<table>
<thead>
<tr>
<th>Title</th>
<th>Normal ultrafilters without the partition property (Axiomatic Set Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kamo, Shizuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2001), 1202: 1-6</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/40954</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Normal ultrafilters without the partition property

大阪府立大学総合科学部 加茂静夫（Shizuo Kamo）

1 Introduction

Let κ be a measurable cardinal and $\kappa \leq \lambda$. Concerning the partition property of a normal ultrafilter on $\mathcal{P}_\kappa \lambda$, Solovay (see Menas [6]) proved the existence of a normal ultrafilter without the partition property under the assumption of that the existence of a certain large cardinal greater than κ. After Solovay established this result, Kunen (see Kunen-Pelletier [3]) improved his results, and proved that the existence of a normal ultrafilter without the partition property implies the existence of a certain large cardinal above κ. On the other hand, Menas [6] proved that there exist $2^{2^{\lambda^\kappa}}$ normal ultrafilters with the partition property, if κ is 2^{λ^κ} supercompact. In the talk, we prove

Theorem 1 Suppose that U is a normal ultrafilter on $\mathcal{P}_\kappa \lambda$ without the partition property. Define θ by

$$\text{Ult}_U(\mathcal{V}) \models \" \theta \text{ is the first Mahlo cardinal greater than } \lambda \".$$

Then, it holds that

$$\text{Ult}_U(\mathcal{V}) \models \" \kappa \text{ is } \gamma \text{-supercompact for all } \gamma < \theta \".$$

As a corollary, we have the following which has been proved in [1].

Corollary 2 If κ is λ-supercompact, then there exists a normal ultrafilter on $\mathcal{P}_\kappa \lambda$ with the partition property.

2 Notations and definitions

We use standard $\mathcal{P}_\kappa \lambda$-combinatorial terminologies (e.g., see [2]). Throughout this paper, κ denotes a regular uncountable cardinal. Let A be a set such
that $\kappa \subset A$. $\mathcal{P}_\kappa A$ denotes the set $\{ x \subset A \mid |x| < \kappa \}$.

Let $Y \subset \mathcal{P}_\kappa A$. $[Y]^2$ denotes the set $\{ (x, y) \in Y \times Y \mid x \subset y \text{ and } x \neq y \}$. For any function $f : [Y]^2 \to 2$, a subset H of Y is said to be homogeneous for f, if $|f''[H]^2| = 1$.

For each $x \in \mathcal{P}_\kappa A$, \hat{x} denotes the set $\{ y \in \mathcal{P}_\kappa A \mid x \subset y \text{ and } x \neq y \}$. Let U be a κ-complete ultrafilter on $\mathcal{P}_\kappa A$. The ultrapower of the universe \mathcal{V} modular U is denoted by $\text{Ult}_U(\mathcal{V})$. We say that U is fine, if $\hat{x} \in u$ for all $x \in \mathcal{P}_\kappa A$. A fine ultrafilter U is said to be normal, if it is closed under the diagonal intersection. U has the partition property, if for any $X \in U$ and any $f : [X]^2 \to 2$, there exists $Y \in U$ such that $Y \subset X$ and Y is homogeneous for f.

3 Preparations for a proof of Theorem 1

In this section, we prove a lemma which will be used to prove the theorem.

Define $X_0 \subset \mathcal{P}_\kappa \lambda$ by:

$x \in X_0$ if and only if $x \in \mathcal{P}_\kappa \lambda$ and the following (1) and (2) hold.

1. $x \cap \kappa$ is a Mahlo cardinal.
2. ξ is inaccessible iff $\text{ot}(x \cap \xi)$ is inaccessible , for all $\xi \in x \cup \{ \lambda \}$.

Since $\text{ot}(x \cap \xi)$ represents ξ in $\text{Ult}_U(\mathcal{V})$ for every $\xi \leq \lambda$, $X_0 \in U$ for every normal ultrafilter U on $\mathcal{P}_\kappa \lambda$. Now we can prove the lemma.

Lemma 3 Let U be a normal ultrafilter on $\mathcal{P}_\kappa \lambda$ and $\kappa \leq \gamma \leq \lambda$. Suppose that

$\forall X \in U \exists (x, y) \in [X]^2 \ (x \cap \gamma = y \cap \gamma)$.

Let σ be the least ordinal $\delta \leq \lambda$ which satisfies

$\forall X \in U \exists (x, y) \in [X]^2 \ (x \cap \gamma = y \cap \gamma \text{ and } x \cap \delta \neq y \cap \delta)$.

Then, σ is a Mahlo cardinal.

Proof For each $\xi \in [\gamma, \sigma)$, take a $Y_\xi \in U$ such that

$\forall (x, y) \in [Y_\xi]^2 \ (\text{ if } x \cap \gamma = y \cap \gamma \text{ then } x \cap \xi = y \cap \xi)$.

Set $X_1 = X_0 \cap \Delta_{\gamma \leq \xi < \sigma} Y_\xi$. Note that, for any $(x, y) \in [X_1]^2$, if $x \cap \gamma = y \cap \gamma$
and $x \cap \sigma \neq y \cap \sigma$ then $y \cap \sigma$ is an end extension of $x \cap \sigma$.

We first show that σ is a strong limit cardinal. To get a contradiction, assume that there is a $\delta < \sigma$ such that $\sigma \leq 2^\delta$. Put

$$Y_0 = \{ x \in X_1 \mid \delta \in x \text{ and } \operatorname{ot}(x \cap \sigma) \leq 2^{\operatorname{ot}(x \cap \delta)} \}.$$

Since $\sigma \leq 2^\delta$ also holds in $\text{Ult}_U(V)$ and $\langle \operatorname{ot}(x \cap \delta) \mid x \in \mathcal{P}_\kappa \lambda \rangle$ represents δ, we have that $Y_0 \in U$. For each $\alpha < \kappa$, take an injection $f_\alpha : 2^\alpha + 1 \to \mathcal{P}(\alpha)$. For each $x \in Y_0$, let $\pi_x : \operatorname{ot}(x \cap \delta) \to x \cap \delta$ be the order isomorphism, and put $a_x = \pi_x^{\sigma} f_{\operatorname{ot}(x \cap \delta)}(\operatorname{ot}(x \cap \sigma))$. Since $a_x \subset x \cap \delta$ for all $x \in Y_0$, there is an $A \subset \delta$ such that

$$Y_1 = \{ x \in Y_0 \mid a_x = A \cap x \} \in U.$$

Take a pair $(x, y) \in [Y_1]^2$ such that $x \cap \gamma = y \cap \gamma$ and $x \cap \sigma \neq y \cap \sigma$. Since $\delta \in x \subset y$, it holds that $x \cap \delta = y \cap \delta$. By this, we have $\pi_x = \pi_y$ and $a_x = A \cap x \cap \delta = A \cap y \cap \delta = a_y$. So, $\operatorname{ot}(x \cap \sigma) = \operatorname{ot}(y \cap \sigma)$. This contradicts that $y \cap \sigma$ is an end extension of $x \cap \sigma$.

Next, we show that σ is a regular cardinal. To get a contradiction, assume that $\delta = \operatorname{cof}(\sigma) < \sigma$. Take a normal cofinal function $f : \delta \to \sigma$. Put

$$Y_2 = \{ x \in X_1 \mid \delta \in x \text{ and } x \in f, f^{-1}\text{-closed and } f''x \cap \delta \text{ is cofinal in } x \cap \sigma \}.$$

It is easy to check that $Y_2 \in U$. So, there is a pair $(x, y) \in [Y_2]^2$ such that $x \cap \gamma = y \cap \gamma$ and $x \cap \sigma \neq y \cap \sigma$. Since $\delta \in x$ and $x \in X_1$, it holds that $x \cap \delta = y \cap \delta$. So, we have that $\sup(x \cap \sigma) = \sup f''x \cap \delta = \sup f''y \cap \delta = \sup(y \cap \sigma)$. This contradicts that $y \cap \sigma$ is an end extension of $x \cap \sigma$.

Finally we show that σ is a Mahlo cardinal. Note that $\operatorname{ot}(x \cap \sigma)$ is inaccessible for all $x \in X_1$, since $X_0 \subset X_1$ and σ is inaccessible. Put $S = \{ \alpha < \sigma \mid \alpha \text{ is inaccessible} \}$. To get a contradiction, assume that S is non-stationary. Take a closed unbounded subset C of σ such that $\min C > \gamma$ and $S \cap C = \phi$. For each $x \in \mathcal{P}_\kappa \lambda$, let $\rho_x : \operatorname{ot}(x \cap \sigma) \to x \cap \sigma$ be an order isomorphism and put $C_x = \rho^{-1}(x \cap C)$. Since $\langle C_x \mid x \in \mathcal{P}_\kappa \lambda \rangle$ represents C in $\text{Ult}_U(V)$, it holds that

$$Y_3 = \{ x \in X_1 \mid C_x \text{ is club in } \operatorname{ot}(x \cap \sigma) \} \in U.$$

Take a pair $(x, y) \in [Y_3]^2$ such that $x \cap \gamma = y \cap \gamma$ and $x \cap \sigma \neq y \cap \sigma$. Let η be
the least element of \(y \cap \sigma \setminus x \cap \sigma \) and \(\overline{\eta} = \rho^{-1}(\eta) \). Since \(\text{ot}(x \cap \sigma) = \text{ot}(y \cap \eta) \), we have that \(\rho_x = \rho_y \upharpoonright \overline{\eta} \) and \(\text{ot}(y \cap \eta) \) is inaccessible. So, \(\overline{\eta} \in C_y \) and \(\eta \) is inaccessible. Hence \(\eta \in C \cap S \). This is a contradiction. \[\square \]

4 Proofs of Theorem 1 and Corollary 2

In order to prove the theorem, we need the notion of \(\omega \)-Jonsson functions and some known results. Let \(S \) be an infinite set. We denote by \(\omega S \) the set of functions from \(\omega \) to \(S \). A function \(F \) from \(\omega S \) to \(S \) is called an \(\omega \)-Jonsson function for \(S \) if \(F \upharpoonright \omega T = S \) for any \(T \subset S \) with \(|T| = |S| \). Concerning \(\omega \)-Jonsson functions, Erdős-Hajnal (e.g., see [2, Theorem 23.13]) proved:

Lemma 4 (Erdős-Hajnal) For any infinite set \(S \), there exists an \(\omega \)-Jonsson function for \(S \).

Solovay proved:

Lemma 5 (Solovay [5]) Let \(U \) be a normal ultrafilter on \(P_\kappa \lambda \) and \(F : \omega \lambda \rightarrow \lambda \) an \(\omega \)-Jonsson function. Then

\[\{ x \in P_\kappa \lambda \mid F \upharpoonright \omega x \text{ is an } \omega \text{-Jonsson function for } x \} \in U. \]

The next lemma is due to Magidor.

Lemma 6 (Magidor [4]) If \(\kappa \) is \(< \lambda \)-supercompact and \(\lambda \) is \(\theta \)-supercompact, then \(\kappa \) is \(\theta \)-supercompact.

The next lemma is due to Menas.

Lemma 7 (Menas [6]) Let \(U \) be a normal ultrafilter on \(P_\kappa \lambda \). Then, the following (a) and (b) are equivalent.

(a) \(U \) has the partition property.

(b) There exists an \(X \in U \) such that \(\forall (x, y) \in [X]^2 \) (\(|x| < |y \cap \kappa| \)).

Now we can prove the theorem.
Theorem 1 Suppose that U is a normal ultrafilter on $\mathcal{P}_\kappa\lambda$ without the partition property. Define θ by

$$\text{Ult}_U(V) \models "\theta \text{ is the first Mahlo cardinal greater than } \lambda."
$$

Then, it holds that

$$\text{Ult}_U(V) \models "\kappa \text{ is } \gamma\text{-supercompact for all } \gamma < \theta"."$$

Proof To get a contradiction, assume that

$$\text{Ult}_U(V) \models "\kappa \text{ is not } \gamma\text{-supercompact for some } \gamma < \theta"."$$

Define $f : \mathcal{P}_\kappa\lambda \rightarrow \kappa$ by

$$f(x) = \text{the least Mahlo cardinal greater than } \text{ot}(x).$$

Since f represents θ in $\text{Ult}_U(V)$,

$$Y_0 = \{ x \in X_0 | x \cap \kappa \text{ is not } \xi\text{-supercompact for some } \xi < f(x) \} \in U.$$

Let $\gamma = \sup \{ \delta \leq \lambda | \delta \text{ is a Mahlo cardinal} \}$. Since γ satisfies the same statement in $\text{Ult}_U(V)$, it holds that

$$Y_0 = \{ x \in X_0 | \text{ot}(x \cap \gamma) = \sup \{ \delta \leq \text{ot}(x) | \delta \text{ is a Mahlo cardinal} \} \in U.$$

Furthermore, since

$$\text{Ult}_U(V) \models "\kappa \text{ is } \xi\text{-supercompact for all } \xi < \gamma"."$$

it holds that

$$Y_1 = \{ x \in Y_0 | x \cap \kappa \text{ is } \xi\text{-supercompact for all } \xi < \text{ot}(x \cap \gamma) \} \in U.$$

By the previous lemma, we can take a $Z \in U$ such that $x \cap \gamma \neq y \cap \gamma$, for all $(x, y) \in Z$. Take an ω-Jonsson function F for γ and put

$$Y_3 = \{ x \in Y_2 \cap Z | F \upharpoonright x \cap \gamma \text{ is } \omega\text{-Jonsson function for } x \cap \gamma \} \in U.$$

Note that $|x \cap \gamma| < |y \cap \gamma|$ for all $(x, y) \in [Y_3]^2$. Since U does not have the partition property, there is a pair $(x, y) \in [Y_3]^2$ such that $y \cap \kappa \leq |x|$. Since $x \in Y_1$ and $y \cap \kappa$ is Mahlo, it holds that $y \cap \kappa \leq \text{ot}(x \cap \gamma)$. So, $x \cap \kappa$ is ξ-supercompact for all $\xi < y \cap \kappa$. By this, since $y \in X_2$, it holds that

$$x \cap \kappa \text{ is } \xi\text{-supercompact for all } \xi < \text{ot}(y \cap \gamma).$$

So, $f(x) \leq \text{ot}(y \cap \gamma)$. Hence, it holds that

$$x \cap \kappa \text{ is not } \xi\text{-supercompact for some } \xi < \text{ot}(y \cap \gamma).$$

This is a desired contradiction. \square
Corollary 2 directly follows from Theorem 1 and the following Menas's result.

Lemma 8 (Menas [5]) If κ is λ-supercompact, then there exists a normal ultrafilter U on $\mathcal{P}_{\kappa}\lambda$ such that
\[\text{Ult}_U(V) \models \kappa \text{ is not } \lambda\text{-supercompact}. \]

References

