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RESUMEN

Se presenta la aplicación de una red neuronal artificial 
(RNA) para modelar la presión de vapor de algunos refri-
gerantes halogenados (metanos y etanos halogenados). 
La estructura de la red neuronal es de tipo no recurrente 
con algoritmo de retropropagación. Se determina el nú-
mero óptimo de capas ocultas y de neuronas entre capas 
mediante un procedimiento de ensayo y error. Los pará-
metros de la red neuronal se obtienen mediante una fase 
de aprendizaje empleando el algoritmo de Levenberg-
Marquardt. Los valores de presión de vapor a diferentes 
temperaturas obtenidos a partir de bibliografía de acceso 
abierto se consideran el objetivo del modelo neuronal. Las 
predicciones RNA de la presión de vapor son más precisas 
para un intervalo de temperaturas más amplio. La mode-
lización RNA reduce el error medio para los refrigerantes 
de 0,69% a 0,31% para el intervalo de temperatura baja, 
y de 1,39% a 0,99% para el intervalo de temperatura alta. 
Finalmente, la modelización RNA reduce el error medio en 
comparación con la ecuación de Antoine en un 47,88% y 
un 32,18% para los intervalos de temperatura baja y alta, 
respectivamente.

Palabras clave: Red neuronal, refrigerante, predicción, 
presión de vapor.

SUMMARY

Application of Artificial Neural Network (ANN) for modeling 
of vapor pressure for some halogenated refrigerants (halo-
genated methanes and ethanes) is presented. Neural net-
work training structure was feedforward with back-propa-
gation algorithm.. The optimized number of hidden layer 
and neurons between layers were determined by a trial 
and error procedure. Neural network parameters were ob-
tained through a learning phase by Levenberg-Marquardt 
algorithm. The vapor pressure at different temperatures 
obtained from open literatures was considered as the neu-
ral model target. ANN predictions of vapor pressure are 

more accurate for a wider range of temperature. The ANN 
modeling reduced the average error for the refrigerants 
from 0.69% to 0.31% for low temperature range and from 
1.39% to 0.99% for high temperature range. Finally, ANN 
modeling reduced the average error in comparison to the 
Antoine equation by 47.88% and 32.18% for low and high 
temperature range, respectively.

Keyword: Neural network, Refrigerant, Prediction, Vapor 
pressure.

RESUM

Es presenta l’aplicació d’una xarxa neuronal artificial (XNA) 
per modelar la pressió de vapor d’alguns refrigerants ha-
logenats (metans i etans halogenats). L’estructura de la 
xarxa neuronal és de tipus no recurrent amb algorisme de 
retropropagació. Es determina el número òptim de capes 
ocultes i de neurones entre capes mitjançant un procedi-
ment d’assaig i error. Els paràmetres de la xarxa neuronal 
s’obtenen mitjançant una fase d’aprenentatge emprant 
l’algorisme de Levenberg-Marquardt. Els valors de pres-
sió de vapor a diferents temperatures obtinguts a partir de 
bibliografia d’accés obert es consideren l’objectiu del mo-
del neuronal. Les prediccions XNA de la pressió de vapor 
són més precises per a un interval de temperatures més 
ampli. La modelització XNA redueix l’error mitjà per als re-
frigerants de 0,69% a 0,31% per al interval de temperatura 
baixa, i d’1,39% a 0,99% per al interval de temperatura 
alta. Finalment, la modelització XNA redueix l’error mitjà 
en comparació amb l’equació d’Antoine en un 47,88% i 
un 32,18% per als intervals de temperatura baixa i alta, 
respectivament.

Mots clau: Xarxa neuronal, refrigerant, predicció, pressió 
de vapor.
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1. INTRODUCTION

 Refrigerant selection for industrial applications is a com-
plex and not straightforward process. Thermodynamic 
data on refrigerant fluids are of the utmost interest for 
the refrigeration Industry and, in particular, to design and 
optimize refrigeration equipment such as heat exchang-
ers and compressors. There is an increasing need of new 
thermodynamic data such as vapor pressure in the field 
of refrigeration, also in the insulation industry (Mc Linden 
and Didion, 1989; Watanabe and Sato, 1992). Experimen-
tal data are essential during the screening phase, where 
candidate efficiencies should be compared. The saturated 
vapor pressure curve for each substance is unique, but all 
exhibit a general characteristic curve. Most of the common 
methods for linearzing the vapor pressure curve stem from 
the Clausius–Clapeyron equation, which relates the slope 
of the vapor pressure curve to heat of vaporization (Trey-
bal, 1980). Another expression used for predicting vapor 
pressure data is the Antoine equation (Kabeel, 2005) and 
is given by

    (1)

Where A, B, and C are constants. P is saturated vapour 
pressure in (bar) and ‘T’ is temperature in Kelvin. The An-
toine equation does not reproduce the correct shape of 
the vapor pressure curve beyond the temperature range 
indicated.
Artificial neural networks (ANN) are inspired by the biologi-
cal neural system and its ability to learn through example. 
A great advantage of ANN models is that it is not neces-
sary to know the mathematical relationship between the 
input and output variables. Instead they figure out these 
relationships through successive trainings. They learn 
from examples by constructing an input–output mapping 
without explicit derivation of the model equation. The cur-
rent interest in artificial neural networks is largely due to 
their ability to mimic natural intelligence in its learning from 
experience (Wasserman, 1993). ANNs have been used in 
a broad range of applications including: pattern classifica-
tion (Lippmann, 1987; Bishop, 1996), function approxima-
tion, optimization, prediction and automatic control (Pham 
and Liu, 1995). Additionally, ANNs have been used for at-
mospheric vapor pressure prediction (Potukuchi and Wex-
ler, 1997). From ANN initiation there is hundreds of ANN 
architecture developed, however, some are more popular 
and have found numerous applications. Details have been 
dealt in elsewhere (Bishop, 1996 and 1994). Several au-
thors have reported application of ANN for estimation of 
thermodynamic properties such as viscosity, density, com-
pressibility factor and VLE. An ANN model for estimation of 
vapor pressure from aerosol composition, relative humidity 
and temperature has been reported (Potukuchi and Wex-
ler, 1997). An ANN model has been used for estimating the 
compressibility factor for the liquid and vapor phase as 
a function of temperature and pressure for several refrig-
erants (Chouai et al., 2002). ANN has also been used for 
estimating the shape factors as a function of temperature 
and density for a number of refrigerants that can be used 
in the extended corresponding state model (Scalabrin, Pi-
azza and Richon, 2002; Scalabrin, Piazza and Cristofoli, 
2002). Laugier and Richon, (2003) have used ANN model 
for estimation of compressibility factor and density as a 

function of pressure and temperature for some refriger-
ants. They have proposed the use of an artificial feedfor-
ward neural networks based model in order to estimate 
the vapor pressure. ANN have been developed using the 
data available in the open literature. Detailed description of 
the multilayer feedforward neural networks and the back-
propagation algorithm may be found in Haykin (1994). The 
most commonly used ANN architecture is the multilayer 
backpropagation neural network. Backpropagation was 
created by generalizing the Widrow-Hoff learning rule to 
multiple-layer networks and nonlinear differentiable trans-
fer functions (Golden, 1996). In this work we first introduce 
the neural network which is appropriate for vapor pressure 
modeling, and then try to create the structure of layers and 
neurons that lead to Antoine equation. Therefore by using 
minimum number of hidden layers and neurons in layers, 
the resulted correlation is less complex. 

2. METHODOLOGY 

Artificial neural networks (ANN) consist of large numbers 
of computational units connected in a massively parallel 
structure. The processing units (neurons) from each layer 
“k” are linked to all of the other processing units appear-
ing in layer “k+1” by weighted connections. Collectively, 
these connections (as well as the transfer functions of 
the processing units) form more or less good distributed 
representations of relationships between input and output 
data. ANNs have so far mainly been used in process mod-
eling, process control (Chouai et al., 2000), fault diagnosis, 
error detection, data reconciliation and process analysis 
(Bulsari, 1995). Numerous papers have shown that a feed-
forward network is potentially able to approximate any 
non-linear function (Funahashi, 1989). More details about 
neural networks are given in Laugier et al. (1996).
A neuron with a single R-element input vector is shown in 
Figure 1. Here the individual element inputs  are 
multiplied by weights  and the weighted values 
are fed to the summing junction. Their sum is simply Wp, the 
dot product of the (single row) matrix W and the vector p.

Figure 1- A neuron with a single R-element input vector.

The neuron has a bias b, which is summed with the 
weighted inputs to form the net input n. This sum, n, is the 
argument of the transfer function f.

    (2)
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This expression can, of course, be written in mathematical 
terms as:

    (3)

A network may have several layers. Each layer has a 
weight matrix W, a bias vector b, and an output vector a. 
To distinguish between the weight matrix, output vectors, 
etc., for each of these layers in our figures, we append 
the number of the layer as a superscript to the variable of 

interest. This layer notation in a three-layer network has 
been shown in Figure 2. 
The network shown above has R1 inputs, S1 neurons in the 
first layer, S2 neurons in the second layer, etc. It is common 
for different layers to have different numbers of neurons. A 
constant input 1 is fed to the biases for each neuron.
Note that the outputs of each intermediate layer are the 
inputs to the following layer. Thus layer 2 can be analyzed 
as a one-layer network with S1 inputs, S2 neurons, and an 
S2XS1 weight matrix W2. The input to layer 2 is a1; the out-
put is a2. Now that all the vectors and matrixes of layer 
2 have been identified, it can be treated as a single-layer 
network on its own. This approach is taken with any layer 
of the network.

Figure 2- A feed-forward artificial neural network architecture.

The layers of a multilayer network play different roles. A 
layer that produces the network output is called an output 
layer. All other layers are called hidden layers. The three-
layer network shown earlier has one output layer (layer 3) 
and two hidden layers (layer 1 and layer 2). Some authors 
refer to the inputs as a fourth layer. 
Once the network weights and biases have been initial-
ized, the network is ready for training. The training process 
requires a set of examples of proper network behavior - 
network inputs as ‘p’ and target outputs as‘t’. During train-
ing the weights and biases of the network are iteratively 
adjusted to minimize the network performance function. 
The default performance function for feedforward net-
works is mean square error MSE (the average squared er-
ror between the network outputs and the target outputs t). 
Here we describe the training procedure for feedforward 
networks. These algorithms use the gradient of the perfor-
mance function to determine how to adjust the weights to 
minimize performance. The gradient is determined using 
a technique called backpropagation, which involves per-
forming computations backwards through the network. 
There are many variations of the backpropagation algo-
rithm. The simplest implementation of backpropagation 
learning updates the network weights and biases in the di-

rection in which the performance function decreases most 
rapidly - the negative of the gradient. One of the iterations 
of this algorithm can be written as:

     (4)

Where xk is a vector of current weights and biases, gk is the 
current gradient, and ka is the learning rate.
There are two different ways in which this gradient de-
scent algorithm can be implemented: incremental mode 
and batch mode. In the incremental mode, the gradient is 
computed and the weights are updated after each input is 
applied to the network. In the batch mode all of the inputs 
are applied to the network before the weights are updated. 
In batch mode the weights and biases of the network are 
updated only after the entire training set has been applied 
to the network. The gradients calculated at each training 
example are added together to determine the change in 
the weights and biases. The proposed ANN operates in 
the batch mode. 
The Levenberg-Marquardt algorithm was designed to ap-
proach second-order training speed without having to 
compute the Hessian matrix. When the performance func-
tion has the form of a sum of squares (as is typical in train-
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ing feedforward networks), then the Hessian matrix can be 
approximated as

JJH T=     (5)

and the gradient can be computed as

eJg T=     (6)

Where J is the Jacobian matrix that contains first deriva-
tives of the network errors with respect to the weights and 
biases, and e is a vector of network errors. The J Jacobian 
matrix can be computed through a standard backpropa-
gation technique that is much less complex than comput-
ing the Hessian matrix.
The Levenberg-Marquardt algorithm uses this approxima-
tion to the Hessian matrix in the following Newton-like up-
date:

    (7)

When the scalar  is zero, this is just Newton’s method, 
using the approximate Hessian matrix. When  is large, 
this becomes gradient descent with a small step size. 
Newton’s method is faster and more accurate near an error 
minimum, so the aim is to shift towards Newton’s method 
as quickly as possible. Thus,  is decreased after each 
successful step (reduction in performance function) and is 
increased only when a tentative step would increase the 
performance function. In this way, the performance func-
tion will always be reduced by increase in iteration num-
ber. This algorithm appears to be the fastest method for 
training moderate-sized feedforward neural networks (up 
to several hundred weights).
The neurons within the hidden layer perform two tasks: 
they sum the weighted inputs connected to them and then 
pass the resulting summations through a non-linear acti-
vation function to the output neuron or adjacent neurons 
of the corresponding hidden layer (in case of more than 
one hidden neuron layer). Multilayer networks often use 
the sigmoid transfer function (Figure 3). In this work, the 
sigmoid function is used in the interval (0, +1) that is:
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Figure 3- The Sigmoid transfer function.

Latest layer has Purelin function that is (Figure 4):

 f(x)  Purelin(ax b) ax b= + = +     (9)
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Figure 4- The Pureline transfer function.

An important aspect of a neural network is the learning 
step, based on a set of measured numerical values (the 
learning database). The aim is to find the optimal structure 
of neural network by considering the minimum number of 
layer and neurons in each layer (for simplest formulation 
from trained neural network structure) and also maximum 
accuracy of result which formulate the vapor pressure ver-
sus temperature in Antoine equation form.

3. NEURAL NETWORK MODEL 

The optimized number of hidden neurons has been de-
termined during the learning phase by trial and error pro-
cedure. Lower number of hidden layers and neurons in 
each layer will ease the extraction of the formula from the 
trained neural network structure. As a result the network 
must have one hidden layer with one neuron in the layer 
(Figure 5), also the output must be in term of )(log10

satP , 
where Psat is the saturated vapor pressure. Moreover, input 
of neural network must be in term of  where T is 
temperature in Kelvin and C is the third Antoine constants. 
Therefore the first and the second Antoine constant as ‘A’ 
and ‘B’ are changed. The experimental vapor pressure 
data for the halogenated refrigerants adopted from open 
literatures (Smith and Srivastava, 1986; Raznjevic, 1976; 
Perry and Green, 1999). 
Take the weight (1, 1) and the bias (1) equal to “A” and 
“-B”, respectively. Due to the structure of the network, the 
first layer input is  and the output of the first layer 
is . Because neuron of this layer has a Pureline 
function, then the output of layer which is ANN output) is

 ).
Then the final output of the ANN is log10(P

sat) 

    (10)
The deviation between the calculated and experimental 
vapor pressures was calculated as follows: 

    (11)

In which, PANN is the calculated vapor pressure using equa-
tion (10) and Pexp is the reported experimental vapor pres-
sure.
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Table 1- Experimental data (Smith and Srivastava, 1986; Raznjevic, 1976; Perry and Green, 1999) and re-
ported Antoine constants (Polinig et al., 2001) for some halogenated refrigerants.

Substance No. of  exp. 
data

Temperature 
Range (K) Ref.

Antoine constants
(Reported) Temperature 

Range (K)A B C
R10(CCl4) 45 259-556 21 4.10445 1265.632 232.148 259-373.76

R11(CFCl3) 46 233-323 18 4.00905 1043.313 236.95 218.98-317.57
R12(CF2Cl2) 134 203-388 18 4.01171 868.076 246.39 178.7-260.7

R12B1(CBrClF2) 45 199-324 21 3.9585 933.04 240 198-288.26
R13(CF3Cl) 35 143-263 18 3.90353 654.656 249.36 140.61-205.48

R13B1(CBrF3) 44 160-311 21 3.8964 731.31 245.7 158.1-230.85
R14(CF4) 45 107-180 21 3.95894 510.595 257.2 106.2-155-54

R20(CHCl3) 31 252-431 21 3.96288 1106.904 218.552 250.1-356.89
R21(CHCl2F) 38 245-450 21 4.02473 959.934 230.03 210.83-300.91
R22(CHF2Cl) 82 173-301 18 4.13253 835.462 243.46 173.13-247.74
R23(CHF3) 45 144-298 21 4.2214 707.396 249.84 142.79-203.75

R30(CH2Cl2) 41 212-510 21 4.07622 1070.07 223.24 235.2-333.36
R32(CH2F2) 45 191-351 21 4.29712 833.137 245.86 166.22-235.78
R40(CH3Cl) 45 213-333 18 4.16533 920.86 245.58 184.6-265.87

R123(C2HCl2F3) 17 249-456 14 4.21161 1132.447 241.59 223.16-321.15
R124(C2HClF4) 18 233-395 14 4.0536 900.49 234.389 222-286
R134A(C2H2F4) 24 232-374 21 4.11874 850.881 232.99 186.41-263.04

R142B(C2H3ClF2) 28 251-354 21 4.05053 928.645 238.69 195.98-282.13
R143A(C2H3F3) 21 161-346 14 4.068 801.34 244.55 167-241
R150(C2H4Cl2) 35 279-403 21 4.28356 1341.37 230.05 267.4-379.91

R150A(C2H4Cl2) 35 248-493 21 4.1678 1201.05 231.27 246.6-352.49
R160(C2H5Cl) 37 217-416 21 4.09088 1020.63 237.57 211.86-304.89

R160B1(C2H5Br) 39 218-503 21 4.04485 1090.811 231.71 231.35-332.8
R161(C2H5F) 45 178-248 21 4.21998 897.368 250.66 174.1-251.47

Table 2- Calculated Antoine constants using ANN structure.

Substance AANN BANN C
Temperature Range (K)

R2

Tmin Tmax
R10 4.099 1264.702 232.148 259 556 0.99957
R11 4.021 1046.633 236.95 233 323.15 0.99999
R12 4.01677 868.8362 246.39 203.15 388.65 0.99949

R12B1 3.9563 932.3444 240 199 324 0.99999
R13 3.9164 656.1323 249.36 143.15 263.15 0.99993

R13B1 3.896 729.8489 245.7 160 311 0.99980
R14 3.9605 510.7252 257.2 107 180 0.99999
R20 3.9353 1099.421 218.552 252 431 0.99980
R21 4.0413 963.6388 230.03 245 450 0.99944
R22 4.1428 838.2166 243.46 173.15 301.15 0.99998
R23 4.23 708.412 249.84 144 298 0.99955
R30 4.0873 1073.005 223.24 235 323 0.99972
R32 4.3057 834.9511 245.86 191 351 0.99935
R40 4.1511 919.5913 245.58 213.15 333.15 0.99998
R123 4.2415 1141.7571 241.59 249.49 456.83 0.99975
R124 4.05506 900.209 234.389 233.15 395.65 0.99941

R134A 4.1184 850.9421 232.99 169.85 374.18 0.99928
R142B 4.0304 921.7775 238.69 251 354 0.99991
R143A 4.0707 802.1276 244.55 161.82 346.75 0.99931
R150 4.2925 1344.3099 230.05 279 403 0.99999

R150A 4.155514 1197.7113 231.27 248 493 0.99958
R160 4.085028 1019.2620 237.57 217 460 0.99986

R160B1 4.0565 1093.7197 231.71 218 503 0.99281
R161 4.2222 897.7961 250.66 169 375 0.99965

Table 1 shows the experimental data characteristics and 
the reported Antoine constants including the temperature 
range for each substance.  The results of ANN calcula-
tions were shown in Table 2. In this table the AANN and 

BANN are calculated Antoine constants using ANN also 
R2 which is the square of the Pearson product moment 
correlation coefficient through data points for known data 
(experimental data).

The artificial neural network trained on overall range of 
actual data point. This range is higher than temperature 
range for reported Antoine equation (Table 1). We will refer 
to the Antoine equation temperature range as “low range 
temperature” and that for the experimental data as “high 
range temperature”. A comparison between the results of 
vapor pressure predictions by Antoine equation and ANN 
model over the low range and high range temperatures 

were shown in Table 3. Figures 6 and 7 show the error 
percent for the vapor pressure prediction using Antoine 
equation and ANN model both for low and high range 
temperature ranges, respectively. As see ANN prediction 
is more accurate than Antoine equation. Table 4 shows the 
percent of error reduction by ANN modeling in comparison 
to the Antoine equation. 
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Figure 6- Error percent for vapor pressure prediction by Antoine equation and ANN mod-
eling for some halogenated refrigerants at low range temperature.

Table 3- Comparison between error of Antoine and ANN at low and high temperature interval.

Substance

LOW RANGE TEMPERATURE HIGH RANGE TEMPERATURE

Temperature range
% Error Temperature range % Error

ANTOINE ANN ANTOINE ANN
R10 259-373 0.62 0.62 259-556 1.58 1.28
R11 233-317 0.52 0.18 233-323 0.51 0.17
R12 203-260 0.40 0.11 203-388 0.43 0.34

R12B1 199-284 0.28 0.02 199-324 0.35 0.14
R13 143-203 0.57 0.38 143-263 0.98 0.40

R13B1 160-231 1.81 1.23 160-311 1.80 1.17
R14 107-155 0.10 0.01 107-180 0.20 0.09
R20 252-352 0.79 0.41 252-431 1.61 0.76
R21 245-301 0.21 0.38 245-450 2.28 1.49
R22 173-247 1.23 0.30 173-301 0.90 0.28
R23 144-202 0.38 0.16 144-298 0.99 0.83
R30 235-332 0.66 0.38 212-510 2.04 1.65
R32 191-234 0.21 0.09 191-351 1.72 1.41
R40 213-265 1.98 0.20 213-333 2.11 0.27
R123 249-321 1.12 0.42 249-456 0.83 0.49
R124 233-283 0.82 0.38 233-395 1.85 1.46

R134A 232-263 0.16 0.08 232-374 2.10 2.15
R142B 251-281 2.55 0.89 251-354 1.34 0.87
R143A 161-240 0.45 0.09 161-346 1.47 1.32
R150 279-378 0.36 0.25 279-403 0.34 0.28

R150A 248-349 0.44 0.38 248-493 2.96 2.49
R160 217-305 0.36 0.22 217-416 0.64 0.62

R160B1 233-330 0.35 0.12 218-503 3.11 2.86
R161 169-375 0.16 0.14 178-248 0.99 0.89

Average 0.69 0.31 1.39 0.99

Figure 5 - A one-layer feed forward ANN.
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Figure 7- Error percent for vapor pressure prediction by Antoine equation and ANN mod-
eling for some halogenated refrigerants at low range temperature.

4. MATLAB AND ANN

MATLAB is a high-performance language for technical 
computing. It integrates computation, visualization, and 
programming in an easy-to-use environment where prob-
lems and solutions are expressed in familiar mathematical 
notation. Developed by The MathWorks, This collection 
includes the following topics as typical uses include Math 
and computation, Algorithm development, Data acquisi-
tion, Modeling, simulation and prototyping, Data analysis, 
exploration and visualization, Scientific and engineering 
graphics and Application development. MATLAB is an in-
teractive system whose basic data element is an array that 
does not require dimensioning. This allows you to solve 
many technical computing problems, especially those with 
matrix and vector formulations, in a fraction of the time it 
would take to write a program in a scalar non interactive 
language such as C or FORTRAN. 
The name MATLAB stands for matrix laboratory. MATLAB 
was originally written to provide easy access to matrix 
software. MATLAB has evolved over a period of years with 
input from many users. In university environments, it is the 
standard instructional tool for introductory and advanced 
courses in mathematics, engineering, and science. In in-
dustry, MATLAB is the tool of choice for high-productivity 
research, development, and analysis.
MATLAB features a family of add-on application-specific 
solutions called toolboxes. Very important to most users of 
MATLAB, toolboxes allow you to learn and apply special-
ized technology. Toolboxes are comprehensive collections 
of MATLAB functions (M-files) that extend the MATLAB en-
vironment to solve particular classes of problems. Areas in 
which toolboxes are available include signal processing, 
control systems, neural networks, fuzzy logic, wavelets, 
simulation, and many others. 
The Neural Network Toolbox is designed to allow for many 
kinds of networks. This makes it possible for many func-
tions to use the same network object data type. In this 
paper the Neural Network Toolbox use feed-forward neu-
ral network training structure and Back-propagation algo-
rithm. The optimized number of hidden layer and neurons 
in layer were determined during the learning phase by trial 
and error procedure. Neural network parameters were ob-
tained through a learning phase by Levenberg-Marquardt 
algorithm (http://www.mathworks.com/products/).

Table 4- The percent of error reduction by ANN 
modeling respect to the Antoine equation.

Substance LOW RANGE TEM-
PERATURE

HIGH RANGE 
TEMPERATURE

R10 0.29 18.99
R11 65.38 66.67
R12 72.50 20.93

R12B1 92.86 60.00
R13 33.33 59.18

R13B1 32.04 35.00
R14 90.00 55.00
R20 48.10 52.80
R21 -80.95 34.65
R22 75.61 68.89
R23 57.89 16.16
R30 42.42 19.12
R32 57.14 18.02
R40 89.90 87.20
R123 62.50 40.96
R124 53.66 21.08

R134A 50.00 -2.38
R142B 65.10 35.07
R143A 80.00 10.20
R150 30.56 17.65

R150A 13.64 15.88
R160 38.89 3.13

R160B1 65.71 8.04
R161 12.50 10.10

Average 47.88 32.18

5. CONCLUSION

ANN structure was used to optimize the vapor pressure 
prediction via Antoine equation for some halogenated re-
frigerants. Neural network training structure was feedfor-
ward and back propagation algorithm. The results show 
that the modeling predicts vapor pressure better than tra-
ditional Antoine equation. The modeling offers more ac-
curate predictions for a wider range of temperature. The 
modeling reduced the average error for the refrigerants 
from 0.69% to 0.31% for low range temperature and from 
1.39% to 0.99% for high range temperature. Finally, ANN 
modeling reduced the average error for the above refriger-
ants in comparison to the Antoine equation, by 47.88% 
and 32.18% for low and high range temperature, respec-
tively.
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NOMENCLATURE

A Antoine constant

ANNA Calculated Antoine constants using ANN

ia Output of ith layer

ka The learning rate

B Antoine constant

b Bias 

ANNB Calculated Antoine constants using ANN

j
ib Bias for jth node in ith layer of ANN structure

C Antoine constant

e Vector of network errors

if Function of nodes in ith layer

kg The current gradient

H Hessian matrix

J Jacobian matrix

MSE Squared error between the network outputs and the 
target outputs

k Number of ANN layer 

n Net input value (the sum of the weighted inputs and 
the bios)

i
jn The argument of the transfer function in jth neuron of 

ith layer

P Pressure , (bar)

p Input vector to ANN

ANNP The calculated vapor pressure using ANN (bar)

 Pexp
The reported experimental vapor pres-
sure (bar) from literatures

ip Input parameter of ANN structure

satP Saturation pressure ,(bar)

R Number of elements in input vector 

2R Square of the Pearson product moment co-
rrelation coefficient through data points

iS Number of neurons in the ith layer

T Temperature , (Kelvin(

t Target output

W Single row matrix that includes the weight element  

j) (i,weight Element of weight matrix in ith row and ith column

iW Weight matrix of ith layer

jiW , Weight for ith input to jth node in ANN structure  

Dot product of the (single row) ma-
trix W and the vector p

kx Vector of current weights and biases

m Performance function
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