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Abstract 
The Archimedean tiling (32.4.3.4) is a regular but complex polygonal assembly of 
equilateral triangles and squares. This tiling pattern with mesoscopic repeating distance 

has been found for an ABC star-branched three-component polymer composed of 
polyisoprene, polystyrene and poly (2-vinylpyridine). In this structure the environment 
of a molecule splits into multiple sites and two microdomains with different sizes and 

shapes are formed for one component. This complexity is the first observation in 
complex polymer systems and can lead to a new type of mesoscale self-organization. 
The tiling pattern has been observed for the other materials on much shorter 

length-scale, therefore, the experimental fact observed in the present study is 
demonstrating that the complexity is universal over different hierarchy. 
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   Soft materials consisting of different chemical/physical species in a molecule such 
as lipids1, amphiphiles2 block copolymers3 and copolymer-based supramolecules4 are 
well known to form periodic structures spontaneously because of their intramolecular 

segregation and self-assembling nature. In addition to classical structures like 
BCC-packed spheres, hexagonally-packed cylinders and lamellar structures found in 
early days,5  extraordinary periodic structures, i.e., bicontinuous-6  and tricontinuous 

double Gyroid,7 plumber’s nightmare8  etc. have been found one after another for 
various soft material systems. Summarizing all the results, we notice that the 
environment of an element, a lipid or a polymer, is almost the same in these systems. 

    (32.4.3.4) is a complex but regular polygonal assembly of equilateral triangles 
and squares, which is one of the eleven Archimedean tiling patterns (Figure 1A and the 
caption).9 It has been known that the tiling appears in a layered crystalline structure for 

rather complex metallic alloys10 known as Frank-Kasper phases.11  Recently a 
(32.4.3.4) structure scaled up more has been found in a chalcogenide,12 followed by 
further scaled-up supramolecular micellar complex phases of organic dendrons.13 These 

complex phases are “complex” in the following meaning: the environment of an 
element, an atom or a micelles, in a complex phase splits into several sites, that is, the 
coordination numbers are different,11,13 even though the elements are the same. We 

intend to step up one order more by exploring into the polymeric system, where the 
characteristic length reaches to the wavelength of visible light region.       
   In order to construct such a tiling with mesoscopic scale, we have studied a 

multi-component polymer system. In ABC star-shaped block terpolymer systems, true 
two-dimensional tilings can be self-organized because junction points should be aligned 
one-dimensionally under geometrical restriction (Figure 1B), being assumed that three 

polymer chains are totally incompatible and all chains are long enough. For this 
three-component polymeric system, theoretical work by Dotera et al. pointed out the 
formation of hexagonal (63) pattern, 14 while Bohbot-Raviv and Wang reported on (63) 

and (4.82) structures. 15 Later it has been summarized that only three patterns, (63), (4.82) 
and (4.6.12), are allowed to exist, since only three polygons should meet on a vertex and 
only even polygons should appear proposed as the even polygon theorem. 16 Of course, 

real structures have curved domain boundaries and volume fractions are not exactly the 

same as those of the surface fractions of the Archimedean tilings. However, using the 
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idea of the minimal fundamental triangles,14  it is easily shown that these three 

Archimedean tilings are representatives of the real structures. As for experimental 

results, (4.82) structure was observed from two different systems17,18 and a family of 

(4.6.12) which looks like (3.4.6.4) structure was also reported for the other ABC-star 
molecule,19 while co-axial structures were reported for another system.20 Recently, three 
patterns, (63), (4.82) and (4.6.12) have been observed systematically at a time with 

changing compositions of ABC molecules.21 Thus, if we regard polygons as polymeric 
domains directly tiled, a complex Archimedean tilings (32.4.3.4) cannot exist. However, 
if we employ a tiling as a skeleton, the argument is different. In this paper, we show 

experimental evidence of a mesoscopic (32.4.3.4) phase together with the corresponding 
simulated results.  
  Parameter x is introduced to represent the important molecular volumetric character. 

Namely x is the volume fraction of component P when volume ratios of three 
components, I:S:P, are expressed by 1:1:x, since the volume ratio of component I and S 
are designed to be the same. Polymer sample with x =1.3 used in this work, I1.0S1.0P1.3, 

was obtained by blending two I-S-P star-shaped molecules, i.e., I1.0S1.0P1.2 and I1.0S1.0P1.9 
at the weight ratio of 0.85/0.15. The details of preparation and characterization methods 
were described earlier. 21 It was confirmed in a previous work that the sample with x=1.2 

shows (4.82) two-dimensional pattern, while the sample with x=1.9 possesses (4.6.12).21 
The sample film was given by solvent-casting from dilute solution of tetrahydrofuran 

followed by drying and annealing at 150℃ for 4 days in a vacuum oven. The annealing 
temperature is well above the glass transition temperatures of three component 
polymers, so that we regard the structure obtained must be a stable one. The annealed 
sample was stained with osmium tetroxide and cut into ultra thin sections by using an 

ultra-microtome. TEM observations were carried out by adopting the same manner 
reported previously.22  
   Figure 2 shows typical TEM images of the sample I1.0S1.0P1.3. It has been confirmed 

that three polymer chains branched at one junction point all show cylinder-based 
structure.21 Accordingly the image in Figure 2A shows the cross section of cylindrical 
structure, while that in Figure 2B is the side view of cylinders together with the cross 

section. It is obvious from Figure 2A that the darkest I phase is forming two kinds of 
microdomains whose sizes and shapes are different from each other and both are packed 
very periodically. The experimental result obtained in the present study is the first 
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observation for the chains with the same length splitting into distinctly different 
microdomains.  A complex structure named “the knitting-pattern” was observed by 
Breiner et al. for a triblock copolymer system, where molecules were distributed into 

different environment but still within the microdomains with almost the same size and 
shape. 23  
   Figure 3A shows a more enlarged image for this sample. If we observe this figure  

very carefully, both the darkest I domain and the brightest S domain are not uniform, 
while anisotropic gray P domain is uniform. Here it is evident that the direct tiling 
patterns such as (4.82) and (4.6.12) are not applicable, however, indirect tiling as a 

skeleton could be given. Then, equilateral triangles and squares were tiled by placing 
their vertices at the centers of P domains as shown in Figure 3A. The constructed 
pattern is indeed the first observed mesoscopic (32.4.3.4) tiling, where the length of the 

polygons is about 80nm. Frank-Kasper phases11 and the dendron system13 are associated 
with tetrahedrally closed packing of soft spherical objects such as transition metal atoms 
or micelles. In contrast to these systems, the present system obviously can be viewed as 

a pure two-dimensional system and cannot be described by sphere packing. Hence we 
tentatively explore a more generic scenario to understand why the two-dimensional 
(32.4.3.4) could form. Within the framework of a weak crystallization theory,24,25  

where the cubic term of the density in the Landau expansion is important, we employ a 
two-component Landau theory proposed by Mermin and Troian.26  
   We can describe density waves for three components as deviations from the 
averages by using two order parameters, i.e., 

! 

"  and 

! 

" , defined as 

! 

"
I
= (# +") /2, 

! 

"
S

= (# $") /2 , 

! 

"
P

= #$  under the incompressibility condition: 

! 

"
I
+"

S
+"

P
= 0 . 

We consider the third order terms of a Landau free energy of the form 

! 

" 3 and 

! 

"# 2$ . 
The former term stemming from -ΦΙ ΦSΦP represents the effect of junction points such 

that three components should meet, while the latter term indicates that the largest 
volume fraction component, P, dominates the transition considering the relationship 

! 

" = #$
P
. These terms determine the relation between the sets of reciprocal-lattice 

vectors forming equilateral or isosceles triangles and the phases of waves in Fourier 
expansion under the condition of minimizing free energy. Now the form of a generic 
free energy 

! 

f describing Archimedean tiling phases to examine is 
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where 

! 

t  and 

! 

"  are parameters corresponding to the temperature, and each 

! 

gi  is a 

positive parameter. We easily find that reciprocal-lattice vectors with respect to (63), 
(4.82) and (4.6.12) can form equilateral or isosceles triangles and naturally contribute to 
these new third order terms to reduce the free energy. For (32.4.3.4), phases of waves 

are completely determined except the two-dimensional translation, and finally 

! 

"  
and 

! 

"  are represented as 

! 

" = cos[2# (2x) + # /2]+ cos[2# (2x + y) $# /4]

+cos[2# (x + 2y) $# /4]+ cos[2# (2y) + # /2]

+cos[2# ($x + 2y) + # /4]+ cos[2# ($2x + y) $# /4]

   (2a) 

and  

 

! 

" = cos[2# (3x + y)]+ cos[2# (2x + 2y) + # ]

+cos[2# (x + 3y)]+ cos[2# ($x + 3y) $# /2]

+cos[2# ($2x + 2y)]+ cos[2# ($3x + y) + # /2],

   (2b) 

where the lattice constant is taken to unity and numerical constants are omitted. We then 
find that these sinusoidal waves can reduce the third order terms, too.  
   In Figure 3B, the total density wave is displayed together with those of three 

individual components (Figures 3C-E). The partial area corresponding to the area of 
Figures C, D and E is surrounded by a white square in lower left of Figure 3B. At lower 
right of Figures 3A and –3B, three microdomains are distinguished with characters I, S 

and P to assign their mutual locations. Figure 3B is drawn by summing density waves 

for three components putting the relative contrast factor, i.e., 

! 

"
I
# = a($ +") /2 , 

! 

"
S
# = b($ %") /2 , 

! 

"
P

# = $c% , where 1.0, 0.1 and 0.3 for a, b and c are taken to realize 
the experimental contrast for microscopy. Two additional adjusting parameters are used 
to assign all the area into three different phases with three distinct contrasts 
corresponding to three polymeric phases. Comparing Figure 3B and observed pattern in 

Figure 3A, we find that the packing manner of three microdomains in the observed 
micrograph agrees well with the calculated one.  
   Furthermore, five molecules are drawn at five locations under different environment 

in Figure 4A, where every microdomain boundaries are simplified by straight lines 
instead of curves. Open- and crossed circles correspond to two types of junctions 
(4.6.10) and (4.8.10), respectively, and we find that their number ratio is 3:2. This figure 
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clearly shows that the environment of the present star-shaped terpolymer splits into five 
distinct sites, consequently it forms two assembling manners, (4.6.10) and (4.8.10). In 
Figure 4b the symmetry elements for five different microdomains, i.e., two I’s, two S’s 

and a P for three polymer phases, are drawn in a unit cell, and the corresponding ones 
are summarized in Table 1. From Figure 4b and Table 1, we can easily assign p4gm as a 
two-dimensional space group for this symmetric pattern. 

   The fact should be stressed that the length of every side of polygons is about 80nm 
and this length is almost one order magnitude longer than that from the supramolecular 
dendritic molecule, where the characteristic length is ca. 10nm. The size growth for 

(32.4.3.4) tiling shown as metallic alloy (~0.5nm), chalcogenide (~2nm), supramolecule 
(~10nm) and block terpolymer (~80nm) is beautifully demonstrating that the 
complexity is universal over different hierarchy.  

   In conclusion mesoscopic (32.4.3.4) Archimedean tiling pattern has been observed 
very clearly as a real-space evidence for a star-branched terpolymer of the ABC type for 
the first time. 
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Figure 1 A) Eleven possible Archimedean tilings. The Archimedean tiling is the 
tessellation of regular polygons provided that all vertices are of the same type. A set of 

integers (n1. n2. n3….) denotes a vertex type such that n1-gon, n2-gon, and n3-gon … 
meet consecutively on each vertex. Superscripts are employed to abbreviate when 
possible. B) Schematic alignment of ABC star-shaped block terpolymer molecules in a 

molten state. The junction points have to be aligned on a line and hence no junctions are 
permitted to stay on the microdomain interfaces, since the strong geometrical restriction 
being offered to the molecules.  
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Figure 2 Typical transmission electron micrographs for an I-S-P star-shaped block 

terpolymer molecule, I1.0S1.0P1.3. Ultra thin sections were cut from edge of the film 
specimen and the TEM observations were carried out from edge direction. A) The cross 
section of cylinders packed two-dimensionally and B) the side view of cylinder arrays.  
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Figure 3 Comparison of domain 
packing manner in between experiment 
(A) and calculated pattern (B). One of 

the Archimedean tiling patterns, 
(32.4.3.4), is drawn as thin solid lines 
throughout in Figures A and B. Figures 

C, D and E are representing density 
waves for I, S and P phases, 
respectively, while Figure B is drawn 

by summing them. 
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Figure 4 a) Packing manner of microdomains in detail and five different sites for the 
molecules. Three microdomains are distinguished with characters I, S and P to assign 

their mutual locations. The open circles show junction points at the vertices of 
hexagonal black I domains, while the crossed circles are those of octagonal ones. Five 
star-shaped molecules are drawn at five different vertices, three of them are sitting on 

two hexagonal black I domains, whereas another two are on an octagonal one. b) 
Symmetry elements, i.e., diads, tetrads and symmetry planes, of two-dimensional space 
group p4gm in the microphase separated pattern are shown. Solid lines correspond to 

mirror planes, while dotted lines are axial glide planes. 
 
Table 1 The symmetry elements are summarized. 

Domain type Multiplicity and  
Wyckoff letter 

Site Symmetry 

(1) Octagonal I domain 2 a 4.. 
(2) Hexagonal I domain 4 c ..m 
(3) S domain between two (2)s 2 b 2mm 
(4) S domain between (1) and (2) 8 d 1 
(5) P domain 4 c ..m 
 

 
 


