Bifurcation of the Kolmogorov flow with an external friction

東京理科大学理工学部 松田 真実 (Mami Matsuda)
Faculty of Science and Technology,
Tokyo University of Science

1 Introduction

Through my graduate school days studying under professor Sadao Miyatake, I have considered some bifurcation problems about the Kolmogorov flow. The Kolmogorov flow means a plane periodic flow of an incompressible fluid under the action of a spatially periodic external force. Since proposed in 1959, it has been conceived of only as a convenient object for theoretical investigations. But twenty years later, the flow was realized physically as a laboratory model by Bondarenko and his group (see its outline in [2] and Obkuhov[9]). The results of their experiments were found to be in good qualitative agreement with the previous theories described in Meshalkin and Sinai[8] and Iudovich[4], but in some cases, probably because they could only create a thin layer, there were some serious disagreement caused by a friction on the bottom of the channel. Then, they asserted that they should understand the influence of the friction in order to investigate a motion in a thin layer and built an updated model of the Kolmogorov flow with an external friction.

The corresponding equations in stationary case take the form:

\[
\begin{align*}
 uu_x + vu_y &= -P_x + \nu \Delta u - \kappa u + \gamma \sin y, \\
uu_x + vv_y &= -P_y + \nu \Delta v - \kappa v, \\
u_x + vv_y &= 0, \quad \text{in } \mathbb{R}^2,
\end{align*}
\]

where \(u = u(x, y) \) and \(v = v(x, y) \) are the velocity components, \(P = P(x, y) \) is the pressure, \(\nu > 0 \) is the kinematic viscosity, \(\gamma \) is the intensity of the external force (\(\gamma \sin y, 0 \)), \(\Delta \) is the two-dimensional Laplace operator, and \(\kappa \) is the coefficient of external friction.
which can be defined by the formula $\kappa \equiv 2\nu/h^2$ with h, the depth of the fluid layer. Let the system of solutions $V(x, y) = (u(x, y), v(x, y))$ and $P(x, y)$ satisfy

$$
\begin{align*}
V(x, y) &= V(x + 2\pi/\alpha, y) = V(x, y + 2\pi), \\
P(x, y) &= P(x + 2\pi/\alpha, y) = P(x, y + 2\pi), \\
\iint_D V(x, y) dxdy &= 0, \quad \iint_D P(x, y) dxdy = 0,
\end{align*}
$$

where $D = \{(x, y) : |x| \leq \pi/\alpha, |y| \leq \pi\}$.

Introducing the stream function $\psi(x, y)$, we represent the velocity as $(u, v) = (\psi_y, -\psi_x)$. The pressure is known to be determined by the velocity. Then, eliminating P and replacing ψ with $\gamma\nu^{-1}\psi$, we reduce the problem (1.1-2) to:

$$
(1.3) \quad \lambda J(\Delta\psi, \psi) = \nu\Delta^2\psi - \zeta\Delta\psi + \cos y,
$$

$$
\begin{align*}
\psi(x, y) &= \psi(x + 2\pi/\alpha, y) = \psi(x, y + 2\pi), \\
\iint_D \psi(x, y) dxdy &= 0,
\end{align*}
$$

where $\lambda \equiv \gamma/\nu^2$ and $\zeta \equiv \kappa/\nu = 2/h^2$.

We can see that $\psi_0(x, y) \equiv -(1 + \zeta)^{-1}\cos y$ satisfies (1.3-4) for any $\lambda > 0$ and $\zeta \geq 0$. We call this a basic solution. The velocity field of the basic solution is given by $(u_0, v_0) = (\gamma\nu^{-1}(1 + \zeta)^{-1}\sin y, 0)$, which represents a shear flow parallel to the x-axis.

We would like to search solutions in the form $\psi = \psi_0 + \varphi$. From (1.3), we have

$$
(1.5) \quad f(\lambda, \varphi) \equiv \left\{ \Delta^2 - \zeta\Delta - \lambda(1 + \zeta)^{-1}\sin y(\Delta + I)\partial_x \right\} \varphi - \lambda J(\Delta\varphi, \varphi) = 0,
$$

where I is the identity operator. $\varphi = 0$ corresponds to the basic solution for all λ and ζ. We consider φ in the Sobolev space X satisfying (1.4) such as $X \equiv H^4(D)/R$ with the inner product defined by

$$(\varphi, \varphi)_X \equiv (\Delta^2\varphi, \Delta^2\varphi)_{L^2} < \infty, \quad \varphi \in X.$$
The problem is reduced the same one studied in [7] if \(\zeta = 0 \). As for this case where there's no external friction, professor Sadao Miyatake and myself have examined the bifurcation curves of solutions to the problem with a symmetric condition \(\varphi(x, y) = \varphi(-x, -y) \) in order to use Crandall-Rabinowitz bifurcation theorem which requires
\[\dim \ker f_{\varphi}(\lambda_0, 0) = 1. \]
However, in this time we first remove the symmetric condition for the velocity, then obtain the similar result as seen in [7].

2 Guideline of the proof

2.1 Linearized equations

First, we solve the linearized equation and obtain the function \(\lambda = \lambda(\beta, \zeta) \) defined on \(\beta \in (0, 1) \) and \(\zeta \in [0, \infty) \). The linearized eigenvalue problem for fixed \(\alpha \) and \(\zeta \) is

\[f_{\varphi}(\lambda, 0)\varphi = \{ \Delta^2 - \zeta \Delta - \lambda(1 + \zeta)^{-1} \sin y(\Delta + I)\partial_x \} \varphi = 0, \]

where \(\lambda \) is called eigenvalue if (2.1) has a solution \(\varphi \neq 0 \).

\(\varphi \in X \) is expanded in the Fourier series:

\[\varphi = \sum_{m,n} c_{m,n} e^{i(m\alpha x + ny)}, \quad \sum_{m,n} (m^2 \alpha^2 + n^2)^4 |c_{m,n}|^2 < +\infty, \quad c_{0,0} = 0, \]

where the summation is taken over all the pairs of integers but \((m, n) = (0, 0) \). \(c_{0,0} = 0 \) follows from \(\int_D \varphi dx dy = 0 \).

For each integer \(m \), the coefficients \(c_{m,n} \) satisfy the infinite system of linear equations:

\[(m^2 \alpha^2 + n^2 - 1)c_{m,n} - \frac{\lambda m\alpha}{2(1+\zeta)} \{ m^2 \alpha^2 + (n+1)^2 - 1 \} c_{m,n+1} = 0, \quad n = 0, \pm 1, \pm 2, \cdots \]

We see \(c_{0,n} = 0 \) for any integer \(n \). For \(m \neq 0 \), we put

\[a_{m,n} \equiv \frac{2(1+\zeta)(m^2 \alpha^2 + n^2)(m^2 \alpha^2 + n^2 + \zeta)}{\lambda m\alpha(m^2 \alpha^2 + n^2 - 1)}, \quad b_{m,n} \equiv (m^2 \alpha^2 + n^2 - 1)c_{m,n}, \]

then the above equations are simply described by

\[a_{m,n} b_{m,n} + b_{m,n-1} - b_{m,n+1} = 0, \quad n = 0, \pm 1, \pm 2, \cdots \]
We remark that the set of solutions \(\{ b_{m,n} \} \) is one dimensional. Let us seek non-trivial solutions of the system (2.2) such that \(b_{m,n} \to 0 \) as \(|n| \to \infty \) for each \(m \neq 0 \). In order to find these \(b_{m,n} \), we need to solve the following equation:

\[
-\frac{a_{m,0}}{2} = \frac{1}{a_{m,1}} + \frac{1}{a_{m,2}} + \cdots.
\]

We may restrict ourselves to the case where \(m > 0 \), since for negative \(m \) the argument is similar because of \(a_{m,n} = -a_{-m,n} \). We omit \(m \) and put \(\beta \equiv m \alpha \) and \(a_{n} \equiv a_{m,n} \) simply. Denoting the right hand side of (2.3) by \(G(\lambda, \beta, \zeta) \), we rewrite (2.3) as

\[
\frac{(1+\zeta)\beta(\beta^2+\zeta)}{\lambda(1-\beta^2)} = G(\lambda, \beta, \zeta).
\]

We state properties of (2.3') in the following proposition (the proof is written in [12]).

Proposition 1 For the solutions of (2.3'), we obtain the following results:

1. (2.3') has no positive solution if \(\beta > 1 \) and \(\zeta \geq 0 \).
2. If \(0 < \beta < 1 \), there exists a continuous function \(\lambda(\beta, \zeta) \) such that:

 i. (2.3') has a solution if and only if \(\lambda = \lambda(\beta, \zeta) \);

 ii. For fixed \(\zeta > 0 \), \(\lim_{\beta \to 0} \lambda(\beta, \zeta) = \lim_{\beta \to 1} \lambda(\beta, \zeta) = +\infty \) and for \(\zeta = 0 \), it holds \(\lim_{\beta \to 0} \lambda(\beta, 0) = \sqrt{2} \) and \(\lim_{\beta \to 1} \lambda(\beta, 0) = +\infty \);

 iii. For fixed \(\beta \in (0,1) \), \(\lambda(\beta, \zeta) \) is a strictly monotone increasing function of \(\zeta > 0 \).

Because of this difference between \(\zeta > 0 \) and \(\zeta = 0 \), Bondarenko and his groups created an updated model with an external friction.

From (2) of Proposition 1, (2.3) has a solution \(\lambda = \lambda(\beta, \zeta) \equiv \lambda_{k} \) only if \(\beta \equiv k\alpha \in (0,1) \). Then, integer \(k \) is restricted as follows:

\[
k \in K_{\alpha} \equiv \{1, 2, \ldots, r ; r \in N, r\alpha < 1 \leq (r+1)\alpha\}.
\]

Then, we take a solution \(b_{k,n} \) for \(k \in K_{\alpha} \) defined by

\[
b_{k,n} \equiv \begin{cases}
\Pi_{i=1}^{n} \rho_{k,i} & \text{for } n > 0, \\
1 & \text{for } n = 0, \\
(-1)^{n} \Pi_{i=1}^{-n} \rho_{k,i} & \text{for } n < 0,
\end{cases}
\]

\[(2.4)\]
\[\rho_{k,i} = \frac{-1}{a_{k,i}} + \frac{1}{a_{k,i+1}} + \cdots, \quad a_{k,i} = a_{k,i}(\lambda_k), \quad i \geq 1. \]

Let us consider the case where \(m < 0 \) and \(|m| \in K_\alpha \). As we note \(a_{m,n} = -a_{-m,n} \), we obtain that \(b_{-k,n} = (-1)^n b_{k,n} \) for \(k \in K_\alpha \) also satisfy (2.2). Therefore, the set of the non-trivial solutions of (2.1) is given as follows:

(2.5) \[\ker f_\varphi(\lambda_k, 0) = \{ \varphi^{(k)} = t_1 \varphi_k + t_2 \varphi_{-k} ; \ t_1, t_2 \in \mathbb{R} \}, \]

where \(\varphi_k \equiv \sum_{n=-\infty}^{+\infty} c_{k,n} e^{(k\alpha x + ny)} \), \(c_{k,n} = (k^2 \alpha^2 + n^2 - 1)^{-1} b_{k,n} \). We see that \(\varphi_{-k} \) is equal to \(\overline{\varphi}_k \), the conjugate function of \(\varphi_k \), since we have \(c_{-k,n} = (-1)^n c_{k,n} = c_{k,-n} \) due to \(b_{-k,n} = (-1)^n b_{k,n} = b_{k,-n} \). Moreover, using Euler’s formula, we can rewrite (2.5):

(2.5') \[\ker f_{\varphi}(\lambda_k, 0) = \{ \varphi^{(k)} = s_1 \varphi_{k,1} + s_2 \varphi_{k,2} ; \ s_1, s_2 \in \mathbb{R} \}, \]

where \(\varphi_{k,1} \equiv \sum_{n=-\infty}^{\infty} d_{k,n} \cos(k\alpha x + ny) \) and \(\varphi_{k,2} \equiv \sum_{n=-\infty}^{\infty} d_{k,n} \sin(k\alpha x + ny) \).

Similarly, let us seek non-trivial solutions \(\Phi \) of the conjugate equation of (2.1):

(2.6) \[f_{\varphi}^*(\lambda, 0) \Phi = \{ \Delta^2 - \zeta \Delta + \lambda (1 + \zeta)^{-1} (\Delta + I) \sin y \partial_x \} \Phi = 0, \]

in the form \(\Phi(x, y) = \sum_{m,n} d_{m,n} e^{i(m\alpha x + ny)} \). \(f_{\varphi} \) is a bounded operator from \(H_0^t \) to \(H_0^{t-4} \). And we have the following relation of \(d_{m,n} \) for each integer \(m \):

\[a_{m,n} d_{m,n} - d_{m,n-1} + d_{m,n+1} = 0. \]

Putting \(b_{m,n}' \equiv (-1)^n d_{m,n} \), we have also

\[a_{m,n} b_{m,n}' + b_{m,n-1}' - b_{m,n+1}' = 0, \]

which is the same form as (2.2). Applying the same argument as that in (2.2), we obtain the non-trivial solutions of (2.6) if \(\lambda = \lambda_k k \in K \):

(2.7) \[\ker f_{\varphi}(\lambda_k, 0) = \{ \Phi^{(k)} = t_1 \Phi_k + t_2 \Phi_{-k} ; \ t_1, t_2 \in \mathbb{R} \}, \]

where \(\Phi_k = \sum_{n=-\infty}^{+\infty} d_{k,n} e^{i(k\alpha x + ny)} \), \(d_{k,n} = (-1)^n b_{k,n} \) and \(b_{k,n} \) are given by (2.4). Note that each \(\Phi^{(k)} \) in \(\ker f_{\varphi}(\lambda_k, 0) \) is smooth function. We rewrite \(\Phi^{(k)} \) in \(\ker f_{\varphi}(\lambda_k, 0) \) as

(2.7') \[\ker f_{\varphi}(\lambda_k, 0)^* = \{ \Phi^{(k)} = s_1 \Phi_{k,1} + s_2 \Phi_{k,2} ; \ s_1, s_2 \in \mathbb{R} \}, \]

where \(\Phi_{k,1} \equiv \sum_{n=-\infty}^{+\infty} d_{k,n} \cos(k\alpha x + ny) \) and \(\Phi_{k,2} \equiv \sum_{n=-\infty}^{+\infty} d_{k,n} \sin(k\alpha x + ny) \).

We remark that the both \(\ker f_{\varphi}(\lambda_k, 0) \) and \(\ker f_{\varphi}^*(\lambda_k, 0) \) are two dimensional spaces.
2.2 Existence of bifurcation points

For \(\alpha \in (0, 1) \) and \(\zeta \in [0, \infty) \), (2.1) has non-trivial solutions if and only if \(\lambda \) is equal to the values \(\lambda_k \) given in the previous section. Using the method of Ljapunov-Schmidt, we prove that \(\lambda = \lambda_k \) is the bifurcation point of (1.5).

Assume \(\varphi \in X \) and \(\omega \in Y \equiv L_0^2 \) where \(g \in L_0^2 \) means \(g \in L^2 \) and \(\iint_D g \, dx \, dy = 0 \). We decompose them orthogonaly by:

\[
\begin{align*}
\varphi &= \varphi_1 + \varphi_2, \quad \varphi_1 \in X_1, \quad \varphi_2 \in X_2, \\
\omega &= \omega_1 + \omega_2, \quad \omega_1 \in Y_1, \quad \omega_2 \in Y_2.
\end{align*}
\]

\(X_i \) and \(Y_i \) \((i = 1, 2)\) are defined as follows: \(X_1 = \ker f_{\varphi}(\lambda_k, 0) \), \(X_2 \) is the orthogonal complement of \(X_1 \), \(Y_2 \) is the range of \(f_{\varphi}(\lambda_k, 0) \) and \(Y_1 \) is the orthogonal complement of \(Y_2 \).

According to Section 2, \(X_1 = \ker f_{\varphi}(\lambda_k, 0) \) and \(\ker f_{\varphi}^{*}(\lambda_k, 0) \) are two dimensional space. We also see \(\dim Y_1 \) is two, namely, we verify

\[Y_1 = \ker f_{\varphi}^{*}(\lambda_k, 0). \]

In fact, put \(T \equiv f_{\varphi}(\lambda_k, 0) \) and \(T^* \equiv f_{\varphi}^*(\lambda_k, 0) \), then \(\omega_1 \in Y_1 \) satisfies \((\omega_1, T\psi)_{L^2} = 0 \) for \(\psi \in X \). Hence we have \(T^*\omega_1 = 0 \) in the sense of distribution. Although \(\omega_1 \) belongs to \(L_0^2 \) space and \(\ker T^* \) is subspace of \(X = H_0^4 \), we can see that this \(\omega_1 \) is smooth enough to belong to \(\ker T^* \) by the hypo-ellipticity as follows. From (2.6), we write \(T^* = \Delta^2 + T^{(3)} \). Then \(T^*\omega_1 = 0 \) implies \(\Delta^2 \omega_1 = -T^{(3)}\omega_1 \). Since \(\omega_1 \in Y_1 \), the right hand-side of this equation belongs to \(H_0^{(-3)} \), namely, the Fourier expansion coefficients of \(\omega_1 \) satisfy \(\sum(m^2 + n^2)^{-3}c_{m,n}^2 < \infty \). Then the left hand-side belongs to \(H_0^{(-3)} \), which implies \(\omega_1 \in H_1 \). Repeating this several times, we see that \(\omega_1 \) is sufficiently smooth.

We denote the projection to \(Y_1 \) of \(Y \) by \(P \). Then, \(Q \equiv I - P \) is the projection to \(Y_2 \). Corresponding to the above decomposition, we have the system of the following two equations which is equivalent to (1.5):

\[
\begin{align*}
Qf(\lambda, \varphi_1 + \varphi_2) &= 0 \quad \text{in } Y_2, & \cdots \quad (3.2) \\
Pf(\lambda, \varphi_1 + \varphi_2) &= 0 \quad \text{in } Y_1. & \cdots \quad (3.3)
\end{align*}
\]

Hereafter, we seek the solution \((\lambda, \varphi)\) of this system, depending on one parameter \(s \in (-1, 1) \) as follows: \((\lambda, \varphi) = (\mu(s), \varphi_1(s) + \varphi_2(s))\). We suppose that \(\mu(s) \in R \), \(\varphi_1(s) \in X_1 \) and \(\varphi_2(s) \in X_2 \) satisfy \(\mu(0) = \lambda_k \). We put \(\varphi_1(s) = s\varphi^{(k)} \) where \(\varphi^{(k)} \) is a non-trivial solution of (2.1) given in (2.5). Then we look for \(\lambda = \mu(s) \) and \(\varphi_2(s) \).
First, let us consider (3.2). We put $Qf(\lambda, \varphi_1 + \varphi_2) \equiv g(\tau, \varphi_2)$ with $\tau \equiv (\lambda, s)$ for fixed $\alpha \in (0, 1)$ and $\zeta \in [0, \infty)$. Note that $g(\tau_k, 0) = 0$ for $\tau_k \equiv (\lambda_k, 0)$ since $f(\lambda, 0) = 0$. By definition we see that $g_{\varphi_2}(\tau_k, 0) = Qf_{\varphi}(\lambda_k, 0)$ is a bijective mapping from X_2 to Y_2.

Then from the implicit function theorem, there exists a function $\psi(\tau)$ which satisfies $g(\tau, \psi(\tau)) = 0$ and $\psi(\tau_k) = 0$ in the neighborhood of $(\tau_k, 0)$. We shall determine $\psi = \psi(\tau)$ more precisely. From (3.2), with $\varphi_1 = s\varphi^{(k)}$ and $\varphi_2 = \psi$, ψ satisfies the following equation:

$$H[\psi] - \tilde{L}[s\varphi^{(k)} + \psi] - \lambda J(\Delta(s\varphi^{(k)} + \psi), s\varphi^{(k)} + \psi) = 0,$$

where $H \equiv Qf_{\varphi}(\lambda_k, 0)$, $\tilde{L} \equiv (\lambda - \lambda_k)(1 + \zeta)^{-1}\sin y(\Delta + I)\partial_x$. Since H is a bijective mapping from X_2 to Y_2, it holds that

$$\psi - H^{-1}\tilde{L}[s\varphi^{(k)} + \psi] - \lambda H^{-1}J(\Delta(s\varphi^{(k)} + \psi), s\varphi^{(k)} + \psi) = 0.$$

We define a sequence of functions $\{\psi_n\} (n = 0, 1, 2, \cdots)$ as follows:

$$\psi_0 = 0, \quad \psi_n \equiv H^{-1}\tilde{L}[s\varphi^{(k)} + \psi_{n-1}] - \lambda H^{-1}J(\Delta(s\varphi^{(k)} + \psi_{n-1}), s\varphi^{(k)} + \psi_{n-1}).$$

Let us show that $\{\psi_n\}$ is a Cauchy sequence in the neighborhood of $s = 0$. In fact, since the non-linear term becomes $O(s^2)$, it can be omitted. Choosing λ such as $|\lambda - \lambda_k| \leq 4^{-1}\|H^{-1}\|^{-1}$, we have $\|\psi_1\| = O(s)$ and $\|\psi_2 - \psi_1\| \leq 2^{-1}\|\psi_1\|$. Similarly, it holds that $\|\psi_{n+1} - \psi_n\| \leq 2^{-n}\|\psi_1\|$. Then $\{\psi_n\}$ is a Cauchy sequence and converges to a limit $\psi = \psi(\lambda, s)$ which belongs to X_2 satisfying $\psi(\lambda, 0) = 0$ and

$$\psi = H^{-1}\tilde{L}[s\varphi^{(k)} + \psi] - \lambda H^{-1}J(\Delta(s\varphi^{(k)} + \psi), s\varphi^{(k)} + \psi)$$

for small s.

In order to show that λ_k is a bifurcation point, we have to prove the existence of the solution $\mu(s)$ of (3.3) satisfying $\mu(0) = \lambda_k$. Substituting $\varphi_2 = \psi(\tau)$ into the left hand side of (3.3) and defining

$$Pf(\lambda, s\varphi^{(k)} + \psi(\lambda, s)) \equiv h(\lambda, s),$$

we denote

$$\chi(\lambda, s) \equiv \left\{ \begin{array}{ll}
\{h(\lambda, s) - h(\lambda, 0)\}/s, & \text{for } s \neq 0, \\
h_\ast(\lambda, 0), & \text{for } s = 0.
\end{array} \right.$$

Note that $h(\lambda, 0) = 0$ holds and the continuity of χ follows from that of h_\ast. The reason why we define $\chi(\lambda, s)$ is that we cannot apply the implicit function theorem to
Remark that $h_{\lambda}(\lambda, 0) = 0$ holds from $\psi(\lambda, 0) = 0$ for all λ. From $h_{s}(\lambda, s) = P_{f_{\varphi}}(\lambda, s\varphi^{(k)} + \psi(\lambda, s)\right)\varphi^{(k)} + \psi_{s}(\lambda, s)$, it holds that $h_{s}(\lambda, 0) = P_{f_{\varphi}}(\lambda, 0)[\varphi^{(k)} + \psi_{s}(\lambda, 0)]$.

Now we verify $\psi_{s}(\lambda, 0) = 0$. Differentiating $Qf(\lambda, s\varphi^{(k)} + \psi(\lambda, s)) = 0$ by s and putting $(\lambda, s) = (\lambda_{k}, 0)$, we have $Qf_{\varphi}(\lambda_{k}, 0)[\psi_{s}(\lambda_{k}, 0)] = 0$. Since $Qf_{\varphi}(\lambda_{k}, 0)$ is a bijective mapping from X_{2} to Y_{2}, $\psi_{s}(\lambda_{k}, 0) = 0$ holds.

$\chi(\lambda, s) = 0$ is equivalent to the following equations:

(3.5) \[\chi^{(1)}(\lambda, s) \equiv (\chi(\lambda, s), \Phi_{k,1})_{L^{2}} = 0, \]

(3.6) \[\chi^{(2)}(\lambda, s) \equiv (\chi(\lambda, s), \Phi_{k,2})_{L^{2}} = 0, \]

where $\Phi_{k,i} \in Y_{1} = \ker f_{\varphi}^{*}(\lambda_{k}, 0)$ ($i = 1, 2$). First, we seek a solution λ of (3.5) putting $\varphi^{(k)} = t_{1}\varphi_{k,1} + t_{2}\varphi_{k,2}$ for $(t_{1}, t_{2}) \neq (0, 0)$. Differentiating (3.5) by λ, then we have

\[\chi^{(1)}_{\lambda}(\lambda_{k}, 0) = \left(\lim_{\Delta \lambda \rightarrow 0} \frac{\chi(\lambda_{k} + \Delta \lambda, 0) - \chi(\lambda_{k}, 0)}{\Delta \lambda}, \Phi_{k,1} \right)_{L^{2}} = (P_{f_{\varphi}}(\lambda_{k}, 0)[\varphi^{(k)}], \Phi_{k,1})_{L^{2}} = (f_{\varphi}(\lambda_{k}, 0)[\varphi^{(k)}], P^{*}\Phi_{k,1})_{L^{2}} = t_{1}(-1 + \zeta)^{-1}\sin y(\Delta + I)\partial_{x}\varphi_{k,1}, \Phi_{k,1})_{L^{2}}. \]

We show

(3.7) \[(-1 + \zeta)^{-1}\sin y(\Delta + I)\partial_{x}\varphi_{k,1}, \Phi_{k,1})_{L^{2}} > 0. \]

Since $\varphi_{k,1}$ is a solution of (2.1), we have

\[-(1 + \zeta)^{-1}\sin y(\Delta + I)\partial_{x}\varphi_{k,1} = \lambda_{k}^{-1}(\zeta)(-\Delta^{2} + \zeta\Delta)\varphi_{k,1}. \]

Using $\varphi_{k,1} = \sum_{n}c_{k,n}\cos(k\alpha x + ny)$ and $\Phi_{k,1} = \sum_{n}d_{k,n}\cos(k\alpha x + ny) = \sum_{n}(-1)^{n}(k^{2}\alpha^{2} + n^{2} - 1)c_{k,n}\cos(k\alpha x + ny)$, we obtain

\[((-\Delta^{2} + \zeta\Delta)\varphi_{k,1}, \Phi_{k,1})_{L^{2}} = \frac{1}{2}|D|\sum_{n}(-1)^{n+1}\tilde{c}_{k,n}, \]

where $\tilde{c}_{k,n} \equiv (k^{2}\alpha^{2} + n^{2})(k^{2}\alpha^{2} + n^{2} + \zeta)(k^{2}\alpha^{2} + n^{2} - 1)c_{k,n}^{2}$. Meanwhile, we can verify $\sum_{n}\tilde{c}_{k,n} = 0$ (seen in Iudovich[4]). In fact, from $f_{\varphi}(\lambda_{k}, 0)\varphi_{k,1} = 0$, multiplying this equation $(\Delta + I)\varphi_{k,1}$ and integrating over the rectangle D, we obtain

\[0 = \iint_{D}(\Delta + I)\varphi_{k,1}(\Delta^{2} - \zeta\Delta)\varphi_{k,1}dxdy - \lambda_{k}(1 + \zeta)^{-1}\iint_{D}(\Delta + I)\varphi_{k,1}\sin y(\Delta + I)\partial_{x}\varphi_{k,1}dxdy, \]
and see that the second term vanishes. Then, we have
\[
\int_D (\Delta + I) \varphi_{k,1} (\Delta^2 - \zeta \Delta) \varphi_{k,1} \, dx \, dy = \frac{-1}{2} |D| \sum_n \tilde{c}_{k,n} = 0.
\]
From \(\sum_n \tilde{c}_{k,n} = 0 \) and \(\tilde{c}_{k,-n} = \tilde{c}_{k,n} \), we obtain (3.7) since it holds
\[
\sum_n (-1)^{n+1} \tilde{c}_{k,n} = -\tilde{c}_{k,0} + 2 \sum_{m=1,3,5,\ldots} \tilde{c}_{k,m} - 2 \sum_{m=2,4,6,\ldots} \tilde{c}_{k,m} = 4 \sum_{m=1,3,5,\ldots} \tilde{c}_{k,m} > 0.
\]
As a result, we have \(\chi^{(1)}_\lambda (\lambda_k, 0) \neq 0 \) if \(t_1 \neq 0 \). From the implicit function theorem, there exists a function \(\lambda = \mu(s) \) satisfying \(\chi^{(1)}_\lambda (\mu(s), s) = 0 \) and \(\mu(0) = \lambda_k \).

Next, we suppose the question whether \(\lambda = \mu(s) \) satisfies (3.6). Since \(h_s(\lambda_k, 0) = 0 \) holds from \(h_s(\lambda, 0) = Pf_\varphi(\lambda, 0)[\varphi^{(k)} + \psi_s(\lambda, 0)] \) and \(\psi_s(\lambda_k, 0) = 0 \), we can see \(\chi^{(2)}(\lambda, 0) = (h_s(\lambda_k, 0), \Phi_{k,2})_{L^2} = 0 \). As for \(s \neq 0 \), it holds
\[
s \chi^{(2)}(\lambda, s) = (h(\lambda, s), \Phi_{k,2})_{L^2} = (Pf(\lambda, s\varphi^{(k)} + \psi(\lambda, s)), \Phi_{k,2})_{L^2} = (f(\lambda, s\varphi^{(k)} + \psi(\lambda, s)), \Phi_{k,2})_{L^2}.
\]
Then we have the following formula:
\[
s \chi^{(2)}(\mu(s), s) = (f(\mu(s), s\varphi^{(k)} + \psi(\mu(s), s)), \Phi_{k,2})_{L^2} = \left(\{\Delta^2 - \zeta \Delta - \mu(s) \sin y(\Delta + I) \partial_x \} [s\varphi^{(k)} + \psi(\mu(s), s)], \Phi_{k,2} \right)_{L^2} - \mu(s) \left(J(\Delta s\varphi^{(k)} + \psi(\mu(s), s)), s\varphi^{(k)} + \psi(\mu(s), s)), \Phi_{k,2} \right)_{L^2}.
\]
The question is how we choose \(\varphi^{(k)} \). From (3.4), if \(\varphi^{(k)} \) is represented as a linear combination of \(\varphi_{k,1} \) and \(\varphi_{k,2} \), \(\psi(\mu(s), s) \) is expanded by both sine and cosine functions. In this case, we cannot expect in general that the above formula goes to zero. However, if we put \(\varphi^{(k)} = \varphi_{k,1} \), \(\psi(\mu(s), s) \) is expanded by cosine only. As a result, the inner-product with \(\Phi_{k,2} \) becomes zero and, hence, \(\mu(s) \) satisfies (3.6). Thus, we obtain the former part of Theorem 1.
2.3 Properties of the Bifurcation curve

We shall consider the convex property of $\lambda = \mu(s)$ with regard to s. Putting $T = f_\varphi(\lambda, 0)$ and $\tilde{\lambda}(s) \equiv \mu(s) - \lambda_k$, we rewrite $f(\mu(s), \varphi(s)) = 0$ as

\[(4.1) \quad T \varphi(s) = \frac{\tilde{\lambda}(s)}{1 + \zeta} \sin y(\Delta + I) \partial_x \varphi(s) + \mu(s)J(\Delta \varphi(s), \varphi(s)), \]

where $\varphi(s) \equiv s \phi_{k,1} + \psi(\mu(s), s)$. Let us differentiate (4.1) by s:

\[
T \varphi_s(s) = \frac{\tilde{\lambda}_s(s)}{1 + \zeta} \sin y(\Delta + I) \partial_x \varphi(s) + \mu_s(s)J(\Delta \varphi(s), \varphi(s))_s + \frac{\tilde{\lambda}(s)}{1 + \zeta} \sin y(\Delta + I) \partial_x \varphi_s(s); \\
T \varphi_{ss}(s) = \frac{\tilde{\lambda}_{ss}(s)}{1 + \zeta} \sin y(\Delta + I) \partial_x \varphi(s) + \frac{2\tilde{\lambda}_s(s)}{1 + \zeta} \sin y(\Delta + I) \partial_x \varphi_s(s) \\
+ \frac{\tilde{\lambda}(s)}{1 + \zeta} \sin y(\Delta + I) \partial_x \varphi_{ss}(s) + \mu_{ss}(s)J(\Delta \varphi(s), \varphi(s))_s + \mu_s(s)J(\Delta \varphi(s), \varphi(s))_s; \\
\varphi_s(s) = \phi_{k,1} + \psi_\lambda(\mu(s), s) \mu_s(s) + \psi_s(\mu(s), s).
\]

Putting $s = 0$, we have

\[(4.2) \quad T \varphi_{ss}(0) = \frac{2\mu_s(0)}{1 + \zeta} \sin y(\Delta + I) \partial_x \varphi_{k,1} + 2\lambda_kJ(\Delta \varphi_{k,1}, \varphi_{k,1}). \]

If we take the L^2 inner-product with $\Phi_{k,1} \in \ker T^*$, (4.2) becomes

\[0 = \frac{2\mu_s(0)}{1 + \zeta} \langle \sin y(\Delta + I) \partial_x \varphi_{k,1}, \Phi_{k,1} \rangle_{L^2} + 2\lambda_k \langle J(\Delta \varphi_{k,1}, \varphi_{k,1}), \Phi_{k,1} \rangle_{L^2}, \]

and from $T \varphi_{k,1} = 0$, we obtain

\[0 = \frac{2\mu_s(0)}{\lambda_k} \langle (\Delta^2 - \zeta \Delta) \varphi_{k,1}, \Phi_{k,1} \rangle_{L^2} + 2\lambda_k \langle J(\Delta \varphi_{k,1}, \varphi_{k,1}), \Phi_{k,1} \rangle_{L^2}. \]

Since the Fourier coefficients of $J(\Delta \varphi_{k,1}, \varphi_{k,1})$ consist of a linear combination of $\cos ny$ and $\cos(2k\alpha x + ny)$, we have $\langle J(\Delta \varphi_{k,1}, \varphi_{k,1}), \Phi_{k,1} \rangle_{L^2} = 0$. Also, from the proof of (3.7), we have

\[(4.3) \quad \langle (\Delta^2 - \zeta \Delta) \varphi_{k,1}, \Phi_{k,1} \rangle_{L^2} < 0. \]
Therefore, we obtain $\mu_s(0) = 0$.

Differentiating (4.1) once more and putting $s = 0$, we have
\[
T \varphi_{sss}(0) = 3\mu_{ss}(0)(1 + \zeta)^{-1}\sin y(\Delta + I) \partial_x \varphi_{k,1} \\
+ 3\lambda_k \left\{ J(\Delta \varphi_{ss}(0), \varphi_{k,1}) + J(\Delta \varphi_{k,1}, \varphi_{ss}(0)) \right\} \\
= 3\mu_{ss}(0)\lambda_k^{-1}(\Delta^2 - \zeta\Delta)\varphi_{k,1} \\
+ 3\lambda_k \left\{ J(\Delta \varphi_{ss}(0), \varphi_{k,1}) + J(\Delta \varphi_{k,1}, \varphi_{ss}(0)) \right\},
\]
and taking the L^2 inner-product with $\Phi_{k,1} \in \ker T^*$,
\[
0 = (T \varphi_{sss}(0), \Phi_{k,1})_{L^2} \\
= 3\mu_{ss}(0)\lambda_k^{-1}((\Delta^2 - \zeta\Delta)\varphi_{k,1}, \Phi_{k,1})_{L^2} \\
+ 3\lambda_k (J(\Delta \varphi_{ss}(0), \varphi_{k,1}) + J(\Delta \varphi_{k,1}, \varphi_{ss}(0)), \Phi_{k,1})_{L^2}
\]
holds. Then we have
\[
\mu_{ss}(0) = \frac{-\lambda_k^2}{((\Delta^2 - \zeta\Delta)\varphi_{k,1}, \Phi_{k,1})_{L^2}} \left(J(\Delta \varphi_{ss}, \varphi_{k,1}) + J(\Delta \varphi_{k,1}, \varphi_{ss}), \Phi_{k,1} \right)_{L^2}.
\]
Let us determine the sign of $\mu_{ss}(0)$. From (4.3), this sign is equal to that of
\[
\int_D \left\{ J(\Delta \varphi_{ss}, \varphi_{k,1}) + J(\Delta \varphi_{k,1}, \varphi_{ss}) \right\} \Phi_{k,1} dxdy.
\]
Here $\varphi_{ss} \equiv \varphi_{ss}(0) = \psi_{ss}(\lambda_k, 0)$ is obtained by
\[
T \varphi_{ss} = 2\lambda_k J(\Delta \varphi_{k,1}, \varphi_{k,1}).
\]
The right-hand side of (4.5) consists of two terms extended respectively by $\cos \ell y$ and $\cos(2k\alpha x + \ell y)$.

We have the following proposition:

Proposition 2 The solution of (4.5) takes the following form:
\[
\varphi_{ss} = \iota w^{(0)} A c(0) + \iota w^{(2k)} D E c(2k\alpha) \equiv Z_1 + Z_2, \\
Z_1 \equiv \iota w^{(0)} A c(0), \quad Z_2 \equiv \iota w^{(2k)} D E c(2k\alpha).
\]
Here $c(0)$, $c(2\alpha)$, $w^{(0)}$ and $w^{(2k)}$ are column vectors with the following ℓ-th components:

$$(c(0))_\ell = \cos \ell y, \quad (c(2\alpha))_\ell = \cos(2\alpha x + \ell y),$$

$$(w^{(0)})_\ell = \lambda_k \alpha \ell \varphi^{(k)} K S^\ell \varphi^{(k)},$$

$$(w^{(2k)})_\ell = \lambda_k \alpha \ell \varphi^{(k)} K (2N - \ell I) RS^\ell \varphi^{(k)},$$

where $\varphi^{(k)}$ is a column vector corresponding to the Fourier coefficients of $\varphi_{k,1}$ with n-th component $\varphi_n = (k^2 \alpha^2 + n^2 - 1)^{-1} b_{k,n}$ ($b_{k,n}$ is defined by (2.6)), K and N are diagonal matrices with n-th elements $-\kappa_n$, and S^ℓ and R are matrices with (i, j) elements as follows:

$$(S^\ell)_{i,j} = \begin{cases}
1 & \text{for } j-i = \ell, \\
0 & \text{otherwise},
\end{cases} \quad (R)_{i,j} = \begin{cases}
1 & \text{for } i+j = 0, \\
0 & \text{otherwise}.
\end{cases}$$

Λ and E are diagonal matrices with n-th elements

$$\Lambda_n = \begin{cases}
(n^4 + \zeta n^2)^{-1} & \text{for } n \neq 0, \\
0 & \text{for } n = 0,
\end{cases} \quad E_n = \frac{1+\zeta}{\lambda_k \alpha (4k^2 \alpha^2 + n^2 - 1)},$$

and $D = (\cdots d^{(m)} \cdots)$ is a matrix where $d^{(m)}$ are column vectors with n-th component $d^{(m)}_n$ as follows:

$$\begin{aligned}
d^{(m)}_n &= \begin{cases}
\prod_{i=n+1}^{m+1} \eta_{i}^+ N_{m+1}^{-1} & \text{for } n > m, \\
N_{m+1}^{-1} & \text{for } n = m, \\
\prod_{i=n+1}^{m} \eta_{i}^- \eta_{m+1}^+ & \text{for } n < m,
\end{cases}
\end{aligned}$$

where

$$\eta_{n}^+ = \frac{1}{a_n} + \frac{1}{a_{n+1}} + \cdots,$$

$$\eta_{n}^- = -a'_{n-1} + \frac{1}{a_{n-2}} + \cdots,$$

$$N_{m+1} = \eta_{m+1}^+ - \eta_{m+1}^-,$$

$$a'_n = \frac{(1+\zeta)(4k^2 \alpha^2 + n^2)(4k^2 \alpha^2 + n^2 + \zeta)}{\lambda_k \alpha (4k^2 \alpha^2 + n^2 - 1)}.$$
We can prove Proposition 2 in the same way to Section 3.2 of [7]. Substituting (4.6) into (4.4), we have

\[\iint_{D} \{ J(\Delta\varphi_{ss}(0), \varphi_{k,1}) + J(\Delta\varphi_{k,1}, \varphi_{ss}(0)) \} \Phi_{k,1} dxdy \equiv D_{1} + D_{2}, \]

\[D_{1} \equiv \iint_{D} \{ J(\Delta Z_{1}, \varphi_{k,1}) + J(\Delta\varphi_{k,1}, Z_{1}) \} \Phi_{k,1} dxdy, \]

\[D_{2} \equiv \iint_{D} \{ J(\Delta Z_{2}, \varphi_{k,1}) + J(\Delta\varphi_{k,1}, Z_{2}) \} \Phi_{k,1} dxdy. \]

As for \(D_{1} \) and \(D_{2} \), we obtain the following proposition.

Proposition 3 For each fixed \(\zeta \geq 0 \), \(D_{1} > |D_{2}| \) holds if \(k\alpha \) close to one.

The proof is given in my current preprint [12], which is based on the previous paper (Section 4 and 5 of [7]). This proposition means that \(\mu_{ss}(0) > 0 \) holds if \(k\alpha \in (0, 1) \) is sufficiently close to one. Thus, Theorem 1 is proved.

References

