<table>
<thead>
<tr>
<th>Title</th>
<th>On Infimal Convolution of M-Convex Functions (Applications of Discrete Convex Analysis to Game Theory and Mathematical Economics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Murota, Kazuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1371: 20-26</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25472</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On Infimal Convolution of M-Convex Functions

Kazuo Murota
Graduate School of Information Science and Technology, University of Tokyo

Abstract

The infimal convolution of M-convex functions is M-convex. This is a fundamental fact in discrete convex analysis that is often useful in its application to mathematical economics and game theory. M-convexity and its variant called M^s-convexity are closely related to gross substitutability, and the infimal convolution operation corresponds to an aggregation. This note provides a succinct description of the present knowledge about the infimal convolution of M-convex functions.

1 Definitions

Let V be a nonempty finite set, and let \mathbb{Z} and \mathbb{R} be the sets of integers and reals, respectively. We denote by \mathbb{Z}^V the set of integral vectors indexed by V, and by \mathbb{R}^V the set of real vectors indexed by V. For a vector $x = (x(v) | v \in V) \in \mathbb{Z}^V$, where $x(v)$ is the vth component of x, we define the positive support $\text{supp}^+(x)$ and the negative support $\text{supp}^-(x)$ by

$$\text{supp}^+(x) = \{v \in V | x(v) > 0\}, \quad \text{supp}^-(x) = \{v \in V | x(v) < 0\}.$$

We use notation $x(S) = \sum_{v \in S} x(v)$ for a subset S of V. For each $S \subseteq V$, we denote by χ_S the characteristic vector of S defined by: $\chi_S(v) = 1$ if $v \in S$ and $\chi_S(v) = 0$ otherwise, and write χ_v for $\chi_{\{v\}}$ for $v \in V$. For a vector $p = (p(v) | v \in V) \in \mathbb{R}^V$ and a function $f : \mathbb{Z}^V \to \mathbb{R} \cup \{+\infty\}$, we define functions $\langle p, x \rangle$ and $f[p](x)$ in $x \in \mathbb{Z}^V$ by

$$\langle p, x \rangle = \sum_{v \in V} p(v)x(v), \quad f[p](x) = f(x) + \langle p, x \rangle.$$

We also denote the set of minimizers of f and the effective domain of f by

$$\text{arg \ min} f = \{x \in \mathbb{Z}^V | f(x) \leq f(y) (\forall y \in \mathbb{Z}^V)\}, \quad \text{dom} f = \{x \in \mathbb{Z}^V | f(x) < +\infty\}.$$

We say that a function $f : \mathbb{Z}^V \to \mathbb{R} \cup \{+\infty\}$ with $\text{dom} f \neq \emptyset$ is M-convex if it satisfies the exchange axiom:

(M-EXC) For $x, y \in \text{dom} f$ and $u \in \text{supp}^+(x-y)$, there exists $v \in \text{supp}^-(x-y)$ such that
\[f(x) + f(y) \geq f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v). \]

The inequality (1) implicitly imposes the condition that \(x - \chi_u + \chi_v \in \text{dom} f \) and \(y + \chi_u - \chi_v \in \text{dom} f \) for the finiteness of the right-hand side. A function \(f \) is said to be \(M \)-concave if \(-f \) is \(M \)-convex.

As a consequence of (M-EXC), the effective domain of an \(M \)-convex function \(f \) lies on a hyperplane \(\{ x \in \mathbb{R}^V \mid x(V) = r \} \) for some integer \(r \), and accordingly, we may consider the projection of \(f \) along a coordinate axis. This means that, instead of the function \(f \) in \(n = |V| \) variables, we may consider a function \(f' \) in \(n - 1 \) variables defined by

\[f'(x') = f(x_0, x') \quad \text{with} \quad x_0 = r - x'(V'), \]

where \(V' = V \setminus \{v_0\} \) for an arbitrarily fixed element \(v_0 \in V \), and a vector \(x \in \mathbb{Z}^V \) is represented as \(x = (x_0, x') \) with \(x_0 = x(v_0) \in \mathbb{Z} \) and \(x' \in \mathbb{Z}^{V'} \). Note that the effective domain \(\text{dom} f' \) of \(f' \) is the projection of \(\text{dom} f \) along the chosen coordinate axis \(v_0 \). A function \(f' \) derived from an \(M \)-convex function by such projection is called an \(M^\# \)-convex function.

More formally, an \(M^\# \)-convex function is defined as follows. Let \(\emptyset \) denote a new element not in \(V \) and put \(\tilde{V} = \{0\} \cup V \). A function \(f : \mathbb{Z}^V \to \mathbb{R} \cup \{+\infty\} \) is called \(M^\# \)-convex if the function \(\tilde{f} : \mathbb{Z}^{\tilde{V}} \to \mathbb{R} \cup \{+\infty\} \) defined by

\[\tilde{f}(x_0, x) = \begin{cases} f(x) & \text{if } x_0 = -x(V) \\ +\infty & \text{otherwise} \end{cases} \quad (x_0 \in \mathbb{Z}, x \in \mathbb{Z}^{\tilde{V}}) \]

is an \(M \)-convex function. It is known (see [4, Theorem 6.2]) that an \(M^\# \)-convex function \(f \) can be characterized by a similar exchange property:

\[(\text{M}^\#\text{-EXC})\] For \(x, y \in \text{dom} f \) and \(u \in \text{supp}^+(x - y) \),

\[f(x) + f(y) \geq \min \left[f(x - \chi_u) + f(y + \chi_u), \quad \min_{v \in \text{supp}^+(x-y)} \{ f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v) \} \right], \]

where the minimum over an empty set is \(+\infty \) by convention. A function \(f \) is said to be \(M^\# \)-concave if \(-f \) is \(M^\# \)-convex.

Whereas \(M^\# \)-convex functions are conceptually equivalent to \(M \)-convex functions, the class of \(M^\# \)-convex functions is strictly larger than that of \(M \)-convex functions. This follows from the implication: \((\text{M-EXC}) \Rightarrow (\text{M}^\#\text{-EXC}) \). The simplest example of an \(M^\# \)-convex function that is not \(M \)-convex is a one-dimensional (univariate) discrete convex function, depicted in Fig. 1.

Proposition 1 ([4, Theorem 6.3]). An \(M \)-convex function is \(M^\# \)-convex. Conversely, an \(M^\# \)-convex function is \(M \)-convex if and only if the effective domain is contained in a hyperplane \(\{ x \in \mathbb{Z}^V \mid x(V) = r \} \) for some \(r \in \mathbb{Z} \).

1) "\(M^\# \)-convex" should be read "\(M \)-natural-convex."
\vec{x}

Figure 1: Univariate discrete convex function

$\mathbf{M}^\mathfrak{h}$-convex functions enjoy a number of nice properties that are expected of "discrete convex functions." Furthermore, $\mathbf{M}^\mathfrak{h}$-concave functions provide with a natural model of utility functions (see [4, §11.3] and [5]). In particular, it is known that $\mathbf{M}^\mathfrak{h}$-concavity is equivalent to gross substitutes property, and that $\mathbf{M}^\mathfrak{h}$-concavity implies submodularity, which is the discrete version of decreasing marginal returns.

It follows from (M-EXC) that the effective domain of an \mathbf{M}-convex function f satisfies the exchange axiom:

(\textbf{B-EXC}) For $x, y \in B$ and $u \in \text{supp}^+(x - y)$, there exists $v \in \text{supp}^-(x - y)$ such that $x - \chi_u + \chi_v \in B$ and $y + \chi_u - \chi_v \in B$,

since $x - \chi_u + \chi_v \in \text{dom} f$ and $y + \chi_u - \chi_v \in \text{dom} f$ for $x, y \in \text{dom} f$ in (1). A nonempty set B of integer points satisfying (B-EXC) is referred to as an \mathbf{M}-convex set.

2 Convolution Theorem

For a pair of functions $f_1, f_2 : \mathbb{Z}^V \rightarrow \mathbb{R} \cup \{+\infty\}$, the integer infimal convolution is a function $f_1 \square_\mathbb{Z} f_2 : \mathbb{Z}^V \rightarrow \mathbb{R} \cup \{-\infty\}$ defined by

$$(f_1 \square_\mathbb{Z} f_2)(x) = \inf\{f_1(x_1) + f_2(x_2) \mid x = x_1 + x_2, x_1, x_2 \in \mathbb{Z}^V\} \quad (x \in \mathbb{Z}^V).$$

(5)

Provided that $f_1 \square_\mathbb{Z} f_2$ is away from the value of $-\infty$, we have

$$\text{dom}(f_1 \square_\mathbb{Z} f_2) = \text{dom} f_1 + \text{dom} f_2,$$

(6)

where the right-hand side means the Minkowski sum of the effective domains.

The convolution theorem reads as follows.

Theorem 2 ([4, Theorem 6.13]). For \mathbf{M}-convex functions f_1 and f_2, the integer infimal convolution $f = f_1 \square_\mathbb{Z} f_2$ is \mathbf{M}-convex, provided $f > -\infty$.

A proof of this theorem is given in Section 3, whereas the $\mathbf{M}^\mathfrak{h}$-version below is an immediate corollary.

Corollary 3 ([4, Theorem 6.15]). For $\mathbf{M}^\mathfrak{h}$-convex functions f_1 and f_2, the integer infimal convolution $f = f_1 \square_\mathbb{Z} f_2$ is $\mathbf{M}^\mathfrak{h}$-convex, provided $f > -\infty$.
Proof. Let \(\tilde{f}_1 \) and \(\tilde{f}_2 \) be the M-convex functions associated with the M\(^2\)-convex functions \(f_1 \) and \(f_2 \) as in (3). For \(x_0 \in \mathbb{Z}, x \in \mathbb{Z}^V \) we have

\[
(\tilde{f}_1 \square_{\mathbb{Z}} \tilde{f}_2)(x_0, x) = \inf \{ \tilde{f}_1(y_0, y) + \tilde{f}_2(z_0, z) | x = y + z, x_0 = y_0 + z_0 \}
\]

\[
= \inf \{ f_1(y) + f_2(z) | x = y + z, x_0 = y_0 + z_0, y_0 = -y(V), z_0 = -z(V) \}
\]

\[
= \inf \{ f_1(y) + f_2(z) | x = y + z, x_0 = -x(V) \}
\]

\[
= \left\{ \begin{array}{ll}
(f_1 \square_{\mathbb{Z}} f_2)(x) & \text{if } x_0 = -x(V) \\
+\infty & \text{otherwise.}
\end{array} \right.
\]

This shows \(\tilde{f}_1 \square_{\mathbb{Z}} \tilde{f}_2 = (f_1 \square_{\mathbb{Z}} f_2)^\sim \) in the notation of (3), whereas \(\tilde{f}_1 \square_{\mathbb{Z}} \tilde{f}_2 \) is M-convex by Theorem 2 applied to \(\tilde{f}_1 \) and \(\tilde{f}_2 \). Therefore, \(f_1 \square_{\mathbb{Z}} f_2 \) is M\(^2\)-convex. \(\square \)

Remark 1. The convolution theorem (Theorem 2) originates in [1, Theorem 6.10], and is described in [2, p. 80, Theorem 2.44 (5)], [3, p. 118, Theorem 4.8 (8)], and [4, p. 143, Theorem 6.13 (8)]. The M\(^2\)-version (Corollary 3) is also stated in [2, p. 83], [3, p. 119, Theorem 4.10], and [4, p. 144, Theorem 6.15 (1)]. An application of this fact to the aggregation of utility functions can be found in [3, p. 275, Proposition 9.13] and [4, p. 337, Theorem 11.12]. In particular, the convolution theorem implies that if the individual utility functions enjoy gross substitutes property, so does the aggregated utility function.

3 Proof

The proof of Theorem 2 given here relies on two fundamental facts stated in the lemmas below. The first shows that the class of M-convex sets is closed under Minkowski addition, and the second gives a characterization of an M-convex function in terms of M-convex sets.

Lemma 4 ([4, Theorem 4.23]). The Minkowski sum of two M-convex sets is M-convex.

Lemma 5 ([4, Theorem 6.30]). Let \(f : \mathbb{Z}^V \to \mathbb{R} \cup \{+\infty\} \) be a function with a bounded nonempty effective domain. Then, \(f \) is M-convex if and only if \(\arg\min f[-p] \) is an M-convex set for each \(p \in \mathbb{R}^V \).

Let \(f_1 \) and \(f_2 \) be M-convex functions, and put \(f = f_1 \square_{\mathbb{Z}} f_2 \). First we treat the case where \(\text{dom} f_1 \) and \(\text{dom} f_2 \) are bounded. The expression (6) shows that \(\text{dom} f \) is bounded. For each \(p \in \mathbb{R}^V \) we have

\[
f[-p] = (f_1[-p]) \square_{\mathbb{Z}} (f_2[-p]),
\]

from which follows

\[
\arg\min f[-p] = \arg\min f_1[-p] + \arg\min f_2[-p]
\]
by (5). In this expression, both \(\arg \min f_1[-p] \) and \(\arg \min f_2[-p] \) are \(\mathbb{M} \)-convex sets by Lemma 5 (only if part), and therefore, their Minkowski sum (the right-hand side) is \(\mathbb{M} \)-convex by Lemma 4. This means that \(\arg \min f[-p] \) is \(\mathbb{M} \)-convex for each \(p \in \mathbb{R}^V \), which implies the \(\mathbb{M} \)-convexity of \(f \) by Lemma 5 (if part).

The general case without the boundedness assumption on effective domains can be treated via limiting procedure as follows. For \(i = 1, 2 \) and \(k = 1, 2, \ldots \), define \(f^{(k)}_i : \mathbb{Z}^V \rightarrow \mathbb{R} \cup \{+\infty\} \) by

\[
\begin{align*}
f_i^{(k)}(x) &= \begin{cases} f_i(x) & \text{if } \|x\|_\infty \leq k \\
+\infty & \text{otherwise} \end{cases} \quad (x \in \mathbb{Z}^V),
\end{align*}
\]

which is an \(\mathbb{M} \)-convex function with a bounded effective domain, provided that \(k \) is large enough for \(\text{dom} f_i^{(k)} \neq \emptyset \). For each \(k \), the infimal convolution \(f^{(k)} = f_1^{(k)} \square_z f_2^{(k)} \) is \(\mathbb{M} \)-convex by the above argument, and moreover, \(\lim_{k \to \infty} f^{(k)}(x) = f(x) \) for each \(x \). It remains to demonstrate the property (M-EXC) for \(f \). Take \(x, y \in \text{dom} f \) and \(u \in \text{supp}^-(x-y) \). There exists \(k_0 = k_0(x, y) \), depending on \(x \) and \(y \), such that \(x, y \in \text{dom} f^{(k)} \) for every \(k \geq k_0 \). Since \(f^{(k)} \) is \(\mathbb{M} \)-convex, there exists \(v_k \in \text{supp}^-(x-y) \) such that

\[
f^{(k)}(x) + f^{(k)}(y) \geq f^{(k)}(x - \chi_u + \chi_{v_k}) + f^{(k)}(y + \chi_u - \chi_{v_k}).
\]

Since \(\text{supp}^-(x-y) \) is a finite set, at least one element of \(\text{supp}^-(x-y) \) appears infinitely many times in the sequence \(v_1, v_2, \ldots \). More precisely, there exists \(v \in \text{supp}^-(x-y) \) and an increasing subsequence \(k_1 < k_2 < \cdots \) such that \(v_{k_j} = v \) for \(j = 1, 2, \ldots \). By letting \(k \to \infty \) along this subsequence in the above inequality we obtain

\[
f(x) + f(y) \geq f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v).
\]

Thus \(f \) satisfies (M-EXC). This completes the proof of Theorem 2.

Remark 2. Here is an example to demonstrate the necessity of the limiting argument in the above proof. For \(\mathbb{M} \)-convex functions \(f_1, f_2 : \mathbb{Z}^2 \rightarrow \mathbb{R} \) defined by

\[
f_1(x) = \begin{cases} \exp(-x(1)) & \text{if } x(1) + x(2) = 0, \\
+\infty & \text{otherwise}, \end{cases} \quad f_2(x) = \begin{cases} \exp(x(1)) & \text{if } x(1) + x(2) = 0, \\
+\infty & \text{otherwise}, \end{cases}
\]

we have

\[
f(x) = (f_1 \square_z f_2)(x) = \inf \{\exp(-t) + \exp(x(1) - t) \mid t \in \mathbb{Z}\} = 0
\]

for all \(x \in \mathbb{Z}^2 \) with \(x(1) + x(2) = 0 \). The infimum is not attained by any finite \(t \), and consequently, \(f^{(k)}(x) \) is not equal to \(f(x) \) for any finite \(k \). This is why we need the limiting argument in the proof. \(\blacksquare \)

Remark 3. The infimal convolution operation of \(\mathbb{M} \)-convex functions can be formulated as a special case of the transformation of an \(\mathbb{M} \)-convex function by a network, and the convolution theorem (Theorem 2) can be understood as a special case of a theorem on network transformation.
The general framework of the network transformation is as follows. Let \(G = (V, A; S, T) \) be a directed graph with vertex set \(V \), arc set \(A \), entrance set \(S \) and exit set \(T \), where \(S \) and \(T \) are disjoint subsets of \(V \). We consider an integer-valued flow \(\xi = (\xi(a) \mid a \in A) \in \mathbb{Z}^A \). For each \(a \in A \), the cost of the flow \(\xi(a) \) through arc \(a \) is represented by a function \(f_a : \mathbb{Z} \to \mathbb{R} \cup \{+\infty\} \). Given a function \(f : \mathbb{Z}^S \to \mathbb{R} \cup \{+\infty\} \) associated with the entrance set \(S \), we define another function \(\hat{f} : \mathbb{Z}^T \to \mathbb{R} \cup \{-\infty\} \) on the exit set \(T \) by

\[
\hat{f}(y) = \inf_{\xi,a} \left\{ f(x) + \sum_{a \in A} f_a(\xi(a)) \mid \partial \xi = (x, -y, 0), \xi \in \mathbb{Z}^A, (x, -y, 0) \in \mathbb{Z}^S \times \mathbb{Z}^T \times \mathbb{Z}^{V \setminus (S \cup T)} \right\} \quad (y \in \mathbb{Z}^T),
\]

where \(\partial \xi \in \mathbb{Z}^V \) denotes a vector defined by

\[
\partial \xi(v) = \sum\{\xi(a) \mid \text{arc } a \text{ leaves vertex } v\} - \sum\{\xi(a) \mid \text{arc } a \text{ enters vertex } v\} \quad (v \in V).
\]

We may think of \(\hat{f}(y) \) as the minimum cost of an integer-valued flow to meet a demand specification \(y \) at the exit, where the cost consists of two parts, the cost \(f(x) \) of supply or production of \(x \) at the entrance and the cost \(\sum_{a \in A} f_a(\xi(a)) \) of transportation through arcs; the sum of these is to be minimized over varying supply \(x \) and flow \(\xi \) subject to the flow conservation constraint \(\partial \xi = (x, -y, 0) \). We regard \(\hat{f} \) as a transformation of \(f \) by the network.

It is known ([4, Theorem 9.27]) that if \(f_a \) is a univariate discrete convex function for each \(a \in A \) and \(f \) is an \(M \)-convex function, then \(\hat{f} \) is an \(M \)-convex function, provided that \(\hat{f} > -\infty \) and \(\hat{f} \neq +\infty \).

For the infimal convolution of functions \(f_1 \) and \(f_2 \), let \(V_1 \) and \(V_2 \) be copies of \(V \) and consider a bipartite graph \(G = (S \cup T, A; S, T) \) (see Fig. 2) with \(S = V_1 \cup V_2, T = V \) and \(A = \{(v_1, v) \mid v \in V\} \cup \{(v_2, v) \mid v \in V\} \), where \(v_i \in V_i \) is the copy of \(v \in V \) for \(i = 1, 2 \). We regard \(f_i \) as being defined on \(V_i \) for \(i = 1, 2 \) and assume that the arc cost functions \(f_a \ (a \in A) \) are identically zero. The function \(\hat{f} \) induced on \(T \) coincides with the infimal convolution \(f_1 \square \mathbb{Z} f_2 \). In this case it is always true that \(\hat{f} \neq +\infty \). Thus the convolution theorem (Theorem 2) follows from [4, Theorem 9.27], as is explained in [4, Note 9.30].

The connection to network transformation also suggests that the infimal convolution \(f_1 \square \mathbb{Z} f_2 \) can be evaluated by solving an \(M \)-convex submodular flow problem; see [4, Section 9.2] for the definition of the problem and [4, Section 10.4] for algorithms.

Acknowledgement The author thanks Takuya Iimura and Akihisa Tamura for helpful comments.

References

Figure 2: Bipartite graph for infimal convolution

