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Abstract

In this note we study the topological structure of weighted James spaces J(h).
In particular we prove that J(h) is isomorphic to J if and only if the weight h is
bounded. We also provide a description ofJ(h) if the weight is a non-decreasing
sequence.

Dı́az and the author [3] have recently introduced weighted James spaces J(h) to
construct a Fréchet counterexample to a question of Valdivia. In this note we start
a systematic study of the topological structure of these spaces. In particular we
characterize when a weighted James space J(h) is isomorphic to the classical quasir-
reflexive James space J . If the weight h is non-decreasing then we get a detailed
description of J(h).

The quasireflexive James space J is defined as

J :=


y = (yn); ‖y‖ := sup

( k−1∑
i=0

( ni+1∑
j=ni+1

yj
)2

)1/2

< ∞


 ,

where the sup is taken over all increasing sequences of integers 0 = n0 < n1 < . . . <

nk (see [5]). Given a map h : N → [1,+∞), we define the following weighted James
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space:

J(h) :=


y = (yn); ‖y‖ := sup

( k−1∑
i=0

( ni+1∑
j=ni+1

yj
)2
h(ni + 1)

)1/2

< ∞


 ,

where the sup is taken as above. In our proposition below we characterize when
J(h) is isomorphic to J . To handle J(h) it is convenient to use also the increasing
map h′ : N → [1,+∞) defined as h′(n) := sup{h(i); i ≤ n}. Note that ‖ej‖ = h′(j),
where ej is the sequence taking the value 1 in the j-th place and 0 elsewhere, for
every j ∈ N. It is an open problem whether J(h′) is isomorphic or not to J(h).

We recall some definitions and results about bases. Let X denote a Banach
space. A sequence (en)n∈N is said to be a basis of X if every element x ∈ X can
be written as x =

∑∞
i=1 aiei for a unique sequence of scalars (ai)i∈N. In such a case

we define e∗i in X ′ as follows: e∗i (x) := ai for every i ∈ N. The basis (en)n∈N is said
to be shrinking if (e∗n)n∈N is a basis of X ′ and is said to be boundedly complete if
for every sequence of scalars (an)n∈N the series

∑∞
i=1 aiei converges provided that

(‖∑n
i=1 aiei‖)n∈N is bounded. It is a known result of James [4] that a Banach space

X with basis is reflexive if and only if the basis is shrinking and boundedly complete.
With the notation given above (en)n∈N is a basis of J(h) and it is known to be a
boundedly complete basis of J .

The following technical lemma could be of independent interest. If (yi)i∈I is
contained in X then sp{yi; i ∈ I} denotes the linear subspace spanned by (yi)i∈I .

Lemma 1

Let X be a Banach space with a basis (en)n∈N that satisfies the following

property: ∃ δ > 0 ∀ n ∈ N ∃ r(n) > n ∀ x ∈ sp{ei; i ≤ n} ∀ y ∈ sp{ei; i ≥ r(n)},

‖x‖ = ‖y‖ = 1 =⇒ ‖x + y‖ < 2 − δ.

Then the basis (en)n∈N is shrinking.

Proof. Given f ∈ X ′ we denote f(ej)e∗j by fj , j ∈ N. Note that f =
∑∞

n=1 fj where

the series converges in the topology σ(X ′, X). We have to show that
( ∑∞

j=n fj

)
n∈N

converges to 0 in norm. We first check the following property:

∀f ∈ X ′ ∃n0 ∈ N ∀n ≥ n0

∥∥∥ ∞∑
j=n

fj

∥∥∥ <
(
1 − δ

3

)
‖f‖. (1)
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By contradiction let us assume that there is f ∈ X ′ such that for every n ∈ N there
is m(n) > n with

∥∥∥∑∞
j=m(n) fj

∥∥∥ ≥ (1 − δ
3 )‖f‖. We fix x ∈ sp{ei; i ∈ N} with

‖x‖ = 1 and such that f(x) > (1− δ
3 )‖f‖. Let n ∈ N be such that x ∈ sp{ei; i ≤ n}.

We select r(n) > n according to our statement. Then there is m(n) > r(n) such
that

∥∥∥∑∞
j=m(n) fj

∥∥∥ ≥ (1 − δ
3 )‖f‖. Now given ε > 0 we take y ∈ sp{ei; i ≥ m(n)},

with ‖y‖ = 1 and such that
∑∞

j=m(n) fj(y) > (1 − ε)
∥∥∥∑∞

j=m(n) fj

∥∥∥. By applying
the property of the basis we get

(2 − δ)‖f‖ > ‖x + y‖‖f‖ ≥ f(x + y) = f(x) + f(y)

= f(x) +
( ∞∑

j=m(n)

fj

)
(y) >

(
1 − δ

3
+ (1 − ε)

(
1 − δ

3
))

‖f‖.

Since ε is arbitrary we get a contradiction that settles (1). To finish given any f ∈ X

there is n1 ∈ N such that
∥∥∥∑∞

j=n fj

∥∥∥ < (1 − δ
3 )‖f‖ for every n ≥ n1. We apply (1)

to
∑∞

j=n1
fj and get n2 ∈ N such that

∥∥∥ ∞∑
j=n

fj

∥∥∥ <
(
1 − δ

3

)∥∥∥ ∞∑
j=n1

fj

∥∥∥ <
(
1 − δ

3

)2

‖f‖, ∀n ≥ n2.

By induction we can find nr such that
∥∥∥∑∞

j=n fj

∥∥∥ < (1− δ
3 )r‖f‖, ∀n ≥ nr and this

already implies that
∑∞

j=1 fj converges in norm. �
Our main result is the following:

Theorem 2

Let J(h) be a weighted James space. The following conditions are equivalent:

(i) J(h) is not isomorphic to J .

(ii) sup{h(i); i ∈ N} = ∞.

(iii) J(h) is reflexive.

Proof. Only (ii) implies (iii) needs a proof. Let (en)n∈N denote the canonical basis
in J(h). We shall check that this basis is boundedly complete and shrinking.

(a) (en)n∈N is boundedly complete. This is clear if (h(n))n∈N is non-decreasing,
i.e. if h ≡ h′. For the general case let (ai)i∈N be a sequence of scalars such that
(‖∑n

i=1 aiei‖)n∈N is bounded. We have to check the following condition,

∀ε ∃n ∈ N, ∀q > p ≥ n
∥∥∥ q∑

j=p

ajej

∥∥∥ < ε. (2)
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Since (h(n))n∈N is unbounded we can find an increasing sequence of integers

(p(n))n∈N such that h(p(n)) = h′(p(n)) for every n ∈ N. It is readily checked

by contradiction that (2) holds whenever p is taken to coincide with p(i) for some

i ∈ N. (Indeed observe that given s ∈ N with h(s) = h′(s) and given y = (yn) ∈ J(h)

such that yi = 0 if i ≤ s − 1, then we can take the supremum over all increasing

sequences s − 1 = n0 < n1 < . . . < nk to estimate ‖y‖.) Then, given n ∈ N we fix

p(n) ≥ n and if q > p ≥ p(n) put

∥∥∥ q∑
j=p

ajej

∥∥∥ ≤
∥∥∥ p∑

j=p(n)

ajej

∥∥∥ +
∥∥∥ q∑

j=p(n)

ajej

∥∥∥,

from where (2) follows.

(b) (en)n∈N is shrinking. We are going to check the condition in Lemma 1.

Given n ∈ N we take r(n) > n such that h(r(n)) ≥ 2h(i) for all i ≤ n. Let

x ∈ sp{ei; i ≤ n}, y ∈ sp{ei; i ≥ r(n)} with ‖x‖ = ‖y‖ = 1 and let us estimate

‖z‖ where z = x + y. To do this we take 0 = n0 < n1 < . . . < nk. We assume that

nk > r(n). Two cases may happen:

(1) There is s ∈ N such that n ≤ ns < r(n). Then we can write:

k−1∑
i=0

( ni+1∑
j=ni+1

zj

)2

h(ni + 1) =
s−1∑
i=0

( ni+1∑
j=ni+1

xj

)2

h(ni + 1)

+
k−1∑
i=s

( ni+1∑
j=ni+1

yj

)2

h(ni + 1) ≤ ‖x‖2 + ‖y‖2.

(2) There is s ∈ IN such that ns < n and ns+1 ≥ r(n). In this case we have:

( ns+1∑
j=ns+1

zj

)2

h(ns + 1) ≤ 2
(( n∑

j=ns+1

xj

)2

h(ns + 1) +
( ns+1∑

j=n

yj

)2

h(ns + 1)
)

≤ 2
( n∑

j=ns+1

xj

)2

h(ns + 1) +
( ns+1∑

j=r(n)

yj

)2

h(r(n)),
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whence

k−1∑
i=0

( ni+1∑
j=ni+1

zj

)2

h(ni + 1) =
s−1∑
i=0

( ni+1∑
j=ni+1

xj

)2

h(ni + 1)

+
( ns+1∑

j=ns+1

zj

)2

h(ns + 1)+
k−1∑

i=s+1

( ni+1∑
j=ni+1

yj

)2

h(ni + 1)

≤ 2
(s−1∑
i=0

( ni+1∑
j=ni+1

xj

)2

h(ni + 1)+
( n∑
j=ns+1

xj

)2

h(ns + 1)
)

+
( ns+1∑

j=r(n)

yj

)2

h(r(n))

+
k−1∑

i=s+1

( ni+1∑
j=ni+1

yj

)2

h(ni + 1) ≤ 2‖x‖2 + ‖y‖2.

In both cases we get ‖z‖2 ≤ 3. We conclude from Lemma 1. �
In our following result we provide a description of J(h) if (h(n))n∈N is non-

decreasing. For every n ∈ N, Jn denotes the subspace of J spanned by {ei; 1 ≤ i ≤
n}, and J0 := {0}.

Theorem 3

Let (h(n))n∈N be a non-decreasing and unbounded weight. Then there is a

sequence of integers (m(n))n∈N such that J(h) is isomorphic to the l2-sum

l2(Jm(n)) :=

{
(xn) ∈

∏
n

Jm(n);
( ∞∑

n=1

‖xn‖2
)1/2

< ∞
}

.

In particular J(h) is isomorphic to a complemented subspace of J .

Proof. We choose q(0) = 1 ≤ q(1) ≤ q(2) ≤ . . . such that 2n ≤ h(i) < 2n+1, ∀q(n) ≤
i < q(n+1), n = 0, 1, . . .. If we define h∗(i) := 2n, ∀q(n) ≤ i < q(n+1), n = 0, 1, . . .
then h∗ ≤ h ≤ 2h∗, hence J(h) ∼= J(h∗). Thus we assume without loss of generality
that h(i) = 2n, ∀q(n) ≤ i < q(n + 1), n = 0, 1, . . .. Now for all n ∈ N we set
m(n) := q(n) − q(n− 1), and define the following isomorphism

In : Jm(n) → sp{ei; q(n− 1) ≤ i ≤ q(n) − 1} ⊂ J(h),
m(n)∑
i=1

aiei →
q(n)−1∑

i=q(n−1)

aiei.
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We consider the weighted space

l2(Jm(n), 2n) :=

{
(xn) ∈

∏
n

Jm(n);
( ∞∑

n=1

‖xn‖22n
)1/2

< ∞
}
.

l2(Jm(n), 2n) is clearly isomorphic to l2(Jm(n)). On the other hand it is readily
checked that the following map is an isomorphism (One should only use the following
inequality to estimate the norms: (a1 + . . .+ ak)2 ≤ 2a2

1 + . . .+ 2ka2
k, ∀k ∈ N, ai ∈

R, i = 1, . . . k.):

I : l2(Jm(n), 2n) → J(h), (xn) →
∞∑

n=1

In(xn).

This already proves our first statement. The fact that l2(Jm(n)) is isomorphic to a
complemented subspace of J can be seen in [1] and its references. �

As a consequence, if the weight h is non-decreasing we prove that there are
three kinds of non-isomorphic weighted spaces J(h): The quasireflexive space J , the
l2-sum (J1 ⊕J2 ⊕ . . .)l2 = l2(Jn) (this space is reflexive but not super-reflexive since
J is finitely representable in l2(Jn)) and the Hilbert space l2.

Corollary 4
Let (h(n))n∈N be a non-decreasing weight. Then J(h) is isomorphic to one of

the following three spaces:
(i) J ,
(ii) l2(Jn),
(iii) l2.

Proof. If (h(n)) is bounded then J(h) ∼= J . If h(n) is not bounded then we apply
Theorem 3 and get J(h) ∼= l2(Jm(n)) for some sequence of integers (m(n))n∈N. Two
cases may happen: If (m(n)) is bounded then l2(Jm(n)) is clearly isomorphic to l2; if
sup{m(n); n ∈ N} = ∞ then l2(Jm(n)) is isomorphic to l2(Jn) by [2, Corollary]. �

Acknowledgment. The research of the author has been partially supported by the
DGICYT, Proyecto número PB91/0845.

Referee’s comment. Several years ago Peter Casazza distributed an unpublished
manuscript showing that the converse of Lemma 1 fails for every equivalent norm on
Tsirelson’s space. This relates to an old question of Vitali Milman (≈ 1970, Russian
Survey) which asks: Can every reflexive Banach space X be given an equivalent
norm |.| so that whenever |xn| = 1 in X and limn,m→∞ |xn + xm| = 2, then (xn)
converges in X. This problem is open even in Tsirelson’s space.
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