_J part of $[X, \zeta]$ vanishes because of ω_W being nondegenerate with Proposition 2.2. Hence
\[[X, \zeta] \in \Gamma(M, T'_J) \text{ modulo } \mathcal{L}. \]

Now we can state our theorem.

Theorem 2.5. We set $T'' := C \otimes \mathcal{L} + T''_J$. Then,
\[[\Gamma(M, T''), \Gamma(M, T'')] \subset \Gamma(M, T''). \]

By this theorem, we have the deformation complex of A-branes (Kapustin-Orlov complex). Namely, for $u \in \Gamma(M, C)$, we set $\overline{\partial}u$ of $\Gamma(M, (T'')^*)$ by;
\[\overline{\partial}u(X) = Xu, \text{ for } X \in T''. \]

By the same way as for ordinary differential forms, we can introduce \mathcal{P} from $\Gamma(M, \wedge^p(T'')^*)$ to $\Gamma(M, \wedge^{p+1}(T'')^*)$.
\[\mathcal{P} : \Gamma(M, \wedge^p(T'')^*) \rightarrow \Gamma(M, \wedge^{p+1}(T'')^*). \]

Then, by the integrability theorem (Theorem 2.5),
\[\mathcal{P}^{p+1}\overline{\partial} = 0. \]

So, we have a deformation complex of A-branes (Kapustin-Orlov complex).
\[0 \rightarrow \Gamma(M, C) \xrightarrow{\overline{\partial}} \Gamma(M, (T'')^*) \xrightarrow{\mathcal{P}^1} \Gamma(M, \wedge^2(T'')^*) \rightarrow \cdots \] (2.7)

Furthermore, by this theorem, we can introduce a sheaf, $\mathcal{O}_{T''}$, composed of $\overline{\partial}$-closed elements, which are holomorphic in the direction T''_J, and constant in the direction \mathcal{L}.

3 A family of deformations of A-branes

We introduce the notion of a family of deformations of A-branes,

Definition 3.1. A set of A-branes \{ (M, L, \nabla_t), i_t \}_{t \in T}, where \(T \) is an analytic space with the origin \(o \), is a family of deformations of A-branes if

1. connections \(\nabla_t \) depends on \(t \), \(C^\infty \)-ly, and \(\nabla_o = \nabla \),
2. embeddings \(i_t \) depends on \(t \), \(C^\infty \)-ly, and \(i_o = i \).

Unlike CR structures, we rely on \(C^\infty \) category. Because, in the case symplectic structures, the Hamiltonian deformations play an essential part. We study a family of deformations of A-branes in the case real hypersurfaces. For the embedding \(i_t \), we have the characteristic vector field, \(\xi_t \). By using this vector field, the condition of \{ (M, L, \nabla_t), i_t \} being the A-brane is rewritten as follows.

1. The curvature of the connection \(\nabla_t \), \(F_t \), is an element of \(\Gamma(M, \wedge^2 \mathcal{F}_t^*) \),
2. Let \(J_t := (i_t^* \omega_W)^{-1} F_t \). Then, \(J_t^2 = -1 \) on \(\mathcal{F}_t \), where

\[\mathcal{F}_t := \frac{TM}{\mathcal{L}_t}, \]

and \(\mathcal{L}_t \) is generated by \(\xi_t \). While the inclusion map induces a bundle isomorphism map \(\rho_t \) from \(D \) to \(\frac{TM}{\mathcal{L}_t} \), induced by the inclusion map \(; D \) to \(TM \). The structure defined by \(J_t \) induces an almost CR structure on \(D \) by;

\[J'_t := \rho_t^{-1} J_t \rho_t. \]

Henceforth, we use the same notation \(J_t \) for \(J'_t \) and we regard \(J_t \) as an almost CR structure on \(D \). Therefore \([1]'_t, [2]'_t \) are written as

1. The curvature of the connection \(\nabla_t \), \(F_t \), satisfies \(F_t(\xi_t, Y) = 0 \) for \(Y \in \mathcal{D} \),
2. Let \(J_t := (i_t^* \omega_W)^{-1} F_t \). Then, \(J_t^2 = -1 \) on \(\mathcal{D} \).

We see why we call this complex a deformation complex of A-branes.

Definition 3.2. The quartets of A-branes, \(\{(M, L, \nabla), i\} \), \((M', L', \nabla'), i' \} \) are equivalent if there is a gauge transform of the line bundle \(L \) (we write this bundle map by \(q \)), and there is a Hamiltonian diffeomorphism map of \(W \), defined by a \(C^\infty \) function \(g \) (we write it by \(V_g \)), satisfying;

1. the composition of maps \(V_g \) and \(i \), \(V_g i = i' \),
2. \(V_g^* q^* \nabla = \nabla' \)

Next we introduce an equivalence relation for a family of deformations of A-branes.

Definition 3.3. The family of deformations of A-branes, \(\{(M, L, \nabla_t), i_t\}_{t \in T}, \{(M', L', \nabla'_t), i'_t\}_{t \in S} \) are equivalent if there is a local biholomorphic map \(h \) from \(T \) to \(S \) satisfying : \(h(o) = o \), there is a gauge transform of the line bundle \(L \) (we write this bundle map by \(q \)), and there is a Hamiltonian diffeomorphism map of \(W \), defined by a \(C^\infty \) function \(g_t \) (we write it by \(V_{g_t} \)), satisfying;

1. the composition of maps \(V_{g_t} \) and \(i_t \), \(V_{g_t} i_t = i'_t \),
2. \(V_{g_t}^* q_t^* \nabla_t = \nabla'_{h(t)} \)
4 The infinitesimal case

For a family of deformations of A-branes, \(\{(M, L, \nabla_t), i_t\}_{t \in T}\), we can introduce the Kodaira-Spencer map, like the case the deformation theory of complex structures.

Theorem 4.1.
\[
\frac{\partial}{\partial t}\{(M, L, \nabla_t), i_t\}_{t \in T}|_{t=0}
\]
determines an element of \(\text{Ker} \overline{\partial}^{(1)}/\text{Im} \overline{\partial}\) (the first cohomology of the differential complex (2.7)).

Definition 4.1. Let \(W\) be a Kaehler manifold and \(\{(M, L, \nabla)\}\) be an A-brane in \(W\). Let \(\{\nabla_t\}_{t \in T}\) be a family of connections of \(L\), satisfying \(L_o = L\). Let \(\xi_t\) of a section of \(\Gamma(M, TW|_M)\), satisfying that \(\xi_0 = 0\) and \(\xi_t\) can be extended to a neighborhood of \(M\), and let \(i_t\) be the embedding map, induced by \(\xi_t\). If the following holds, then \(\{(M, L_t, \nabla_t)\}_{t \in T}\) is called an infinitesimal deformation of A-branes.

[1] The curvature of the connection \(\nabla_t\), \(F_t\), satisfies \(F_t(\xi_t, Y) \equiv 0\) for \(Y \in D\), mod \((t^2, \overline{t})\)

[2] Let \(J_t := (i_t^* \omega_W)^{-1} F_t\). Then, \(J_t^2 \equiv -1\) mod \((t^2, \overline{t})\) on \(D\).

With this correspondence, we have

Theorem 4.2. For \(\phi \in \Gamma(M, (C \otimes L + T_J'')^*)\), satisfying \(\overline{\partial}^{(1)} \phi = 0\), on \(M\), we can set a family of deformations of A-branes, infinitesimally.

In a forthcoming paper, the proof is given.

References

