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Spatial distribution of a depletion potential between a big solute
of arbitrary geometry and a big sphere immersed in small spheres

Masahiro Kinoshita
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan

~Received 15 October 2001; accepted 28 November 2001!

The hypernetted-chain integral equations are solved on a three-dimensional cubic grid to calculate
the spatial distribution of the depletion potential between a big solute ofarbitrary geometryand a
big sphere immersed in small spheres forming the solvent. By analyzing the potential along a
specific trajectory of the big sphere, effects due to the geometric feature of the big solute~step edges,
trenches, corners, changing curvature, etc.! can be examined in detail. As an illustration, effects of
the step edge on the lateral depletion potential along a wall surface are analyzed. Along the
trajectory considered, the big sphere moves at constant height, starting on the center of the wall
surface and moving horizontally past the edge. The big sphere is repelled from the edge into the wall
surface, and to escape to the bulk it must overcome a significantly high free-energy barrier. As
another illustration, simple model calculations are performed for thelock and keysteric interaction
between macromolecules. The potential at contact~i.e., the stabilization free energy! for the key that
exactly fits the lock is far larger than for smaller and larger keys and considerably in excess of the
value predicted by the Asakura–Oosawa theory. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1445106#

I. INTRODUCTION

In a colloidal suspension containing particles of two sig-
nificantly different sizes, where the number density of
smaller particles is much higher than that of larger ones, an
attractive force is induced between the larger particles at
small separations. This is due to the extra volume that be-
comes available to the smaller particles when the larger par-
ticles approach each other and the excluded regions~i.e.,
regions from which the smaller particles are excluded! over-
lap, thus increasing the system entropy. The gain in entropy
becomes even greater when the larger particle moves to a flat
wall. These entropic excluded-volume~depletion! effects are
known to cause phase separation phenomena in the bulk and
at flat surfaces.1,2 Furthermore, the shape of the wall can lead
to entropic forces in a specific directionalong the wall. For
example, it was experimentally demonstrated that the larger
particles are locally repelled from a step edge into the wall.3

If the wall has constantly changing radius of curvature, the
forces act everywhere along it. Manipulation techniques
based on these depletion effects are expected to be useful for
making highly ordered particle arrays.

The depletion effects should play crucial roles in bio-
logical systems4–6 as well. Many biological processes are
controlled by the interactions between macromolecules and
by those of macromolecules with cell membranes. The mac-
romolecules and membranes generate excluded volumes for
the smaller particles forming the solvent, giving rise to the
depletion forces contributing to the interactions to a great
extent. From a physical viewpoint, it is interesting to study
the depletion effectsexclusivelyby employing simplified
models combined with theoretical methods or computer
simulations. In such studies, the solvent particles, macromol-
ecules, and membranes can be modeled as small hard

spheres, big hard bodies, and hard walls, respectively. No-
tice, however, that geometric features of the hard bodies and
wall surfaces are very important factors to be accounted for
in the studies. For example, variation of the local curvature
of the wall surface creates depletion forces in a specific di-
rectionalong the surface, that is, thelateral depletion forces.
Further, the depletion forces between big bodies with arbi-
trary shapes must be substantially different from those be-
tween big spheres.

A theoretical argument was first given by Asakura and
Oosawa,7 and afterwards a variety of more advanced theories
has been developed and applied to analyses of the depletion
effects. Computer simulations have also been performed
rather extensively. Nevertheless, these studies are limited to
the interactions between two big spheres~convex surfaces!
and between a big sphere and a flat wall.8–13 As the only
exception, Rothet al.14 calculated the interaction between a
concave surface and a big sphere using the density functional
theory15 ~DFT!. They calculated the depletion potentials be-
tween a big sphere and convex and concave surfaces having
various curvatures and suggested that a lateral depletion
force along a surface with changing curvature be approxi-
mately estimated from these potentials. Very recently, Roth
et al.16 developed a versatile DFT approach for calculating
the depletion potentials. It is potentially applicable to a sol-
ute of arbitrary geometry, but it has been illustrated only for
a big sphere and a flat wall.

A powerful tool for going beyond the well-studied sol-
utes of simple geometry~i.e., spheres and flat walls! is the
hypernetted-chain~HNC! integral equation theory. The re-
sults from the HNC theory are not very accurate because the
bridge functions are neglected. However, it has been verified
that the HNC theory gives quantitatively reliable results for
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the interactions between big spheres immersed in small
spheres, for diameter ratios as small as 0.033, and for pack-
ing fractions of the small spheres as high as 0.383~see Figs.
1 and 4 of Ref. 17!. In the present article, the author employs
the HNC integral equations solved on a three-dimensional
~3D! discrete cubic grid18,19 to calculate the spatial distribu-
tion of the depletion potential between a big solute ofarbi-
trary geometryand a big sphere immersed in small spheres
forming the solvent.20 In the usual HNC theory for spherical
particles, the results can be made very accurate by including
appropriate bridge functions.9,13 In the present case where a
solute of arbitrary geometry is treated, on the other hand,
such an inclusion cannot readily be achieved yet. However, a
quantitative examination of the results from the 3D-HNC
approach is performed below, proving that the approach is
reliable enough to draw significant conclusions on the deple-
tion effects.

Once the spatial distribution of the depletion potential is
calculated, by analyzing the potential along a specific trajec-
tory of the big sphere, effects due to the geometric feature of
the big solute~step edges, trenches, corners, changing curva-
ture, etc.! can be examined in detail. As an illustration, ef-
fects of the step edge on the lateral depletion forces are cal-
culated and shown to be in reasonable agreement with a
recent experimental observation.3 Effects of a trench are also
briefly studied. As another illustration, simple model calcu-
lations are performed for thelock and keysteric interaction
between macromolecules, and it is shown that the depletion
effects provide the interaction with remarkably high selectiv-
ity. That is, even when some keys of different sizes coexist,
the key that exactly fits the lock isexclusivelystabilized by
the contact. In earlier works performed for the potentials
between big spheres8,14 and between a big sphere and a flat
wall,13 it was suggested that the Asakura–Oosawa~AO!
theory was accurate for the potential at contact despite its
simplicity. However, this is not always true in cases of more
complicated geometry considered in the present model cal-
culations, and the selectively given is much higher than one
might expect from the overlap of the excluded regions and
the AO theory. In the two illustrations, the depletion forces
are analyzed and discussed in detail by relating them to the
packing effects of the small spheres.

II. MODEL AND THEORY

It is assumed that a solutei of arbitrary geometry is
immersed in solvent at infinite dilution. The Ornstein–
Zernike equation in the Fourier space is expressed by

Wis~kx ,ky ,kz!5rsCis~kx ,ky ,kz!Hss~k!, ~1!

and the HNC closure equation is written as

cis~x,y,z!5exp$2uis~x,y,z!/~kBT!%exp$wis~x,y,z!%

2wis~x,y,z!21. ~2!

Here, the subscripts denotes the solvent,c is the direct cor-
relation function,h the total correlation function,w5h2c, u
the potential,r the number density, andkBT Boltzmann’s
constant times the absolute temperature. The capital letters
~C, H, andW! represent the Fourier transforms.Hss(k) (k2

5kx
21ky

21kz
2) calculated using the usual HNC theory for

spherical particles is part of the input data. The numerical
procedure is briefly summarized as follows:~1! uis(x,y,z) is
calculated at each 3D grid point,~2! wis(x,y,z) is initialized
to zero, ~3! cis(x,y,z) is calculated using Eq.~2!, ~4!
cis(x,y,z) is transformed toCis(kx ,ky ,kz) using the 3D fast
Fourier transform~3D-FFT!, ~5! Wis(kx ,ky ,kz) is calculated
from Eq. ~1!, ~6! Wis(kx ,ky ,kz) is inverted towis(x,y,z)
using the 3D-FFT, and~7! steps~3!–~6! are repeated until the
input and output functions become identical within conver-
gence tolerance.

Unless otherwise specified, the author considers solute 1
and solute 2 immersed in small spheres forming the solvent
~the bulk density isrs!, which are illustrated in Fig. 1. Solute
1 is a hard cube with a hemispherical cavity and solute 2 is a
big hard sphere. The author tests three different diameters of
the big sphere that are smaller than, equal to, and larger than
the diameter of the cavity, respectively. First, the solute-1–
solvent correlation functions are calculated by following the
procedure described above (i 51). On grid points where the
solvent particle and solute 1 overlap, exp$2uis(x,y,z)/(kBT)%
is zero. On those where the solvent particle is at contact with
solute 1, it is set at 0.5, and otherwise it is unity. Second, the
solute-2–solvent correlation functions@the Fourier transform
of the total correlation function is denoted byH2s(k)# are
calculated using the usual HNC theory for spherical par-
ticles. The potential of mean force between the two solutes
F12(x,y,z) is then obtained from

F12~x,y,z!/~kBT!5u12~x,y,z!/~kBT!2w12~x,y,z!, ~3!

wherew12(x,y,z) is calculated by invertingW12(kx ,ky ,kz)
given by

W12~kx ,ky ,kz!5rsC1s~kx ,ky ,kz!H2s~k!. ~4!

The grid spacing~Dx, Dy, andDz! is set at 0.1ds , and the
grid resolution (Nx3Ny3Nz) is 25632563256. It has been
verified that the spacing is sufficiently small and the box size
~NxDx, NyDy, andNzDz! is large enough. Taking the lock–
key interaction as an example, effects of the grid spacing on

FIG. 1. Model solutes considered. Solute 1 is a hard cube having a hemi-
spherical cavity with diameterd1 , and the length of a step edge isL. Solute
2 is a big hard sphere with diameterd2 . These solutes are immersed in small
hard spheres with diameterds at infinite dilution.L andd1 are set at 10ds

and 5ds , respectively. Three different values, 4ds , 5ds , and 6ds , are
mainly considered ford2 , but 3ds or 7ds is also tested. The coordinate
system is chosen such that the origin is at the center of the cube.
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the numerical accuracy are illustrated in Table I where the
stabilization free energy~see Sec. III D! is chosen as a rep-
resentative parameter.

III. RESULTS AND DISCUSSION

A. Depletion potential between a big sphere and a flat
wall

With a sufficiently large value ofL, F12(x,0,0) for x
<2(L1d2)/2 can be regarded as a depletion potential be-
tween a big sphere and a flat wall,Fwall(h) ~h is the surface
separation!, which has already been studied extensively. The
author compares the DFT results from Ref. 16 with those
from the 3D-HNC approach in Fig. 2~d2 /ds55 and hs

5prsds
3/650.1, 0.2, and 0.3!. The DFT results are reportedly

in good agreement with the computer simulation data from
Ref. 13 and can be regarded as almost exact ones. The 3D-
HNC approach reproduces the detailed structure of the po-
tential and gives reasonable agreement with the DFT results.

It tends to overestimate the potential at contact, but the errors
are only;4.5%, ;9.9%, and;11% for hs50.1, 0.2, and
0.3, respectively. The author denotes the reduced density
profile of the small spheres byg(x,y,z) @5h1s(x,y,z)
11#. The number of the small spheres within the infinitesi-
mal volumedxdydzis given byrsg(x,y,z)dxdydz. With a
sufficiently large value ofL, g(x,0,0) for x<2(L1ds)/2
can be regarded as a reduced density profile near a flat wall.
Our value at contactg„2(L1ds)/2,0,0… is larger than the
exact value from the contact theorem,13 but the errors are
only ;3.8%, ;11%, ;14%, and;14% for hs50.1, 0.2,
0.3, and 0.367, respectively. Notice, however, thatL510ds

52d2 may not be sufficiently large. A significantly larger
value ofL ~e.g., 20ds54d2! would lead to better agreement,
but it is not easy to test, because due to a much larger box
size the amount of computer storage requirements becomes
unacceptably large on our workstation. In summary, the re-
duced density profile and the depletion potential calculated
using the 3D-HNC approach are both quantitatively reliable.
They are not very accurate, but the conclusions drawn are
not likely to be altered.

A physical explanation of the depletion potential in
dense small spheres can be given by looking at the depletion
force 2dFwall(h)/dh. The force can be discussed in terms
of the density of the small spheres at contact around the big
sphere.8,13At a big sphere and a flat wall the contact density
is considerably in excess ofrs . When the big sphere is at or
near contact with the flat wall, an additional, important factor
arises:The contact density is further enhanced in the vicinity
of the corner or channel confined between the two surfaces.
Choosing the big-sphere center as the origin and using polar
coordinates, the author expresses the contact density as
rc„r 5(d21ds)/2,u… ~u is measured from the positive axis
normal to the flat surface; see Fig. 3!. Forces originating
from rc for 0<u,p/2 and fromrc for p/2,u<p ~rc is
symmetrical aboutu5p!, respectively, constitute attractive
and repulsive components of the net force. Ath5ds , rc

increases asu approachesp and the net force is repulsive. At
h50, rc for p/2,u<umax makes a significantly large, re-
pulsive contribution butrc vanishes forumax,u<p where
cosumax52(d22ds)/(d21ds), leading to an attractive net
force. The net force vanishes at a surface separation smaller
than ds . The attractive and repulsive components are large
but comparable in magnitude, and the net force becomes

FIG. 2. Comparison between the DFT results~Ref. 16! ~dotted, solid, and
broken lines! and those from the 3D-HNC approach in terms of the deple-
tion potentialFwall(h) between a big sphere (d2 /ds55) and a flat wall for
three different values of the packing fraction of the small sphereshs . In the
3D-HNC approach, solute 1 shown in Fig. 1 is treated. The surface separa-
tion is denoted byh. The potential is scaled bykBT.

FIG. 3. Forces acting on a big sphere at or near contact with a flat wall.
Forces originating from the contact density are represented by the arrows. A
longer arrow corresponds to a stronger force.

TABLE I. Effects of the grid spacing on the stabilization free energy~SFE!
calculated. SFE is the value of the lock–key depletion potential at contact.
L55ds andd153ds are also tested withd252ds , 3ds , and 4ds .

L d1 d2 Nx5Ny5Nz Dx5Dy5Dz SFE

5ds 3ds 2ds 64 0.2ds 210.8
128 0.1ds 29.84
256 0.05ds 29.82

5ds 3ds 3ds 64 0.2ds 249.9
128 0.1ds 249.3
256 0.05ds 249.4

5ds 3ds 4ds 64 0.2ds 211.4
128 0.1ds 211.6
256 0.05ds 211.7

10ds 5ds 4ds 128 0.2ds 233.5
256 0.1ds 233.6

10ds 5ds 5ds 128 0.2ds 2132
256 0.1ds 2129

10ds 5ds 6ds 128 0.2ds 221.2
256 0.1ds 219.5
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considerably smaller. In the AO theory where nonzerorc is
set equal tors , for 0<h<ds the attractive component is
remarkably underestimated but the repulsive one is underes-
timatedeven more. The AO theory benefits from this fortu-
itous cancellation of errors and the net force calculated~a
purely attractive force with a range of one small-sphere di-
ameter! does not depart seriously from the exact one. More-
over, ath5ds the AO force is zero while the exact one is
repulsive, and ath50 the former is attractive but weaker
than the latter~see Fig. 3 of Ref. 13!. As a result, the poten-
tial at contact, which is obtained by integrating the net force
over the surface separation, can be predicted by the theory
with sufficiently high accuracy. This is not always true, how-
ever, in cases of more complicated geometry considered in
the present study~see below!.

B. Two-dimensional packing of small spheres
on a square surface

Solute 1 shown in Fig. 1 is treated andhs is fixed at
0.367. The reduced density profiles of the small spheres,
g„x,0,(L1ds)/2… for x<0 andg„(2L1ds)/2,y,(L1ds)/2…
for y<0, are shown in Fig. 4. As the step edge is approached
from the bulk, the profiles become more oscillatory. They
increase steeply near the edge, taking the highest values at
x;(2L1ds)/2 andy;(2L1ds)/2 on the wall surface, re-
spectively. They become less oscillatory as the center of the
surface is approached. The local maximums ofg(x,y,z) oc-
cur at x;(2L1ds)/26nds and y;(2L1ds)/26nds (n
50,1,...) and the global maxima at the four locations,
(x,y);„(2L1ds)/2,(2L1ds)/2…, „(L2ds)/2,(2L
1ds)/2…, „(2L1ds)/2,(L2ds)/2…, and „(L2ds)/2,(L
2ds)/2…. These results are indicative of formation of a dense
monolayer of the small spheres on the surface, which can be
referred to as thetwo-dimensional packingof the small
spheres. Along thex axis for x,0, for example, a small
sphere is stabilized atx;(2L1ds)/2 more than at any ad-

jacent locations. At locations deep into the wall surface, on
the other hand, they are almost equally stabilized, which is
reflected in the flatness of the profile.

It is worthwhile to changeL and calculate the reduced
density profiles. A hard cube without the cavity is treated
with L52ds and 2.5ds . The profilesg„x,0,(L1ds)/2… for
x<0 andg„(2L1ds)/2,y,(L1ds)/2… for y<0 are shown in
Fig. 5 for L52ds and in Fig. 6 forL52.5ds . The step-edge
effects observed are larger due to the smaller values ofL.
Again, the global maxima occur at the four locations, (x,y)
;„(2L1ds)/2,(2L1ds)/2…, „(L2ds)/2,(2L1ds)/2…,
„(2L1ds)/2,(L2ds)/2…, and „(L2ds)/2,(L2ds)/2…. It is
interesting to note that the values ofg(x,y,z) at the four
locations are roughly independent ofL and always signifi-
cantly high. On the center the profiles forL52ds take local
minimums while those forL52.5ds take local maxima. The
most stable packing could be depicted as shown in Fig. 7,

FIG. 4. The reduced density profiles of the small spheres,g„x,0,(L
1ds)/2… andg„(2L1ds)/2,y,(L1ds)/2…. Solute 1 is treated. Since they are
almost exactly symmetrical aboutx50 andy50, respectively, the profiles
are shown only forx<0 andy<0. The step edge is located atx52L/2 and
y52L/2 ~x/ds525 andy/ds525!, respectively.

FIG. 5. The reduced density profiles of the small spheres,g„x,0,(L
1ds)/2… and g„(2L1ds)/2,y,(L1ds)/2…. A hard cube (L52ds) without
the cavity is considered as the solute. Since they are exactly symmetrical
aboutx50 andy50, respectively, the profiles are shown only forx<0 and
y<0. The step edge is located atx/ds521 andy/ds521, respectively.

FIG. 6. The reduced density profiles of the small spheres,g„x,0,(L
1ds)/2… andg„(2L1ds)/2,y,(L1ds)/2…. A hard cube (L52.5ds) without
the cavity is considered as the solute. Since they are exactly symmetrical
aboutx50 andy50, respectively, the profiles are shown only forx<0 and
y<0. The step edge is located atx/ds521.25 andy/ds521.25, respec-
tively.
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indicating that the small spheres are packed as efficiently as
possible on the surface.

C. Step-edge effects on lateral depletion potential
along a wall surface

The solutes shown in Fig. 1 are treated withd254ds ,
5ds , 6ds , and 7ds and hs is fixed at 0.367. The depletion
potential F12„x,0,(L1d2)/2… is shown forx<0 in Fig. 8.
There is a shallow minimum located atx;2L/21z ~z is
;0.9ds , ;1.0ds , ;1.1ds , and;1.2ds for d254ds , 5ds ,
6ds , and 7ds , respectively!. The big sphere is repelledfrom
the edge into the wall surface. To escape to the bulk, the big
sphere must overcome a free-energy barrier,F12„2L/2
2j,0,(L1d2)/2…2F12„2L/21z,0,(L1d2)/2…, taking the
values of;6.3kBT, ;7.7kBT, ;9.0kBT, and;10kBT, re-
spectively. A positive peak occurs near the edge, atx
;2L/22j ~j is ;1.3ds , ;1.4ds , ;1.6ds , and ;1.7ds ,
respectively!. These results are all in qualitatively good
agreement with the experimental observation reported in
Ref. 3. Notice that the positive peak exists even in the hori-
zontal trajectory. It is difficult to compare our resultsquan-
titatively with the experimental data, because the data were
averaged over a variety of trajectories. The author just men-
tions that under the experimental condition,hs50.300 and

d255.54ds , the free-energy barrier calculated by the 3D-
HNC approach is;6.5kBT while the AO value is;5.3kBT.
Since the AO theory can reproduce neither the shallow mini-
mum nor the positive peak, it underestimates the barrier. If
the barrier is calculated asF12„2`,0,(L1d2)/2…
2F12„0,0,(L1d2)/2… by neglecting the shallow minimum
and the positive peak, the value from the 3D-HNC approach
is ;5.8kBT, which is fairly close to the AO value. As far as
the potential on the wall-surface center is concerned, the AO
theory gives a fairly accurate value.

The depletion force F12„x,0,(L1d2)/2…52]F12„x,
0,(L1d2)/2…/]x is calculated by numerical differentiation
and plotted in Fig. 9. Let us consider the trajectory of the big
sphere moving in the positive direction along thex axis.
F12„x,0,(L1d2)/2… is given by

F12„x,0,~L1d2!/2…52E
2`

x

F12„x,0,~L1d2!/2…dx. ~5!

Choosing the big-sphere center as the origin, the author ex-
presses the contact density asrc„r 5(d21ds)/2,u…, whereu
is measured from the positivez axis. Forces arising fromrc

for 0,u,p and fromrc for p,u,2p ~rc is not symmetri-
cal about u5p!, respectively, constitute positive~i.e., the
sphere is pulled in the positive direction along the trajectory
considered! and negative components of the net force. The
force curve takes a negative, local-minimum value atx;xq

5(2L1ds)/22(d2ds)
1/2 that corresponds to the position

where the big sphere touches the small sphere located atx
;(2L1ds)/2 on the surface. This is reasonable becauserc

at u5umax.p, where cosumax52(d22ds)/(d21ds) and the
big-sphere center is atx5xq , should be remarkably high and
makes a significantly large, negative contribution to the
force. Notice that the position of the local minimum is fur-
ther apart from the step edge with increasingd2 . At x
52L/2, the negative component is smaller than the positive
one due to the vanishing ofrc for p,u,umax. The net
force becomes zero at a location~an x coordinate! smaller
than2L/2 and larger thanxq . The presence of the negative
regime followed by the positive regime leads to the positive

FIG. 7. The most stable packing of the small spheres on a square surface. In
the case ofL52.5ds , spheres are placed on the four global-maximum lo-
cations, and then one more is placed on the center where it does not overlap
the four spheres and the reduced density profile has a local maximum.

FIG. 8. The depletion potentialF12 between solute 1 and solute 2~the big
sphere! along the trajectory of the big sphere:x<0, y50, and z5(L
1d2)/2. It is scaled bykBT and plotted for the four different values ofd2 ,
4ds , 5ds , 6ds , and 7ds . Since the potential is almost exactly symmetrical
aboutx50, the curves are shown only forx<0. The step edge is located at
x52L/2 (x/ds525). If we assume that the big sphere moves in the nega-
tive direction along thex axis, it moves at constant height, starting on the
center of the wall surface and moving horizontally past the edge.

FIG. 9. The depletion forceF1252]F12 /]x between solute 1 and solute 2
~the big sphere! along the trajectory of the big sphere:x<0, y50, andz
5(L1d2)/2. The force is calculated by numerical differentiation of the
potential plotted in Fig. 8.
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peak of the potential near the edge. As the big sphere moves
further, the negative component does not significantly
change, while the positive one decreases because of the van-
ishing of rc occurring, with the result that atx5x0 the net
force becomes zero. Notice thatx0 is considerably smaller
than (2L1d2)/2. @At x5x0 , rc in the vicinity of the corner
for x.x0 ~i.e., on the right side! is higher than that forx
,x0 ~i.e., on the left side! due to the geometric features of
the corners.# Moreover,x0 becomes deeper into the wall sur-
face with increasingd2 . When the big sphere moves further,
the positive regime is followed by a negative regime, leading
to the shallow minimum of the potential. It is now obvious
that values of the periodicity of the oscillations ofg in Fig. 4
and F12 in Fig. 8 near the step edge arenot the same. In
contrast, the periodicity of the oscillations ofg(x,0,0) for
x<2(L1ds)/2 andF12(x,0,0) for x<2(L1d2)/2, for in-
stance, is;ds regardless ofd2 . As further information, the
depletion potentialF12„xmin ,y,(L1d2)/2… (xmin52L/21z)
is shown for y<0 in Fig. 10. F12„xmin ,y,(L1d2)/2… also
has a shallow minimum aty;2L/21z. The global max-
ima of F12„x,y,(L1d2)/2… occur at the four locations,
(x,y);(2L/21z,2L/21z), (L/22z,2L/21z), (2L/2
1z,L/22z), and (L/22z,L/22z).

Effects due to a trench can be studied by analyzingF12

along the trajectory of the big sphere,x5(L1d2)/2, y50,
and z<0, where the hemispherical cavity acts as a trench
~see Fig. 11!. When the big sphere protrudes over the trench,
the overlap of the excluded regions decreases, so that the
sphere is repelled from the edge. Though the detailed struc-
ture of the potential depends on the packing effects of the
small spheres, it is observed in the figure that the sphere is
indeed repelled from the edge. This trend is enhanced with
increasingd2 .

D. Lock and key steric interaction between
macromolecules

The solutes shown in Fig. 1 are treated withd253ds ,
4ds , 5ds , and 6ds and hs is fixed at 0.367. The reduced

density profiles of the small spheres,g(x,0,0) for x>(L
2d11ds)/2 and g„(L1ds)/2,0,z… for z>0, are shown in
Fig. 12. It is observed that the cavity is densely packed with
the small spheres. A characteristic ofg(x,0,0) is that it does
not exhibit simple oscillation with periodicityds and the
third peak is higher than the second one, which indicates that
the profile is largely influenced by the geometric feature of
the cavity. The depletion potential,F12(x,0,0) for x.0
shown in Fig. 13, gives useful information on the lock and
key steric interaction between macromolecules. Stabilization
occurs when the key is at contact with the lock: The stabili-
zation free energies are;29.9kBT, ;234kBT,
;2129kBT, and ;220kBT for d253ds , 4ds , 5ds , and
6ds , respectively. These values are much larger than those
at contact with a flat surface,;24.2kBT, ;25.3kBT,
;26.4kBT, and;27.4kBT, respectively~see Fig. 8!. The
free energy for the key that exactly fits the lock is far larger
than that for the other keys. For the key to contact the lock,

FIG. 10. The depletion potentialF12 between solute 1 and solute 2~the big
sphere! along the trajectory of the big sphere:x5xmin52L/21z, y<0, and
z5(L1d2)/2. It is scaled bykBT and plotted for the four different values of
d2 , 4ds , 5ds , 6ds , and 7ds . Since the potential is almost exactly sym-
metrical abouty50, the curves are shown only fory<0. The step edge is
located aty52L/2 (y/ds525).

FIG. 11. The depletion potentialF12 between solute 1 and solute 2~the big
sphere! along the trajectory of the big sphere:x5(L1d2)/2, y50, andz
<0. It is scaled bykBT and plotted for the four different values ofd2 , 4ds ,
5ds , 6ds , and 7ds . Since the potential is exactly symmetrical aboutz
50, the curves are shown only forz<0. The hemispherical cavity acts as a
trench for2d1/2<z<d1/2 (22.5<z/ds<2.5).

FIG. 12. The reduced density profiles of the small spheres,g(x,0,0) for x
>(L2d11ds)/2 andg„(L1ds)/2,0,z… for z>0 ~the latter is exactly sym-
metrical aboutz50!. Solute 1 is treated. The concave surface of the cavity
is located atx5(L2d1)/2 (x/ds52.5).
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it must overcome a free-energy barrier, taking the values of
;27kBT, ;20kBT, ;7.0kBT, and ;7.6kBT for d253ds ,
4ds , 5ds , and 6ds , respectively. It is obvious that the sta-
bilization free energies and barriers are dependent on sizes of
the lock and the key. In the cases ofd252ds , 3ds , and 4ds

with d153ds , for example, the stabilization free energies
are ;210kBT, ;249kBT, and ;212kBT, respectively,
and the barriers are;6.3kBT, ;3.7kBT, and;3.4kBT, re-
spectively. The barriers for the keys smaller than the lock are
significantly higher than those for the other keys.

For d255ds , the volume of the excluded-region overlap
occurring when the big sphere touches the cavity surface is
estimated to be;6 times larger than that in the case where
the big sphere touches a flat surface. Nevertheless, the stabi-
lization free energy in the former is;20 times larger than
that in the latter, which means a failure of the AO theory. The
depletion forceF12(x,0,0)52]F12(x,0,0)/]x is calculated
by numerical differentiation and plotted in Fig. 14. In con-
trast to the flat-wall case, when the key exactly fits the lock,
even the contact densityrc in the vicinity of the corner
makes an attractive contribution to the depletion force~the
repulsive component is zero; see Fig. 15!. Hence, the forces
at and near contact predicted by the AO theory are underes-
timated simply by the factorrs /rc,av ~rc,av is the contact
density averaged over the surface where its value does not
vanish!, which is seriously small, leading to the failure men-
tioned above. When the key withd256ds is at contact with
the lock, a tiny space within which the small spheres are
packed remains, giving rise to highrc and a significantly
large, repulsive contribution to the force. Moreover,rc in the
vicinity of the corner makes a repulsive contribution. For
these reasons, the attractive force at contact for the key with
d256ds is much smaller than that in the case ofd255ds ,
leading to a smaller potential at contact~i.e., a smaller stabi-
lization free energy!.

As for one of the smaller keys withd253ds and 4ds , at

contact with the lock, the repulsive component is zero. How-
ever,rc vanishes around a larger portion of the big sphere
than in the case ofd255ds and nonzerorc is lower due to
the smaller value ofd2 , leading to a smaller attractive com-
ponent. As shown in Fig. 14, the force curve between one of
these keys and the lock has a strongly repulsive peak atx
5xp . For d253ds , xp equals (L2d11d2)/21ds that is
exactly one solvent diameter away from the contact. Ford2

54ds , xp is slightly larger than (L2d11d2)/21ds : xp

;(L2d11d2)/211.2ds . Here, as an example, solute 1 and
the sphere ofd254ds fixed at x5(L2d11d2)/211.2ds is
regarded as a single solute and the reduced density profile
g(x,0,0) is calculated and plotted in Fig. 16. It is observed
that the tiny space confined between the cavity and big-
sphere surfaces is densely packed with the small spheres~see
the closed circles in the figure!. From a simple geometric
consideration, one sees thatrc ~rc is symmetrical aboutu
5p! for u r,u<p, which yields a repulsive contribution to
the force, is elevated. Atx;(L2d11d2)/211.2ds , the re-
pulsive contribution in the case ofd254ds with u r;0.78p
is much larger than that in the case ofd255ds with u r

;0.85p. For d253ds , u r is 0.50p at x;(L2d11d2)/2
1ds , leading to the exceptionally large, repulsive net force.

FIG. 13. The depletion potentialF12 between solute 1 and solute 2~the big
sphere! along the trajectory of the big sphere:x.0, y50, andz50. It is
scaled bykBT and plotted for the four different values ofd2 , 3ds , 4ds ,
5ds , and 6ds . The concave surface of the cavity is located atx5(L
2d1)/2 (x/ds52.5). Ford253ds , 4ds , and 5ds , the center of the key~big
sphere! is located atx5(L2d11d2)/2 when it is at contact with the lock
~hemispherical cavity!. For d256ds , however, the center is located atx
5L/21$(d2/2)22(d1/2)2%1/2. The key exactly fits the lock only ford2

55ds .

FIG. 14. The depletion forceF1252]F12 /]x between solute 1 and solute
2 ~the big sphere! along the trajectory of the big sphere:x.0, y50, andz
50. The force is calculated by numerical differentiation of the potential
plotted in Fig. 13.

FIG. 15. Left: Forces acting on a big sphere~the key with d255ds! at
contact with a cavity~the lock withd155ds!. Forces originating from the
contact density are represented by the arrows. A longer arrow corresponds to
a stronger force. The big-sphere center is chosen as the origin and the
contact density is expressed byrc„r 5(d21ds)/2,u… whereu is measured
from the positivex axis. The contact density in the vicinity of the corner
yields an attractive force while in the wall-sphere case~right! it does a
repulsive one.
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The presence of the strongly repulsive peak in the force
curve for d253ds and 4ds makes the potential at contact
considerably smaller. In summary, even when some keys of
different sizes coexist, the key that exactly fits the lock is
exclusivelystabilized by the contact. The depletion effects
are substantially large, and the selectivity given is much
higher than one might expect from the overlap of the ex-
cluded regions and the AO theory.

IV. CONCLUSION

The author has employed the HNC equations solved on a
3D discrete cubic grid18,19to calculate the spatial distribution
of the depletion potential between a big solute of arbitrary
geometry and a big sphere immersed in small spheres form-
ing the solvent. By analyzing the potential along a specific
trajectory of the big sphere, effects due to the geometric
feature of the big solute~e.g., step edges, trenches, corners,
etc.! can be examined in detail. The potential along a surface
with changing curvature can also be obtained. The 3D-HNC
approach has been illustrated in two major analyses using
solutes 1 and 2 shown in Fig. 1. One of them is for elucidat-
ing effects of the step edge on the lateral depletion potential,
and the other is for simple model calculations of the lock and
key steric interaction between macromolecules. The physical
origins of the potentials obtained are discussed in detail by
relating the corresponding forces to the contact density of the
small spheres around the big sphere.

Along the trajectory considered for analyzing the step-
edge effects, the big sphere moves at constant height, starting
on the center of the wall surface and moving horizontally~in
the negative direction along thex axis! past the edge. A po-
tential minimum occurs not on the center but at a location
much closer to the edge. The big sphere is repelled from the
edge into the wall surface, and to escape to the bulk it must
overcome a significantly high free-energy barrier. A positive
peak occurs near the edge on the bulk side. These results are
all in qualitatively good agreement with the experimental
observation reported in Ref. 3. Since the AO theory can re-
produce neither the potential minimum nor the positive peak,

it underestimates the barrier. As far as the potential on the
wall-surface center is concerned, however, the AO theory
gives a fairly accurate value, implying that a cancellation of
errors occurs as in the sphere-flat wall case~see Sec. III A!.
Effects of a trench on the lateral depletion potential are also
briefly studied. When the big sphere protrudes over the
trench, the depletion potential becomes significantly higher.
It has thus been verified that a big sphere is repelled from the
edge. This trend is enhanced with the increase in the big-
sphere diameter.

A significant amount of information has been obtained
from the model calculations for the lock–key interaction be-
tween macromolecules. The potential at contact~i.e., the sta-
bilization free energy! for the key that exactly fits the lock
(d255ds) is far larger than for smaller and larger keys and
considerably in excess of the value predicted by the AO
theory. For d255ds , the volume of the excluded-region
overlap occurring when the big sphere touches the cavity
surface~i.e., the key fits the lock! is estimated to be;6 times
larger than that in the case where the big sphere touches a flat
surface. Nevertheless, the stabilization free energy in the
former is ;20 times larger than in the latter. Since the AO
theory is known to be accurate for the sphere–flat-wall case,
the result implies a failure of the AO theory for the particular
geometry. When the key exactly fits the lock, even the con-
tact density in the vicinity of the corner makes an attractive
contribution to the force. Moreover, there is no repulsive
component, leading to an exceptionally strong, attractive net
force. Hence, the forces at and near contact predicted by the
AO theory are seriously underestimated with no cancellation
of errors, leading to the failure mentioned above. Another
significant result is that a very high free-energy barrier fea-
tures the potential for a smaller key, preventing its access to
the lock. Thus, the selectively given by the depletion effects
is remarkably high. In the real biological systems, however,
many other effects such as fluctuations of the macromolecu-
lar conformations as well as van der Waals, electrostatic, and
hydrophobic forces will come into play. Still, the depletion
forces should have substantially large influences on the
lock–key interaction.

The author believes that the results presented are quali-
tatively correct and satisfactory even in a quantitative sense.
To assure very high accuracy, however, the bridge functions
must be included in the closure equations, and such refine-
ment is to be pursued in future studies. It is not difficult to
extend the present study to calculation of the potential be-
tween a pair of big solutes with arbitrary shapes that depends
on the orientations of the solutes. Work in this direction is in
progress.
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FIG. 16. The reduced density profile of the small spheresg„x,0,(L
1ds)/2…. Solute 1 and the sphere ofd254ds fixed at x5(L2d11d2)/2
11.2ds is regarded as a single solute.
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