BROUÉ’S CONJECTURE FOR THE PRINCIPAL 5-BLOCK OF THE CHEVALLEY GROUP $G_2(4)$

YOKO USAMI (宇佐美 陽子, お茶の水女子大, 理)

Department of Mathematics, Ochanomizu University

NORIHIDE YOSHIDA (吉田 憲秀, 千葉大学, 理)

Department of Mathematics, Faculty of Science,
Chiba University

§1 Preliminaries

1.1. Let $(\mathcal{K}, \mathcal{O}, k)$ be a splitting p-modular system for all subgroups of the considered groups, that is, \mathcal{O} is a complete discrete valuation ring with unique maximal ideal \mathcal{P}, \mathcal{K} is its quotient field of characteristic 0 and k is its residue field \mathcal{O}/\mathcal{P} of prime characteristic p and we assume that \mathcal{K} and k are both big enough to be splitting fields for all subgroups of the considered groups. The principal p-block $B_0(G)$ of a group G is the indecomposable two-sided ideal of the group ring $\mathcal{O}G$ to which the trivial module belongs. In this paper “modules” always mean finitely generated modules. They are left modules, unless stated otherwise. Given a finite-dimensional k-algebra Λ, mod-Λ denotes the category of finitely generated Λ-modules. All complexes will be cochain complexes. We write \otimes to mean \otimes_k. For a subgroup H of a group G, let U and V be $\mathcal{O}G$-and $\mathcal{O}H$-modules, respectively. We write $\text{Res}_{H}^{G} U$ or $U_{\downarrow H}$ for the restriction of U to H, namely

$$\text{Res}_{H}^{G} U = U_{\downarrow H} =_{\mathcal{O}H} \mathcal{O}G \otimes_{\mathcal{O}G} U$$

and $V^{\uparrow G}$ for the induction of V to G namely

$$V^{\uparrow G} =_{\mathcal{O}G} \mathcal{O}G \otimes_{\mathcal{O}H} V.$$
We use similar notation for \(kG \)-modules and \(kH \)-modules and for ordinary characters. Let \(\mathcal{O}_G \) be the trivial \(\mathcal{O}G \)-module and \(k_G \) be the trivial \(kG \)-module. For \(\mathcal{O}G \)-module \(V \) we write \(\overline{V} = k \otimes_{\mathcal{O}} V \). For an \(\mathcal{O} \)-algebra \(B \) we write

\[
\overline{B} = k \otimes_{\mathcal{O}} B,
\]

1.2. Let \(A \) and \(B \) be two symmetric \(\mathcal{O} \)-algebras. According to Rouquier [Ro] we define two types of equivalence. The usual Morita equivalences are a special case of Rickard equivalences. For left \(A \)-module \(U \), we denote by \(U^* \) the right \(A \)-module \(\text{Hom}_\mathcal{O}(U, \mathcal{O}) \).

Definition 1.3. We say that \(M \) is an exact \((A,B)\)-bimodule if it is projective as an \(A \)-module and as a right \(B \)-module.

Definition 1.4. Let \(C^* \) be a bounded complex of exact \((A,B)\)-bimodules. Assume that we have isomorphisms

\[
C^* \otimes_B C^{**} \simeq A \oplus Z_1^* \quad \text{as complexes of } (A,A)\text{-bimodules}
\]

\[
C^{**} \otimes_A C^* \simeq B \oplus Z_2^* \quad \text{as complexes of } (B,B)\text{-bimodules}
\]

where \(A \) and \(B \) are viewed as complexes concentrated in degree 0 and \(Z_1^* \) and \(Z_2^* \) are homotopy equivalent to 0. Then we say that \(C^* \) induces a Rickard equivalence between \(A \) and \(B \) or that \(C^* \) is a Rickard complex.

Definition 1.5. Let \(C^* \) be a complex of \((A,B)\)-bimodules. Assume that we have isomorphisms

\[
C^* \otimes_B C^{**} \simeq A \oplus Z_1^* \quad \text{as complexes of } (A,A)\text{-bimodules}
\]

\[
C^{**} \otimes_A C^* \simeq B \oplus Z_2^* \quad \text{as complexes of } (B,B)\text{-bimodules}
\]

where \(Z_1^* \) and \(Z_2^* \) are homotopy equivalent to complexes of projective bimodules. Then we say that \(C^* \) induces a stable equivalence between \(A \) and \(B \).

§2 Group ring

2.1. Now we concentrate our attention on group rings. Let \(G \) be a finite group with an abelian Sylow \(p \)-subgroup \(P \). We denote by \(e \) the block idempotent of the principal block \(B_0(G) \) of \(\mathcal{O}G \). Let \(H \) be a subgroup of \(G \) such that \(H \supset N_G(P) \). We denote by \(f \) the block idempotent of the principal block \(B_0(H) \) of \(\mathcal{O}H \).
Definition 2.2. A bounded complex C^\cdot of (OHf, OGe)-bimodules is called splendid if its components are p-permutation modules whose indecomposable summands have vertices contained in $\Delta P = \{ (x, x) \in H \times G \mid x \in P \}$. Note that any component of a splendid complex is an exact bimodule.

Definition 2.3. Let G be a finite group with a Sylow p-subgroup P, and let $H \leq G$ be a subgroup containing P. A splendid Rickard complex for $B_0(G)$ and $B_0(H)$ is a bounded complex X^\cdot of finitely generated $(B_0(H), B_0(G))$-bimodules such that

(i) $X^\cdot \otimes_{B_0(G)} X^\cdot$ is chain homotopy equivalent to $B_0(H)$, considered as a complex of $B_0(H)$-bimodules,
(ii) $X^\cdot \otimes_{B_0(H)} X^\cdot$ is chain homotopy equivalent to $B_0(G)$, considered as a complex of $B_0(G)$-bimodule, and
(iii) X^\cdot is splendid.

In this case we say that X^\cdot induces a splendid Rickard equivalence between $B_0(G)$ and $B_0(H)$. (If X^\cdot is a splendid Rickard complex, then the functor

$$X^\cdot \otimes_{B_0(G)} ? : D^b(\text{mod-} B_0(G)) \rightarrow D^b(\text{mod-} B_0(H))$$

is an equivalence of triangulated categories, and $X^\cdot \otimes_{B_0(G)} ?$ gives an equivalence between chain homotopy categories, and not just derived categories. $D^b(\text{mod-} B_0(G))$ is a full subcategory of $D(\text{mod-} B_0(G))$ consisting of bounded objects, where $D(\text{mod-} B_0(G))$ is the derived category of the finitely generated module category of $B_0(G)$. We write them $D^b(B_0(G))$ and $D(B_0(G))$ for short.)

Conjecture 2.4. Broué's conjecture ([Br2]). Let G be a finite group with an abelian Sylow p-subgroup P. Then the principal p-block $B_0(G)$ of G and the principal p-block $B_0(N_G(P))$ of $N_G(P)$ are derived equivalent. (Moreover, they are splendidly Rickard equivalent in the refined version by Rickard.)

§3 Results

3.1. Broué's conjecture is known to be true for cyclic Sylow p-subgroups and for elementary abelian Sylow 3-subgroup of order 9 (see [KK]). Holloway proved that Broué's conjecture is true for some specific groups with elementary abelian Sylow 5-subgroups of order 25 in [H]. In particular, he proved it (actually, the splendid
Rickard equivalence) for the principal 5-blocks of J_2 (as well as $2.J_2$). Note that $G_2(4)$ contains a subgroup isomorphic to J_2 and these two groups have a common elementary abelian Sylow 5-subgroup P of order 25, and the common normalizer of P. We prove the splendid Rickard equivalence of the principal 5-blocks of $G_2(4)$ and J_2. See Theorem 3.2. On the other hand, the first author already proved the splendid Morita equivalence between the principal 5-blocks of some family of the Chevalley groups $G_2(2^n)$ including $G_2(4)$. See Theorem 3.3. With Holloway's work we obtain following Corollary 3.4. (In fact the normalizer of P in $G_2(2^n)$ depends on n, but the factor group by its maximal normal p'-subgroup does not depend on n.)

Theorem 3.2. (Usami, Yoshida 2003). The principal 5-blocks of $G_2(4)$ and J_2 are splendidly Rickard equivalent.

Theorem 3.3. (Usami [U] 2001). Assume that

\[5 \text{ divides } 2^n + 1 \text{ but } 5^2 \text{ does not divide it.} \]

Then the principal 5-blocks of $G_2(2^n)$ and the principal 5-block of $G_2(4)$ are Morita equivalent. Here a $\Delta(P)$-projective trivial source $G_2(4) \times G_2(2^n)$-module and its \mathcal{O}-dual induce this Morita equivalence as bimodules, where P is a common abelian Sylow 5-subgroup of $G_2(2^n)$ and $G_2(4)$ and $\Delta(P) = \{ (x,x) \in G_2(4) \times G_2(2^n) | x \in P \}$.

Corollary 3.4. Broué's conjecture is true for the principal 5-blocks of $G_2(2^n)$ with n satisfying (3.1).

§4 General Methods

4.1

With G, P and H in 2.1 we proceed according to the following steps:

Step 1. Construct a local splendid Rickard complex between $B_0(C_G(Q))$ and $B_0(C_H(Q))$ for each nontrivial p-subgroup Q of P.

Step 2. Construct a splendid complex which induces a stable equivalence between $B_0(G)$ and $B_0(H)$.

Step 3. Construct a global splendid Rickard complex between $B_0(G)$ and $B_0(H)$.

Here we introduce a general functor (from global to local) and we also introduce a useful theorem for Step 2.
Definition 4.2. [Br1]. For an OG-module V and any p-subgroup P of G, we set

$$\text{Br}_P(V) = V^P/\left(\sum_Q Tr^P_Q(V^Q) + PV^P\right)$$ (4.1)

where V^P denotes the set of fixed points of V under P and Q runs over all proper subgroups of P and

$$Tr^P_Q(v) = \sum_{x \in P/Q} x(v)$$ (4.2)

for a p-subgroup Q of P and $v \in V^Q$.

Remark 4.3. Let Q be a nontrivial p-subgroup of G. We can see Br_Q is a functor between the following categories:

$$\text{Br}_Q : \{OG\text{-modules}\} \to \{kN_G(Q)\text{-modules}\}$$

and then

$$\text{Br}_Q : \{\text{complexes of } OG\text{-modules}\} \to \{\text{complexes of } kN_G(Q)\text{-modules}\}.$$

Remark 4.4. With the notation in 2.1 and any nontrivial subgroup Q of P note that

$$\text{Br}_{\Delta Q}(OG) = kC_G(Q)$$

and

$$\text{Br}_{\Delta Q}(fOGe) = \overline{f}_Q kC_G(Q) \overline{e}_Q$$

as bimodules, where \overline{f}_Q and \overline{e}_Q are the principal block idempotents of $kC_H(Q)$ and $kC_G(Q)$ respectively.

Theorem 4.5. (Rouquier and Bou, see Theorem 5.6 in [Ro]). With the notation in 2.1 let C^* be a splendid complex of (OHf, OGe)-bimodules. The following assertions are equivalent.

(i) C^* induces a stable equivalence between OGe and OHf.

(ii) For every nontrivial subgroup Q of P the complex $\text{Br}_{\Delta Q}(C^*)$ induces a Rickard equivalence between $kC_G(Q) \overline{e}_Q$ and $kC_H(Q) \overline{f}_Q$.
4.6. We can consider a direct summand of a permutation module over k as well as over O. Then we can define a splendid complex over k similarly to Definition 2.2, and the definitions of a splendid Rickard complex and splendid Rickard equivalence still make sense if we replace the coefficient ring O by the field k. A splendid Rickard equivalence over O induces a splendid Rickard equivalence over k just by applying the functor $k \otimes_{O}$ to a splendid Rickard complex. Note that any direct summand of a permutation module and any map between such modules can be lifted from k to O. Then by Theorem 2.8 in [Ri1] a splendid Rickard complex over k can be lifted to a splendid Rickard complex over O that is unique up to isomorphism. Then it is sufficient to work over k in order to prove the refined version of Broué's conjecture.

Theorem 4.7. (Rickard) (see [Ri2, Theorem 6.1] and [H, Theorem 4.4]) Suppose that C^* is a complex of $(kH \overline{f}, kG \overline{e})$-bimodules that induces a splendid stable equivalence between $kG \overline{e}$ and $kH \overline{f}$ and let $\{S_1, \ldots, S_r\}$ be a set of representatives for the isomorphism classes of simple $kG \overline{e}$-modules. If there are objects X_1^*, \ldots, X_r^* of $D^b(kH \overline{f})$ such that, for each $1 \leq i \leq r$, X_i^* is stably isomorphic to $C^* \otimes_{kG \overline{e}} S_i$ and such that

(a) $\text{Hom}_{D^b(kH \overline{f})}(X_i^*, X_j^*[m]) = 0$ for $m < 0$,

(b) $\text{Hom}_{D^b(kH \overline{f})}(X_i^*, X_j^*) = \begin{cases} 0 & \text{if } i \neq j, \\ k & \text{if } i = j, \end{cases}$ and

(c) X_1^*, \ldots, X_r^* generate $D^b(kH \overline{f})$ as a triangulated category,

then there is a splendid Rickard complex X^* that lifts C^* and induces a splendid Rickard equivalence between $kG \overline{e}$ and $kH \overline{f}$ such that, for each $1 \leq i \leq r$, $C^* \otimes_{kG \overline{e}} S_i \cong X_i^*$ in $D^b(kH \overline{f})$.

§5 Steps 1 and 2 for Theorem 3.2

5.1. In this section we set

$$G = G_2(4), G \supset J \supset N_G(P) \text{ where } J \cong J_2,$$

(5.1)

where P is a common elementary abelian Sylow 5-subgroup of G and J of order 25. We have

$$N_G(P) = N_J(P) \cong P : D_{12}.$$
that is, a semi-direct product of P by the dihedral group D_{12} of order 12. Fusion of the subgroups of P is controlled by $N_G(P)$ and

there are, up to conjugacy in $N_G(P)$, two nontrivial cyclic 5-subgroups of P, where only one, Q has distinct centralizers in G and J.

(5.2)

Q is generated by a 5-element in conjugate class $5C$ in the character tables of J_2 and also of $G_2(4)$ in Atlas [CCNPW]. We fix Q from now on. We set

$k \otimes_{\mathfrak{O}} B_0(G) = k \otimes_{\mathfrak{O}} OGe = kGe$ and $k \otimes_{\mathfrak{O}} B_0(J) = k \otimes_{\mathfrak{O}} OJf = kJf$.

5.2. Before we go further we review the principal 5-block of A_5. A_5 contains a subgroup isomorphic to D_{10} which is a normalizer of a fixed cyclic Sylow subgroup of order 5. As (kD_{10}, kA_5)-bimodule $\overline{B}(A_5)$ is indecomposable and its projective cover is

$$\overline{R}_0 \otimes \overline{P}_0 \oplus \overline{R}_1 \otimes \overline{P}_1 \rightarrow \overline{B}(A_5) \rightarrow 0$$

(5.3)

where \overline{P}_0 and \overline{R}_0 are the projective covers of the trivial kA_5-module and the trivial kD_{10}-module, respectively, and \overline{P}_1 is the projective indecomposable module of the principal block of kA_5, that is not isomorphic to \overline{P}_0, and \overline{R}_1 is the unique projective indecomposable kD_{10}-module which is not isomorphic to \overline{R}_0. The splendid Rickard equivalence between the principal blocks of kA_5 and kD_{10} is induced by the splendid Rickard complex

$$\cdots 0 \rightarrow 0 \rightarrow \overline{R}_1 \otimes \overline{P}_1 \rightarrow \overline{B}(A_5) \rightarrow 0 \rightarrow 0 \cdots$$

(5.4)

which we can obtain by deleting the first term of (5.3). Keeping (5.4) in mind we construct a splendid Rickard complex between $kC_G(Q)e_Q$ and $kC_J(Q)f_Q$. See (5.6) below. Then we seek a splendid complex C^{*} which induces a stable equivalence between $B_0(G)$ and $B_0(J)$. (By Theorem 4.5 it is just to find C^{*} such that $\text{Br}_{\Delta(Q)}(C^{*})$ is equal to (5.6).)

Lemma 5.3. Let Q be a nontrivial subgroup of P such that Q has distinct centralizers in G and J. Then we have the following.

(i) $C_G(Q) = Q \times A_5$ and $C_J(Q) = Q \times D_{10}$.

(ii) Tensoring (kQ, kQ)-bimodule kQ to (5.3) we obtain minimal $\Delta(Q)$-projective cover of indecomposable $\overline{f}_Q kC_G(Q)e_Q \cong kQ \otimes \overline{f}_Q kA_5 e_Q$:

$$kQ \otimes \overline{R}_0 \otimes \overline{P}_0 \oplus kQ \otimes \overline{R}_1 \otimes \overline{P}_1 \rightarrow kQ \otimes \overline{f}_Q kA_5 e_Q \rightarrow 0$$

(5.5)
(iii) Deleting the first term of (5.5) we obtain the following splendid complex which induces the splendid Rickard equivalence between the principal blocks $kC_G(Q)\overline{e}_Q$ and $kC_J(Q)\overline{f}_Q$:

$$
\cdots 0 \to 0 \to kQ \otimes \overline{R}_1 \otimes \overline{P}_1 \to \overline{f}_Q kC_G(Q)\overline{e}_Q \to 0 \to 0 \cdots \tag{5.6}
$$

(iv) The following is the minimal ΔQ-projective cover of $k_{\Delta Q.2}^\sharp(Q \times Q.2) \otimes \overline{f}_Q kA_5 \overline{e}_Q$:

$$
k_{\Delta Q.2}^\sharp(Q \times Q.2) \otimes \overline{R}_0 \otimes \overline{P}_0 \oplus k_{\Delta Q.2}^\sharp(Q \times Q.2) \otimes \overline{R}_1 \otimes \overline{P}_1$

$$
\rightarrow k_{\Delta Q.2}^\sharp(Q \times Q.2) \otimes \overline{f}_Q kA_5 \overline{e}_Q \rightarrow 0. \tag{5.7}
$$

Furthermore we have

$$
k_{\Delta Q.2}^\sharp(Q \times Q.2) \otimes \overline{f}_Q \cong kQ$

and then the restriction of (5.7) to $C_J(Q) \times C_G(Q)$ is (5.5).

Lemma 5.4. (i) There exists an exact sequence (with M^0 as the Scott module of $J \times G$ with vertex ΔP, Scott($J \times G, \Delta P$))

$$\text{Scott}(J \times G, \Delta Q) \oplus M^{-1} \oplus \text{(some projective bimodule)} \to M^0 \to 0 \text{ (exact)} \tag{5.8}$$

such that $k \otimes (5.8)$:

$$\overline{\text{Scott}}(J \times G, \Delta Q) \oplus \overline{M}^{-1} \oplus \text{(some projective bimodule)} \to \overline{M}^0 \to 0 \text{ (exact)}$$

is the minimal $\Delta(Q)$-projective cover of \overline{M}^0, where \overline{M}^{-1} is the indecomposable trivial source module with vertex $\Delta(Q)$ which corresponds to the second term with vertex ΔQ in (5.7).

(ii) Deleting the Scott module and the projective summand from (5.8) we obtain a splendid complex

$$
\cdots 0 \to 0 \to M^{-1} \to M^0 \to 0 \to 0 \cdots
$$

which induces a splendid stable equivalence between $B_0(G)$ and $B_0(J)$.

§ 6 Step 3 for Theorem 3.2

6.1. We obtain a candidate of a splendid Rickard complex between $B_0(G)$ and $B_0(J)$:
(We use a perfect isometry between the sets of their ordinary characters to search some candidates.)

$$X^* : \cdots 0 \to 0 \to (\text{a projective bimodule}) \to (\text{a projective bimodule}) \to M^{-1} \to M^0 \to 0 \to \cdots$$

Set

$$X^* \otimes_{\mathcal{O}Ge} S_i = X^* \otimes_{kG} S_i = X_i$$

for simple $\mathcal{O}Ge$-modules $\{S_i | 1 \leq i \leq 6\}$. We have only to check conditions (a), (b) and (c) in Rickard's Theorem (Theorem 4.7).

参考文献

[U] Y. Usami, Morita equivalent principal 5-blocks of the Chavallely groups $G_2(2^n)$, preprint, Ochanomizu University.

(computer)
