Notes on discrete subgroups of \(PU(1,2; C) \)
with Heisenberg translations III

Shigeyasu KAMIYA

神谷茂保（岡山理大）

In a previous paper [8] we have seen that under some conditions Parker’s theorem yields the discreteness condition of Basmajian and Miner for groups with a Heisenberg translation. In this paper we give a new stable basin region and show the same result as in [8] without the assumption on \(r \). This is a joint work with John R. Parker.

1. First we recall some definitions and notation. Let \(C \) be the field of complex numbers. Let \(V = V^{1,2}(C) \) denote the vector space \(C^3 \), together with the unitary structure defined by the Hermitian form

\[
\tilde{\Phi}(z^*, w^*) = -(z_0^* w_1^* + z_1^* w_0^*) + z_2^* w_2^*
\]

for \(z^* = (z_0^*, z_1^*, z_2^*) \), \(w^* = (w_0^*, w_1^*, w_2^*) \) in \(V \). An automorphism \(g \) of \(V \), that is a linear bijection such that \(\tilde{\Phi}(g(z^*), g(w^*)) = \tilde{\Phi}(z^*, w^*) \) for \(z^*, w^* \) in \(V \), will be called a unitary transformation. We denote the group of all unitary transformations by \(U(1,2; C) \). Let \(V_0 = \{ w^* \in V | \tilde{\Phi}(w^*, w^*) = 0 \} \) and \(V_- = \{ w^* \in V | \tilde{\Phi}(w^*, w^*) < 0 \} \). It is clear that \(V_0 \) and \(V_- \) are invariant under \(U(1,2; C) \). We denote \(U(1,2; C)/(center) \) by \(PU(1,2; C) \). Set \(V^* = V_- \cup V_0 \cup \{ 0 \} \). Let \(\pi : V^* \rightarrow \pi(V^*) \) be the projection map defined by \(\pi(w_0^*, w_1^*, w_2^*) = (w_1, w_2) \), where \(w_1 = w_0^* / w_1^* \) and \(w_2 = w_0^* / w_2^* \). We write \(\infty \) for \((0,1,0) \). We may identify \(\pi(V_-) \) with the Siegel domain

\[
H^2 = \{ w = (w_1, w_2) \in C^2 | \ Re(w_1) > \frac{1}{2} | w_2 |^2 \}.
\]

We can regard an element of \(PU(1,2; C) \) as a transformation acting on \(H^2 \) and its boundary \(\partial H^2 \) (see [6]). Denote \(H^2 \cup \partial H^2 \) by \(\overline{H^2} \). We define a new coordinate system in \(\overline{H^2} - \{ \infty \} \). Our convention slightly differs from Basmajian-Miner [1] and Parker [8]. The \(H \) - coordinates of a point \((w_1, w_2) \in \overline{H^2} - \{ \infty \} \) are defined by \((k, t, w_2)_H \in (R^* \cup \{0\}) \times R \times C \) such that \(k = Re(w_1) - \frac{1}{2} | w_2 |^2 \) and \(t = Im(w_1) \). For simplicity, we write \((t_1, w')_H \) for \((0, t_1, w')_H \). The Cygan metric \(\rho(p, q) \) for \(p = (k_1, t_1, w)_H \) and \(q = (k_2, t_2, W')_H \) is given by

\[
\rho(p, q) = | \{ \frac{1}{2} | W' - w' |^2 + | k_2 - k_1 | \} + i \{ t_1 - t_2 + Im(w' W') \} |^\frac{1}{2}.
\]

We note that the Cygan metric \(\rho \) is a generalization of the Heisenberg metric \(\delta \) in \(\partial H^2 \).
Let $f = (a_{ij})_{1 \leq i,j \leq 3}$ be an element of $PU(1,2; \mathbb{C})$ with $f(\infty) \neq \infty$. We define the isometric sphere I_f of f by

$$I_f = \{ w = (w_1, w_2) \in \overline{H}^2 \ | \ |\tilde{\Phi}(W, Q)| = |\tilde{\Phi}(W, f^{-1}(Q))| \},$$

where $Q = (0,1,0)$, $W = (1, w_1, w_2)$ in V^* (see [4]). It follows that the isometric sphere I_f is the sphere in the Cygan metric with center $f^{-1}(\infty)$ and radius $R_f = \sqrt{1/|a_{12}|}$, that is,

$$I_f = \left\{ z = (k, t, w')_H \in (\mathbb{R}^+ \cup \{0\}) \times \mathbb{R} \times \mathbb{C} \ | \rho(z, f^{-1}(\infty)) = \sqrt{\frac{1}{|a_{12}|}} \right\}.$$

2. We shall give a modified version of the stable basin theorem in [8]. Let

$$B_r = \{ z \in \partial H^2 \ | \ \delta(z,0) < r \},$$

and let $\overline{B}_s = \partial H^2 - \overline{B}_s$. Given r and s with $r < s$, the pair of open sets (B_r, \overline{B}_s) is said to be stable with respect to a set S of elements in $PU(1,2; \mathbb{C})$ if for any element $g \in S$,

$$g(0) \in B_r \quad g(\infty) \in \overline{B}_s.$$

A loxodromic element f has a unique complex dilation factor $\lambda(f)$ such that $|\lambda(f)| > 1$. Let $S(r, \epsilon)$ denote the family of loxodromic elements f with fixed points in B_r and $\overline{B}_{1/r'}$, and satisfying $|\lambda(f)-1| < \epsilon$. For positive real numbers r and r' with $r < 1/\sqrt{3}$ and $r' < 1$, we define $\epsilon(r, r')$ by

$$\epsilon(r, r') = \sup\{|\lambda(f)-1|\}, \quad (2.1)$$

where $|\lambda(f)-1|$ satisfies the inequality

$$|\lambda(f)-1| < \sqrt{1 + \left(\frac{1-3\epsilon}{1-2r^2} \right)^2 \left(\frac{1-3r^2}{1-r^2} \right)^2 \left(\frac{r'}{r} \right)^2 - 1}. \quad (2.2)$$

A triple of non-negative numbers (r, r', ϵ) is said to be a basin point provided that $r < 1/\sqrt{3}$, $r' < 1$ and $\epsilon < \epsilon(r, r')$. In particular, if $r' \leq r$, we call (r, r', ϵ) a stable basin point. Call the set of all such points the stable basin region. For simplicity, we abbreviate (r, r', ϵ) to (r, ϵ). Figure 1 shows our new stable basin region, which contains regions in [1] and [8]. Some stable basin points are tabulated in Table 2.

Exactly the same arguments except for using the following Lemma 2.1 instead of Proposition 3.3 in [1] shows our new stable basin theorem.

Lemma 2.1. Let $b, c > 0$ be given. If f is a complex dilation and its complex dilation factor satisfies $|\lambda(f)-1| \leq \sqrt{1 + (b/c)^2} - 1$, then $f(p) \in B_b(p)$ for $p \in \overline{B}_c$.
Theorem 2.2 (cf. [8; Stable Basin Theorem]). Given positive real numbers \(r \) and \(r' \) with \(r < 1/\sqrt{3} \) and \(r' < 1 \), the pair of open sets \((B_r, B_{1/r'})\) is stable with respect to the family \(S(r, \epsilon(r, r')) \), where \(\epsilon(r, r') \) is given by (2.2).

Remark 2.3. By arguing as in Corollary 6.14 in [1], we may find the boundary of the stable basin region by equating both sides of inequality (2.2) and solving for \(|\lambda(f) - 1| \) in terms of \(r \). If we use Basmajian and Miner's inequality (6.2) in [1], this involves solving a polynomial of degree 6. Using our inequality (2.2), we have

\[
\frac{a_1 a_2 \sqrt{a_3^2 b_1 + 2 a_3^2 r^2 b_1} - a_2^2 a_1^2 - a_3^2 b_1 r^2}{a_2^2 a_1^2 - a_3^2 b_1 r^4},
\]

where \(a_j = 1 - j r^2 \) and for \(j = 1, 2, 3 \) and \(b_1 = (r'/r)^2 \).

3. We begin with recalling Parker's theorem on the discreteness of subgroups of \(PU(1, 2; \mathbb{C}) \).

Theorem 3.1 ([9; Theorem 2.1]). Let \(g \) be a Heisenberg translation with the form

\[
g = \begin{pmatrix} 1 & 0 & 0 \\ s & 1 & \bar{a} \\ a & 0 & 1 \end{pmatrix},
\]

where \(\text{Re}(s) = \frac{1}{2}|a|^2 \). Let \(f \) be any element of \(PU(1, 2; \mathbb{C}) \) with isometric sphere of radius \(R_f \). If

\[
R_f^2 > \delta(g f^{-1}(\infty), f^{-1}(\infty)) \delta(g f(\infty), f(\infty)) + 2|a|^2,
\]

then the group \(\langle f, g \rangle \) generated by \(f \) and \(g \) is not discrete.

In Theorem 4.5 of [8] we have shown that if \(r < 0.484 \), then Theorem 3.1 leads to the discreteness condition of Basmajian and Miner for groups with a Heisenberg translation. By using a more precise estimate on the Heisenberg distance between fixed points of \(f \) in terms of \(R_f \) and \(\lambda(f) \), we have the following same result without the assumption on \(r \).

Theorem 3.2. Fix a stable basin point \((r, \epsilon)\). Let \(g \) be the same element as in Theorem 3.1. Let \(f \) be a loxodromic element with fixed point 0 and \(g \), and satisfying \(|\lambda(f) - 1| < \epsilon \). If \(\delta(0, q) > \frac{\delta(0, g(0))}{R_f}(1 + r^2 + \sqrt{1 + r^2}) \), then the group \(\langle f, g \rangle \) generated by \(f \) and \(g \) is not discrete.

To prove our theorem, we need the following lemmas.

Lemma 3.3. Let \(f \) be a loxodromic element with fixed points 0 and \(g \), satisfying \(|\lambda(f) - 1| < \epsilon \). Then

\[
\left(\frac{\delta(0, q)}{R_f} \right)^2 \leq \frac{2\epsilon - \epsilon^2}{1 - \epsilon}.
\]
Lemma 3.4. For a stable basin point \((r, \epsilon)\),

\[
\frac{1 + r^2 + \sqrt{1 + r^2}}{r^2} > \left(\frac{2\epsilon - \epsilon^2}{1 - \epsilon}\right)^{\frac{1}{2}} \left(2 + \left(8 + \frac{M(\epsilon)}{2}\right)^{\frac{1}{3}}\right),
\]

where \(M(\epsilon) = (1 + \epsilon)^{\frac{1}{2}} + (1 + \epsilon)^{-\frac{1}{2}}\).

![Graph of \(\epsilon(r,r)\)](image)

Figure 1. Graph of \(\epsilon(r,r)\)

<table>
<thead>
<tr>
<th>r (\setminus) r'</th>
<th>0.05</th>
<th>0.1</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
<th>0.3</th>
<th>0.35</th>
<th>0.4</th>
<th>0.45</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.408</td>
<td>1.217</td>
<td>2.1258</td>
<td>3.064</td>
<td>4.013</td>
<td>4.964</td>
<td>5.916</td>
<td>6.866</td>
<td>7.813</td>
<td>8.757</td>
</tr>
<tr>
<td>0.1</td>
<td>0.111</td>
<td>0.390</td>
<td>0.755</td>
<td>1.161</td>
<td>1.586</td>
<td>2.019</td>
<td>2.456</td>
<td>2.894</td>
<td>3.331</td>
<td>3.766</td>
</tr>
<tr>
<td>0.15</td>
<td>0.046</td>
<td>0.175</td>
<td>0.361</td>
<td>0.581</td>
<td>0.820</td>
<td>1.072</td>
<td>1.329</td>
<td>1.589</td>
<td>1.850</td>
<td>2.111</td>
</tr>
<tr>
<td>0.2</td>
<td>0.023</td>
<td>0.091</td>
<td>0.193</td>
<td>0.321</td>
<td>0.466</td>
<td>0.622</td>
<td>0.785</td>
<td>0.953</td>
<td>1.122</td>
<td>1.292</td>
</tr>
<tr>
<td>0.25</td>
<td>0.012</td>
<td>0.050</td>
<td>0.108</td>
<td>0.184</td>
<td>0.273</td>
<td>0.371</td>
<td>0.475</td>
<td>0.584</td>
<td>0.696</td>
<td>0.810</td>
</tr>
<tr>
<td>0.3</td>
<td>0.007</td>
<td>0.027</td>
<td>0.060</td>
<td>0.104</td>
<td>0.157</td>
<td>0.217</td>
<td>0.283</td>
<td>0.352</td>
<td>0.424</td>
<td>0.499</td>
</tr>
<tr>
<td>0.35</td>
<td>0.003</td>
<td>0.014</td>
<td>0.032</td>
<td>0.056</td>
<td>0.086</td>
<td>0.120</td>
<td>0.158</td>
<td>0.200</td>
<td>0.243</td>
<td>0.289</td>
</tr>
<tr>
<td>0.4</td>
<td>0.001</td>
<td>0.006</td>
<td>0.015</td>
<td>0.027</td>
<td>0.041</td>
<td>0.059</td>
<td>0.078</td>
<td>0.100</td>
<td>0.123</td>
<td>0.148</td>
</tr>
<tr>
<td>0.45</td>
<td>0.000</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>0.015</td>
<td>0.022</td>
<td>0.030</td>
<td>0.039</td>
<td>0.048</td>
<td>0.059</td>
</tr>
<tr>
<td>0.5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.006</td>
<td>0.008</td>
<td>0.010</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Table 2
References

8. S. Kamiya, On discrete subgroups of $PU(1, 2; C)$ with Heisenberg translations, J. London Math. Soc. (2) 62, 827-842 (2000).

Okayama University of Science
1-1 Ridai-cho, Okayama 700-0005 JAPAN
e-mail: kamiya@mech.ous.ac.jp