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Abstract: Archimedes developed a geometrical method to obtain an 

approximation to the value of π , that appears in the encyclopaedic work of the 

prince al-Mu’taman ibn Hūd in the eleventh century. This article gives the 

edition, translation and transcription of this Archimedean proposition in his 

work, together with some comments about how  other medieval authors dealt 
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Appearance of the proposition in Saragossa during the eleventh century 

There was a great burst of scientific activity in Saragossa during the eleventh 

century, especially in the fields of mathematics and philosophy. In mathematics, 

the most notable work produced in eleventh-century Saragossa was the « Kitāb 
al-Istikmāl », or « The book of perfection ». This encyclopaedic work was 

written by the prince al-Mu’taman ibn Hūd, who reigned from 1081 until the 

date of his death in 1085. His reign was very short, but during the very long 

reign of his father (al-Muqtadir ibn Hūd, king from 1046 to 1081) crown prince 

al-Mu’taman devoted himself to the study of mathematics, on subjects originated 

by Euclid and by others, and started the composition of the « Kitāb al-Istikmāl ». 

As Hogendijk has noted (Hogendijk, 1991) and (Hogendijk, 1995), al-

Mu’taman sometimes transcribes the propositions as if he had copied them from 
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their Euclidian origin, but more often he takes the initiative himself: he 

simplifies demonstrations, he merges symmetrical propositions into a single one, 

and he often changes the flow of the demonstration. In this way he shows that he 

was not a mere copyist, but a researcher who introduced innovations. 

After ten other propositions (some of them new, others related to the contents 

of book XIII of Euclid’s Elements) al-Mu’taman rather unexpectedly terminates 

sub-species 3.2 of « al-Istikmāl » with proposition 11 in chapter 3.2.2 (
1
). Being 

a good mathematician, he is unlikely to have put this proposition here purely on 

a whim; the decision probably responds to the internal logic of the general layout 

that the author has adopted in the Kitāb al-Istikmāl. 
The aim of proposition 11 is to provide a geometrical approximation to the 

measurement of π, probably taken from proposition 6 of the « Book of 
measurement of plane and spherical figures » by the brothers Banū Mūsā. This 

book was the object of a translation into Latin by Gerard of Cremona in the 

twelfth century, and also of a rewriting in the thirteenth century by Naṣīr al-Dīn 

al-Ṭūsī (m. 1274), founder of the Marāga observatory in Persia. 

This book was a key text in the geometry of the Middle Ages, and traces of its 

contents can be found in works by Arabic and European authors, such as Thābit 

ibn Qurra, Ibn Haytham (d. 1039), Leonardo Fibonacci of Pisa (d. 1250), 

Jordanus de Nemore (d. 1260), and Roger Bacon (d. 1294). (Casulleras, 2007, 

pages 92 - 94). 

 

History of the proposition 

The history of this geometrical method in the classical and medieval times can 

be divided in several well-known steps. However, between the end of the ninth 

century and the middle of the eleventh century, other authors in Islamic 

countries may have published a text on this subject. (Rashed, 1993). 

 

Archimedes 

The geometrical method that permits to obtain an approximation to the value of 

π has its origin in proposition 3 of the work « The measurement of the circle », 

in Greek «Κύκλου μέτρησις», [ Kuklou metrēsis], by Archimedes of Syracuse 

(c.287 BC - 212 BC). 

                                                           
1 The logical classification of knowledge established by Aristotle had reached al-Andalus through 

the writings of al-Fārābī (Forcada, 2006). As a result the prince distributes the parts of the 

mathematical science according to the disciplines defined by the philosophers, and divides its 

contents according to Porphyry’s predicables: genus, species, sub-species, and chapter. 

(Hogendijk, 1991) and (Forcada 2011, pages 226 -227). Thus 3.2.2 means (for genus 1)  species 3, 

sub-species 2, chapter 2. 
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The text is to be found in Greek and in French in (Mugler, 1970, pages 140 – 

143), and in English in (Heath, 1897, pages 93 - 98). 

Archimedes’ text is quite succinct, because he only gives the results of his 

calculations. Fuller comments were added later by Eutocius of Ascalon (c.480 – 

c.540), a Greek mathematician, who revived the works of Apollonius and 

Archimedes. The proposition is quoted in the works of Ptolemy (c.90 – c.168), 

Simplicius (c.490 – c.560) and Heron of Alexandria (c.10 – 70). 

Having seen that, if the diameter of a circle has a length of one, its perimeter 

escapes an exact measurement, Archimedes draws regular polygons in the 

interior and in the exterior of the circle, and he increases the number of their 

sides from 6 (he begins with a regular hexagon) up until 96. 

The procedure leads him to give a value between 
71

10
3   and 

70

10
3   for the 

ratio between perimeter and diameter. 

 

Banū Mūsā 

At the beginning of the ninth century, at the time of the large-scale translation 

movement in Abbasid Baghdad which produced Arabic versions of Greek and 

Sanskrit texts, this method of geometrical approximation to the value of π 

reappears in proposition 6 of the book « Kitāb fī ma ͨrifat misā¬at al-ashkāl al-
basīÐa wa al-kuriyya », « Book to ascertain the measurement of plane and 
spherical figures », by the brothers Banū Mūsā (Mu¬ammad, A¬mad and al-

©asan, sons of Mūsā ibn Shākir). 

Sadly the Arabic version of this book has not survived, but the contents of the 

proposition can be deduced; its demonstration in later works, in Arabic and in 

Latin, bear witness to the book’s wide dissemination among the mathematicians 

of the Middle Ages. 

 

Al-Mu’taman 

A new version of the method appears in Saragossa at the end of the eleventh 

century, in proposition 11 of the second part of sub-species 3.2 of the 

encyclopaedic work « Kitāb al-Istikmāl » (Book of perfection) by the prince of 

Saragossa al-Mu’taman ibn Hūd. 

In the present article, al-Mu’taman’s text of Archimedes’ proposition is 

edited, translated and analysed. 

 

Gerard of Cremona 

A Latin translation by Gerard of Cremona (c.1114 – 1187) appears in the twelfth 

century (Clagett, 1964, pages 264 - 279). 
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The author translates the work of the brothers Banū Mūsā under the title 

« Liber trium fratrum de geometria et Verba filiorum Moysi filii Sekir, id est 
Maumeti, Hameti et Hasen ». 

 

Al-Ṭūsī 

A new version of the proposition is presented by Na½īr al-Dīn al-Æūsī (1201 – 

1274) in the mid-thirteenth century, either in 1255, or in 1260. 

It is a rewriting or a new redaction of Banū Mūsā’s book. Al-Æūsī retakes the 

original text, simplifies the steps of the demonstration that he regards as 

unnecessary, and eliminates all the introductory sentences that were retained in 

the Latin translation by Gerard of Cremona; however, he does not alter the 

mathematical text (Rashed, 1996, pages 74 - 83). 

 

Proposition 11 by al-Mu’taman ibn Hūd 

The current article contains the analysis of proposition 11 in chapter 2 of the 

sub-species 3.2 in « al-Istikmāl », which describes Archimedes’ method for the 

evaluation of π. 

 

Transcription in standard Arabic 

The proposition has been edited from the contents of two manuscripts: 

Manuscript of Leiden, Bibliotheek der Rijksuniversiteit, mss Or123a  (L) 

 Fols. 45 v – 49 r. 

Manuscript of Copenhagen, Kongelige Biblioteket Kobenhavn, mss Or82  

(K), 

Fols. 60 r – 61 r. 

 

Rules and conventions adopted in the edition of the Arabic text 

The edition of the Arabic text respects the texts of the manuscripts, but the two 

present several differences: 

 

Names of the points and segments 

(L) gives the points a name identified by a letter: A ( ا ) , B ( ب ). 

(K) uses for a point the name of the Arabic letter: alif ( ألف ) , bā’ ( باء ). 
This edition will use the naming in (L). 
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Reconstruction of diacritical signs omitted in the consonants 

Diacritics in the consonants are very often omitted by the copyist in (L), but they 

are generally present in (K). This edition restores them without notes. The 

hamza is written according to contemporary rules. 

 

The word qaws ( قوس ) 
The word qaws (arc) may be feminine or masculine. It is feminine in (K), but 

masculine in (L); the relative pronouns and the verbs that follow are 

consequently in agreement. This edition of the text takes it to be feminine (as is 

more customary in Arabic geometry), without notes. 
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English translation 

Concerning the geometrical letters: In the figures of the proposition, the 

transcription of the Arabic to Latin letters has been done following the 

convention published by Kennedy (Kennedy, 1983, page 745). 

Al-Mu’taman uses a supplementary letter, namely tā’ ( ت ), which is quite 

uncommon in geometrical figures in the Arabic language. It has been transcribed 

here by letter V. 

 

[Lines 1 – 3 of the Arabic text] 

Proposition 11 

The length of the circumference exceeds three times the diameter by [a length] 

less than 1/7 of the diameter, and more than 10/71 of the diameter. 

 

[Lines 5 – 11 of the Arabic text] 

 [Example: ] We draw circle ATB , and its diameter AB , and its centre is at point 

G , and we draw line GZ  that encloses with line BG  a third of a square angle, 

and we draw at point B  a line perpendicular to line BG , which is BZ . It is clear 

that the arc intercepting angle BGZ  is a half of a sixth of the perimeter of circle 

ATB , and that line BZ  is half the side of the hexagon circumscribed around 

circle ATB . And we divide angle BGZ  in two halves by means of line GE , and 

we divide angle BGE  in two halves by means of line GW , and we divide angle 

BGW  in two halves by means of line GD , and we divide angle BGD  in two 

halves by means of line GH . 

[Lines 12 – 14 of the Arabic text] 

It is clear that the arc intercepting angle BGH  is equal to one part of the 192 

parts of the perimeter of circle ATB , and that line BH  is equal to half one side of 

the 96 sides [of a polygon] circumscribed around circle ATB  . 

[Lines 15 – 28 of the Arabic text] 

And, if it is so, then we give to line GZ  [a length of] 306 to make the use of 

this number easier wherever it fits. Then if line GZ  [measures] 306, its square is 

93.636, and line BZ  [measures] 153, because angle BGZ  is a third of a square 

angle, and angle GBZ  is square. And the square of line BZ  is 23.409, and the 

square of line GB  is 70.227. Thus line GB  is longer than 265. But the ratio of 

the sum of the two lines BG  and GZ  to BZ  is equal to the ratio of GB  to BE , so 

that line GE  divides angle BGZ  in two halves, and the sum of the two lines BG  
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and GZ  is greater than 571, and line BZ  [measures] 153. Then the ratio of GB  to 

BE  is greater than the ratio of 571 to 153. Thus line GB  is longer than 571. If 

BE  [measures] 153, and the square of GB  is greater than 326.041, and the 

square of BE  is 23.409, then the square of GE  is greater than 349.450. Thus line 

GE  is longer than 591 plus one eighth. 

[Lines 29 – 35 of the Arabic text] 

And if we follow the example given, it is clear that the ratio of line GB  to 

BW  is greater than the ratio of 1.162 plus one eighth to 153. Then if BW  

[measures] 153, GB  is longer than 1.162 plus one eighth, and the square of GB  

is greater than 1.350.534, and the square of BW  is 23.409, and the square of 

GW  is greater than 1.373.943. Then line GW  is longer than 1.172 plus one 

eighth. 

[Lines 36 – 42 of the Arabic text] 

And if we follow the example given, it is clear that the ratio of GB  to BD  is 

greater than the ratio of 2.334 plus one fourth to 153. Thus if line BD  [measures] 

153, GB  is longer than 2.334 plus one fourth, and the square of GB  is greater 

than 5.448.723, and the square of BD  is 23.409, and the square of GD  is greater 

than 5.472.032. Thus line GD  is longer than 2.339 plus one fourth. 

[Lines 43 – 50 of the Arabic text] 

And if we follow the example given, it is clear that the ratio of GB  to BH  is 

greater than the ratio of 4.673 plus one half to 153. Thus if line HB  [measures] 

153, line GB  is longer than 4.673 plus one half. And that is the ratio of the side 

of a [polygon] of 96 sides to the diameter. Thus the ratio of the diameter to the 

sum of the sides of a [polygon] of 96 sides circumscribed around the circle is 

greater than the ratio of 4.673 plus one half to 14.688. Then it is clear that the 

ratio of the sum of the 96 sides [of the polygon] to the diameter is smaller than 3 

plus one seventh of a unit. 

 

[Lines 51 – 54 of the Arabic text] 

Then we draw within circle ATB  a cord of a sixth [of the circle], and it is TB , 

and we draw AT , and we cut angle TAB  in two halves with line AOV , and we 

draw the cord VB , and we cut angle VAB  in two halves with line AK , and we 

draw the cord KB , and we cut angle KAB  in two halves with line AL , and we 
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draw the cord LB , and we cut angle LAB  in two halves with line AM , and we 

draw the cord MB . 

[Lines 55 – 68 of the Arabic text] 

Then it is clear that cord MB  is the side of a [polygon] of 96 sides inscribed in 

the circle. Then we give to line AB  [a length  of] 1.560 to make easier the use of 

this number wherever it fits. Then the cord TB  measures 780, and the square of 

AB  is 2.433.600, and the square of TB  measures 680.400. And the square of 

AT  measures 1.825.200. Then line TA  is shorter than 1.351. But the ratio of the 

sum of the two lines TA  and AB  to TB  is equal to the ratio of AT  to TO . And 

the ratio of AT  to TO  is equal to the ratio of AV  to VB , and the sum of the two 

lines TA  and AB  is shorter than 2.911. Thus the ratio of AT  to TO  is smaller 

than the ratio of 2.911 to 780. And if VB  measures 780, AV  is shorter than 

2.911, and the square of AV  is smaller than 8.473.921, and the square of VB  

measures 608.400, and the square of AB  is smaller than 9.082.021. Thus line 

AB  is shorter than 3.013 and three fourths of a unit. 

[Lines 69 – 78 of the Arabic text] 

And if we follow the example given, it is clear that the ratio of AK  to  KB  is 

smaller than the ratio of 5.924 and three fourths of a unit to 780. Then if line KB  

measures 780, line AK  is shorter than 5.924 and three fourths of a unit. And the 

ratio of 5.924 and three fourths of a unit to 780 is equal to the ratio of 1.823 to 

240. Then if line KB  measures 240, AK  is shorter than 1.823, and the square of 

AK  is smaller than 3.323.329, and the square of KB  is 57.600, and the square of 

AB  is smaller than 3.380.929. Thus line AB  is shorter than 1.838 and 9/11 of a 

unit. 

[Lines 79 – 84 of the Arabic text] 

And if we follow the example given, it is clear that the ratio of AL  to LB  is 

smaller than the ratio of 3.661 and 9/11 of a unit to 240, which is equal to the 

ratio of 1.007 to 66. Then if line LB  measures 66, line AL  is shorter than 1.007, 

and the square of AL  is smaller than 1.014.049. And the square of LB  measures 

4.356, and the square of AB  is smaller than 1.018.405. Thus line AB  is shorter 

than 1.009 and one sixth of a unit. 

[Lines 85 – 93 of the Arabic text] 

And if we follow the example given, it is clear that the ratio of AM  to MB  is 

smaller than the ratio of 2.016 and one sixth of a unit to 66. Then if MB  
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measures 66, AM  is shorter than 2.016 and one sixth of a unit, and the square of 

AM  is smaller than 4.064.928, and the square of AB  is smaller than 4.069.280. 

Then line AB  is shorter than 2.017 and one fourth of a unit. But line MB  has a 

length of 66, and line MB  is the side of a [polygon] of 96 sides inscribed in the 

circle. Thus the ratio of the diameter to the sum of the sides of a [polygon] of 96 

sides inscribed in the circle is smaller than the ratio of 2.017 to 6.336. 

[Lines 94 – 97 of the Arabic text] 

Il is thus clear that the ratio of the sum of the sides of a [polygon] of 96 sides 

inscribed in the circle to the diameter [of the circle] is greater than the ratio of 3 

plus 10/71 to the unit. And the perimeter of the circle is longer than the sum of 

the sides of a [polygon] of 96 sides inscribed in the circle, and it is shorter than 

the sum of the sides of a [polygon] of 96 sides, circumscribed around the circle. 

[Lines 98 – 101 of the Arabic text] 

Thus it is certain, according to what we have described, that the ratio of the 

perimeter of the circle to the diameter [of the circle] is greater than the ratio of 3 

plus 10/71 [to the unit], and smaller than the ratio of 3 plus 10/70 [to the unit]. 

And this is what we wanted to demonstrate. 
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Mathematical transcription 
 

[Lines 1 – 3 of the Arabic text] 

Proposition 11 

The length of the circumference exceeds three times the diameter by a length 

less than 1/7 of the diameter, and more than 10/71 of the diameter. 

 

[Lines 5 – 11 of the Arabic text] 

Proof: 

Circle ATB  has a diameter AB , and its centre is at point G , 

GZ is drawn to define with BG  an angle of 30º, 

and at point B  of BG  the perpendicular BZ  is drawn. 

 

The arc intercepting  BGZ  = 1/2 * 1/6 * the perimeter of circle ATB , 

and BZ  = 1/2 * the side of the hexagon circumscribed around circle ATB . 

 

And GE  divides  BGZ  in two halves, 

and GW  divides  BGE  in two halves, 

and GD  divides  BGW  in two halves, 

and GH  divides  BGD  in two halves. 

[Lines 12 – 14 of the Arabic text] 

Then the arc intercepting  BGH  = 1/192 * the perimeter of circle ATB , 

and BH  = 1/2 * a side of the polygon of 96 sides circumscribed around circle 

ATB . 

[Lines 15 – 28 of the Arabic text] 

We make GZ  = 306, to facilitate further computing. 

[See the next chapter] 

Then if GZ  = 306,    GZ
2
  = 93.636, 

and BZ  = 153,    because  BGZ  = 1/3 * 90º,   and  GBZ  = 90º. 

And BZ
2
 = 23.409,  and GB

2
 = 70.227. 

Thus GB  >  265. 

But   
BE

GB

BZ

GZBG



,   so that GE  divides  BGZ  in two halves, 

and BG  + GZ  > 571,  and BZ  = 153. 



130 Lluis Pascual 

Thus   
153

571

BE

GB
 . 

Thus   GB  > 571. 

If we make  BE  = 153,   and GB
2 
> 326.041,   and BE

2
 = 23.409, 

Thus   GE
2
 > 349.450. 

Thus   GE  > 591 + 1/8. 

[Lines 29 – 35 of the Arabic text] 

And in the same way, 

153

1/81.162

BW

GB 
   . 

Thus if we make  BW  = 153,   GB  > 1.162 + 1/8, 

and GB
2
 > 1.350.534,  and BW

2
 = 23.409,  and GW

2
 > 1.373.943. 

Thus   GW  > 1.172 + 1/8. 

[Lines 36 – 42 of the Arabic text] 

And in the same way, 

153

1/42.334

BD

GB 
  . 

Thus if we make  BD  = 153,   GB  > 2.334 + 1/4, 

and GB
2
 > 5.448.723,  and BD

2
 = 23.409,  and GD

2
 > 5.472.032. 

[The last square should be 5.472.132, but the text contains 5.472.032 ] 

Thus  GD  > 2.339 + 1/4. 

[Lines 43 – 50 of the Arabic text] 

And in the same way, 

153

1/24.673

BH

GB 
  . 

Thus if we make  HB  = 153,   GB  > 4.673 + 1/2. 

And that is the ratio of the side of a polygon of 96 sides to the diameter. 

Thus the ratio of the diameter to the sum of the sides of a polygon of 96 sides 

circumscribed around the circle is   >   
14.688

1/24.673
  . 

Thus the ratio of the sum of the 96 sides of the polygon to the diameter is   <   

3 + 1/7. 

 

[Lines 51 – 54 of the Arabic text] 

We now draw in the circle ATB  the cord of a sixth of the circle, that is TB , 

and we draw AT , 
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and AOV  cuts  TAB  in two halves, 

and we draw the cord VB , 

and AK  cuts  VAB  in two halves, 

and we draw the cord KB , 

and AL  cuts  KAB  in two halves, 

and we draw the cord LB , 

and AM  cuts  LAB  in two halves, 

and we draw the cord MB . 

[Lines 55 – 68 of the Arabic text] 

Then the cord MB  is the side of a polygon of 96 sides inscribed in the circle. 

Then we make AB  = 1.560, to facilitate further computing. 

Then the cord TB  = 780,   and AB
2
 =  2.433.600,   and TB

2
 = 680.400. 

And AT
2
 = 1.825.200. 

Thus TA  < 1.351. 

But   
TO

AT

TB

ABTA



 ,   and   

VB

AV

TO

AT
   , 

and   TA  + AB  < 2.911. 

Then   
780

2.911

TO

AT
  . 

And if VB  = 780, 

AV  < 2.911,   and AV
2
 < 8.473.921,   and VB

2
 = 608.400,   and AB

2
 < 

9.082.021. 

[The last square should be 9.082.321, but the text contains 9.082.021 ] 

Thus  AB  < 3.013 + 3/4. 

[Lines 69 – 78 of the Arabic text] 

And in the same way, 

780

3/45.924

KB

AK 
 . 

Then if  KB  = 780,   AK  < 5.924 + 3/4. 

And   
240

1.823

780

3/45.924



. 

Then if  KB  = 240, 

AK  < 1.823,   and AK
2
 < 3.323.329,   and KB

2
 = 57.600,  and AB

2
 < 

3.380.929. 
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Thus   AB  < 1.838 + 9/11. 

[Lines 79 – 84 of the Arabic text] 

And in the same way, 

240

9/113.661

LB

AL 
   , which is a ratio equal to 

66

1.007
  . 

Thus if LB  = 66, 

AL  < 1.007,   and AL
2
 < 1.014.049. 

And LB
2
 = 4.356,  and AB

2
 < 1.018.405. 

Thus  AB  < 1.009 + 1/6. 

[Lines 85 – 93 of the Arabic text] 

And in the same way, 

66

1/62.016

MB

AM 
   . 

Then if  MB  = 66, 

AM  < 2.016 + 1/6,   and AM
2
 < 4.064.928,   and AB

2
 < 4.069.280. 

[The last square should be 4.069.284, but the text contains 4.069.280 ] 

Thus AB  < 2.017 + 1/4. 

But MB  = 66, 

and MB  is the side of a polygon of 96 sides inscribed in the circle. 

Then the ratio of the diameter to the sum of the sides of a polygon of 96 sides 

inscribed in the circle, is   
6.336

2.017
 . 

[The numerator of the fraction should be 2.017 + 1/4, but the text contains 

2.017 ] 

 [Lines 94 – 97 of the Arabic text] 

Thus the ratio of the sum of the sides of a polygon of 96 sides, inscribed in the 

circle, to its diameter is    
71

10
 3 . 

And the perimeter of the circle is longer than the sum of the sides of a 

polygon of 96 sides, inscribed in the circle, and it is shorter than the sum of the 

sides of a polygon of 96 sides, circumscribed around the circle. 

[Lines 98 – 101 of the Arabic text] 

Thus the ratio of the perimeter of the circle to its diameter is  
71

10
 3 , and it 

is  
70

10
 3 . 
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The arithmetical values used in the proposition 

The reader may find it surprising that the proposition assigns a precise 

arithmetical value to the length of the first segment to be considered: in the case 

of the polygon circumscribed around the circle, the author assigns to GZ a length 

of 306. 

GZ is the hypotenuse of the right-angled triangle GBZ. This triangle being the 

6

1

2

1
*  part of the hexagon circumscribed around the circle, its two other angles 

are equal to 30º and 60º. 

Thus BZ measures 306*sin 30º = 153, and GB measures 306*cos 30º > 265. 

 

But why these values, and not any other ones? 

Sin 30º = 
2

1 , and poses no problem. But cos 30º = 
2

3
. 

Archimedes had found a very accurate formula that sets bounds to the value 

of 3  : 

780

1351
3

153

265
  

We do not know the method he used to arrive at this result. Davies speculates 

with several possibilities in his article, and concludes that Archimedes probably 

used Hero’s method, based on an algorithm for calculating square roots which 

relies on the fact that the arithmetical mean of two numbers is greater than their 

geometric mean, which in turn is greater than their harmonic mean. Davies’ 

article (Davies, 2011) is very instructive on this subject, and provides a thorough 

analysis and comparison of several other possibilities. 

 

Archimedes establishes the values for the sides of right-angled triangle GBZ, 

that is the 
6

1

2

1
*   part of the circumscribed hexagon, with the figures 

GZ = 306  BZ = 153  GB > 265 

which have obviously been taken from the formula that gives a lower bound 

to 3 . 

 

After this he divides the central angle by two several times (four times, in 

fact), and generates circumscribed regular polygons of successively 12, 24, 48 

and 96 sides. Each regular polygon gives an increasing approximation to the 

upper bound to the value of π. 

For the five iterations, al-Mu’taman gives the values of the lower bounds: 
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First iteration,  for BZ = 153,  GZ = 306  GB > 

265 

Second iteration,  for BE = 153,  GE > 591+
8

1
  GB > 

571 

Third iteration,  for BW = 153,  GW > 1172+
8

1
  GB > 

1162+
8

1
 

Fourth iteration,  for BD = 153,  GD > 2339+
4

1
  GB > 

2334+
4

1
 

Fifth iteration,  for BH = 153,  GH > 4673+
2

1
  GB > 

4673+
2

1  

 

To deal with an angle that is half the angle of the previous iteration, 

Archimedes uses geometry to establish the equation which, in the second 

iteration, is expressed by   
BE

GB

BZ

GZBG



 ,   where GE divides  BGZ in two 

halves. No explanation is given either by Archimedes or by his medieval 

followers, so it seems that the reader is expected to be familiar with this 

particular modus operandi. And again, as in the first iteration, the value 153 is 

arbitrarily given to one of the sides of every new right-angled triangle, to be able 

to continue using the figures that have their origin in the lower bound to the 

value of 3 . 

 

Interestingly, there is an arithmetical discrepancy in the fourth iteration. The 

square of GD is not 5.472.082, as al-Mu’taman states in his text, but 5.472.182. 

If we take al-Mu’taman’s square, then GD is not greater than 2339+
4

1
 , but 

slightly smaller. 

It may be that the copyist has omitted one word, “and one hundred”. 

However, the two manuscripts (Leiden and Copenhagen) show the same 

omission; furthermore, in the second part of the procedure, in which the 

polygons are inscribed in the circle to determine a lower bound to the value of π, 

three numerical words are also omitted. 
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So it is fair to infer that the author “copied” the procedure, and did not present 

results evaluated by himself. 

Van Lit has analysed in his paper (Van Lit, 2008) the same procedure as it 

was written by al-Æūsī in the thirteenth century, and has also found a few 

omitted words. This makes it likely that the omissions were made by the 

brothers Banū Mūsā in their book, which was the bridge between Archimedes 

and the medieval mathematicians. 

 
Comparison of the texts 

From a mathematical point of view, the three medieval texts, written between 

the eleventh and the thirteenth centuries in Arabic and in Latin, are very similar. 

They take up the geometrical operations of Archimedes’ proposition, which 

starts with the regular hexagon circumscribed around the circle, and the regular 

hexagon inscribed in the circle, and then increases the number of the sides of the 

polygons up until a value of 96, finally obtaining a useful approximation of the 

ratio between the perimeter and the diameter of the circle. 

Given that the text by al-Mu’taman ibn Hūd precedes in time the two texts by 

Gerard of Cremona and by al-Æūsī, here we offer a textual comparison of the 

different versions of the proposition. The comparison is presented in a table on 

the next page, in which a certain number of sentences have been selected. 

The table has five columns. The empty second column symbolizes the text of 

the brothers Banū Mūsā, which has not survived. The first column contains 

Archimedes’ Greek text, and the last three columns contain the Arabic, Latin, 

and again Arabic texts by al-Mu’taman, Gerard of Cremona and al-Æūsī. 
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The first column underlines the synthetic nature of Archimedes’ proposition 

in Greek. He has only written the results of the operations, and in general he 

leaves out the intermediate steps. Several sentences that serve as introductory 

formulae in the language of the mathematics do not appear. 

The comparison of morphology and syntax in columns 3 and 4, (al-Mu’taman 

and Gerard of Cremona) reveals the coincidences between the terms, which are 

particularly striking in view of the considerable differences between the two 

languages, Arabic and Latin. 

 

Thus we have  « wa-markazu-hā nuqṭat G », 

and    « et ipsius centrum sit punctum G », 

that we can translate  « and its centre is point G ». 

And also    « walakin nisbat khaṭṭay TA  AB majmu ͨayn ilā 

TB » , 

and    « sed proportio duarum linearum TA  AB 

coniuctarum ad TB »,  

that we can translate « but the ratio of the two lines TA  AB together to TB ». 

The parallelism of the semantic choice of words is remarkable : 

For     « erect » (a perpendicular on a point of a line), 

Gerard uses the Latin verb   « et erigam », 

and al-Mu’taman uses the verb  « wa-nuqīm »,  

that are equivalent. 

 

The last example especially shows that both al-Mu’taman and Gerard of 

Cremona, worked on an analysis of the same text, and that they obtained parallel 

results for Archimedes’ proposition. 

Rashed (Rashed, 1996, pages 74 - 83) presents a comparison of the texts by 

Gerard of Cremona (column 4) and al-Æūsī (column 5). 

Column 5 shows the simplified language used by al-Æūsī. This distinguished 

thirteenth-century mathematician shortens the syntax of every sentence, 

seemingly aiming to say as much as possible in very short statements: 

« a square angle »    becomes, for him,  « a square », 

« a perpendicular line »   becomes  « a 

perpendicular », etc. 

It is remarkable that, whereas al-Mu’taman and Gerard of Cremona use the 

expression « divide in two halves », 

in Arabic    « naqsim bi-ni½fayn », 

and in Latin    « dividam in duo media », 
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al-Æūsī draws on the resources of Arabic lexicology to use the verb 

« nuna½½if », which derives from the name « ni½f » (half), and means exactly the 

same, though he uses only one word instead of two or three. But this is not a 

simple lexicological difference: the language of al-Mu'taman is purely 

geometrical (« qasama » is a geometrical operation), while the language of al-

Ṭūsī may have been borrowed from arithmetic: « to halve » or « to divide by 

two ». 

The texts of al-Mu’taman and of Gerard are so similar that we may conclude 

that both authors worked from the text of the brothers Banū Mūsā. 

We might also wonder whether Gerard did or did not make his copy from the 

text of al-Mu’taman. 

But this is not possible: in their version of the proposition, and using very 

different languages, both Gerard of Cremona and after him al-Ṭūsī copied a very 

long introduction, praising the scientific goals of Archimedes, and explaining the 

objective of the proposition, which would have come at the beginning of Banū 

Mūsā’s text. Gerard’s introduction in Latin can be found in the edition by 

Clagett (Clagett, 1964, pages 264 - 279), and al-Ṭūsī’s introduction in Arabic in 

the edition by Rashed (Rashed, 1996, pages 74 - 83). 

However, the prince of Saragossa omitted it from his copy of the proposition, 

a justifiable decision, since he was composing an encyclopaedia. But this shows 

conclusively that Gerard and al-Ṭūsī were working with the book by the Banū 

Mūsā, and not with the book by al-Mu’taman. 

Therefore we can conclude with some confidence that all three authors 

worked from the book of the brothers Banū Mūsā. 
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