<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>未定義</td>
</tr>
<tr>
<td>作者</td>
<td>未定義</td>
</tr>
<tr>
<td>引用</td>
<td>The Review of Physical Chemistry of Japan (1966), 35(2)</td>
</tr>
<tr>
<td>発行日</td>
<td>1966-04-30</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/46863</td>
</tr>
<tr>
<td>タイプ</td>
<td>未定義</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>出版者</td>
</tr>
</tbody>
</table>

Kyoto University

View metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository
Vol. 35, 1965

THE REVIEW OF PHYSICAL CHEMISTRY OF JAPAN

Founded in 1926

CONTENTS

Tetuo Mizukami: Physico-Chemical Studies on Acetaldehyde Polymerization at High Pressure and Low Temperature (I) Liquid-Solid Transition and Polymerization of Acetaldehyde .. 51

Tetuo Mizukami: Physico-Chemical Studies on Acetaldehyde Polymerization at High Pressure and Low Temperature (II) The Kinetics of the Polymerization of Acetaldehyde .. 60

Tetuo Mizukami: The Melting Polymerization of Acetaldehyde 73

Kiyoshi Kitamura: Studies on the Telomerization of Ethylene with Carbon Tetrachloride (I) Kineticism of the Telomerization Initiated by Azo-bis-isobutyronitrile ... 83

Kiyoshi Kitamura: Studies on the Telomerization of Ethylene with Carbon Tetrachloride (II) Properties of Ethylene and Tetrachloro-Alkanes Mixtures 92

Jiro Osugi, Kuma Hamano and Satoshi Hirayama: Studies on the Kinetics of the Thermal Polymerization of Butadiene under High Pressure ... 103

S. D. Hamann: Diminished Solubility of Dodecylamine Hydrochloride in Water at High Pressures .. 109

THE PHYSICO-CHEMICAL SOCIETY OF JAPAN
THE REVIEW OF PHYSICAL CHEMISTRY OF JAPAN
(Butsuri-Kagaku no Shinpo)

President: Shinkichi Horiba, Professor Emeritus, M. J. A.

Members of Council:
Azuma Okuda (Chief)
J. Osugi Y. Kachi I. Tsujikawa
K. Kodera H. Takagi A. Kaji
R. Goto H. Hatano A. Saika
T. Yamamoto W. Jono
T. Fujinaga R. Goto
S. Tanaka E. Suito

Board of Editors:
J. Osugi (Chief) Kyoto University
W. Jono (Associate) University of Kobe
R. Goto () Kyoto University
E. Suito () Kyoto University
S. Shida Tokyo Institute of Technology
T. Kitagawa Yokohama University
M. Tamura Kyoto University
H. Matsuyama Doshisha University
T. Makita Kyoto Technical University
K. Suzuki Ritsumeikan University
K. Hirota University of Osaka
S. Seki University of Osaka
T. Ishino Himeji Institute of Technology
T. Imoto Municipal University of Osaka
R. Fujishiro Municipal University of Osaka
O. Toyama Prefectural University of Osaka
S. Ono Prefectural University of Osaka
S. Tsuchihashi University of Kobe
S. Hasegawa Okayama University
H. Togawa Doshisha University

Secretary:
K. Shimizu M. Sato
T. Fujiwara
April 30, 1966

Communications to the Editor should be addressed to Board of Editors, The Physico-Chemical Society of Japan, College of Science, Kyoto University, Kyoto, Japan.

Business Correspondences should be addressed to: Secretary, The Physico-Chemical Society of Japan, College of Science, Kyoto University, Kyoto, Japan.

Purchase Order should be addressed to: Maruzen Co., Ltd., Nihonbashi, Chuo-ku, Tokyo, Japan.

Published by

THE PHYSICO-CHEMICAL SOCIETY OF JAPAN

(Nippon Butsuri-Kagaku Kenkyu Kai)

College of Science, Kyoto University, Kyoto, Japan

Printed by KAWAKITA INSATSU CO., Kyoto, Japan
Asahi's history dates as far back as 1923 when the late Mr. Jun Noguchi, who was the first president of the company, erected a synthetic ammonia plant in Nobeoka, present site of the company's major plants. This is a memorable plant in that the first commercial production of synthetic ammonia in the world by the Casale process was successfully started at this plant.

Thereafter Asahi's production activity continued to expand, with the exception of the war years, into great many fields. Using ample electric power from its own power plants and standing on the firmly established basis that primary raw materials are available within the company, Asahi has been producing chemical fibers, synthetic resin, explosives, chemical fertilizers, chemical seasoning, industrial nitrocellulose and several scores of chemicals of ammonia, soda and chlorine derivatives.

This fact points up to Asahi's special feature as a chemical company: Asahi ranks first in the production of viscose rayon in Japan and its cuprammonium rayon capacity is largest in the world. Using acrylonitrile monomer produced by Sohio process at its Kawasaki plant, Asahi produces polyacrylic fiber “Cashimilon” by its own process. Production acrylonitrile monomer and of polyacrylic fiber is also the largest in Japan. Asahi's chemical seasoning (monosodium glutamate) Asahi Aji, ranks second in output of similar chemical seasonings. Sun-Nitro, Asahi’s unique chemical fertilizer, is building up for itself a spectacular sales. Asahi's industrial nitrocellulose and electrolytic soda production is the largest in Japan. Asahi is also at the top in production volume of all the explosives manufacturers in Japan. Recently Asahi launched into three new fields of operation, i.e. nylon 6, synthetic rubber polybutadiene “ASADENE” and new building material “Silikaltsuit”.

At present, Asahi's products are exported to 50 different countries. Export of the process is also making headway. Worthy of mention in this connection is the export of viscose rayon manufacturing techniques to the Baroda Rayon Corporation, India and Dawood Industries Limited, Pakistan, of polyacrylic fiber manufacturing techniques to ANIC S. p. A., Italy and of Acrylonitrile Monomer Manufacturing Technique to U. S. S. R. Through all these activities, the excellence of Asahi's techniques is highly evaluated.

Asahi now has many powerful affiliates, including Asahi-Dow Limited and Shin Nihon Chemical Industry Co., Ltd. and is proceeding on the road to further growth as a multiple-purpose chemical company.
VERY HIGH PRESSURE EQUIPMENT

"DIA" Equipment, Cubic Type Very High Pressure Equipment, Anvil Face 10mm X 10mm, Total Weight 8 ton

Liquid Pressure up to 15,000 kg/cm²
Solid Pressure up to 100,000 kg/cm²
for Production and Research Purposes
Super High Pressure Generator Unit
Super High Pressure Reaction Vessel
Super High Pressure Measurement Gauge
Super High Pressure Equipment

S.H.P. Measurement Gauge, Electrical Resistance Strain Gauge Type,
Calibrated with the Master Free-Piston Gauge in Kobe Steel.
(Japanese PAT. No.294153)

KOBE STEEL
MACHINERY DIVISION

HEAD OFFICE: M. 1-chen, Wakahama-cho, Fukuishiku, Kobe, Japan
OVERSEAS OFFICES: New York, Dusseldorf,
TOKYO OFFICE: Yoyogi 2 Bldg. No. 3-1, Tori 3-Chome, Nihonbashi, Chuo-ku, Tokyo, Japan

Other Major Products:
Now Ready For Use : The Tri-band ESR

JES-3BS ESR

.... with Unique Linear Field Sweep Unit!

The JES-3BS is a new versatile ESR instrument with excellent features:

- Super Sensitivity
- Ultra Resolution
- Easy Operation
- Valuable Attachments
- Tri-Measurement at X, K & Q Bands

The JES-3BS which is provided with a unique low-impedance magnet, a direct read-off circuit of the magnetic field and a linear field sweep method has the following records.

Specifications (at X-Band measurement)

Detection Sensitivity: 1×10^{11} spin/gauss
- (100kc modulation)
- 1×10^{12} spin/gauss
- (80c/s modulation)

Resolution: 1×10^{-5} or more

Standard Frequency: 9,400 Mc (X-band)

Cavity Resonator: TE_{611} (cylinder)

Versatile type

Variable Range of Mag. Field: 500~13,000 gauss
- (18,000 gauss with the auxiliary pole piece)

ESR Signal of Cr$^{3+}$ in single crystal of ruby

N. B.: Absorption signals distinctly appear in a wide range by the linear field sweep unit.

JAPAN ELECTRON OPTICS LABORATORY CO., LTD.

New Tokyo Bldg., Tokyo, Japan
The Review of Physical Chemistry of Japan

Vol. 35, 1965

CONTENTS

No. 1

Tsunesuke Doi: Physico-Chemical Properties of Sulfur (II) Effects of Different Types of Reagent on Viscosities of Liquid Sulfur ... 1
Tsunesuke Doi: Physico-Chemical Properties of Sulfur (III) Dissolved State of Sulfur Polymers in Liquid Sulfur ... 11
Tsunesuke Doi: Physico-Chemical Properties of Sulfur (IV) Critical Polymerization Temperatures and Polymerization Equilibrium Constants of Sulfur 18
Jiro Osugi, Masanori Sato and Naoyuki Ifuku: Micelle Formation of Cationic Detergent Solution at High Pressures .. 32
Jiro Osugi, Hironobu Kubota and Katsukuni Ueba: Studies on Explosion Limits of Butadiene-Air Mixture ... 38
Kiyoshi Kitamura: Inactivation of Enzymes under High Pressure (I) Inactivation of Salivary α-Amylase under High Pressure ... 44

No. 2

Tetuo Mizukami: Physico-Chemical Studies on Acetaldehyde Polymerization at High Pressure and Low Temperature (I) Liquid-Solid Transition and Polymerization of Acetaldehyde ... 51
Tetuo Mizukami: Physico-Chemical Studies on Acetaldehyde Polymerization at High Pressure and Low Temperature (II) The Kinetics of the Polymerization of Acetaldehyde ... 60
Tetuo Mizukami: The Melting Polymerization of Acetaldehyde 73
Kiyoshi Kitamura: Studies on the Telomerization of Ethylene with Carbon Tetrachloride (I) Kinetics of the Telomerization Initiated by Azo-bis-isobutyronitrile ... 83
Kiyoshi Kitamura: Studies on the Telomerization of Ethylene with Carbon Tetrachloride (II) Properties of Ethylene and Tetrachloro-Alkanes Mixtures 92
Jiro Osugi, Kunao Hamanoue and Satoshi Hirayama: Studies on the Kinetics of the Thermal Polymerization of Butadiene under High Pressure 103
S. D. Hamann: Diminished Solubility of Dodecylamine Hydrochloride in Water at High Pressures ... 109

Published by

THE PHYSICO-CHEMICAL SOCIETY OF JAPAN

College of Science, Kyoto University, Kyoto, Japan
The World Knows...

...how the chemical know-how of Toyo Koatsu is contributing to the increase of agricultural production, the modernization of industries and the betterment of people's daily lives. Toyo Koatsu techniques are licensed in and products have been exported to more than 30 countries. These include urea, ammonium sulphate, synthetic resins and plastics, and other chemicals.

TOYO KOATSU Industries Inc.
Mitsui Daini Bekkan, 24-chome, Nihonbashii Hongoku-Cho, Chuo-ku, Tokyo Cable address: "TOATSUIND TOKYO"
Single crystals of HORIBA INSTRUMENTS, INC., offered as complete products ready to use which are free from impurity absorption, have acquired worldwide reputations.

Our scintillators, such as NaI (TI), CsI (TI) or CaI₂ are also credited and used internationally by the nuclear scientists, for the established qualities.

<table>
<thead>
<tr>
<th></th>
<th>NaCl</th>
<th>KCl</th>
<th>KBr</th>
<th>KI</th>
<th>LiF</th>
<th>AgCl</th>
<th>KRS-5</th>
<th>KRS-6</th>
<th>CsI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit of transparancy (microns)</td>
<td>~15</td>
<td>~21</td>
<td>~27</td>
<td>~31</td>
<td>~6</td>
<td>~30</td>
<td>~40</td>
<td>~34</td>
<td>~70</td>
</tr>
<tr>
<td>Refractive index:</td>
<td>1.555</td>
<td>1.498</td>
<td>1.599</td>
<td>1.667</td>
<td>1.394</td>
<td>2.071</td>
<td>2.629</td>
<td>2.336</td>
<td>1.987</td>
</tr>
<tr>
<td>Solubility:**</td>
<td>35.7</td>
<td>28.5</td>
<td>53.5</td>
<td>127.5</td>
<td>0.27</td>
<td>8.9 x 10⁵</td>
<td>0.02</td>
<td>0.32</td>
<td>44</td>
</tr>
<tr>
<td>Specific gravity: **</td>
<td>2.16</td>
<td>1.59</td>
<td>2.75</td>
<td>3.13</td>
<td>2.64</td>
<td>5.56</td>
<td>7.2</td>
<td>7.19</td>
<td>4.53</td>
</tr>
<tr>
<td>Melting point: °C</td>
<td>801</td>
<td>776</td>
<td>730</td>
<td>680</td>
<td>343</td>
<td>455</td>
<td>415</td>
<td>424</td>
<td>621</td>
</tr>
<tr>
<td>Maximum diameter: mm</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Maximum height: mm</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

* KRS-5 is a compound single crystal of TI and TIBr, and KRS-6 is a compound single crystal of TICl and TIBr.
** g/100 gr water at normal temperature

HORIBA INSTRUMENTS, INC.

Head office & Factory: Nakagawara Miyahigashi-machi, Kisyoin, Minami-ku, Kyoto Tel: 37-8121
Tokyo branch office: No. 2-10, Nishihatchobori, Chuo-ku, Tokyo. Tel: 552-7661