<table>
<thead>
<tr>
<th>Title</th>
<th>On some generalizations of q-uniform convexity inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kato, Mikio; Takahashi, Yasuji; Hashimoto, Kazuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2002, 1246: 93-97</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41717</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository
On some generalizations of q-uniform convexity inequalities

九州工業大学工学部 加藤幹雄 (Mikio Kato)
岡山県立大学情報工学部 高橋泰嗣 (Yasuji Takahashi)
広島女学院大学 生科学部 橋本一夫 (Kazuo Hashimoto)

Abstract. This is an announcement of some recent results of the authors concerning the q-uniform convexity and p-uniform smoothness inequalities.

We shall consider some generalizations of p-uniform smoothness and q-uniform convexity inequalities. In particular we shall characterize these two geometric notions by type- and cotype-like inequalities which are stronger than those of type and cotype, respectively.

1. p-uniformly smooth and q-uniformly convex spaces

Let X be a Banach space with $\dim X \geq 2$. The modulus of convexity of X is

$$\delta_X(\epsilon) = \inf \left\{ 1 - \frac{\|x+y\|}{2} : \|x\| = \|y\| = 1, \|x - y\| = \epsilon \right\}, \ 0 \leq \epsilon \leq 2.$$

X is called uniformly convex if $\delta_X(\epsilon) > 0$ for all $\epsilon > 0$, and q-uniformly convex ($2 \leq q < \infty$) if there exists a constant $C > 0$ such that $\delta_X(\epsilon) \geq C\epsilon^q$ for all $\epsilon > 0$. The modulus of smoothness of X is

$$\rho_X(\tau) = \sup \left\{ \frac{\|x + \tau y\| + \|x - \tau y\|}{2} - 1 : \|x\| = \|y\| = 1 \right\}, \ \tau > 0.$$

X is called uniformly smooth if $\rho_X(\tau)/\tau \to 0$ as $\tau \to 0$, and p-uniformly smooth ($1 < p \leq 2$) if there exists a constant $K > 0$ such that $\rho_X(\tau) \leq K\tau^p$ for all $\tau > 0$. These moduli have the best values with a Hilbert space H (cf. [8, p. 68]): For any Banach space X

$$\delta_X(\epsilon) \leq \delta_H(\epsilon) = 1 - \sqrt{1 - \epsilon^2}/4,$$

$$\rho_X(\tau) \geq \rho_H(\tau) = \sqrt{1 + \tau^2} - 1.$$

In view of these facts no Banach space is q-uniformly convex for $q < 2$ and p-uniformly smooth for $p > 2$. In fact, if $q < 2$, since

$$\frac{\delta_X(\epsilon)}{\epsilon^q} \leq \frac{1 - \sqrt{1 - \epsilon^2}/4}{\epsilon^q} = \frac{\epsilon^{2-q}}{4(1 + \sqrt{1 - \epsilon^2}/4)},$$

$$\frac{\rho_X(\tau)}{\tau^p} \leq \frac{\epsilon^{2-p}}{4(1 + \sqrt{1 - \epsilon^2}/4)}.$$
we have \(\lim_{\epsilon \to 0} \delta_X(\epsilon)/\epsilon^q = 0 \). When \(p > 2 \),
\[
\frac{\rho_X(\tau)}{\tau^p} \geq \frac{\sqrt{1 + \tau^2} - 1}{\tau^p} = \frac{1}{\tau^{p-2}(\sqrt{1 + \tau^2} + 1)} \to \infty \quad \text{as} \quad \tau \to 0.
\]
Also every Banach space is 1-uniformly smooth as \(\rho_X(\tau) \leq \tau \) for all \(\tau > 0 \). It is clear that \(p \)-uniformly smooth spaces are \(r \)-uniformly smooth if \(1 < r \leq p \leq 2 \), and \(q \)-uniformly convex spaces are \(r \)-uniformly convex if \(2 \leq q \leq r < \infty \).

\(p \)-uniformly smooth and \(q \)-uniformly convex spaces are characterized by the following \(p \)-uniform smoothness and \(q \)-uniform convexity inequalities:

Lemma 1 ([1], [2]). (i) Let \(1 < p \leq 2 \). Then \(X \) is \(p \)-uniformly smooth if and only if there exists \(K > 0 \) such that
\[
\frac{\|x+y\|^p + \|x-y\|^p}{2} \leq \|x\|^p + \|Ky\|^p \quad \text{for all} \quad x, y \in X.
\]
(ii) Let \(2 \leq q < \infty \). Then \(X \) is \(q \)-uniformly convex if and only if there exists \(C > 0 \) such that
\[
\frac{\|x+y\|^q + \|x-y\|^q}{2} \geq \|x\|^q + \|Cy\|^q \quad \text{for all} \quad x, y \in X.
\]

Remark 1. (i) The validity of the inequality (1) implies \(K \geq 1 \). Thus (1) with the best constant \(K = 1 \) is the following Clarkson inequality
\[
\left(\frac{\|x+y\|^p + \|x-y\|^p}{2} \right)^{1/p} \leq (\|x\|^p + \|y\|^p)^{1/p} \quad (1 < p \leq 2)
\]
(ii) In (2) we have necessarily \(0 < C \leq 1 \) (indeed put \(x = 0 \)), and the inequality (2) with the best constant \(C = 1 \) is the following Clarkson inequality
\[
\left(\frac{\|x+y\|^q + \|x-y\|^q}{2} \right)^{1/q} \geq (\|x\|^q + \|y\|^q)^{1/q} \quad (2 \leq q < \infty)
\]

2. **Generalizations of \(p \)-uniform smoothness and \(q \)-uniform convexity inequalities**

We shall present some generalizations of \(p \)-uniform smoothness and \(q \)-uniform convexity inequalities which hold to characterize these smoothness and convexity. More precisely, in the first sense we shall give two-element inequalities sharper than (1) and (2) respectively, and in the secondary sense we shall characterize \(p \)-uniform smoothness and \(q \)-uniform convexity by type-, cotype-like inequalities which are stronger than type, cotype inequalities respectively.
The notions of type and cotype were introduced by Hoffman-Jørgensen [3] (cf. [9]) in the context of the law of large numbers for random variables with values in a Banach space. A Banach space X is called of type p, $1 \leq p \leq 2$, if there is $M > 0$ (necessarily $M \geq 1$) such that

\[\left(\frac{1}{2^n} \sum_{\theta_j = \pm 1} \left\| \sum_{j=1}^{n} \theta_j x_j \right\|^p \right)^{1/p} \leq M \left(\sum_{j=1}^{n} \|x_j\|^p \right)^{1/p} \]

(5)

for all finite systems $x_1, \ldots, x_n \in X$. X is called of cotype q, $2 \leq q < \infty$, if there is $M > 0$ (necessarily $M \geq 1$) such that

\[\left(\frac{1}{2^n} \sum_{\theta_j = \pm 1} \left\| \sum_{j=1}^{n} \theta_j x_j \right\|^q \right)^{1/q} \geq \frac{1}{M} \left(\sum_{j=1}^{n} \|x_j\|^q \right)^{1/q} \]

(6)

for all finite systems $x_1, \ldots, x_n \in X$.

These probabilistic properties are characterized by Clarkson's inequalities which are of geometric nature. Namely, in 1997 the first and second authors [6] showed that X is of type p with $M = 1$ if and only if Clarkson's inequality (3) holds in X and the corresponding fact for cotype and Clarkson's inequality (4) (their presentations are more general). On the other hand it is well known that

(i) p-uniformly smooth spaces are of type p,
(ii) q-uniformly convex spaces are of cotype q,

and there is no converse of these assertions. Indeed there exists a non-reflexive space X having type 2 (James [4]). Then X is of type p for any $1 < p \leq 2$, whereas X is not p-uniformly smooth because uniformly smooth spaces must be reflexive. Also its dual space X^* is of cotype q for any $2 \leq q < \infty$, but not q-uniformly convex as X^* is not reflexive.

Theorem 1 (p-uniform smoothness). Let $1 < p \leq 2$ and $1 \leq s < \infty$. The following are equivalent.

(i) X is p-uniformly smooth.
(ii) There exists $K \geq 1$ such that

\[\left(\frac{\|x + y\|^s + \|x - y\|^s}{2} \right)^{1/s} \leq \left(\|x\|^p + \|Ky\|^p \right)^{1/p} \quad \forall x, y \in X. \]

(7)

If $p \leq s < \infty$, in addition:

(iii) There exists $K \geq 1$ such that

\[\left(\frac{1}{2^n} \sum_{\theta_j = \pm 1} \left\| \sum_{j=1}^{n} \theta_j x_j \right\|^s \right)^{1/s} \leq \left(\|x_1\|^p + \sum_{j=2}^{n} \|Kx_j\|^p \right)^{1/p} \]

(8)

for all finite systems $x_1, \ldots, x_n \in X$.

Remark 2. (i) The inequality (7) is sharper than (1) of Lemma 1 if $p \leq s$. Indeed in this case by Lemma 2

$$\left(\frac{\|x+y\|^p + \|x-y\|^p}{2} \right)^{1/p} \leq \left(\frac{\|x+y\|^s + \|x-y\|^s}{2} \right)^{1/s} \leq (\|x\|^p + \|K\|^p)^{1/p}.$$

(ii) For the case $K = 1$ the equivalence of the inequalities (7) and (8) is proved in Kato-Takahashi [6].

(iii) The inequality (8) is stronger than the type p inequality (5). Indeed, the space X of James stated above is of type p, whereas (8) fails to hold in X. So we refer to (8) as strong type p inequality.

Theorem 2 (q-uniform convexity). Let $2 \leq q < \infty$ and $1 < t \leq \infty$. The following are equivalent.

(i) X is q-uniformly convex.

(ii) There exists $0 < C \leq 1$ such that

$$\left(\frac{\|x+y\|^t + \|x-y\|^t}{2} \right)^{1/t} \geq (\|x\|^q + \|Cy\|^q)^{1/q} \quad \forall x, y \in X.$$

If $1 < t \leq q$, in addition:

(iii) There exists $0 < C \leq 1$ such that

$$\left(\frac{1}{2^n} \sum_{\theta_j = \pm 1} \left\| \sum_{j=1}^{n} \theta_j x_j \right\|^t \right)^{1/t} \geq \left(\|x_1\|^q + \sum_{j=2}^{n} \|Cx_j\|^q \right)^{1/q}$$

for all finite systems $x_1, \ldots, x_n \in X$.

Remark 3. (i) The inequality (9) is sharper than (2) of Lemma 1 if $q \geq t$. Indeed we have

$$\left(\frac{\|x+y\|^q + \|x-y\|^q}{2} \right)^{1/q} \geq \left(\frac{\|x+y\|^t + \|x-y\|^t}{2} \right)^{1/t} \geq (\|x\|^q + \|Cy\|^q)^{1/q}.$$

(ii) For the case $C = 1$ the equivalence of the inequalities (9) and (10) is proved in Kato-Takahashi [6].

(iii) The inequality (10) is stronger than the cotype q inequality (6). Indeed the dual space X^* of the space X of James is of cotype q, but (10) fails to hold in X. L_1 is also a counter example, since it is of cotype 2 and non-reflexive. So we refer to (10) as strong cotype q inequality.

It is well known that if X is of type p, then X^* is of cotype q, where $1/p + 1/q = 1$, and the converse is not true ([2, pp. 309-310]). Indeed, $l_1 = (c_0)^*$ has cotype 2, whereas c_0 has no non-trivial type. Our next theorem asserts that for our strong type and cotype inequalities (8) and (10) the converse is also true if $p \leq s < \infty.$
Theorem 3 (duality). Let $1 \leq p \leq 2$, $1 < s < \infty$ and $1/p+1/q = 1/s+1/t = 1$. Let $1 \leq K < \infty$. Then if

\begin{equation}
\left(\frac{1}{2^n} \sum_{\theta_j=\pm 1} \left\| \sum_{j=1}^{n} \theta_j x_j \right\|^s \right)^{1/s} \leq \left(\|x_1\|^p + \sum_{j=2}^{n} \|Kx_j\|^p \right)^{1/p}
\end{equation}

holds in X,

\begin{equation}
\left(\frac{1}{2^n} \sum_{\theta_j=\pm 1} \left\| \sum_{j=1}^{n} \theta_j x_j^* \right\|^t \right)^{1/t} \geq \left(\|x_1^*\|^q + \sum_{j=2}^{n} \|K^{-1} x_j^*\|^q \right)^{1/q}
\end{equation}

holds in X^*. If $p \leq s < \infty$ the converse is true.

References

Department of Mathematics
Kyushu Institute of Technology
Kitakyushu 804-8550, Japan

Department of System Engineering
Okayama Prefectural University
Soja 719-1197, Japan

Department of Environmental Health Science
Hiroshima Jogakuin University
Hiroshima 732-0063, Japan