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Structure, energies, and vibrational properties of silica rings in SiO2 glass

Takashi Uchino, Yukio Kitagawa, and Toshinobu Yoko
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

~Received 22 June 1999!

We have carried outab initio molecular orbital calculations on four isomers of Si9O25H14 modeling the local
structure of SiO2 glass at the Hartree-Fock level. These clusters consist of two-, three-, four-, five-, and/or
six-membered silica rings. The strain energies of the two-, three-, and four-membered rings are estimated by
comparing the total energies of the relevant isomers. The strain energy of the four-membered ring is estimated
to be 0.02 eV, indicating that the configuration of the four-membered ring is almost fully relaxed. The strain
energies of the two- and three-membered rings are calculated to be 1.85 and 0.26 eV, respectively, and these
values are in good agreement with the previous results calculated for the continuous SiO2 network models
based on a generalized-gradient approximation to density-functional theory@D. R. Hamann, Phys. Rev. B55,
14 784~1997!#. It has been shown that there exist bonding wave functions that are localized in these small
membered rings. We then have performed frequency calculations for the clusters, and the vibrational modes
associated with these silica rings are discussed.

I. INTRODUCTION

There is a general agreement that the structure of vitreous
silica consists of a disordered network of corner-sharing
SiO4 tetrahedra.1,2 However, two distinctive lines seen at 495
(D1) and 606 (D2) cm21 in the Raman spectra of vitreous
silica cannot be predicted by a simple random network of
corner-sharing SiO4 tetrahedra because of their unusually
sharp features.3 Although numerous structural models have
been proposed for their origin,4 recent first-principles ap-
proaches such as molecular-dynamics simulations5 and quan-
tum chemical calculations6 conclusively demonstrated that,
as has been proposed originally by Galeener and
co-workers,7,8 the D1 and D2 lines should be assigned to
in-phase breathing motions of oxygen atoms in puckered
four- and planar three-membered ring structures, respec-
tively. This is certainly a clear evidence for regular structures
of intertetrahedral linkage, namely, the intermediate-range
order1 in SiO2 glass.

It is worth mentioning that such small-membered ordered
rings cannot usually be found in any of silica crystalline
polymorphs, indicating that these rings can be regarded as
inherent structures in SiO2 glass. It is probable that the con-
figurations of the small rings peculiar to a glassy system
originate from the potential surfaces localized on the
intermediate-range scale~;10–20 Å! in its liquid state. If a
liquid is cooled rapidly enough so that detectable nucleation
and crystal growth cannot occur at the melting pointTm , the
atomic configurations characterized by the localized poten-
tial surface will be retained depending on the cooling rate.
That is, as for SiO2 glass, the populations of three- and four-
membered rings are expected to increase with increasing
cooling rate. This expectation is indeed in agreement with
the experimental results showing that the intensities ofD1
andD2 lines increase with increasing cooling rate or fictive
temperature9 ~see Fig. 1!. Recent molecular-dynamics simu-
lations also have demonstrated similar cooling-rate effects on
the size distribution of rings in amorphous silica.10 It can
hence safely be said that the stability of the intermediate-

range order in a glass is a measure of the stability of the glass
itself and that the locally stable sites in the glass structure
will behave as a ‘‘built-in resistance to structural change’’11

to show little reorganization of the atomic configurations on
cooling fromTm to glass transition temperatureTg . Further-
more, it is interesting to note that the vibrations associated
with the intermediate-range ordering regions are suggested to
explain the anomalous low-frequency~10–100 cm21! dy-
namics of glasses,12,13 i.e., the so-called ‘‘boson peak.’’

Thus, our knowledge of the energetics of small silica
rings will shed light on the stability, structure, and dynamics
of SiO2 glass. The strain energies in small-membered silica
rings were previously estimated from the Hartree-Fock~HF!
cluster calculations on the basis of the Born-Haber
cycles.14–17 As for the three-membered ring, for example,
the strain energy was obtained from the reaction

FIG. 1. Unpolarized Raman spectra of as-melted and quenched
vitreous silica. The quenched sample was obtained by rapid re-
moval of the sample from the furnace into water. Raman spectra
were measured using 514.5 nm line of Ar1 laser as an exciting
beam.
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H6Si3O313SiH2~OH!253~SiH2OH!2O, in which three Si-O
bonds in the ring are converted to similar bridging bonds in
the open cluster. Hamann18 has, however, proposed that
these HF calculations do not reflect possible effect of the
condensed environments in which the strained rings of inter-
est actually reside. Furthermore, the author18 pointed out that
the obtained strain energies are less than straightforward
since they will include errors produced by the substitution of
H2SiO2 tetrahedra for SiO4 tetrahedra and by a transferability
assumption of a hydration energy. Hamann,18 therefore, used
continuous SiO2 network models and carried out density-
functional theory calculations based on the generalized-
gradient approximation~GGA! to evaluate the strain energies
of the two- and three-membered rings in his models; the
strain energies were obtained by a straightforward subtrac-
tion of the energy ofa quartz from the energies of the
strained-ring solids. The results of his calculations gave sig-
nificantly lower strain energies than the previous estimates
from the cluster calculations; for example, he obtained a
strain energy of 0.25 eV for three-membered rings, compared
to the most reliable value@0.81 eV~Ref. 14!# obtained from
the HF cluster calculations.

However, it would be difficult to conclude which meth-
ods, HF or GGA approximations, yield more reliable strain
energy because no direct experimental comparisons are pos-
sible at present. It will hence be useful to estimate the strain
energies by an alternative approach. In this paper, we evalu-
ate the energies of strained silica rings from HF cluster cal-
culations without using the idea of Born-Haber cycles. We
employ here relatively large clusters consisting of two-,
three-, four-, five-, and/or six-membered silica rings, and a
strain energy of interest is estimated straightforwardly from
the difference in total energy between the relevant clusters.
We also investigate the vibrational properties of the model
clusters and compare the calculated results with the observed
vibrational spectra.

II. MODELS AND CALCULATIONAL PROCEDURES

In a previous paper,6 we reported the results ofab initio
molecular-orbital~MO! calculations of a silica cluster con-
sisting of 9 Si~O1/2!4 tetrahedra in which the three- and four-
membered rings were so connected by bridging oxygens as
to form an additional six-membered ring; the dangling bonds
of ‘‘surface’’ oxygen atoms of the cluster were terminated by
hydrogen atoms, resulting in the Si9O25H14 composition. It
has been shown that the predicted geometries are in good
agreement with the observed ones and that the cluster yields
the well localized breathing modes of the four- and three-
membered rings, which are quite consistent with the ob-
served frequencies and isotopic shifts of theD1 andD2 Ra-
man lines, respectively. In the present paper, we further
employ three additional isomers of Si9O25H14 to estimate the
strain energies of silica rings. In what follows, the cluster
consisting ofl-, m-, andn-membered rings is referred to as
modell-m-n; the clusters used in this study are models 4-4-5,
3-5-5, and 2-4-5 as well as model 3-4-6 reported previously6

~see Fig. 2!. The geometries of these clusters were fully op-
timized at the HF/6– 31G(d) level.19 We have also evaluated
their harmonic vibrational frequencies at the same level of
theory. No imaginary frequencies were obtained for all the

clusters employed, indicating that thus obtained optimized
geometries correspond, respectively, to the different mini-
mum energy structures. Allab initio MO calculations in this
work were carried out using theGAUSSIAN 94 computer
program20 on the CRAY T94/4128 supercomputer.

III. RESULTS

A. Structural parameters

Figure 2 shows the optimized geometry of the model clus-
ters calculated at the HF/6– 31G(d) level, and Table I shows
the optimized structural parameters. One sees that the aver-
age structural parameters are insensitive to the type of the
clusters employed. The exceptions are the Si—Si bond dis-
tance and the Si—O—Si bond angle calculated for model
2-4-5, which are appreciably shorter and smaller, respec-
tively, than those calculated for the other clusters. This dis-
crepancy results from the edge-sharing unit in model 2-4-5;
the optimized Si—Si bond distance and Si—O—Si bond
angles for the edge-sharing unit were calculated to be 2.367
Å and 91°, respectively.

It should be noted that all the structural parameters calcu-
lated for the present model clusters, except the Si—Si bond
distance and Si—O—Si bond angle in model 2-4-5, are in
good agreement with the experimental values observed for
SiO2 glass.21–23 This indicates that not only model 3-4-6,
whose structural parameters were reported in a previous
paper,6 but also the other models newly employed here rea-
sonably represent the structure of actual SiO2 glass on the
intermediate-range scale.

We further notice from Fig. 2 that the geometries of the
three- and four-membered rings are basically the same irre-
spective of the type of the clusters containing these rings,
indicating that the three- and four-membered rings have their
own favorable intertetrahedral linkages. That is, the three-
and four-membered rings embedded in the present model
clusters are all characterized by nearly planar and puckered
configurations, respectively. This result suggests that such
planar and puckered structures are highly stable even if they
are connected by Si—O—Si bond with the other types of
silica rings and that most of the three- and four-membered
rings in actual SiO2 glass will have such regular configura-
tions. On the other hand, the geometries of the larger five-
and six-membered rings are considerably distorted, resulting
in the irregular configurations depending on the clusters.
Thus we consider that the potential energy function of these
larger rings will be rather flat compared with that of the
smaller three- and four-membered rings, allowing a great
variety of configurations. In other words, these larger rings
will permit full relaxation owing to a number of internal
degrees of freedom, and the strain energy of these larger
rings will be almost completely relaxed by changing their
configurations.

The two-membered ring in model 2-4-5, or the edge-
sharing unit, is also characterized by a planar regular struc-
ture. As mentioned above, however, the edge sharing tetra-
hedra are significantly strained, showing a considerable
distortion of the O-Si-O~89°! and Si-O-Si~91°! bond angles.
Thus we consider that this regular configuration of the two-
membered ring results from the structural constraint to keep
such an edge-sharing geometry.
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B. Strain energies of two-, three, and four-membered rings

We next turn our attention to the strain energiesDE of the
silica rings. As pointed out in the previous subsection, the
five- and six-membered rings in the present model clusters
will have relatively unconstrained geometries. In this study,

we hence assume that these rings do not have appreciable
strain energies, namely,DE5 and DE650. We further as-
sume that strain energies of the two- (DE2), three- (DE3),
and four-membered rings (DE4) are independent of the type
of the cluster since the geometries of the respective rings do

TABLE I. Optimized structural parameters~averaged values! of the model clusters calculated at the
HF/6–31G~d! level. The corresponding observed values for SiO2 glass are also shown.

Bond distances~Å! Bond angles~degree!

Si—O O—O Si—Si Si—O—Si O—Si—O

calc.
Model 2-4-5 1.624 2.657 2.999 133.9 109.4
Model 3-4-6 1.622 2.653 3.059 142.3 109.5
Model 3-5-5 1.622 2.648 3.057 142.1 109.5
Model 4-4-5 1.621 2.647 3.097 146.8 109.5

Obs. 1.608,a 1.624b 2.626,a 2.652b 3.077a 143c 109.5b

aReference 21.
bReference 22.
cReference 23.

FIG. 2. Optimized geometries of the model clusters calculated at the HF/6– 31G(d) level. All the clusters have the same stoichiometry
of Si9O25H14: ~a! Model 3-4-6,~b! model 4-4-5,~c! model 3-5-5, and~d! model 2-4-5.
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not show any cluster dependence as well.
On the basis of the above assumptions, we can estimate

the values ofDEn ~n52, 3, and 4! by calculating the total-
energy difference between the relevant clusters. The total
energies of the model clusters are shown in Table II. To
begin with, we calculate the values ofDE4 . The total-energy
difference between models 3-4-6 and 3-5-5 will represent the
strain energy difference betweenDE31DE4 and DE3 ,
namely,DE4 . This difference is calculated to be 0.02 eV
indicating that the strain energy for the four-membered ring
is almost zero. We can further calculate the value ofDE3
2DE4 by subtracting the total energy of model 3-4-6 and
that of model 4-4-5, which is calculated to be 0.24 eV. Since
we have got the value ofDE4 ~0.02 eV!, DE3 is estimated to
be 0.26 eV. Finally, we subtract the total energy of model
2-4-5 between that of model 4-4-5, which representsDE2
2DE4 ~1.83 eV! and then the value ofDE2 results in 1.85
eV. Consequently, the values ofDE2 , DE3 , and DE4 are
estimated to be 1.85, 0.26, and 0.02 eV, respectively.

IV. DISCUSSION

A. Comparison with the previous strain energies

1. Four-membered rings

To our knowledge, the strain energies of puckered four-
membered rings have not been estimated from GGA and HF
calculations. Galeener7 previously estimated the strain en-
ergy of a planar four-membered ring on the basis of the
angular dependence of the energy of a Si—O—Si bridging
unit derived from H6Si2O7 HF calculations;24 the value of
DE4 for the planar four-membered ring was estimated to be
0.16 eV. Assuming the ideal tetrahedral SiO4 units,
Galeener7 found that each Si—O—Si bond angleu of the
planar four-membered ring is calculated to be 160.5°, which
is greater than the minimum~152°! in the Si—O—Si bond-
bending potential function.24 Galeener7 then predicted that
the planar four-membered ring will tend to become puck-
ered, since this puckering always results in a lowering of the
angleu and hence reduces ring energy. Such Galeener’s pre-
diction is indeed consistent with our calculations. That is, all
the four-membered rings in the present model clusters have
puckered configurations, and the strain energy of the puck-
ered ring is 0.02 eV, which is much smaller than the value
estimated from the planar four-membered rings. It is hence
probable that the four-membered rings in actual SiO2 glass
attempt to reduce its strain energy by relaxing the ring ge-
ometry, resulting in a puckered configuration having almost
no strain energy.

2. Three-membered rings

Table III shows the strain energy and average ring bond-
ing geometries obtained for the present three-membered
rings along with those reported previously. As for the HF
strain energy based on a Born-Haber cycle, we only show the
most reliable value,14 which was pointed out by Hamann,18

among the previous HF studies.
Hamann18 previously pointed out that the GGA strain en-

ergy is more than three times smaller than the HF strain
energy. However, we do not see such a discrepancy between
the present HF~0.26 eV! and GGA~0.25 eV! strain energies;
rather there is a good agreement between the two methods.
This result indicates that if we do not use the Born-Haber
cycle and transferability assumptions of a hydration energy,
which are probably the main drawback of the previous HF
calculations, we can get the HF strain energy of the three-
membered ring that is comparable to the GGA strain energy.

It is also interesting to note that the Si—O—Si and
O—Si—O bond angles calculated for the present three-
membered rings agree well with those obtained from the
GGA calculations~see Table III!. Such good correspondence
between the present cluster calculations and the GGA allows
us to suggest that long-range Coulombic forces that will exist
in actual silica glass do not play an important role in deter-
mining the geometry and strain energy of three-membered
rings. In other words, the bonding wave functions around the
three-membered rings are expected to be localized, and their
structures and energies are hardly affected by the surround-
ing environments. Indeed, we have found that in the valence
states there exists a molecular orbital that is highly localized
in a three-membered ring@see Fig. 3~b!#. We also have found
a valence orbital localized in a four-membered ring@see Fig.
3~a!#. These localized orbitals result from a overlap of the O
2p orbitals, resulting inp-like bonding. Thus we consider
that the stability of thep-like bonds will play a vital role in
determining the regular geometries of the three- and four-
membered rings in SiO2 glass.

3. Two-membered rings

Table IV compares the strain energies and average ring
bonding geometries of two-membered rings obtained from
different methods. We see from Table IV that the present
strain energy of the two-membered ring is much larger than
that of the three-membered ring shown in Table III. Such a
large strain energy of the two-membered rings most likely
results from a significant distortion of the SiO4 tetrahedral
units in the edge-sharing structure.

TABLE II. Total energies of the model clusters calculated at the
HF/6–31G~d! level.

Energy~eV!

Model 2-4-5 2121 960.13
Model 3-4-6 2121 961.72
Model 3-5-5 2121 961.74
Model 4-4-5 2121 961.96

TABLE III. Strain energies and geometries of three-membered
rings.

DE3
~eV! Si—O ~Å! Si—O—Si ~°! O—Si—O ~°!

This work 0.26 1.627a 132.9a 106.5a

GGAb 0.25 1.640 131.0 109.0
HFc 0.81 1.646 136.7 103.3

aAverage values calculated for the three-membered rings in models
3-4-6 and 3-5-5.

bReference 18.
cReference 14.
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We also notice from Table IV that the present strain en-
ergy is slightly higher than the GGA value by;0.6 eV. This
discrepancy may be ascribed to the strain energies of the
four- and/or five-membered rings in model 2-4-5. In the
present calculations, we assumed that all the clusters em-
ployed in this study have the same strain energy for the re-
spectiven-membered silica rings. However, the SiO4 tetra-
hedra in the two-membered ring in model 2-4-5 are
considerably deformed, and the adjacent four- and five-
membered rings also share the deformed SiO4 units. It is
hence probable that such four- and five-membered rings in
model 2-4-5 are geometrically constrained as compared with
those in the other clusters, resulting in the larger values of

DE4 and DE5 than the other ones. Consequently, a simple
subtraction of the total energy of model 2-4-5 from that of
model 4-4-5 will represent the strain energy not only of the
two-membered ring but also of the ‘‘strained’’ four- and
five-membered rings in model 2-4-5.

In spite of the discrepancy between the present and GGA
values, it can be said that relative energy differences among
the strain energies shown in Table IV are not so large as
compared with the case of the three-membered rings shown
in Table III. Even the previous HF calculation based on a
Born-Haber cycle15 can predict the strain energy that is com-
parable to the present value as well as the GGA
approximations.25 Thus we consider that the bonding wave
functions around the two-membered rings are much more
localized than those around the three-membered rings; as
shown in Fig. 3~c!, such a highly localized molecular orbital
can be found in model 2-4-5. This indicates that the solid-
state environment has only a minor effect on the strain en-
ergy of the two-membered rings similar to the case of the
three-membered rings.

B. Vibrational properties of rings

We have previously shown that clusters of atoms model-
ing the local structure of silica glass, for example, model
3-4-6 in this study, yield the well localized breathing modes
of the four- and three-membered rings, which are quite con-
sistent with all known vibrational properties of theD1 and
D2 defect lines, respectively, in the Raman spectrum of vit-
reous SiO2.

6 In this work, since we further employed models
3-5-5, 4-4-5, and 2-4-5 along with model 3-4-6, it is inter-
esting to compare the vibrational properties of these newly
introduced clusters with those reported previously.

Table V shows the vibrational frequencies associated with
the two-, three-, and four-membered rings calculated for the
present model clusters. We found that these ring modes are
highly localized and decoupled from the motions of the
extra-annular atoms. We see from Table V that the vibra-
tional frequency associated with the three-membered ring in
model 3-5-5 is in good agreement with that in model 3-4-6,
implying that the vibrational frequency of the three-ring
mode is almost constant irrespective of the type of the clus-
ter. On the other hand, it appears that there is a slight scatter
among the calculated frequencies of the four ring modes. For
example, model 4-4-5 yields two rather different vibrational
frequencies for the four-ring modes at 529 and 539 cm21;
two four-membered rings in this model almost equally con-
tribute to these two types of breathing modes. It should be

FIG. 3. Examples of the valence molecular orbitals localized in
~a! four-, ~b! three-, and~c! two-membered silica rings.

TABLE IV. Strain energies and geometries of two-membered
rings.

DE2
~eV! Si—O ~Å! Si—O—Si ~°! O—Si—O ~°!

This work 1.85 1.657a 91.2a 88.8a

GGAb 1.23 1.678 90.3 89.7
HFc 1.83 1.660 91.3 88.7

aAverage values calculated for the two-membered rings in model
2-4-5.

bReference 18.
cReference 15.
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noted, however, that if we replace all the surface H atoms by
tritium ~T! atoms, the two vibrational frequencies tend to get
close to each other; the resultant frequencies~525 and 527
cm21! are comparable to the frequency of the four-ring mode
of the T-terminated model 3-4-6~526 cm21!. This indicates
that the splitting of the four-ring modes in model 4-4-5 re-
sults from an accidental degeneracy or a resonance between
the ring modes and the surface OH motions. The possibility
of such a degeneracy has already been pointed out in a pre-
vious paper.6 Model 2-4-5 also gives the four-ring mode at
539 cm21 for the H-terminated cluster, which is somewhat
higher than that of the corresponding frequency of model
3-4-6 ~531 cm21!. However, one sees a rather good corre-
spondence between the frequencies of models 2-4-5~524
cm21! and 3-4-6~526 cm21! when the terminal H atoms are
replaced by the T atoms. Thus, a slight discrepancy between
the frequencies of the two H-terminated clusters may also
result from the interaction between the four-ring modes and
the surface OH motions.

Considering these things mentioned above, we can expect
all the clusters employed in this work to give basically simi-
lar vibrational frequencies not only for the three-membered
rings but also for the four-membered rings. This is consistent
with the two sharp Raman features in the Raman spectrum of
SiO2 glass, seen at 495 and 606 cm21. Although the raw
frequency values calculated at the HF level are systemati-
cally higher than the observed ones by about 10–12 % be-
cause of the neglect of electron correlation,26 the ratio of the
two ring modes~;652/;5325;1.23 for the H-terminated
clusters and;652/;5265;1.24 for the T-terminated clus-

ters! is in good agreement with that of the observed one
(606/49551.22). Thus we consider that the three- and four-
ring modes obtained in the work indeed correspond to the
observed two sharp Raman lines in SiO2 glass, which further
confirms Galeener’s predictions.7,8

It should be worth mentioning that the two-membered
ring has several vibrational modes in the frequency region
from ;760 to ;780 cm21 ~see Table V!. If we take into
account the systematic errors at the HF level, these vibra-
tional are expected to occur in the frequency range from
;700 to ;730 cm21. However, the observed Raman spec-
trum of SiO2 glass does not show any spectral feature in this
frequency range. It is hence most probable that the two-
membered rings or the edge-sharing units hardly exist in the
Si—O—Si network in SiO2 glass. This can be explained by
the large strain energy of the highly constrained edge-sharing
units mentioned above.

V. CONCLUSIONS

We obtained the HF strain energies of the two-, three-,
and four-membered silica rings without using the Born-
Haber cycle and transferability assumptions. All the four-
membered rings in the present model clusters have puckered
geometries, and their strain energy is almost zero~0.02 eV!.
This indicates that the four-membered ring can relax its pos-
sible strain energy by puckering. The strain energies of the
three- and two-membered rings are calculated to be 0.26 and
1.85 eV, respectively, which are in reasonable agreement
with the previous GGA predictions. Such good correspon-
dence between the present HF and GGA calculations
strongly suggests that the condensed environments have only
a minor effect on the strain energies of these small-
membered rings in SiO2 glass. That is, as shown in Fig. 3,
bonding wave functions around the small-membered silica
rings are highly localized. The geometries and energies of
then-membered rings (n52,3,4) will hence be governed by
such localized potential energy surfaces, resulting in rather
regular structures, although the two-membered ring will
hardly exist in actual SiO2 glass because of its large strain
energy. Furthermore, in agreement with our previous
calculations,6 the two sharp Raman lines at 495 and 606
cm21 have been ascribed to breathing motions of oxygen
atoms in the puckered four- and planar three-membered
rings, respectively.
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