<table>
<thead>
<tr>
<th>Title</th>
<th>On splitting theorems for CAT(0) spaces (General and Geometric Topology and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hosaka, Tetsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1370: 126-129</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25468</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
On splitting theorems for CAT(0) spaces

字都宮大学教育学部
保坂 哲也 (Tetsuya Hosaka)

The purpose of this note is to introduce main results of my recent paper [7] about splitting theorems for CAT(0) spaces.

We say that a metric space X is a geodesic space if for each $x, y \in X$, there exists an isometry $\xi : [0, d(x, y)] \to X$ such that $\xi(0) = x$ and $\xi(d(x, y)) = y$ (such ξ is called a geodesic). Also a metric space X is said to be proper if every closed metric ball is compact.

Let X be a geodesic space and let T be a geodesic triangle in X. A comparison triangle for T is a geodesic triangle \overline{T} in the Euclidean plane \mathbb{R}^2 with same edge lengths as T. Choose two points x and y in T. Let \overline{x} and \overline{y} denote the corresponding points in \overline{T}. Then the inequality

$$d(x, y) \leq d_{\mathbb{R}^2}(\overline{x}, \overline{y})$$

is called the $\text{CAT}(0)$-inequality, where $d_{\mathbb{R}^2}$ is the natural metric on \mathbb{R}^2. A geodesic space X is called a $\text{CAT}(0)$ space if the $\text{CAT}(0)$-inequality holds for all geodesic triangles T and for all choices of two points x and y in T.

A proper CAT(0) space X can be compactified by adding its ideal boundary ∂X, and $X \cup \partial X$ is a metrizable compactification of X ([2], [4]).

A geometric action on a CAT(0) space is an action by isometries which is proper ([2, p.131]) and cocompact. We note that every CAT(0) space on which some group acts geometrically is a proper space ([2,
Details of CAT(0) spaces and their boundaries are found in [2] and [4].

In [7], we first proved the following splitting theorem which is an extension of Proposition II.6.3 in [2].

Theorem 1. Suppose that a group \(\Gamma = \Gamma_1 \times \Gamma_2 \) acts geometrically on a CAT(0) space \(X \). If \(\Gamma_1 \) acts cocompactly on the convex hull \(C(\Gamma_1 x_0) \) of some \(\Gamma_1 \)-orbit, then there exists a closed, convex, \(\Gamma \)-invariant, quasi-dense subspace \(X' \subset X \) such that \(X' \) splits as a product \(X_1 \times X_2 \) and there exist geometric actions of \(\Gamma_1 \) and \(\Gamma_2 \) on \(X_1 \) and \(X_2 \), respectively. Here each subspace of the form \(X_1 \times \{x_2\} \) is the closed convex hull of some \(\Gamma_1 \)-orbit.

Using this theorem, we also proved the following splitting theorem which is an extension of Theorem II.6.21 in [2].

Theorem 2. Suppose that a group \(\Gamma = \Gamma_1 \times \Gamma_2 \) acts geometrically on a CAT(0) space \(X \). If the center of \(\Gamma \) is finite, then there exists a closed, convex, \(\Gamma \)-invariant, quasi-dense subspace \(X' \subset X \) such that \(X' \) splits as a product \(X_1 \times X_2 \) and the action of \(\Gamma = \Gamma_1 \times \Gamma_2 \) on \(X' = X_1 \times X_2 \) is the product action.

We also showed the following splitting theorem in more general case.

Theorem 3. Suppose that a group \(\Gamma = \Gamma_1 \times \Gamma_2 \) acts geometrically on a CAT(0) space \(X \). Then there exist closed convex subspaces \(X_1, X_2, X_1', X_2' \) in \(X \) such that

1. \(X_1 \times X_2' \) and \(X_1' \times X_2 \) are quasi-dense subspaces of \(X \),
2. \(X_1' \) and \(X_2' \) are quasi-dense subspaces of \(X_1 \) and \(X_2 \), respectively,
3. \(\Gamma_1 \) and \(\Gamma_2 \) act geometrically on \(X_1 \) and \(X_2 \) respectively, and
4. some subgroups of finite index in \(\Gamma_1 \) and \(\Gamma_2 \) act geometrically on \(X_1' \) and \(X_2' \) respectively.

A CAT(0) space \(X \) is said to have the geodesic extension property if every geodesic can be extended to a geodesic line \(\mathbb{R} \to X \). Concerning
CAT(0) spaces with the geodesic extension property, we obtained the following theorem as an application of the above splitting theorems.

Theorem 4. Suppose that a group $\Gamma = \Gamma_1 \times \Gamma_2$ acts geometrically on a CAT(0) space X with the geodesic extension property. Then X splits as a product $X_1 \times X_2$ and there exist geometric actions of Γ_1 and Γ_2 on X_1 and X_2, respectively. Moreover if Γ has finite center, then Γ preserves the splitting, i.e., the action of $\Gamma = \Gamma_1 \times \Gamma_2$ on $X = X_1 \times X_2$ is the product action.

Let Y be a compact geodesic space of non-positive curvature. Then the universal covering X of Y is a CAT(0) space by the Cartan-Hadamard theorem (cf. [2, p.193, p.237]), and we can think of Y as the quotient $\Gamma \backslash X$ of X, where Γ is the fundamental group of Y acting freely and properly by isometries on X. As an application of Theorem 2, we showed the following splitting theorem which is an extension of Corollary II.6.22 in [2].

Theorem 5. Let Y be a compact geodesic space of non-positive curvature. Suppose that the fundamental group of Y splits as a product $\Gamma = \Gamma_1 \times \Gamma_2$ and that Γ has trivial center. Then there exists a deformation retract Y' of Y which splits as a product $Y_1 \times Y_2$ such that the fundamental group of Y_i is Γ_i for each $i = 1, 2$.

A group Γ is called a **CAT(0) group**, if Γ acts geometrically on some CAT(0) space. Theorem 3 implies the following.

Theorem 6. Γ_1 and Γ_2 are CAT(0) groups if and only if $\Gamma_1 \times \Gamma_2$ is a CAT(0) group.

In [3], Croke and Kleiner proved that there exists a CAT(0) group Γ and CAT(0) spaces X and Y such that Γ acts geometrically on X and Y and the boundaries of X and Y are not homeomorphic. A CAT(0) group Γ is said to be **rigid**, if Γ determines the boundary up to homeomorphism of a CAT(0) space on which Γ acts geometrically. Then we denote $\partial \Gamma$ as the boundary of the rigid CAT(0) group Γ.
A conclusion in [1] implies that if Γ is a rigid CAT(0) group, then $\Gamma \times \mathbb{Z}^n$ is also a rigid CAT(0) group for each $n \in \mathbb{N}$. In [9], Ruane proved that if $\Gamma_1 \times \Gamma_2$ is a CAT(0) group and if Γ_1 and Γ_2 are hyperbolic groups (in the sense of Gromov) then $\Gamma_1 \times \Gamma_2$ is rigid. Concerning rigidity of products of rigid CAT(0) groups, we can obtain the following theorem from Theorem 3 which is an extension of these results.

Theorem 7. If Γ_1 and Γ_2 are rigid CAT(0) groups, then so is $\Gamma_1 \times \Gamma_2$, and the boundary $\partial(\Gamma_1 \times \Gamma_2)$ is homeomorphic to the join $\partial \Gamma_1 * \partial \Gamma_2$ of the boundaries of Γ_1 and Γ_2.

REFERENCES

DEPARTMENT OF MATHEMATICS, UTSUNOMIYA UNIVERSITY,
UTSUNOMIYA, 321-8505, JAPAN

E-mail address: hosaka@cc.utsunomiya-u.ac.jp