<table>
<thead>
<tr>
<th>Title</th>
<th>Linear independence of the values of q-hypergeometric series (New Aspects of Analytic Number Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Amou, Masaaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2002: 1274: 177-182</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42262</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Linear independence of the values of q-hypergeometric series

Masaaki Amou* (天羽雅昭・群馬大工)

In the present note we are interested in linear independence of the values of a certain class of q-hypergeometric series and its generalizations. We give a brief history on this topic in the first section, then state our results in the second and the third sections. Our results here are in [1], a joint work with K. Väänänen.

1. A brief history

Let us call here q-hypergeometric series the series of the form

$$f(z) = 1 + \sum_{n=1}^{\infty} \frac{q^{-s(z)}}{\prod_{k=0}^{n-1} P(q^{-k})} z^n,$$

where q is a complex number with absolute value greater than one, s is a positive integer, and $P(x)$ is a polynomial with complex coefficients satisfying $P(0) \neq 0$ and $P(q^{-n}) \neq 0$ ($n = 0, 1, 2, ...$). Note that $f(z)$ represents an entire function. By defining $R(x) = x^s P(1/x)$, the series (1.1) can be expressed as

$$f(z) = 1 + \sum_{n=1}^{\infty} \frac{z^n}{\prod_{k=0}^{n-1} R(q^k)}.$$

Then, under the assumption that deg $P \leq s$ (or equivalently, $R(x)$ is a polynomial), $f(z)$ satisfies the q-difference equation

$$\{R(D/q) - z\} f(z) = R(1/q), \quad D f(z) := f(qz).$$

*Research supported in part by Grant-in-Aid for Scientic Research (No. 13640007), the Ministry of Education, Science, Sports and Culture of Japan.
The cases $R(x) = qx$ and $R(x) = qx - 1$ correspond to the Tschakaloff function $T_q(z)$ and the q-exponential function $E_q(z)$, respectively.

The study of the arithmetical nature of the values of the function $T_q(z)$ goes back to Tschakaloff [10] in 1921. He proved the linear independence over the rational number field \mathbb{Q} of the numbers 1, $T_q(\alpha_j)$ ($j = 1, \ldots, m$) under a certain condition on $q \in \mathbb{Q}$, where α_j are nonzero rational numbers satisfying $\alpha_i/\alpha_j \neq q^n$ ($n \in \mathbb{Z}$) for any $i \neq j$, while Skolem [8] proved a similar result involving the derivatives of the function. The former result was refined in a quantitative form by Bundschuh and Shiokawa [4], and the later result by Katsurada [5]. Note that both results are valid for $q \in \mathbb{K}$ and numbers $\alpha_j \in \mathbb{K}$ with certain conditions, here and in what follows \mathbb{K} denotes \mathbb{Q} or an imaginary quadratic number field. Then Stihl [9] generalized the result of Bundschuh and Shiokawa to $f(z)$ having $P(x) \in \mathbb{K}[x]$ with $\deg P < s$, and proved the linear independence over \mathbb{K} of the numbers

$$1, \ f(q^k \alpha_j) \ (j = 1, \ldots, m; k = 0, 1, \ldots, s - 1)$$

in quantitative form under a certain condition on $q \in \mathbb{K}$, where α_j are nonzero elements of \mathbb{K} satisfying the same conditions as above. Since the functional equation (1.2) for $f(z)$ with $\deg P \leq s$ has the order s with respect to the q-difference operator D, this result is best possible in qualitative nature. Further, Katsurada [6] put the derivatives of the function in Stihl's result to get the linear independence over \mathbb{K} of the numbers

$$(1.3) \quad 1, \ f^{(i)}(q^k \alpha_j) \ (i = 0, 1, \ldots, \ell; j = 1, \ldots, m; k = 0, 1, \ldots, s - 1)$$

in quantitative form under the same conditions as Stihl's on q and α_j's, where ℓ is a nonnegative integer.

We now come to the general case in which the degree of $P(x)$ is not necessarily less than s. In this direction Lototsky [7] in 1943 proved an irrationality result on $E_q(\alpha)$ with $q \in \mathbb{Z}$ at a rational point α different from q^n ($n \in \mathbb{N}$). A quantitative refinement of this result with $q \in \mathbb{K}$ was obtained by Bundschuh [3]. After the work of Stihl [9], on noting that $\{R(q^n)\}$ is a linear recurrent sequence, Bézivin [2] introduced a class of entire series as follows. Let $\{A(n)\}$ be a linear recurrent sequence of the form

$$(1.4) \quad A(n) = \lambda_1 \theta_1^n + \cdots + \lambda_h \theta_h^n \quad (n = 0, 1, 2, \ldots),$$
where \(\theta_i \) are nonzero algebraic integers and \(\lambda_i \) are nonzero algebraic numbers. Assume that \(A(n) \) belong to \(K^\times \), and that

\[
|\theta_1| > |\theta_2| \geq \cdots \geq |\theta_h| \geq 1 \quad \text{and} \quad 1 = \theta_h < |\theta_{h-1}| \text{ if } |\theta_h| = 1.
\]

Then we define an entire function \(\Phi(z) \) by

\[
\Phi(z) = \sum_{n=0}^{\infty} \frac{z^n}{n! \prod_{k=0}^{n} A(k)}.
\]

Denote by \(\tilde{G} \) the multiplicative group generated by \(\theta_1, \ldots, \theta_h \). Bezivin [2] proved the linear independence over \(K \) of the numbers

\[
1, \Phi^{(i)}(\alpha_j) \quad (i = 0, 1, \ldots, \ell; j = 1, \ldots, m),
\]

where \(\alpha_j \) are nonzero elements of \(K \) such that \(\alpha_i/\alpha_j \notin \tilde{G} \) for any \(i \neq j \), and in addition that \(\lambda_h \alpha_j \neq \tilde{G} \) \((j = 1, \ldots, m) \) if \(\theta_h = 1 \). This result implies that, for \(f(z) \) with \(\deg P \leq s \) and an integer \(q \) in \(K \), the numbers (1.3) without powers of \(q \) are linearly independent over \(K \).

2. Generalizations of Bezivin's result

We can relax the condition (1.5) in Bezivin's result to get the following result.

Theorem 1. Let \(\theta_1, \ldots, \theta_h \) be nonzero algebraic integers such that

\[
|\theta_1| > 1, \quad |\theta_1| > |\theta_2| \geq \cdots \geq |\theta_h|,
\]

and that \(|\theta_h| < |\theta_{h-1}| \) if \(|\theta_h| < 1 \) and \(\theta_h = 1 \) if \(|\theta_h| = 1 \). Let \(\{A(n)\} \) be the recurrent sequence (1.4) with nonzero algebraic numbers \(\lambda_1, \ldots, \lambda_h \), and assume that \(A(n) \) belong to \(K^\times \) for all \(n \). Let \(\alpha_1, \ldots, \alpha_m \) be elements of \(K^\times \) satisfying \(\alpha_i/\alpha_j \notin \tilde{G} \) for any \(i \neq j \). If \(\theta_h = 1 \), assume in addition that \(\lambda_h \alpha_j^{-1} \notin \tilde{G} \) \((j = 1, \ldots, m) \). Then the numbers (1.7) are linearly independent over \(K \).

We give an example of this theorem. Let \(\{F_n\} \) be the Fibonacci sequence defined by \(F_0 = F_1 = 1 \) and \(F_{n+2} = F_{n+1} + F_n \) \((n = 0, 1, 2, \ldots) \), which is expressed as

\[
F_n = \lambda_1 \alpha^n + \lambda_2 \beta^n \quad (n = 0, 1, 2, \ldots),
\]
where \(\alpha = (1 + \sqrt{5})/2, \beta = (1 - \sqrt{5})/2, \lambda_1 = \alpha/\sqrt{5}, \lambda_2 = -\beta/\sqrt{5}. \) Since \(\beta = -\alpha^{-1}, \) the multiplicative group generated by \(\alpha^\nu \) and \(\beta^\nu \) with a positive integer \(\nu \) is \(\langle -1 \rangle \times \langle \alpha^\nu \rangle \) or \(\langle \alpha^\nu \rangle \) according as \(\nu \) is odd or even. Hence the numbers

\[
1, \sum_{n=i}^{\infty} \frac{n(n-1)\cdots(n-i+1)\alpha_j^{n-i}}{F_0 F_{\nu} \cdots F_{n\nu}} \quad (i = 0, 1, \ldots, \ell; \, j = 1, \ldots, m)
\]

are linearly independent over \(\mathbb{Q} \), if \(\nu \) is odd and \(\alpha_j \) are nonzero rational numbers having distinct absolute values, or if \(\nu \) is even and \(\alpha_j \) are nonzero distinct rational numbers.

For the next result let \(\theta_i, \lambda_i \in K \) in the above, and assume that \(\tilde{G} \) is a free abelian group. We take a free abelian group \(\hat{G} \) of finite rank satisfying \(\tilde{G} \subseteq \hat{G} \subseteq \mathbb{Q}^\times \).

Let \(r \) be the rank of \(\hat{G} \), and \(\Theta_1, \ldots, \Theta_r \) be a set of generators of \(\hat{G} \). By using these generators we can express \(\theta_i \) as

\[
\theta_i = \Theta_1^{e(i,1)} \cdots \Theta_r^{e(i,r)} \quad (i = 1, \ldots, h).
\]

Define

\[
\hat{S} = \{ \Theta_1^{\nu_1} \cdots \Theta_r^{\nu_r} \mid 0 \leq \nu_j < s_j, j = 1, \ldots, r \},
\]

where

\[
s_j = \max(0, e(1,j), \ldots, e(h,j)) - \min(0, e(1,j), \ldots, e(h,j)) \quad (j = 1, \ldots, r).
\]

Note that \(s_j \geq 1 \) for all \(j \). Then we have the following result.

Theorem 2. Let the notations and the assumptions be as above. Let \(\alpha_1, \ldots, \alpha_m \) be nonzero elements of \(K \) satisfying \(\alpha_i/\alpha_j \notin \hat{G} \) for any \(i \neq j \). If \(\theta_h = 1 \), assume in addition that \(\lambda_h \alpha_j^{-1} \notin \hat{G} \) \((j = 1, \ldots, m) \). Then the numbers

\[
1, \Phi^{(i)}(\lambda \alpha_j) \quad (i = 0, 1, \ldots, \ell; \, j = 1, \ldots, m; \lambda \in \hat{S})
\]

are linearly independent over \(K \).

3. q-hypergeometric series

We can apply Theorem 2 for considering the values of a series generalizing the series (1.1). Let \(q_1, \ldots, q_r \) be \(r \) nonzero multiplicatively independent integers in \(K \).
with $|q_i| > 1$ for all i, and \mathcal{G} be the multiplicative group generated by them. Let $P(x_1, ..., x_r)$ be an element of $\mathbb{K}[x_1, ..., x_r]$ satisfying

$$P(0, ..., 0) \neq 0, \quad P(q_i^{-n}, ..., q_r^{-n}) \neq 0 \quad (n = 0, 1, 2, ...).$$

Then, for positive integers $t_1, ..., t_r$, we define

$$\phi(z) = 1 + \sum_{n=1}^{\infty} \prod_{i=1}^{r} q_i^{-t_i(n)} \prod_{k=0}^{n-1} P(q_1^{-k}, ..., q_r^{-k}) z^n.$$ \tag{3.2}

This series is a particular case of the series (1.6), and reduces to the series (1.1) when $r = 1$. We first restrict ourselves to the case $\deg_{x_i} P \leq t_i$ $(i = 1, ..., r)$.

Theorem 3. Let q_i be as above, and $\phi(z)$ be the series (3.2) with $\deg_{x_i} P \leq t_i$ $(i = 1, ..., r)$. Let $\alpha_1, ..., \alpha_m$ be nonzero elements of \mathbb{K} such that $\alpha_i/\alpha_j \not\in \mathcal{G}$ for any $i \neq j$, and assume in addition that $p_{t_1, ..., t_r} \alpha_i^{-1} \not\in \mathcal{G}$ $(i = 1, ..., m)$ if $p_{t_1, ..., t_r} \neq 0$, where $p_{t_1, ..., t_r}$ is the coefficient of $x_1^{t_1} \cdots x_r^{t_r}$ in $P(x_1, ..., x_r)$. Then the numbers

$$1, \quad \phi^{(\ell)}(\lambda \alpha_j) \quad (i = 0, 1, ..., \ell; j = 1, ..., m; \lambda \in S_1)$$ \tag{3.3}

are linearly independent over \mathbb{K}, where

$$S_1 = \{q_1^{k_1} \cdots q_r^{k_r} | 0 \leq k_i < t_i (i = 1, ..., r)\}.$$

To give a result without the condition $\deg_{x_i} P \leq t_i$ $(i = 1, ..., r)$ we assume that $P(x_1, ..., x_r)$ is a product of polynomials $P_i(x_i) \in \mathbb{K}[x_i]$.

Theorem 4. Let $\phi(z)$ be the series (3.2) with $P(x_1, ..., x_r) = P_1(x_1) \cdots P_r(x_r)$, where $P_i(x_i) \in \mathbb{K}[x_i]$ and the condition (3.1) is satisfied. Let $\alpha_1, ..., \alpha_m$ be nonzero elements of \mathbb{K} such that $\alpha_i/\alpha_j \not\in \mathcal{G}$ for any $i \neq j$, and assume in addition that $p_{t_1, t_2} \cdots p_{r,t_r} \alpha_j^{-1} \not\in \mathcal{G}$ $(i = 1, ..., m)$ if $p_{t_1, t_2} \cdots p_{r,t_r} \neq 0$, where $p_{t_1, t_2} \cdots p_{r,t_r}$ is the coefficient of $x_i^{t_i}$ in $P_i(x_i)$. Then the numbers (3.3) with S_2 instead of S_1 are linearly independent over \mathbb{K}, where

$$S_2 = \{q_1^{k_1} \cdots q_r^{k_r} | 0 \leq k_i < s_i (i = 1, ..., r)\}, \quad s_i = \max(t_i, \deg P_i).$$
The following is a direct consequence of Theorem 4, which generalizes Katsu- surada's result [6] in qualitative form.

Corollary. Let q be an integer in K with $|q| > 1$. Let $f(z)$ be the series (1.1) with $P(z) \in K[z]$ satisfying $P(0) \neq 0, P(q^{-n}) \neq 0$ ($n = 0, 1, 2, \ldots$). Let $\alpha_1, \ldots, \alpha_m$ be nonzero elements of K such that $\alpha_i/\alpha_j \neq q^n$ ($n \in \mathbb{Z}$) for any $i \neq j$. Assume in addition that $p_s \alpha_j^{-1} \neq q^n$ ($n \in \mathbb{Z}, j = 1, \ldots, m$) if $p_s \neq 0$, where p_s is the coefficient of x^s in $P(x)$. Then the numbers (1.3) are linearly independent over K.

References

[10] L. Tschakaloff, Arithmetische Eigenschaften der unendlichen Reihe $\sum_{\nu=0}^{\infty} x^\nu a^{-\frac{1}{2}\nu(r+1)}$ I, Math. Ann. 80 (1921) 62–74; II, ibid. 84 (1921), 100–114.