<table>
<thead>
<tr>
<th>Title</th>
<th>SYMBILIC DYNAMICAL SYSTEMS AND ENDOMORPHISMS ON $C^$-ALGEBRAS ($C^$-algebras and related dynamical systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matsumoto, Kengo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2004, 1379: 26-47</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25656</td>
</tr>
<tr>
<td>Right</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td></td>
<td>Textversion</td>
</tr>
</tbody>
</table>
SYMBOLIC DYNAMICAL SYSTEMS AND ENDOMORPHISMS ON C*-ALGEBRAS

横浜市立大学・総合理学研究科 松本健吾 (Kengo Matsumoto)

Department of Mathematical Sciences
Yokohama City University
Seto 22-2, Kanazawa-ku, Yokohama 236-0027, JAPAN

1. INTRODUCTION

This article is a survey of the author’s recent preprint entitled ”Actions of symbolic dynamical systems on C*-algebras”, that is written based on the talk at RIMS, Jan. 2004. Details are given in the preprint.

In [CK], J. Cuntz and W. Krieger have founded a close relationship between symbolic dynamics and C*-algebras (cf.[C2]). They constructed purely infinite simple C*-algebras from irreducible topological Markov shifts. They have proved that their stabilization with gauge action is invariant under topological conjugacy of topological Markov shifts, so that K-theoretic invariants of the C*-algebras with gauge actions yield invariants of topological Markov shifts. The invariants are the dimension group introduced by W. Krieger [Kr] and the Bowen-Franks group [BF]. They play a crucial role in the classification theory of topological Markov shifts.

R. F. Williams has classified topological Markov shifts in terms of an algebraic relation of underlying matrices [Wi]. The algebraic relation is called a strong shift equivalence. M. Nasu generalized Williams’s classification result to sofic shifts, that are subshifts coming from finite labeled graphs [N].

In [Ma], the author introduced a notion of λ-graph system, whose matrix version is called symbolix matrix system. A λ-graph system is a generalization of a finite labeled graph and presents a subshift. Conversely any subshift is presented by a λ-graph system, and the topological conjugacy classes of the subshifts are exactly corresponding to the strong shift equivalence classes of the symbolic matrix systems of the canonical λ-graph systems. He constructed C*-algebras from λ-graph systems [Ma3] as a generalization of the above Cuntz-Krieger algebras. It has been proved that the outer conjugacy class of the stabilized gauge action is invariant under strong shift equivalence of the symbolic matrix system of the λ-graph system [Ma4]. Hence K-theoretic invariants of the C*-algebras with gauge actions constructed from λ-graph systems yield invariants of topological conjugacy classes of subshifts.

In this survey article, we will study and generalize the above discussions in purely C*-algebra setting. We will introduce a notion of C*-symbolic dynamical system, that is a finite family \(\{ \rho_\alpha \}_{\alpha \in \Sigma} \) of endomorphisms of a unital C*-algebra \(\mathcal{A} \) indexed by symbols \(\Sigma \) satisfying the condition \(\sum_{\alpha \in \Sigma} \rho_\alpha(1) \geq 1 \). A finite labeled graph gives rise to a C*-symbolic dynamical system \((\mathcal{A}, \rho, \Sigma) \) such that \(\mathcal{A} \) is commutative
and finite dimensional. Conversely, if the C^*-algebra A is commutative and finite dimensional, the C^*-symbolic dynamical system comes from a finite labeled graph. A λ-graph system gives rise to a C^*-symbolic dynamical system (A, ρ, Σ) such that A is commutative and AF. Conversely, if the C^*-algebra A is commutative and AF, the C^*-symbolic dynamical system comes from a λ-graph system ([Theorem 3.4]). We may prove that equivalence classes of the predecessor-separated λ-graph systems exactly correspond to the isomorphism classes of the predecessor-separated C^*-symbolic dynamical systems of the commutative AF-algebras ([Corollary 3.7]).

A C^*-symbolic dynamical system (A, ρ, Σ) yields a nontrivial subshift $\Lambda_{(A, \rho, \Sigma)}$ over Σ and a Hilbert C^*-right A-module \mathcal{H}_A^ρ. For $\alpha_1, \ldots, \alpha_k \in \Sigma$, a word $(\alpha_1, \ldots, \alpha_k)$ is admissible for the subshift if and only if $(\rho_{\alpha_k} \circ \cdots \circ \rho_{\alpha_1})(1) \neq 0$. The Hilbert C^*-right A-module \mathcal{H}_A^ρ has an orthogonal finite basis $\{u_\alpha\}_{\alpha \in \Sigma}$ and a unital faithful diagonal left action $\phi_\rho : A \to \mathcal{L}(\mathcal{H}_A^\rho)$. It is called a Hilbert C^*-symbolic bimodule over A, and written as $(\phi_\rho, \mathcal{H}_A^\rho, \{u_\alpha\}_{\alpha \in \Sigma})$.

We will consider C^*-algebras constructed from the Hilbert C^*-symbolic bimodules $(\phi_\rho, \mathcal{H}_A^\rho, \{u_\alpha\}_{\alpha \in \Sigma})$. A general construction of C^*-algebras from Hilbert C^*-bimodules has been established by M. Pimsner [Pim] (see [Ka] for the case of von Neumann algebras). The C^*-algebras are called Cuntz-Pimsner algebras. Its ideal structure and simplicity conditions have been studied by Kajiwara-Pinzari-Watatani [KWP] and Muhly-Solel [MS] (see also [KW], [Sch]). The constructed C^*-algebra from the Hilbert C^*-symbolic bimodule $(\phi_\rho, \mathcal{H}_A^\rho, \{u_\alpha\}_{\alpha \in \Sigma})$ is denoted by $A \rtimes_\rho \Lambda$, where Λ is the subshift $\Lambda_{(A, \rho, \Sigma)}$ associated with the C^*-symbolic dynamical system (A, ρ, Σ). We call the algebra $A \rtimes_\rho \Lambda$ the C^*-symbolic crossed product of A by the subshift Λ. As in [Pim] (cf. [KWP]), the gauge action, denoted by $\hat{\rho}$, on the algebra $A \rtimes_\rho \Lambda$ of the torus $T = \{z \in \mathbb{C} \mid |z| = 1\}$ is defined as a generalization of that of the Cuntz-Krieger algebras. We remark that Pimsner showed the following fact [Pim]: For every Hilbert C^*-bimodule E over a C^*-algebra A, if A is commutative and finite dimensional, and if E is projective and finitely generated, the associated C^*-algebra is a Cuntz-Krieger algebra. We present the following theorem.

Theorem A (Theorem 5.2). Let (A, ρ, Σ) be a C^*-symbolic dynamical system and Λ be the associated subshift $\Lambda_{(A, \rho, \Sigma)}$. Assume that A is commutative.

(i) If $A = C$, the subshift Λ is the full shift $\Sigma^\mathbb{Z}$, and the C^*-algebra $A \rtimes_\rho \Lambda$ is the Cuntz algebra $O_{|\Sigma|}$ of order $|\Sigma|$.

(ii) If A is finite dimensional, the subshift Λ is a sofic shift ΛG presented by a left-resolving labeled graph G, and the C^*-algebra $A \rtimes_\rho \Lambda$ is a Cuntz-Krieger algebra O_G associated with the labeled graph. Conversely, for any sofic shift, that is presented by a left-resolving labeled graph G, there exists a C^*-symbolic dynamical system (A, ρ, Σ) such that the associated subshift is the sofic shift, the algebra A is finite dimensional, and the algebra $A \rtimes_\rho \Lambda$ is the Cuntz-Krieger algebra O_G associated with the labeled graph.

(iii) If A is an AF-algebra, there uniquely exists a λ-graph system Σ up to equivalence such that the subshift Λ is presented by Σ and the C^*-algebra $A \rtimes_\rho \Lambda$ is the C^*-algebra O_Σ associated with the λ-graph system Σ. Conversely, for any subshift, that is presented by a left-resolving λ-graph system Σ, there exists a C^*-symbolic dynamical system (A, ρ, Σ) such that the associated
subshift is the subshift presented by \mathcal{L}, the algebra \mathcal{A} is a commutative AF-algebra, and the algebra $\mathcal{A} \times_\rho \Lambda$ is the C^*-algebra $\mathcal{O}_\mathcal{L}$ associated with the λ-graph system \mathcal{L}.

We will introduce notions of strong shift equivalence and shift equivalence of C^*-symbolic dynamical systems, that are generalizations of those of square nonnegative matrices defined by Williams [Wi], of finite symbolic square matrices defined by Nasu [N] and Boyle-Krieger [BK] and of symbolic matrix systems defined by [Ma]. They are generalizations of conjugacy of single automorphisms of C^*-algebras. Strong shift equivalence and shift equivalence of Hilbert C^*-symbolic bimodules are introduced. We know that two C^*-symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are strong shift equivalent (resp. shift equivalent) if and only if their associated Hilbert C^*-symbolic bimodules $(\phi_\rho, \mathcal{H}_\mathcal{A}^\rho, \{u_\alpha\}_{\alpha \in \Sigma})$ and $(\phi_{\rho'}, \mathcal{H}_\mathcal{A}'^\rho, \{u'_\alpha\}_{\alpha \in \Sigma'})$ are strong shift equivalent (resp. shift equivalent). A notion of strong shift equivalence of C^*-symbolic crossed products with gauge actions is introduced. We finally obtain the following theorem.

Theorem B (Theorem 7.5). Let $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ be two C^*-symbolic dynamical systems. Let Λ and Λ' be their associated subshifts $\Lambda_{(A, \rho, \Sigma)}$ and $\Lambda_{(A', \rho', \Sigma')}$ respectively. If $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are strong shift equivalent, then

(i) the subshifts Λ and Λ' are topologically conjugate,

(ii) the C^*-symbolic crossed products $(\mathcal{A} \times_\rho \Lambda, \hat{\rho}, \mathcal{T})$ and $(\mathcal{A}' \times_{\rho'} \Lambda', \hat{\rho}', \mathcal{T})$ with gauge actions are strong shift equivalent, and

(iii) the stabilized gauge actions $(\mathcal{A} \times_\rho \Lambda \otimes \mathcal{K}, \hat{\rho} \otimes \text{id}, \mathcal{T})$ and $(\mathcal{A}' \times_{\rho'} \Lambda' \otimes \mathcal{K}, \hat{\rho}' \otimes \text{id}, \mathcal{T})$ are co-cycle conjugate, where \mathcal{K} denotes the C^*-algebra of all compact operators on a separable infinite dimensional Hilbert space.

The result (iii) is a generalization of the main result of [Ma4] (cf.[CK:3.8. Theorem]).

We define the K-groups $K_*(\mathcal{A}, \rho, \Sigma)$, the Bowen-Franks groups $BF^*(\mathcal{A}, \rho, \Sigma)$ and the dimension groups $D_*(\mathcal{A}, \rho, \Sigma)$ for $(\mathcal{A}, \rho, \Sigma)$ by setting for $* = 0, 1$

$$K_*(\mathcal{A}, \rho, \Sigma) = K_*(\mathcal{A} \times_\rho \Lambda), \quad BF^*(\mathcal{A}, \rho, \Sigma) = \text{Ext}_*(\mathcal{A} \times_\rho \Lambda),$$

$$D_*(\mathcal{A}, \rho, \Sigma) = (K_*(\mathcal{A} \times_\rho \Lambda) \times_\hat{\rho} \mathcal{T}), \hat{\rho}_*$$

where $\hat{\rho}_*$ is the automorphism of $K_*(\mathcal{A} \times_\rho \Lambda \times_\hat{\rho} \mathcal{T})$ induced from the dual action $\hat{\rho}$ of the gauge action ρ. The dimension groups and the Bowen-Franks groups are generalizations of those groups for a finite square nonnegative matrix, that is regarded as a finite labeled graph for which labels are edges itself (cf.[BF], [Kr], [LM]). Then Theorem B implies that all the abelian groups $K_*(\mathcal{A}, \rho, \Sigma)$, $BF^*(\mathcal{A}, \rho, \Sigma)$ and $D_*(\mathcal{A}, \rho, \Sigma)$ are invariant under strong shift equivalence of C^*-symbolic dynamical systems (Proposition 7.6).

2. λ-GRAPH SYSTEMS AND ITS C^*-ALGEBRAS

Let Σ be a finite set with its discrete topology. We call it an alphabet. Each element of Σ is called a symbol or a label. Let $\Sigma^\mathbb{Z}$ be the infinite product spaces
\[\prod_{i \in \mathbb{Z}} \Sigma_i, \text{ where } \Sigma_i = \Sigma, \text{ endowed with the product topology. The transformation } \sigma \text{ on } \Sigma^\mathbb{Z} \text{ given by } (\sigma(x_i))_{i \in \mathbb{Z}} = (x_{i+1})_{i \in \mathbb{Z}} \text{ is called the (full) shift. Let } \Lambda \text{ be a shift invariant closed subset of } \Sigma^\mathbb{Z} \text{ i.e. } \sigma(\Lambda) = \Lambda. \text{ The topological dynamical system } (\Lambda, \sigma|_{\Lambda}) \text{ is called a subshift. We write the subshift as } \Lambda \text{ for brevity. A finite sequence } \mu = (\mu_1, \ldots, \mu_k) \text{ of elements } \mu_j \in \Sigma \text{ is called a word of length } |\mu| = k. \]

For a subshift \(\Lambda \), we denote by \(\Lambda^l \) the set of all admissible words of length \(l \) of \(\Lambda \). By a symbolic matrix \(B \) over \(\Sigma \) we mean a finite matrix with entries in finite formal sums of elements of \(\Sigma \). A square symbolic matrix \(B \) naturally gives rise to a finite labeled directed graph which we denote by \(\mathcal{G}_B \). The labeled directed graph defines a subshift over \(\Sigma \) which consists of all infinite labeled sequences following the labeled directed edges in \(\mathcal{G}_B \). Such a subshift is called a sofic shift presented by \(\mathcal{G}_B \) and written as \(\Lambda_{\mathcal{G}_B} \) ([Fi],[Kr2],[Kr3],[We], cf. [Kit],[LM]). Throughout this paper, a labeled graph means a labeled directed graph with finite vertices and finite directed edges such as every vertex has at least one in-coming edge and at least one out-going edge.

Let \(B \) and \(B' \) be symbolic matrices over \(\Sigma \) and \(\Sigma' \) respectively. Let \(\phi \) be a bijection from a subset of \(\Sigma \) onto a subset of \(\Sigma' \), that is called a specification. Following M. Nasu in [N1],[N2], we say that \(B \) and \(B' \) are specified equivalent under specification \(\phi \) if \(B' \) can be obtained from \(B \) by replacing every symbol \(\sigma \) appearing in \(B \) by \(\phi(\sigma) \). We write it as \(B \cong B' \). Let \(\mathbb{Z}_+ \) be the set of all nonnegative integers.

Recall that a \(\lambda \)-graph system \(\mathcal{L} = (V, E, \lambda, \iota) \) over \(\Sigma \) is a directed Bratteli diagram with a vertex set \(V = \bigcup_{i \in \mathbb{Z}_+} V_i \), an edge set \(E = \bigcup_{l \in \mathbb{Z}_+} E_{l,l+1} \), and a map \(\lambda : E \to \Sigma \), and that is supplied with a sequence of surjective maps \(\iota = (\iota_l) : V_{l+1} \to V_l \) for \(l \in \mathbb{Z}_+ \). Here the vertex sets \(V_l \) are disjoint sets. An edge \(e \) in \(E_{l,l+1} \) has its source vertex \(s(e) \) in \(V_l \), its terminal vertex \(t(e) \) in \(V_{l+1} \) and its label \(\lambda(e) \) in \(\Sigma \). Every vertex in \(V \) has successors and every vertex in \(V \), except \(V_0 \), has predecessors. It is then required that for \(u \in V_{l-1} \) and \(v \in V_{l+1} \), there exists a bijective correspondence between the edge set \(\{ e \in E_{l,l+1} | t(e) = v, \iota(s(e)) = u \} \) and the edge set \(\{ e \in E_{l-1,l} | s(e) = u, \iota(t(e)) = v \} \) that preserves labels. The required property is called the local property.

Two \(\lambda \)-graph systems \(\mathcal{L} = (V, E, \lambda, \iota) \) over \(\Sigma \) and \(\mathcal{L}' = (V', E', \lambda', \iota') \) over \(\Sigma' \) are said to be isomorphic if there exist bijections \(\Phi_V : V \to V' \), \(\Phi_E : E_{l,l+1} \to E'_{l,l+1} \) and a specification \(\phi : \Sigma \to \Sigma' \) such that \(\Phi_V(s(e)) = s(\Phi_E(e)), \Phi_V(t(e)) = t(\Phi_E(e)) \) and \(\lambda'(\Phi_E(e)) = \phi(\lambda(e)) \) for \(e \in E \), and \(\iota'(\Phi_V(v)) = \Phi_V(\iota(v)) \) for \(v \in V \).

A symbolic matrix system over \(\Sigma \) consists of a sequence of pairs of rectangular matrices \((\mathcal{M}_{l,l+1}, I_{l,l+1}), l \in \mathbb{Z}_+ \). The matrices \(\mathcal{M}_{l,l+1} \) have their entries in formal sums of \(\Sigma \) and the matrices \(I_{l,l+1} \) have their entries in \{0,1\}. The matrices \(\mathcal{M}_{l,l+1} \) and \(I_{l,l+1} \) have the same size for each \(l \in \mathbb{Z}_+ \) and satisfy the following relations

\[
I_{l,l+1}\mathcal{M}_{l+1,l+2} = \mathcal{M}_{l,l+1}I_{l+1,l+2}, \quad l \in \mathbb{Z}_+.
\]

The matrices \(I_{l,l+1}, l \in \mathbb{Z}_+ \) have one 1 in each column and at least one 1 in each row. We denote it by \((\mathcal{M}, I) \). A \(\lambda \)-graph system naturally arises from a symbolic matrix system \((\mathcal{M}, I) \). The edges from a vertex \(v_{il} \in V_l \) to a vertex \(v_{j{l+1}} \) are given by the \((i,j)\)-component \(\mathcal{M}_{l,l+1}(i,j) \) of the matrix \(\mathcal{M}_{l,l+1} \). The matrix \(I_{l,l+1} \) defines a surjection \(\iota_{l,l+1} \) from \(V_{l+1} \) to \(V_l \) for each \(l \in \mathbb{Z}_+ \).
Two symbolic matrix systems \((\mathcal{M}, I)\) over \(\Sigma\) and \((\mathcal{M}', I')\) over \(\Sigma'\) are said to be isomorphic if there exists a specification \(\phi\) from \(\Sigma\) to \(\Sigma'\) and an \(m(l) \times m(l)\)-square permutation matrix \(P_l\) for each \(l \in \mathbb{N}\) such that

\[
P_l \mathcal{M}_{i,l+1} \simeq \mathcal{M}'_{i,l+1} P_{l+1}, \quad P_l I_{i,l+1} = I'_{i,l+1} P_{l+1} \quad \text{for} \quad l \in \mathbb{Z}_+.
\]

There exists a bijective correspondence between the set of all isomorphism classes of symbolic matrix systems and the set of all isomorphism classes of \(\lambda\)-graph systems.

Let \(\mathcal{G} = (G, \lambda)\) be a labeled graph with finite directed graph \(G\) and labeling \(\lambda\). Let \(\{v_1, \ldots, v_n\}\) be the vertex set of \(G\). Put \(V_l = \{v_1, \ldots, v_n\}\) for all \(l \in \mathbb{Z}_+\). We regard the sets \(V_l, l \in \mathbb{Z}_+\) as disjoint sets. Define \(\iota : V_{l+1} \to V_l\) by \(\iota(v_i) = v_i\) for \(i = 1, \ldots, n\). Write labeled edges from \(V_l\) to \(V_{l+1}\) for \(l \in \mathbb{N}\) following the directed graph \(G\) with labeling \(\lambda\). The resulting labeled Bratteli diagram with \(\iota\) becomes a \(\lambda\)-graph system. A labeled graph and also a \(\lambda\)-graph system are said to be left-resolving if different edges with the same label have different terminals. Hence a labeled graph defines a \(\lambda\)-graph system such that if the labeled graph is left-resolving, so is the \(\lambda\)-graph system. We call the resulting \(\lambda\)-graph system the associated \(\lambda\)-graph system with the labeled graph graph. We note that any sofic shift may be presented by left-resolving labeled graph ([Kr2],[Kr3],[We]).

A \(\lambda\)-graph system \(\mathcal{L}\) gives rise to a subshift \(\Lambda_{\mathcal{L}}\) on the sequence space of labels appearing in the labeled Bratteli diagram. We say that \(\mathcal{L}\) presents the subshift \(\Lambda_{\mathcal{L}}\).

A canonical method to construct a \(\lambda\)-graph system from an arbitrary subshift \(\Lambda\) has been introduced in [Ma]. The \(\lambda\)-graph system and its symbolic matrix system are said to be canonical for the subshift and written as \(\mathcal{L}^\Lambda\) and \((\mathcal{M}^\Lambda, I^\Lambda)\) respectively.

Let \(\mathcal{L} = (V, E, \lambda, \iota)\) be a \(\lambda\)-graph system over \(\Sigma\). For a vertex \(v \in V_l\), we denote by \(\Gamma_{\mathcal{L},l}(v)\) the set of all label sequences of length \(l\) in \(\Sigma\) that start at vertices of \(V_0\) and terminate at \(v\). We say that \(\mathcal{L}\) is predecessor-separated if for \(u, v \in V_l\) the condition \(\Gamma_{\mathcal{L},l}(u) = \Gamma_{\mathcal{L},l}(v)\) implies \(u = v\). The canonical \(\lambda\)-graph systems are left-resolving and predecessor-separated.

We will introduce an equivalence relation of predecessor-separated \(\lambda\)-graph systems. Let \((\mathcal{M}, I)\) and \((\mathcal{M}', I')\) be the symbolic matrix systems over \(\Sigma\) and \(\Sigma'\) respectively. We denote by \(m(l)\) the row size of the matrix \(\mathcal{M}_{i,l+1}\) and by \(m'(l)\) that of \(\mathcal{M}'_{i,l+1}\) respectively. We say that \((\mathcal{M}, I)\) and \((\mathcal{M}', I')\) are equivalent if there exist \(N \in \mathbb{Z}_+\) and a bijection \(\pi : \Sigma \to \Sigma'\) such that for each \(l \in \mathbb{Z}_+\), there exist an \(m(l) \times m'(N + l)\) matrix \(H_l\) over \(\{0,1\}\) and an \(m'(l) \times m(N + l)\) matrix \(K_l\) over \(\{0,1\}\) satisfying the following equations:

\[
\mathcal{M}_{i,l+1} H_{i+1} \sim H_{i} H_{i+N, i+N+1}, \quad \mathcal{M}'_{i,l+1} K_{l+1} \sim K_{i} K_{i+N, i+N+1},
\]

\[
I_{i,l+1} H_{i+1} = H_{i} I_{i+N, i+N+1}, \quad I'_{i,l+1} K_{l+1} = K_{i} I_{i+N, i+N+1}
\]

and

\[
H_{i} K_{N+1} = I_{i,2N+1}, \quad K_{i} H_{N+1} = I'_{i,2N+1}.
\]

We write this equivalence relation as \((\mathcal{M}, I) \cong (\mathcal{M}', I')\). Two \(\lambda\)-graph systems are called equivalent if their respect symbolic matrix systems are equivalent.
In the rest of this section, we briefly review the C^*-algebra $\mathcal{O}_\mathcal{L}$ associated with λ-graph system \mathcal{L}. The C^*-algebras have been originally constructed in [Ma3] as groupoid C^*-algebras of certain r-discrete groupoids constructed from continuous graphs in the sense of Deaconu ([De],[De2],[De3],cf.[Re]) obtained by the λ-graph systems. They are realized as universal unique C^*-algebras as in the following way.

For a λ-graph system $\mathcal{L} = (V, E, \lambda, \iota)$ over Σ, let $\{v_1^l, \ldots, v_{m(l)}^l\}$ be the vertex set V_l. We put

(2.2)
$$ A_{l,l+1}(i, \alpha, j) = \begin{cases} 1 & \text{if } s(e) = v_i^l, \lambda(e) = \alpha, t(e) = v_j^{l+1} \text{ for some } e \in E_{l,l+1}, \\ 0 & \text{otherwise}, \end{cases} $$

(2.3)
$$ I_{l,l+1}(i, j) = \begin{cases} 1 & \text{if } l_{l,l+1}(v_j^{l+1}) = v_i^l, \\ 0 & \text{otherwise} \end{cases} $$

for $i = 1, 2, \ldots, m(l), j = 1, 2, \ldots, m(l+1), \alpha \in \Sigma$.

Lemma 2.1 ([Ma3; Theorem A]). The C^*-algebra $\mathcal{O}_\mathcal{L}$ is the universal concrete C^*-algebra generated by partial isometries $S_\alpha, \alpha \in \Sigma$ and projections $E_i^l, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+$ satisfying the following relations called (\mathcal{L}):

(2.4)
$$ \sum_{\beta \in E} S_\beta S_\beta^* = 1, $$

(2.5)
$$ \sum_{k=1}^{m(l)} E_k^l = 1, \quad E_i^l = \sum_{j=1}^{m(l+1)} I_{l,l+1}(i, j) E_j^{l+1}, $$

(2.6)
$$ S_\alpha^* E_i^l S_\alpha = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i, \alpha, j) E_j^{l+1}, $$

for $i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+, \alpha \in \Sigma$.

If \mathcal{L} satisfies condition (I), a generalized condition of condition (I) for a finite square matrix with entries in $\{0, 1\}$ defined in [CK], the algebra $\mathcal{O}_\mathcal{L}$ is the unique C^*-algebra subject to the above relations (\mathcal{L}). Furthermore, if \mathcal{L} is irreducible, the C^*-algebra $\mathcal{O}_\mathcal{L}$ is simple and purely infinite ([Ma3],[Ma5]). The gauge action $\alpha^\mathcal{L}$ on $\mathcal{O}_\mathcal{L}$ is defined by an action of $T = \{z \in \mathbb{C} \mid |z| = 1\}$ such that $\alpha^\mathcal{L}_z(S_\alpha) = z S_\alpha, \alpha^\mathcal{L}_z(E_i^l) = E_i^l$ for $\alpha \in \Sigma, i = 1, 2, \ldots, m(l), l \in \mathbb{Z}_+$.

3. C^*-SYMBOLIC DYNAMICAL SYSTEMS

Let \mathcal{A} be a unital C^*-algebra. Throughout this paper, an endomorphism of \mathcal{A} means a $*$-endomorphism of \mathcal{A} that does not necessarily preserve the unit $1_\mathcal{A}$ of \mathcal{A}. The unit $1_\mathcal{A}$ is denoted by 1 unless we specify. We denote by $\text{End}(\mathcal{A})$ the set of all endomorphisms of \mathcal{A}. Let Σ be a finite set. A finite family of endomorphisms $\rho_\alpha \in \text{End}(\mathcal{A}), \alpha \in \Sigma$ is said to be essential if $\rho_\alpha(1) \neq 0$ for all $\alpha \in \Sigma$ and $\Sigma_{\alpha \in \Sigma} \rho_\alpha(1) \geq 1$.

It is said to be \textit{faithful} if for any nonzero $x \in A$ there exists a symbol $\alpha \in \Sigma$ such that $\rho_\alpha(x) \neq 0$.

\textbf{Definition.} A C^*-symbolic dynamical system is a triplet (A, ρ, Σ) consisting of a unital C^*-algebra A and a finite family of endomorphisms ρ_α of A indexed by $\alpha \in \Sigma$, that is essential and faithful.

Two C^*-symbolic dynamical systems (A, ρ, Σ) and (A', ρ', Σ') are said to be isomorphic if there exist an isomorphism $\Phi : A \to A'$ and a bijection $\pi : \Sigma \to \Sigma'$ such that $\Phi \circ \rho_\alpha = \rho'_{\pi(\alpha)} \circ \Phi$ for all $\alpha \in \Sigma$.

\textbf{Proposition 3.1.} For a C^*-symbolic dynamical system (A, ρ, Σ), there uniquely exists a subshift $\Lambda_{(A, \rho, \Sigma)}$ over Σ such that a word $\alpha_1 \cdots \alpha_k$ of Σ is admissible for the subshift if and only if $(\rho_\alpha \circ \cdots \circ \rho_{\alpha_1})(1) \neq 0$.

Suppose that A is a commutative C^*-algebra $C(\Omega)$ of all continuous functions on a compact Hausdorff space Ω. An endomorphism of A bijectively corresponds to a continuous map from a clopen set of Ω to Ω. Hence a C^*-symbolic dynamical system $(C(\Omega), \rho, \Sigma)$ bijectively corresponds to a family $\{f_\alpha, E_\alpha\}_{\alpha \in \Sigma}$ of clopen sets $E_\alpha \subset \Omega$ and continuous maps $f_\alpha : E_\alpha \to \Omega$, $\alpha \in \Sigma$ such that

$$\bigcup_{\alpha \in \Sigma} E_\alpha = \Omega \quad \text{and} \quad \bigcup_{\alpha \in \Sigma} f_\alpha(E_\alpha) = \Omega.$$

We will study this situation in more graphical examples for a while.

For a left-resolving labeled graph $\mathcal{G} = (G, \lambda)$, let v_1, \ldots, v_n be its vertex set. Consider the n-dimensional commutative C^*-algebra $A_\mathcal{G} = \mathbb{C}E_1 \oplus \cdots \oplus \mathbb{C}E_n$ where each minimal projection E_i corresponds to the vertex v_i for $i = 1, \ldots, n$. Then we may define an $n \times n$ matrix $A(i, \alpha, j)$ with entries in $\{0, 1\}$ by

$$A_\mathcal{G}(i, \alpha, j) = \begin{cases} 1 & \text{if there exists an edge } e \text{ from } v_i \text{ to } v_j \text{ with } \lambda(e) = \alpha, \\ 0 & \text{otherwise} \end{cases}$$

for $i, j = 1, \ldots, n$. We set

$$\rho_\mathcal{G}(E_i) = \sum_{j=1}^{n} A_\mathcal{G}(i, \alpha, j)E_j, \quad i = 1, \ldots, n, \alpha \in \Sigma.$$

Then $\rho_\alpha, \alpha \in \Sigma$ define endomorphisms of $A_\mathcal{G}$ such that $(A_\mathcal{G}, \rho_\mathcal{G}, \Sigma)$ is a C^*-symbolic dynamical system.

Conversely, let (A, ρ, Σ) be a C^*-symbolic dynamical system such that A is n-dimensional and commutative. Take E_1, \ldots, E_n the orthogonal minimal projections of A such that $A = \mathbb{C}E_1 \oplus \cdots \oplus \mathbb{C}E_n$. Define an $n \times n$ matrix $[A(i, \alpha, j)]_{i,j=1,\ldots,n}$ for $\alpha \in \Sigma$ by setting

$$A(i, \alpha, j) = \begin{cases} 1 & \text{if } \rho_\alpha(E_i) \geq E_j, \\ 0 & \text{otherwise} \end{cases}$$

so that one has

$$\rho_\alpha(E_i) = \sum_{j=1}^{n} A(i, \alpha, j)E_j, \quad i = 1, \ldots, n, \alpha \in \Sigma.$$

Let v_1, \ldots, v_n be the vertex set corresponding to the projections E_1, \ldots, E_n. Define a directed labeled edge e such as the source vertex $s(e) = v_i$, the terminal vertex $t(e) = v_j$ and the label $\lambda(e) = \alpha$ if $A(i, \alpha, j) = 1$. Then we have a left-resolving labeled graph \mathcal{G} which presents the subshift $\Lambda_{(A, \rho, \Sigma)}$. Hence we have
Proposition 3.2. For a left-resolving labeled graph G, there exists a C^*-symbolic dynamical system (A_G, ρ^G, Σ) such that the algebra A_G is commutative and finite dimensional, and the associated subshift Λ_G is the sofic shift Λ_G presented by G. Conversely, for a C^*-symbolic dynamical system (A, ρ, Σ), if A is commutative and finite dimensional, there exists a left-resolving labeled graph G such that $A = A_G$ and the associated subshift Λ_G is the sofic shift Λ_G presented by G.

Let us apply the above discussions to general subshifts and λ-graph systems. For a λ-graph system $\mathcal{L} = (V, E, \lambda, \iota)$ over Σ, let (\mathcal{M}, I) be its corresponding symbolic matrix system. Let $A_{l,l+1}$ be the matrices defined by (2.2). We equip V_l with discrete topology. We denote by $\Omega_{\mathcal{L}}$ the topological space of the projective limit

$$V_0 \leftarrow V_1 \leftarrow V_2 \leftarrow \cdots,$$

that is a compact, totally disconnected, second countable topological space. We regard the algebra of all continuous functions on V_l as the direct sum

$$C(V_l) = \mathbb{C}E_1^l \oplus \mathbb{C}E_2^l \oplus \cdots \oplus \mathbb{C}E_{m(l)}^l,$$

where the vertices $v_i^l \in V_l, i = 1, \ldots, m(l)$ correspond to the minimal projections $E_i^l \in V_l, i = 1, \ldots, m(l)$. We denote $C(V_l)$ by $A_{\mathcal{L},l}$. Let $A_{\mathcal{L}}$ be the commutative C^*-algebra of all continuous functions on $\Omega_{\mathcal{L}}$, that is the inductive limit algebra

$$A_{\mathcal{L},0} \xrightarrow{I_{0,1}} A_{\mathcal{L},1} \xrightarrow{I_{1,2}} A_{\mathcal{L},2} \xrightarrow{I_{2,3}} A_{\mathcal{L},3} \xrightarrow{I_{3,4}} \cdots.$$

Hence $A_{\mathcal{L}}$ is a unital commutative AF-algebra. For a symbol $\alpha \in \Sigma$ we set

$$\rho^\mathcal{L}_\alpha(E_i^l) = \sum_{j=1}^{m(l+1)} A_{l,l+1}(i, \alpha,j)E_{j}^{l+1} \quad \text{for } i = 1, 2, \ldots, m(l).$$

By the commutation relation (2.1), $\rho^\mathcal{L}_\alpha$ defines an endomorphism of $A_{\mathcal{L}}$. Since each vertex $v_i^l \in V_l$ except $l = 0$ has an in-coming edge, the family $\{\rho^\mathcal{L}_\alpha\}_{\alpha \in \Sigma}$ is essential. It is also faithful because each vertex $v_i^l \in V_l$ has an out-going edge. Thus we have

Proposition 3.3. For a λ-graph system \mathcal{L} over Σ, there exists a C^*-symbolic dynamical system $(A_{\mathcal{L}}, \rho^\mathcal{L}, \Sigma)$ such that the C^*-algebra $A_{\mathcal{L}}$ is commutative and AF, and the associated subshift $\Lambda_{(A_{\mathcal{L}}, \rho^\mathcal{L}, \Sigma)}$ coincides with the subshift $\Lambda_{\mathcal{L}}$ presented by \mathcal{L}.

Conversely

Theorem 3.4. Let (A, ρ, Σ) be a C^*-symbolic dynamical system. If the algebra A is commutative and AF, there exists a λ-graph system \mathcal{L} over Σ such that the associated C^*-symbolic dynamical system $(A_{\mathcal{L}}, \rho^\mathcal{L}, \Sigma)$ is isomorphic to (A, ρ, Σ).

A C^*-symbolic dynamical system (A, ρ, Σ) is said to be predecessor-separated if the projections $\{\rho_{\alpha_k} \circ \cdots \circ \rho_{\alpha_1}(1) \mid \alpha_1, \ldots, \alpha_k \in \Sigma, k \in \mathbb{N}\}$ generate the C^*-algebra A.
Proposition 3.5.
(i) If a λ-graph system \mathcal{L} is predecessor-separated, the associated C^*-symbolic dynamical system $(A_{\mathcal{L}}, \rho^\mathcal{L}, \Sigma)$ is predecessor-separated.
(ii) Suppose that an algebra A is unital, commutative and AF. If a C^*-symbolic dynamical system (A, ρ, Σ) is predecessor-separated, there exists a predecessor-separated λ-graph system \mathcal{L} over Σ such that the associated C^*-symbolic dynamical system $(A_{\mathcal{L}}, \rho^\mathcal{L}, \Sigma)$ is isomorphic to (A, ρ, Σ).

Proposition 3.6. Let \mathcal{L} and \mathcal{L}' be predecessor-separated λ-graph systems over Σ and Σ respectively. Then $(A_{\mathcal{L}}, \rho^\mathcal{L}, \Sigma)$ is isomorphic to $(A_{\mathcal{L}'}, \rho^{\mathcal{L}'}, \Sigma')$ if and only if \mathcal{L} and \mathcal{L}' are equivalent. In this case, the presented subshifts $\Lambda_{\mathcal{L}}$ and $\Lambda_{\mathcal{L}'}$ are identified through a symbolic conjugacy.

Therefore we have

Corollary 3.7. The equivalence classes of the predecessor-separated λ-graph systems are identified with the isomorphism classes of the predecessor-separated C^*-symbolic dynamical systems of the commutative AF-algebras.

We formulate here an action of a subshift to a C^*-algebra. We say that a subshift Λ acts on a C^*-algebra A if there exists a C^*-symbolic dynamical system (A, ρ, Σ) such that the associated subshift $\Lambda_{(A, \rho, \Sigma)}$ coincides with Λ.

4. HILBERT C^*-SYMBOLIC BIMODULES

In this section we will construct a Hilbert C^*-bimodule from a C^*-symbolic dynamical system. Let (A, ρ, Σ) be a C^*-symbolic dynamical system. We put the projections $P_\alpha = \rho_\alpha(1)$ in A for $\alpha \in \Sigma$. Let $\{e_\alpha\}_{\alpha \in \Sigma}$ denote the standard basis of the $|\Sigma|$-dimensional vector space $\mathbb{C}^{|\Sigma|}$, where $|\Sigma|$ denotes the cardinal number of the set Σ. Set

$$\mathcal{H}^\rho_A := \sum_{\alpha \in \Sigma} \mathbb{C} e_\alpha \otimes P_\alpha A.$$

Define a right A-action and an A-valued inner product on \mathcal{H}^ρ_A by setting

$$(e_\alpha \otimes P_\alpha x) y := e_\alpha \otimes P_\alpha x y,$$

$$\langle e_\alpha \otimes P_\alpha x | e_\beta \otimes P_\beta y \rangle := \begin{cases} x^* P_\alpha y & \text{if } \alpha = \beta, \\ 0 & \text{otherwise} \end{cases}$$

for $\alpha, \beta \in \Sigma$ and $x, y \in A$. Then \mathcal{H}^ρ_A forms a Hilbert C^*-right A-module. We put

$$u_\alpha := e_\alpha \otimes P_\alpha, \quad \alpha \in \Sigma.$$

Lemma 4.1. The family $u_\alpha, \alpha \in \Sigma$ forms an orthogonal finite basis of \mathcal{H}^ρ_A in the sense of [KPW] such that

$$\sum_{\alpha \in \Sigma} \langle u_\alpha | u_\alpha \rangle \geq 1.$$
We say that a finite basis of a Hilbert C^*-module is essential if the basis satisfies the condition (4.1). We will next define a diagonal left action ϕ_ρ of \mathcal{A} to the set of all adjointable bounded \mathcal{A}-module maps $L(\mathcal{H}_\mathcal{A})$ on $\mathcal{H}_\mathcal{A}$ as follows:

$$
\phi_\rho(a)u_\alpha x := u_\alpha \rho_\alpha(a)x, \quad a, x \in \mathcal{A}, \alpha \in \Sigma.
$$

The above definition is well-defined. If $u_\alpha x = u_\alpha y$, then $P_\alpha x = P_\alpha y$ so that $\rho_\alpha(a1)x = \rho_\alpha(a1)y$ for $a \in \mathcal{A}$. Hence one has that $u_\alpha \rho_\alpha(a)x = u_\alpha \rho_\alpha(a)y$. Since the family \(\{\rho_\alpha\}_{\alpha \in \Sigma} \) is faithful, the left action ϕ_ρ of \mathcal{A} on $\mathcal{H}_\mathcal{A}$ is faithful, that is, the element $\phi_\rho(x)$ is nonzero for any nonzero $x \in \mathcal{A}$. Therefore we have

Proposition 4.2. For a C^*-symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$, there exists a Hilbert C^*-right \mathcal{A}-module $\mathcal{H}_\mathcal{A}$ with an orthogonal essential finite basis $\{u_\alpha\}_{\alpha \in \Sigma}$ and a unital faithful diagonal left action $\phi_\rho : \mathcal{A} \to L(\mathcal{H}_\mathcal{A})$ such that

\[
\begin{align*}
\phi_\rho(a)u_\alpha =& u_\alpha \rho_\alpha(a), \\
(\langle u_\alpha | u_\alpha \rangle = &\rho_\alpha(1), \quad a \in \mathcal{A}, \alpha \in \Sigma.
\end{align*}
\]

We note that the above two conditions imply

\[
(\langle u_\alpha | \phi_\rho(a)u_\alpha \rangle = \rho_\alpha(a), \quad a \in \mathcal{A}, \alpha \in \Sigma.
\]

Conversely

Proposition 4.3. For a Hilbert C^*-right \mathcal{A}-module $\mathcal{H}_\mathcal{A}$ with an orthogonal essential finite basis $\{u_\alpha\}_{\alpha \in \Sigma}$ and a unital faithful diagonal left action $\phi : \mathcal{A} \to L(\mathcal{H}_\mathcal{A})$, define ρ_α for $\alpha \in \Sigma$ by setting

$$
\rho_\alpha(a) = \langle u_\alpha | \phi(a)u_\alpha \rangle, \quad a \in \mathcal{A}.
$$

Then ρ_α gives rise to an endomorphism of \mathcal{A} such that $(\mathcal{A}, \rho, \Sigma)$ yields a C^*-symbolic dynamical system.

A Hilbert C^*-right \mathcal{A}-module $\mathcal{H}_\mathcal{A}$ with a left action $\phi : \mathcal{A} \to L(\mathcal{H}_\mathcal{A})$ is called a Hilbert C^*-bimodule over \mathcal{A} ([Pim], cf.[KW], [KPW], [MS]). Two Hilbert C^*-bimodules $(\phi, \mathcal{H}_\mathcal{A})$ and $(\phi', \mathcal{H}'_\mathcal{A})$ over \mathcal{A} are said to be unitary equivalent if there exists a bimodule isomorphism $\Phi : \mathcal{H}_\mathcal{A} \to \mathcal{H}'_\mathcal{A}$ such that Φ is unitary with respect to their respect inner products.

Definition. A Hilbert C^*-right \mathcal{A}-module $\mathcal{H}_\mathcal{A}$ with an orthogonal essential finite basis $\{u_\alpha\}_{\alpha \in \Sigma}$ and a unital faithful diagonal left action $\phi : \mathcal{A} \to L(\mathcal{H}_\mathcal{A})$ is called a Hilbert C^*-symbolic bimodule over \mathcal{A}. It is written as $(\phi, \mathcal{H}_\mathcal{A}, \{u_\alpha\}_{\alpha \in \Sigma})$.

A Hilbert C^*-symbolic bimodule $(\phi, \mathcal{H}_\mathcal{A}, \{u_\alpha\}_{\alpha \in \Sigma})$ over \mathcal{A} bijectively corresponds to a C^*-symbolic dynamical system $(\mathcal{A}, \rho, \Sigma)$ by the above discussions. Two Hilbert C^*-symbolic bimodules $(\phi, \mathcal{H}_\mathcal{A}, \{u_\alpha\}_{\alpha \in \Sigma})$ and $(\phi', \mathcal{H}'_\mathcal{A}, \{u'_\alpha\}_{\alpha' \in \Sigma'})$ over \mathcal{A} are said to be unitary equivalent if there exists a bimodule isomorphism $\Phi : \mathcal{H}_\mathcal{A} \to \mathcal{H}'_\mathcal{A}$ and a bijection $\pi : \Sigma \to \Sigma'$ such that Φ is unitary with respect to their respect inner products and satisfies $\Phi(u_\alpha) = u'_\pi(\alpha), \alpha \in \Sigma$. Let $\rho_\alpha, \alpha \in \Sigma$ and $\rho'_\alpha', \alpha' \in \Sigma'$ be their respect endomorphisms of \mathcal{A}. In this case, we have
\[\rho_\alpha(a) = \rho_{\pi(\alpha)}'(a), a \in A \] because the equality (4.2) implies \(\phi'(a)\Phi(u_\alpha) = \Phi(u_\alpha)\rho_\alpha(a) \) and hence \(\phi'(a)u_{\pi(\alpha)}' = u_{\pi(\alpha)}\rho_\alpha(a) \). This means that \(\rho_\alpha(a) = \rho_{\pi(\alpha)}'(a), a \in A \).

Two \(C^\ast \)-symbolic dynamical systems \((A, \rho, \Sigma) \) and \((A, \rho', \Sigma') \) are said to be inner conjugate if there exists an element \(U_{\alpha, \beta} \in A \) for \(\alpha \in \Sigma, \beta \in \Sigma' \) such that

(i) \(\rho_\alpha(a)U_{\alpha, \beta} = U_{\alpha, \beta}\rho_\beta'(a) \),
(ii) \(\sum_{\epsilon \in \Sigma} U_{\alpha, \epsilon}U_{\gamma, \epsilon} = \delta_{\alpha, \gamma}\rho_\alpha(1) \), \(\sum_{\gamma \in \Sigma} U_{\gamma, \beta}U_{\gamma, \epsilon} = \delta_{\beta, \epsilon}\rho_\beta'(1) \) and
(iii) \(\rho_\alpha(1)U_{\alpha, \beta} = U_{\alpha, \beta} = U_{\alpha, \beta}\rho_\beta'(1) \)

for \(\alpha, \gamma \in \Sigma, \beta, \epsilon \in \Sigma' \) and \(a \in A \). The family \(\{U_{\alpha, \beta}\}_{\alpha \in \Sigma, \beta \in \Sigma'} \) is called an intertwiner between \((A, \rho, \Sigma) \) and \((A, \rho', \Sigma') \).

Proposition 4.4. Two \(C^\ast \)-symbolic dynamical systems \((A, \rho, \Sigma) \) and \((A, \rho', \Sigma') \) are inner conjugate if and only if their associated Hilbert \(C^\ast \)-bimodules \((\rho, \mathcal{H}_A^\rho)\) and \((\rho', \mathcal{H}_A^{\rho'})\) are unitary equivalent as a Hilbert \(C^\ast \)-bimodule.

We note that if \((A, \rho, \Sigma) \) and \((A, \rho', \Sigma') \) are inner conjugate with intertwiner \(\{U_{\alpha, \beta}\}_{\alpha \in \Sigma, \beta \in \Sigma'} \), then the equalities for \(\alpha \in \Sigma, \beta \in \Sigma' \) and \(a \in A \)

\[\rho_\alpha(a) = \sum_{\epsilon \in \Sigma'} U_{\alpha, \epsilon}U_{\gamma, \epsilon}^*, \quad \rho_\beta'(a) = \sum_{\gamma \in \Sigma} U_{\gamma, \beta}^*U_{\gamma, \beta}, \]

hold. For \((A, \rho, \Sigma) \), let \(D_\rho(a) \) for \(a \in A \) be the \(|\Sigma| \times |\Sigma| \)-diagonal matrix \(D_\rho(a) \) with diagonal entries \([\rho_\alpha(a)]_{\alpha \in \Sigma} \). One knows \((A, \rho, \Sigma) \) and \((A, \rho', \Sigma') \) are inner conjugate if and only if there exists an \(|\Sigma| \times |\Sigma'| \)-matrix \(U \) over \(A \) such that

\[D_\rho(a) = UD_\rho'(a)U^* \quad \text{for } a \in A, \quad \text{and} \]
\[UU^* = D_\rho(1), \quad U^*U = D_{\rho'}(1). \]

Let \(A \) be an \(n \)-dimensional commutative \(C^\ast \)-algebra. By Proposition 3.2, a \(C^\ast \)-symbolic dynamical system \((A, \rho, \Sigma) \) defines a left-resolving labeled graph \(G^\rho = (G^\rho, \lambda^\rho) \) over \(\Sigma \) with underlying finite directed graph \(G^\rho \). Let \(v_1, \ldots, v_n \) denote the vertex set of \(G^\rho \). We denote by \(A^\rho(i, j) \) the cardinal number of the edges \(E^\rho(i, j) \) whose source vertex is \(v_i \) and terminal vertex is \(v_j \). In this case, inner conjugacy is completely characterized as in the following way.

Proposition 4.5. Let \(A \) be the \(n \)-dimensional commutative \(C^\ast \)-algebra. Then \(C^\ast \)-symbolic dynamical systems \((A, \rho, \Sigma) \) and \((A, \eta, \Sigma) \) are inner conjugate if and only if \(A^\rho(i, j) = A^\eta(i, j) \) for all \(i, j = 1, 2, \ldots, n \). That is, the directed graphs \(G^\rho \) and \(G^\eta \) are isomorphic.

5. **Crossed Products by Symbolic Dynamical Systems**

We will study \(C^\ast \)-algebras constructed from Hilbert \(C^\ast \)-symbolic bimodules. A general construction of \(C^\ast \)-algebras from Hilbert \(C^\ast \)-bimodules has been established by Pimsner [Pim] (cf. [Kal]). The \(C^\ast \)-algebras are called Cuntz-Pimsner algebras. Its ideal structure and simplicity conditions have been studied by Kajiwara-Pinznari-Watatani [KPW] and Muhly-Solel [MS], see also [KW], [PWY], [Sch]. For a \(C^\ast \)-symbolic dynamical system \((A, \rho, \Sigma) \), we have a \(C^\ast \)-algebra from the Hilbert \(C^\ast \)-symbolic bimodule \((\rho, \mathcal{H}_A^\rho, \{u_\alpha\}_{\alpha \in \Sigma})\) by using Pimsner's general construction of \(C^\ast \)-algebras from Hilbert \(C^\ast \)-bimodules. We denote the \(C^\ast \)-algebra by \(A \rtimes_\rho \Lambda \), where \(\Lambda \) is the subshift \(\Lambda_{(A, \rho, \Sigma)} \) associated with \((A, \rho, \Sigma) \). We call the algebra \(A \rtimes_\rho \Lambda \) the \(C^\ast \)-symbolic crossed product of \(A \) by the subshift \(\Lambda \).
Proposition 5.1. The C^*-symbolic crossed product $A \times_\rho \Lambda$ is the universal unital C^*-algebra $C^*(A, S_\alpha, \alpha \in \Sigma)$ generated by $x \in A$ and partial isometries $S_\alpha, \alpha \in \Sigma$ subject to the following operator relations:

\[
\sum_{\beta \in \Sigma} S_\beta S_\beta^* = 1, \quad S_\alpha^* x S_\alpha = \rho_\alpha(x), \quad x S_\alpha S_\alpha^* = S_\alpha S_\alpha^* x
\]

for all $x \in A$ and $\alpha \in \Sigma$. Furthermore for $\alpha_1, \ldots, \alpha_k \in \Sigma$, a word $(\alpha_1, \ldots, \alpha_k)$ is admissible for the subshift $\Lambda = \Lambda(A, \rho, \Sigma)$ if and only if $S_{\alpha_1} \cdots S_{\alpha_k} \neq 0$.

As in [Pim] (cf. [KPW]), the gauge action, denoted by $\hat{\rho}$, on the algebra $A \times_\rho \Lambda$ of the torus $T = \{z \in \mathbb{C} \mid |z| = 1\}$ is defined by

\[
\hat{\rho}_z(x) = x, \quad \hat{\rho}_z(S_\alpha) = zS_\alpha, \quad x \in A, \alpha \in \Sigma, z \in T.
\]

We have the following theorem.

Theorem 5.2. Let (A, ρ, Σ) be a C^*-symbolic dynamical system and Λ be the associated subshift $\Lambda(A, \rho, \Sigma)$. Assume that A is commutative.

(i) If $A = \mathbb{C}$, the subshift Λ is the full shift $\Sigma^\mathbb{Z}$, and the C^*-algebra $A \times_\rho \Lambda$ is the Cuntz algebra O_Σ of order $|\Sigma|$.

(ii) If A is finite dimensional, the subshift Λ is a sofic shift Λ_G presented by a left-resolving labeled graph G, and the C^*-algebra $A \times_\rho \Lambda$ is a Cuntz-Krieger algebra O_G associated with the labeled graph. Conversely, for any sofic shift Λ_G, that is presented by a left-resolving labeled graph G, there exists a C^*-symbolic dynamical system (A, ρ, Σ) such that the associated subshift is the sofic shift Λ_G, the algebra A is finite dimensional, and the C^*-algebra $A \times_\rho \Lambda$ is the Cuntz-Krieger algebra O_G associated with the labeled graph.

(iii) If A is an AF-algebra, there uniquely exists a λ-graph system Λ up to equivalence such that the subshift Λ is presented by Λ and the C^*-algebra $A \times_\rho \Lambda$ is the C^*-algebra O_Λ associated with the λ-graph system Λ. Conversely, for any subshift Λ_Σ, that is presented by a left-resolving λ-graph system Σ, there exists a C^*-symbolic dynamical system (A, ρ, Σ) such that the associated subshift is the subshift Λ_Σ, the algebra A is a commutative AF-algebra, and the C^*-algebra $A \times_\rho \Lambda$ is the C^*-algebra O_Σ associated with the λ-graph system Λ.

We remark that Pimsner showed the following fact [Pim]: For every Hilbert C^*-bimodule E over a C^*-algebra A, if A is commutative and finite dimensional, and if E is projective and finitely generated, the associated C^*-algebra is a Cuntz-Krieger algebra.

We will give some examples

(i) Let $\alpha_1, \ldots, \alpha_m \in \text{Aut}(B)$ be automorphisms of a unital C^*-algebra B. Let $G = (G, \lambda)$ be a left-resolving labeled graph with symbols $\Sigma = \{\alpha_1, \ldots, \alpha_m\}$. Let $V = \{v_1, \ldots, v_n\}$ be the vertex set. Let $[A^\theta(i, \alpha_k)]_{i,j=1,\ldots,n}$ be the $n \times n$-matrix for $\alpha_k \in \Sigma$ with entries in $\{0,1\}$ defined by (3.1). We put $A = B \oplus \cdots \oplus B$ the
direct sum of the \(n \)-copies of \(\mathcal{B} \). For \(\alpha_k \in \Sigma \), define \(\rho_{\alpha_k}^G \in \text{End}(A) \) by setting
\[
\rho_{\alpha_k}^G(b_1, \ldots, b_n) = \left(\sum_{i=1}^n A^G(i, \alpha_k, 1)\alpha_k(b_i), \ldots, \sum_{i=1}^n A^G(i, \alpha_k, n)\alpha_k(b_i) \right), \quad (b_1, \ldots, b_n) \in A.
\]

Since we assume that every vertex of \(G \) has an incoming edge, one has \(\sum_{k=1}^n \rho_{\alpha_k}^G(1) \geq 1 \). Since we also assume that every vertex of \(G \) has an outgoing edge, the family \(\{\rho_{\alpha_k}^G\}_{k=1}^n \) is faithful. Hence we have a \(C^* \)-symbolic dynamical system \((A, \rho^G, \Sigma)\). The associated subshift \(\Lambda_{(A, \rho^G, \Sigma)} \) is the sofic shift \(\Lambda_G \) presented by the labeled graph \(G \). If the underlying directed graph \(G \) is irreducible with condition (I) in the sense of [CK] and each automorphism \(\alpha_k \) has no nontrivial invariant ideal of \(\mathcal{B} \), the associated crossed product \(A \times_{\rho} \Lambda_G \) is simple and purely infinite.

The following example is a special case of this example.

(ii) Let \(A = C(\mathbb{T}) \) and \(\Sigma = \{1, 2, \ldots, n\} \), \(n > 1 \). Take irrational numbers \(\theta_1, \ldots, \theta_n \in \mathbb{R} \setminus \mathbb{Q} \). Define \(\rho_i(f)(z) = f(e^{2\pi\sqrt{-1}\theta_i}z) \) for \(f \in C(\mathbb{T}), z \in \mathbb{T} \). We have a \(C^* \)-symbolic dynamical system \((C(\mathbb{T}), \rho, \Sigma)\). Since the endomorphisms \(\rho_i, i = 1, \ldots, n \) are automorphisms and hence the associated subshift is the full shift \(\Sigma^\mathbb{Z} \). We denote by \(\mathcal{O}_{\theta_1,\ldots,\theta_n} \) the \(C^* \)-symbolic crossed product \(C(\mathbb{T}) \rtimes \theta_1,\ldots,\theta_n \Sigma^\mathbb{Z} \). As the algebra \(\mathcal{O}_{\theta_1,\ldots,\theta_n} \) is the universal unital \(C^* \)-algebra generated by \(n \) isometries and one unitary \(U \) satisfying the following relations:
\[
\sum_{j=1}^n S_j S_j^* = 1, \quad S_i^* S_i = 1, \quad US_i = e^{2\pi\sqrt{-1}\theta_i}S_i U, \quad i = 1, \ldots, n.
\]

Hence \(\mathcal{O}_{\theta_1,\ldots,\theta_n} \) is realized as the ordinary crossed product \(\mathcal{O}_n \rtimes \alpha_{\theta_1,\ldots,\theta_n} \mathbb{Z} \) of the Cuntz algebra \(\mathcal{O}_n \) by the automorphism \(\alpha_{\theta_1,\ldots,\theta_n} \) defined by \(\alpha_{\theta_1,\ldots,\theta_n}(S_i) = e^{2\pi\sqrt{-1}\theta_i}S_i \).

It is simple and purely infinite whose K-groups are
\[
K_0(\mathcal{O}_{\theta_1,\ldots,\theta_n}) = K_1(\mathcal{O}_{\theta_1,\ldots,\theta_n}) \cong \mathbb{Z}/(n-1)\mathbb{Z}.
\]

(iii) Let \(A = [A(i, j)]_{i,j=1,\ldots,n} \) be an \(n \times n \) matrix with entries in \(\{0, 1\} \). We denote by \(\Lambda_A^+ \) the compact Hausdorff space
\[
\Lambda_A^+ = \{(x_i)_{i \in \mathbb{N}} \in \{1, \ldots, n\}^\mathbb{N} | A(x_i, x_{i+1}) = 1 \text{ for all } i \in \mathbb{N}\}
\]
of the right one-sided topological Markov shift associated with the matrix \(A \). Let \(S_i, i = 1, \ldots, n \) be the generating partial isometries of the Cuntz-Krieger algebra \(\mathcal{O}_A \) such that \(\sum_{j=1}^n S_j S_j^* = 1, S_i^* S_i = \sum_{j=1}^n A(i, j) S_j S_j^* \). The algebra \(\mathcal{A}_A = C(\Lambda_A^+) \) of all continuous functions on \(\Lambda_A^+ \) is identified with the subalgebra of \(\mathcal{O}_A \) generated by the projections \(S_\mu S_\mu^* \) for \(\mu = \mu_1, \ldots, \mu_k \), where \(S_\mu = S_{\mu_1} \cdots S_{\mu_k} \) for \(\mu_1, \ldots, \mu_k \in \{1, \ldots, n\} \). Let \(\Sigma = \{(1, 2, \ldots, n), (1, 2, \ldots, n)\} \) be \(2n \)-brackets. We define \(2n \)-endomorphisms of \(\mathcal{A}_A \) by setting
\[
\rho_i^A(a) = S_i^* a S_i, \quad \rho_j^A(a) = S_j a S_j^*, \quad i = 1, \ldots, n, \ a \in \mathcal{A}_A.
\]
We have a C^*-symbolic dynamical system $(\mathcal{A}_\Sigma, \rho^\Lambda, \Sigma)$. If in particular all entries $A(i,j), i, j = 1, \ldots, n$ of A are 1, then Λ_A^+ is the right one-sided full shift $\{1, \ldots, n\}^\mathbb{N}$ and the associated subshift is the Dyck shift D_n of the $2n$-brackets. Let $\mathcal{L}^{Ch(D_n)}$ be the corresponding λ-graph system for $(\mathcal{A}_\Sigma, \rho^\Lambda, \Sigma)$. It is called the Cantor horizon λ-graph system of the Dyck shift D_n that has been studied in [KM]. The C^*-symbolic crossed product $C(\{1, \ldots, n\}^\mathbb{N}) \times_{\rho^\Lambda} D_n$ is a simple purely infinite C^*-algebra $\mathcal{O}_{\mathcal{L}^{Ch(D_n)}}$ that is the C^*-algebra associated with $\mathcal{L}^{Ch(D_n)}$. Its K-groups have been computed so that

$$K_0(C(\{1, \ldots, n\}^\mathbb{N}) \times_{\rho^\Lambda} D_n) = \mathbb{Z}/n\mathbb{Z} \oplus C(\mathbb{C}, \mathbb{Z}),$$

$$K_1(C(\{1, \ldots, n\}^\mathbb{N}) \times_{\rho^\Lambda} D_n) = 0$$

where $C(\mathbb{C}, \mathbb{Z})$ denotes the abelian group of all \mathbb{Z}-valued continuous functions on the Cantor set $\mathbb{C}([K'M])$.

For a general matrix A with entries in $\{0,1\}$, let $\mathcal{L}^{Ch(D_A)}$ be the corresponding λ-graph system to $(\mathcal{A}_\Sigma, \rho^\Lambda, \Sigma)$. It is easy to see that the associated subshift is a subshift of Dyck shift D_n that has some forbidden words coming from the forbidden words of the topological Markov shift Λ_A. The subshift is a version of topological Markov shift of the Dyck shifts, and appear in [HIK], [KM2]. We call it the topological Markov Dyck shift associated with the matrix A and write it as D_A. We then see that the C^*-symbolic crossed product $C(\Lambda_A^+) \times_{\rho^\Lambda} D_A$ is a simple purely infinite C^*-algebra $\mathcal{O}_{\mathcal{L}^{Ch(D_A)}}$ if the matrix A is irreducible.

6. **Strong shift equivalence of C^*-symbolic dynamical systems and Hilbert C^*-bimodules**

As in the preceding section, we may regard a λ-graph system as a C^*-symbolic dynamical system. The matrix interpretation of a λ-graph system is called a symbolic matrix system. In [Ma], we have formulated strong shift equivalence of symbolic matrix systems, as a generalization of nonnegative square matrices ([Wil]) and symbolic square matrices ([N]). Strong shift equivalence of symbolic matrix systems is a basic equivalence relation related to topological conjugacy of subshifts. It has been proved that two subshifts Λ and Λ' are topologically conjugate if and only if their canonical symbolic matrix systems $(\mathcal{M}_{\Lambda}^+, I_{\Lambda}^+)$ and $(\mathcal{M}_{\Lambda'}^+, I_{\Lambda'}^+)$ are strong shift equivalent ([Ma]).

In this section, we will formulate strong shift equivalences and shift equivalences of C^*-symbolic dynamical systems and of Hilbert C^*-symbolic bimodules as generalizations of those of λ-graph systems.

Definition. Two C^*-symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are said to be **strong shift equivalent in 1-step** if there exist finite sets C and D, two families of homomorphisms $\eta_c : \mathcal{A} \to \mathcal{A}'$, $c \in C$ and $\zeta_d : \mathcal{A}' \to \mathcal{A}$, $d \in D$ and two into bijections $\kappa : \Sigma \to CD$ and $\kappa' : \Sigma' \to DC$ such that

$$\rho_a = \zeta_d \circ \eta_c \text{ if } \kappa(\alpha) = c_{\alpha} d_{\alpha}, \text{ and } \rho_{a'} = \eta_{c_{a'}} \circ \zeta_d, \text{ if } \kappa'(\alpha') = d_{a'} c_{a'}$$

and

$$\zeta_d \circ \eta_c = 0 \text{ if } cd \notin \kappa(\Sigma), \text{ and } \eta_c \circ \zeta_d = 0 \text{ if } dc \notin \kappa'(\Sigma').$$
We write this situation as $(\mathcal{A}, \rho, \Sigma) \approx (\mathcal{A}', \rho', \Sigma')$.

We set $\tilde{\mathcal{A}} = \mathcal{A} \oplus \mathcal{A}'$ and $\tilde{\Sigma} = C \cup D$ disjoint union of C and D. Define $\tilde{\rho}_\tilde{\alpha} \in \text{End}(\tilde{\mathcal{A}})$ for $\tilde{\alpha} \in \tilde{\Sigma}$ by setting

$$\tilde{\rho}_\tilde{\alpha}(x, y) = \begin{cases} (0, \eta_c(x)) & \text{if } \tilde{\alpha} = c \in C, \\ (\zeta_d(y), 0) & \text{if } \tilde{\alpha} = d \in D \end{cases}$$

for $(x, y) \in \mathcal{A} \oplus \mathcal{A}'$. Then we have

Lemma 6.1. $(\tilde{\mathcal{A}}, \tilde{\rho}, \tilde{\Sigma})$ is a C^*-symbolic dynamical system.

We call $(\tilde{\mathcal{A}}, \tilde{\rho}, \tilde{\Sigma})$ the bipartite C^*-symbolic dynamical system related to $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$. If there exists an N-chain of strong shift equivalences in 1-step between $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$, they are said to be strong shift equivalent in N-step and written as $(\mathcal{A}, \rho, \Sigma) \approx_N (\mathcal{A}', \rho', \Sigma')$. They are simply said to be strong shift equivalent.

Recall that two C^*-symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are said to be isomorphic if there exists an isomorphism $\phi : \mathcal{A} \to \mathcal{A}'$ of C^*-algebras and a bijection $\pi : \Sigma \to \Sigma'$ such that $\rho_\alpha = \phi^{-1} \circ \rho'_{\pi(\alpha)} \circ \phi$ for all $\alpha \in \Sigma$.

Lemma 6.2.

(i) If $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are isomorphic, they are strong shift equivalent in 1-step.

(ii) Suppose that both sets Σ and Σ' are one points $\{\alpha\}$ and $\{\alpha'\}$ respectively and both ρ_α and ρ'_α are automorphisms. Then $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are isomorphic if and only if they are strong shift equivalent in 1-step.

We next formulate shift equivalence of C^*-symbolic dynamical systems

Definition. C^*-symbolic dynamical systems $(\mathcal{A}, \rho, \Sigma)$ and $(\mathcal{A}', \rho', \Sigma')$ are said to be shift equivalent of lag N if there exist two finite sets C and D, two families $\eta_c : \mathcal{A} \to \mathcal{A}'$, $c \in C$ and $\zeta_d : \mathcal{A} \to \mathcal{A}'$, $d \in D$ of homomorphisms and four specifications $\kappa_C : \Sigma C \to \Sigma' C'$, $\kappa_D : \Sigma' D \to \Sigma D$, $\kappa_{\Sigma'} : \Sigma' N \to \Sigma D$ and $\kappa_{\Sigma} : \Sigma N \to \Sigma' D$ such that

$$\eta_c \circ \rho_\alpha = \rho'_\alpha \circ \eta_c$$

$$\zeta_d \circ \rho'_\alpha = \rho_\alpha \circ \zeta_d$$

and

$$\rho_{\alpha_N} \circ \cdots \circ \rho_{\alpha_2} \circ \rho_{\alpha_1} = \zeta_d \circ \eta_c$$

and $\kappa_C(\alpha_1 \alpha_2 \cdots \alpha_N) = cd$,

$$\rho'_{\alpha_N} \circ \cdots \circ \rho'_{\alpha_2} \circ \rho'_{\alpha_1} = \eta_c \circ \zeta_d$$

and $\kappa_{\Sigma'}(\alpha_1 \alpha_2 \cdots \alpha_N) = d'c'$.

We write this situation as $(\mathcal{A}, \rho, \Sigma) \sim_N (\mathcal{A}', \rho', \Sigma')$.

The following proposition is proved by similar ideas to the case of matrices ([Wi], cf.[LM]).
Proposition 6.3. Let \((A', \rho', \Sigma')\) and \((A'', \rho'', \Sigma'')\) be \(C^*\)-symbolic dynamical systems.

(i) \(\bigl(A, \rho, \Sigma\bigr) \approx_N (A', \rho', \Sigma')\) implies \(\bigl(A, \rho, \Sigma\bigr) \sim_N (A', \rho', \Sigma')\).

(ii) \(\bigl(A, \rho, \Sigma\bigr) \sim_N (A', \rho', \Sigma')\) implies \(\bigl(A, \rho, \Sigma\bigr) \sim_N (A', \rho', \Sigma')\) for all \(N' \geq N\).

(iii) \(\bigl(A, \rho, \Sigma\bigr) \sim (A', \rho', \Sigma')\) and \((A', \rho', \Sigma')\) imply \((A'\overline{\rho}'\overline{\Sigma}'\overline{\Sigma}'\overline{\Sigma})\) imply \((A, \rho, \Sigma) \sim (A'', \rho'', \Sigma'')\).

Thus shift equivalence of \(C^*\)-symbolic dynamical systems is an equivalence relation.

We will next formulate strong shift equivalence and shift equivalence of Hilbert \(C^*\)-bimodules. Let \(A\) and \(A'\) be \(C^*\)-algebras. We define a Hilbert \(C^*\)-symbolic right \(A'\)-module \((\varphi, \mathcal{A} A', \{w_\alpha\}_{\alpha \in \Sigma})\) over \(\Sigma\) with left \(A\)-action by a Hilbert \(C^*\)-right \(A'\)-module with orthogonal essential finite basis \(\{w_\alpha\}_{\alpha \in \Sigma}\) and a unital faithful diagonal left action \(\varphi\) of \(A\) on \(\mathcal{A} A'\). Let \((\varphi, \mathcal{A} A', \{w_\alpha\}_{\alpha \in \Sigma})\) be a Hilbert \(C^*\)-symbolic right \(A'\)-module over \(\Sigma\) with left \(A\)-action and \((\psi, \mathcal{A} A', \{w'_\alpha\}_{\alpha \in \Sigma'})\) a Hilbert \(C^*\)-symbolic right \(A''\)-module over \(\Sigma'\) with left \(A'\)-action. Define the relative tensor product

\[
(\varphi, \mathcal{A} A', \{w_\alpha\}_{\alpha \in \Sigma}) \otimes_{A'} (\psi, \mathcal{A} A', \{w'_\alpha\}_{\alpha \in \Sigma'}) := (\varphi \otimes 1, \mathcal{A} A' \otimes_{A'} \mathcal{A} A'', \{w_\alpha \otimes_{A'} w'_\alpha\}_{(\alpha, \alpha') \in \Sigma \otimes_{A'} \Sigma'})
\]

where \(\mathcal{A} A' \otimes_{A'} \mathcal{A} A''\) is the tensor product Hilbert \(C^*\)-right \(A''\)-module relative to \(A'\), and \(\varphi \otimes 1\) is the natural left \(A\)-action on it. The finite set \(\Sigma \otimes_{A'} \Sigma'\) is defined as follows: As both the left action \(\varphi\) and \(\psi\) are diagonal with respect to the bases \(\{w_\alpha\}_{\alpha \in \Sigma}\) and \(\{w'_\alpha\}_{\alpha \in \Sigma'}\), respectively, there exist \(\eta_\alpha(a) \in A'\) for \(a \in A\) and \(\zeta_{\alpha'}(b) \in A''\) for \(b \in A'\) such that

\[
\varphi(a)w_\alpha = w_\alpha \eta_\alpha(a), \quad \psi(b)w'_\alpha = w'_\alpha \zeta_{\alpha'}(b).
\]

The finite set \(\Sigma \otimes_{A'} \Sigma'\) is defined by

\[
\Sigma \otimes_{A'} \Sigma' = \{(\alpha, \alpha') \in \Sigma \times \Sigma' \mid \zeta_{\alpha'}(\eta_\alpha(1_A)) \neq 0\}.
\]

It is easy to check that

\[
(\varphi \otimes 1, \mathcal{A} A' \otimes_{A'} \mathcal{A} A'', \{w_\alpha \otimes_{A'} w'_\alpha\}_{(\alpha, \alpha') \in \Sigma \otimes_{A'} \Sigma'})
\]

is a Hilbert \(C^*\)-symbolic right \(A''\)-module over \(\Sigma \otimes_{A'} \Sigma'\) with left \(A\)-action.

Definition. Let \((\phi, \mathcal{A} A)\) be a Hilbert \(C^*\)-bimodule over \(A\) and \((\phi', \mathcal{A} A')\) a Hilbert \(C^*\)-right \(A'\)-module over \(A'\). They are said to be strong shift equivalent in 1-step and written as \((\phi, \mathcal{A} A) \approx (\phi', \mathcal{A} A')\) if there exist a Hilbert \(C^*\)-right \(A'\)-module \((\varphi, \mathcal{A} A')\) with left \(A\)-action and a Hilbert \(C^*\)-right \(A\)-module \((\psi, \mathcal{A} A)\) with left \(A'\)-action such that

\[
(\psi \otimes 1, \mathcal{A} A' \otimes_{A'} \mathcal{A} A', \psi \otimes 1, \mathcal{A} A \otimes A' A' \mathcal{A} A', \psi \otimes 1, \mathcal{A} A \mathcal{A} A' A' \mathcal{A} A', \psi \otimes 1, \mathcal{A} A \mathcal{A} A' A' \mathcal{A} A') = (\phi', \mathcal{A} A)\) as a Hilbert \(C^*\)-bimodule over \(A\),

\[
(\psi \otimes 1, \mathcal{A} A' \otimes_{A'} \mathcal{A} A', \psi \otimes 1, \mathcal{A} A \otimes A' A' \mathcal{A} A', \psi \otimes 1, \mathcal{A} A \mathcal{A} A' A' \mathcal{A} A', \psi \otimes 1, \mathcal{A} A \mathcal{A} A' A' \mathcal{A} A') = (\phi', \mathcal{A} A)\) as a Hilbert \(C^*\)-bimodule over \(A'\).
The above all equalities of Hilbert C^*-bimodules mean unitary equivalences as Hilbert C^*-bimodules. In this situation, we say that (φ, \mathcal{H}_A) and (ψ, \mathcal{H}_A) satisfy the strong shift equivalence relation between (ϕ, \mathcal{H}_A) and (ϕ', \mathcal{H}_A). Consider the direct sum

$$(\varphi, \mathcal{H}_A) \oplus (\psi, \mathcal{H}_A) := (\varphi \oplus \psi, \mathcal{H}_A' \oplus \mathcal{H}_A)$$

that is a Hilbert C^*-right $\mathcal{A}' \oplus \mathcal{A}$-module with left $\mathcal{A} \oplus \mathcal{A}'$-action. It is denoted by (ξ, \mathcal{H}_X) and satisfies

$$\mathcal{A} \mathcal{H}_A' = \xi(\mathcal{A}) \mathcal{H}_X = \mathcal{H}_X \mathcal{A}', \quad \mathcal{A} \mathcal{H}_A = \xi(\mathcal{A}') \mathcal{H}_X = \mathcal{H}_X \mathcal{A}.$$

As \mathcal{H}_X is regarded as a Hilbert C^*-right $\mathcal{A} \oplus \mathcal{A}'$-module, (ξ, \mathcal{H}_X) is considered to be a Hilbert C^*-bimodule over $\mathcal{A} \oplus \mathcal{A}'$, that is called a bipartite Hilbert C^*-bimodule related to (ϕ, \mathcal{H}_A) and (ϕ', \mathcal{H}_A'). We note that the condition (6.1) is equivalent to the condition:

$$(\xi \otimes 1, \mathcal{H}_X \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_X) = (\phi, \mathcal{H}_A) \oplus (\phi', \mathcal{H}_A')$$

as a Hilbert C^*-bimodule over $\mathcal{A} \oplus \mathcal{A}'$.

If there exists an N-chain of strong shift equivalences in 1-step between (ϕ, \mathcal{H}_A) and (ϕ', \mathcal{H}_A'), they are said to be strong shift equivalent in N-step and we write it as $$(\phi, \mathcal{H}_A) \approx (\phi', \mathcal{H}_A').$$

They are simply said to be strong shift equivalent.

In particular, Hilbert C^*-symbolic bimodules $(\phi, \mathcal{H}_A, \{u_{\alpha}\}_{\alpha \in \Sigma})$ and $(\phi', \mathcal{H}_A', \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})$ are said to be strong shift equivalent in 1-step if there exist a Hilbert C^*-symbolic right \mathcal{A}'-module $(\varphi, \mathcal{H}_A'), \{w_{\alpha}\}_{\alpha \in \Sigma}$ with left \mathcal{A}-action and a Hilbert C^*-right \mathcal{A}-module $(\psi, \mathcal{H}_A, \{w'_{\alpha'}\}_{\alpha' \in \Sigma'})$ with left \mathcal{A}'-action such that the qualities (6.1) are taken to be unitary equivalent as Hilbert C^*-symbolic bimodules.

Definition. Let (ϕ, \mathcal{H}_A) be a Hilbert C^*-bimodule over \mathcal{A} and (ϕ', \mathcal{H}_A') a Hilbert C^*-bimodule over \mathcal{A}'. They are said to be shift equivalent of lag N if there exist a Hilbert C^*-right \mathcal{A}'-module $(\varphi, \mathcal{H}_A')$ with left \mathcal{A}-action and a Hilbert C^*-right \mathcal{A}-module (ψ, \mathcal{H}_A) with left \mathcal{A}'-action such that

$$(\phi, \mathcal{H}_A \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_A) = (\varphi \otimes 1, \mathcal{H}_A' \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_A'),$$

and

$$(\phi', \mathcal{H}_A' \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_A') = (\psi \otimes 1, \mathcal{H}_A \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_A'),$$

and

$$(\varphi \otimes 1, \mathcal{H}_A' \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_A') = (\phi, \mathcal{H}_A \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_A'), \quad (\psi \otimes 1, \mathcal{H}_A \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_A) = (\phi', \mathcal{H}_A' \otimes_{\mathcal{A} \oplus \mathcal{A}'} \mathcal{H}_A')$$

We write this situation as $(\phi, \mathcal{H}_A) \approx (\phi', \mathcal{H}_A')$.

We similarly define a shift equivalence between Hilbert C^*-symbolic bimodules by equipping with finite bases.

The above formulations of a strong shift equivalence and a shift equivalence of Hilbert C^*-bimodules are generalizations of those of nonnegative square matrices defined by Willams (cf.[N],[Ma6]). The following proposition is parallel to Proposition 6.3. ([Wi], cf.[LM]).
Proposition 6.4. Let \((\phi, \mathcal{H}_A), (\phi', \mathcal{H}_{A'})\) and \((\phi'', \mathcal{H}_{A''})\) be Hilbert \(C^*\)-bimodules.

(i) \((\phi, \mathcal{H}_A) \approx_N (\phi', \mathcal{H}_{A'})\) implies \((\phi, \mathcal{H}_A) \cong_N (\phi', \mathcal{H}_{A'})\) for all \(N\).

(ii) \((\phi, \mathcal{H}_A) \cong_N (\phi', \mathcal{H}_{A'})\) implies \((\phi, \mathcal{H}_A) \approx_N (\phi', \mathcal{H}_{A'})\) for all \(N\).

(iii) \((\phi, \mathcal{H}_A) \cong_N (\phi', \mathcal{H}_{A'})\) and \((\phi'', \mathcal{H}_{A''})\) imply \((\phi, \mathcal{H}_A) \cong_N (\phi'', \mathcal{H}_{A''})\).

The similar statements hold for Hilbert \(C^*\)-symbolic bimodules.

Therefore shift equivalence of Hilbert \(C^*\)-bimodules and similarly shift equivalence of Hilbert \(C^*\)-symbolic bimodules are equivalence relations.

Proposition 6.5. If \(C^*\)-symbolic dynamical systems \((A, \rho, \Sigma)\) and \((A', \rho', \Sigma')\) are strong shift equivalent in 1-step, their associated Hilbert \(C^*\)-symbolic bimodules \((\phi, \mathcal{H}_A, \{u_{\alpha}\}_{\alpha \in \Sigma})\) and \((\phi', \mathcal{H}_{A'}, \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})\) are strong shift equivalent in 1-step.

Its converse implication holds.

Proposition 6.6. If Hilbert \(C^*\)-symbolic bimodules \((\phi, \mathcal{H}_A, \{u_{\alpha}\}_{\alpha \in \Sigma})\) and \((\phi', \mathcal{H}'_{A'}, \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})\) are strong shift equivalent in 1-step, their associated \(C^*\)-symbolic dynamical systems \((A, \rho, \Sigma)\) and \((A', \rho', \Sigma')\) are strong shift equivalent in 1-step.

We may similarly see that two \(C^*\)-symbolic dynamical systems \((A, \rho, \Sigma)\) and \((A', \rho', \Sigma')\) are shift equivalent of lag \(N\) if and only if their associated Hilbert \(C^*\)-symbolic bimodules \((\phi, \mathcal{H}_A, \{u_{\alpha}\}_{\alpha \in \Sigma})\) and \((\phi', \mathcal{H}'_{A'}, \{u'_{\alpha'}\}_{\alpha' \in \Sigma'})\) are shift equivalent of lag \(N\).

7. Strong shift equivalence of gauge actions

In this section we introduce the notion of strong shift equivalence of \(C^*\)-symbolic crossed products with gauge actions.

Definition. Two \(C^*\)-symbolic crossed products \((A \times_{\rho} \Lambda, \hat{\rho}, T)\) and \((A' \times_{\rho'} \Lambda', \hat{\rho}', T)\) with gauge actions are said to be strong shift equivalent in 1-step if there exists a \(C^*\)-symbolic dynamical system \((A_0, \rho_0, \Sigma_0)\) and full projections \(p, p' \in A_0 \times_{\rho_0} \Lambda_0\) satisfying \(p + p' = 1\) and \(\rho_0(z)(p) = p, \rho_0(z)(p') = p'\) for \(z \in T\) where \(\Lambda_0\) is the subshift associated with \((A_0, \rho_0, \Sigma_0)\), and

\[
(p(A_0 \times_{\rho_0} \Lambda_0) p, \rho_0, T) = (A \times_{\rho} \Lambda, \hat{\rho}^2, T),
\]

\[
(p'(A_0 \times_{\rho_0} \Lambda_0) p', \rho_0, T) = (A' \times_{\rho'} \Lambda', \hat{\rho}'^2, T).
\]

We write this situation as \((A \times_{\rho} \Lambda, \hat{\rho}, T) \approx_1 (A' \times_{\rho'} \Lambda', \hat{\rho}', T)\). If there exists an \(N\)-chain of strong shift equivalences in 1-step, they are said to be strong shift equivalent in \(N\)-step and written as \((A \times_{\rho} \Lambda, \hat{\rho}, T) \equiv_N (A' \times_{\rho'} \Lambda', \hat{\rho}', T)\). It is simply said to be strong shift equivalent.

Theorem 7.1. Let \((A, \rho, \Sigma)\) and \((A', \rho', \Sigma')\) be two \(C^*\)-symbolic dynamical systems whose associated subshifts are denoted by \(\Lambda\) and \(\Lambda'\) respectively. If \((A, \rho, \Sigma)\) and \((A', \rho', \Sigma')\) are strong shift equivalent, the \(C^*\)-symbolic crossed products \((A \times_{\rho} \Lambda, \hat{\rho}, T)\) and \((A' \times_{\rho'} \Lambda', \hat{\rho}', T)\) with gauge actions are strong shift equivalent.

This theorem and its proof are generalizations of [Ma4: Theorem 3.15].
Suppose that \((A, \rho, \Sigma)\) and \((A', \rho', \Sigma')\) are strong shift equivalent in 1-step. There exist finite sets \(C\) and \(D\), two families of homomorphisms \(\eta_c : A \to A', c \in C\) and \(\zeta_d : A' \to A, d \in D\) and two into bijections \(\kappa : \Sigma \to CD\) and \(\kappa' : \Sigma' \to DC\) that give rise to the strong shift equivalence between \((A, \rho, \Sigma)\) and \((A', \rho', \Sigma')\). Let \((\widetilde{A}, \tilde{\rho}, \widetilde{\Sigma})\) be the bipartite \(C^*\)-symbolic dynamical system related to \((A, \rho, \Sigma)\) and \((A', \rho', \Sigma')\).

As \(\widetilde{A} = A \oplus A'\), we identify \(A\) and \(A'\) with the subalgebras of \(\widetilde{A}\) by regarding \(a \in A\) as \((a, 0) \in \widetilde{A}\) and \(a' \in A'\) as \((0, a') \in \widetilde{A}\) respectively. The symbolic crossed product

\[
\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda} = C^*(S_{\tilde{\alpha}}, x \mid \tilde{\alpha} \in \tilde{\Sigma}, x \in \widetilde{A})
\]

of \((\widetilde{A}, \tilde{\rho}, \tilde{\Sigma})\) is the universal \(C^*\)-algebra generated by partial isometries \(S_{\tilde{\alpha}}, \tilde{\alpha} \in \tilde{\Sigma} = C \cup D\) and elements \(x \in \widetilde{A}\) that satisfy the relations (5.1). Let \(C^*(S_{CD}, A)\) and \(C^*(S_{DC}, A')\) be the \(C^*\)-subalgebras of \(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda}\) defined by setting

\[
C^*(S_{CD}, A) = C^*(S_{c_a d_a}, (a, 0) \mid c_a d_a = \kappa(\alpha), \alpha \in \Sigma, a \in A) \quad \text{and}
\]

\[
C^*(S_{DC}, A') = C^*(S_{d_a' c_{a'}}, (0, a') \mid d_a' c_{a'} = \kappa'(\alpha'), \alpha' \in \Sigma', a' \in A')
\]

respectively, where \(S_{c_a d_a} = S_{c_a} S_{d_a}\) and \(S_{d_a' c_{a'}} = S_{d_a'} S_{c_{a'}}\). Put the projections

\[
P_C = \sum_{c \in C} S_c S_c^*, \quad P_D = \sum_{d \in D} S_d S_d^* \quad \text{in} \ \widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda}.
\]

Hence \(P_C + P_D = 1\).

We see that the following propositions hold.

Proposition 7.2.

\[
C^*(S_{CD}, A) = P_C(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda})P_C, \quad C^*(S_{DC}, A') = P_D(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda})P_D.
\]

Proposition 7.3. The \(C^*\)-symbolic crossed products \(A \times_\rho \Lambda\) and \(A' \times_{\rho'} \Lambda'\) are canonically isomorphic to the algebras \(C^*(S_{CD}, A)\) and \(C^*(S_{DC}, A')\) respectively.

The following lemma shows that the subalgebras \(P_C(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda})P_C\) and \(P_D(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda})P_D\) are complementary full corners in \(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda}\).

Lemma 7.4. The projections \(P_C, P_D\) are full in the algebra \(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda}\).

Proof of sketch of Theorem 7.1. By Proposition 7.2 and Proposition 7.3, we may identify the algebras \(A \times_\rho \Lambda\) with \(P_C(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda})P_C\), and \(A' \times_{\rho'} \Lambda'\) with \(P_D(\widetilde{A} \times_{\tilde{\rho}} \tilde{\Lambda})P_D\). By these identifications, one has

\[
\tilde{\rho}_2^2(s_a) = \tilde{\rho}_z(S_c S_d), \quad \tilde{\rho}_2^2(s'_{a'}) = \tilde{\rho}_z(S_d S_c)
\]

for \(\kappa(\alpha) = cd \in CD\), \(\kappa'(\alpha') = dc \in DC\). Thus \((A \times_\rho \Lambda, \tilde{\rho}, \tilde{T})\) and \((A' \times_{\rho'} \Lambda', \tilde{\rho}', \tilde{T})\) are strong shift equivalent in 1-step. \(\square\)

Remark. It is possible to generalize the above discussions such as strong shift equivalent Hilbert \(C^*\)-bimodules give rise to strong shift equivalent \(C^*\)-algebras of the Hilbert \(C^*\)-bimodules. We will discuss this generalization in a forthcoming paper [Ma6].

We present the following theorem.
Theorem 7.5. Let (A, ρ, Σ) and (A', ρ', Σ') be two C^*-symbolic dynamical systems whose associated subshifts are denoted by Λ and Λ' respectively. If (A, ρ, Σ) and (A', ρ', Σ') are strong shift equivalent, then we have

(i) the subshifts Λ and Λ' are topologically conjugate,

(ii) the C^*-symbolic crossed products $(A \rtimes_\rho \Lambda, \hat{\rho}, T)$ and $(A' \rtimes_{\rho'} \Lambda', \hat{\rho}', T)$ with gauge actions are strong shift equivalent, and

(iii) the stabilized gauge actions $(A \rtimes_\rho \Lambda \otimes K, \hat{\rho} \otimes \id, T)$ and $(A' \rtimes_{\rho'} \Lambda' \otimes K, \hat{\rho}' \otimes \id, T)$ are cocycle conjugate, where K denotes the C^*-algebra of all compact operators on a separable infinite dimensional Hilbert space.

In the rest of this section, we will concern K-theory for the C^*-algebra $A \rtimes_\rho \Lambda$ constructed from a C^*-dynamical system (A, ρ, Σ). The endomorphisms $\rho_\alpha : A \to A$ for $\alpha \in \Sigma$ yield endomorphisms $\rho_\alpha : K_*(A) \to K_*(A)$ for $\alpha \in \Sigma$ on the K-theory groups of A. Define an endomorphism

$$\rho_* : K_* (A) \to K_* (A), \quad *=0,1$$

by setting $\rho_*(g) = \sum_{\alpha \in \Sigma} \rho_{\alpha *}(g), g \in K_* (A)$. By [Pim] (cf. [KPW]), one has the following six term exact sequence of K-theory:

$$K_0(A) \xrightarrow{id-\rho_*} K_0(A) \xrightarrow{i_*} K_0(A \rtimes_\rho \Lambda)$$

$$\uparrow \quad \quad \quad \quad \downarrow$$

$$K_1(A \rtimes_\rho \Lambda) \quad \quad \quad \quad K_1(A) \xleftarrow{i_*} K_1(A) \xleftarrow{id-\rho_*} K_1(A).$$

Hence if in particular $K_1(A) = 0$, one has

$$K_0(A \rtimes_\rho \Lambda) = K_0(A)/(id - \rho_*)K_0(A),$$

$$K_1(A \rtimes_\rho \Lambda) = \text{Ker}(id - \rho_*) \text{ in } K_0(A).$$

This formula is a generalization of K-theory formulae proved in [C2] and [Ma3]. As in [Ma3:Lemma 5.2], one sees that the fixed point algebra $F_{(A, \rho, \Sigma)}$ of $A \rtimes_\rho \Lambda$ under the gauge action $\hat{\rho}$ is stably isomorphic to $(A \times_\rho \Lambda) \times_\hat{\rho} \mathbb{T}$. We define the K-groups $K_*(A, \rho, \Sigma)$ and the dimension groups $D_*(A, \rho, \Sigma)$ for (A, ρ, Σ) by setting

$$K_*(A, \rho, \Sigma) = K_*(A \rtimes_\rho \Lambda)$$

$$D_*(A, \rho, \Sigma) = (K_*(F_{(A, \rho, \Sigma)}), \hat{\rho}_*) \quad *=0,1$$

where $\hat{\rho}_*$ is the automorphism on the abelian group $K_*(F_{(A, \rho, \Sigma)})$ induced by the dual action $\hat{\rho}$ of the gauge action $\hat{\rho}$. We also define the Bowen-Franks groups $BF^*(A, \rho, \Sigma)$ for (A, ρ, Σ) by setting

$$BF^*(A, \rho, \Sigma) = \text{Ext}_*(A \rtimes_\rho \Lambda), \quad *=0,1$$

Then Theorem 7.5 (iii) implies
Proposition 7.6. The abelian groups $K_*(A, \rho, \Sigma), BF^*(A, \rho, \Sigma)$ and the abelian group with automorphisms $D_*(A, \rho, \Sigma)$ for (A, ρ, Σ) are invariant under strong shift equivalence of C^*-symbolic dynamical systems.

The above results are generalization of [Ma4] see also [C2], [CK], [Ma2].

In [Ma8], dynamical property of a "subshift"

$$S_{(A, \rho, \Sigma)} = \{(\rho \alpha_i)_{i \in \mathbb{Z}} | (\rho \alpha_i \circ \cdots \circ \rho \alpha_{i+k})(1) \neq 0, i \in \mathbb{Z}, k \in \mathbb{Z}^+\}$$

will be studied.

Acknowledgement: The author would like to thank Yasuo Watatani for his useful suggestions and discussions on Hilbert C^*-bimodules.

REFERENCES

e-mail : kengo@yokohama-cu.ac.jp