Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. 44 (1993), 301-306
(c) 1994 Universitat de Barcelona

On the weak star uniformly rotund points of Orlicz spaces

Tingfu Wang and Quandi Wang

Math. Dept., Harbin Univ. Sci. Tech.,
Harbin, Heilongjiang, 150080, P.R. China

Abstract

We obtain the necessary and sufficient condition of weak star uniformly rotund point in Orlicz spaces.

In this paper, X denotes a Banach space, $B(X), S(X)$ denote respectively the unit ball and the unit sphere of $X . x \in S(X)$ is said to be a UR (WUR, W*UR) point provided that $x_{n} \in B(X),\left\|x_{n}+x\right\| \rightarrow 2 \Rightarrow\left\|x_{n}-x\right\| \rightarrow 0\left(x_{n}-x \xrightarrow{\mathrm{w}} 0, x_{n}-x \xrightarrow{\mathrm{w}^{*}} 0\right)$. Obviously, $\mathrm{URP} \Rightarrow \mathrm{WURP} \Rightarrow \mathrm{W}^{*} \mathrm{URP}$. If all points of $S(X)$ are $\mathrm{W}^{*} \mathrm{UR}$ points, X is locally weak star uniformly rotund.
$M(\cdot), N(\cdot)$ denote a pair of complemented N-functions (see [3]); "M $\in \Delta_{2} "$ ("M $M \nabla_{2}$ ") means that $M(\cdot)$ satisfies the $\nabla_{2^{2}}$-condition (N satisfies the $\nabla_{2^{-}}$ condition). ($G, \Sigma, \mu)$ stands for a non-atomic finite measure space; $L_{M}(G, \Sigma, \mu)$ expresses the Orlicz space generated by $M(\cdot)$:

$$
L_{M}(G, \Sigma, \mu)=\left\{x(t): \exists a>0, R_{M}\left(\frac{x}{a}\right)=\int_{G} M\left(\frac{x(t)}{a}\right) d \mu<\infty\right\}
$$

with the norm

$$
\|x\|=\inf \left\{a>0: R_{M}\left(\frac{x}{a}\right) \leq 1\right\}
$$

For an Orlicz function space L_{M} and a sequence space l_{M}, a criterion of UR (WUR) point was obtained in recent years [1,2]. Here we give the criterion of W*UR point, but the statement and method is different to WURP.

Theorem 1

Let $x \in S\left(L_{M}\right) . x$ is a W^{*} URP if and only if
(1) $\exists \tau>0, R_{M}\left(\frac{x}{1-\tau}\right)<\infty$
(2) $\mu\left\{t \in G:|x(t)| \in \mathbb{R} \backslash S_{M}\right\}=0$
(3) $\mu\left\{t \in G:|x(t)| \in \bigcup_{i=1}^{\infty}\left\{b_{i}\right\}\right\}=0$ or $\mu\left\{t \in G:|x(t)| \in \bigcup_{i=1}^{\infty}\left\{a_{i}\right\}\right\}=0$ and $M \in \nabla_{2}$, where S_{M} is the set of all strictly convex points of $M(\cdot),\left(a_{i}, b_{i}\right)$ are affine segments of $M(\cdot)$ for $i=1,2, \ldots$

Proof. Without loss of generality, we assume $x(t) \geq 0$.
Necessity. Suppose that $R_{M}\left(\frac{x}{1-\varepsilon}\right)=\infty$ for all $\varepsilon>0$. Take c large enough such that $\mu G_{c}=\mu\{t \in G: x(t) \leq c\}>0$. Define $x^{\prime}=-x \chi_{G_{c}}+x \chi_{G \backslash G_{c}}$; then $\left\|x^{\prime}\right\|=\|x\|=1$, but for all $\varepsilon>0$

$$
R_{M}\left(\frac{x+x^{\prime}}{2(1-\varepsilon)}\right)=\int_{G \backslash G_{c}} M\left(\frac{x(t)}{1-\varepsilon}\right) d \mu=\infty
$$

so $\left\|x+x^{\prime}\right\|=2$. From $x \neq x^{\prime}$, we get a contradiction with the fact that x is a $\mathrm{W}^{*} \mathrm{UR}$ point, which shows that (1) is true.

Since a W*UR point is an extreme point, from [3], we get that (2) is true.
Suppose that there exist affine segments $[a, b],[c, d]$ of $M(\cdot)$ such that $A=$ $\{t: x(t)=a\}, B=\{t: x(t)=d\}$ are sets with positive measure. Take $E \subset A, F \subset B$ satisfying $(M(b)-M(a)) \mu E=(M(d)-M(c)) \mu F$. Define $x^{\prime}=x \chi_{G \backslash(E \cup F)}+b \chi_{E}+$ $c \chi_{F}$, then $x^{\prime} \neq x, R_{M}(x)=R_{M}\left(x^{\prime}\right)=1$, and $R_{M}\left(\frac{x+x^{\prime}}{2}\right)=\frac{R_{M}(x)+R_{M}\left(x^{\prime}\right)}{2}=1$, which contradicts the fact that x is a $\mathrm{W}^{*} \mathrm{UR}$ point.

Suppose now that there is an affine segment $[a, b]$ with positive measure set $D=\{t: x(t)=b\}$ and $M \notin \nabla_{2}$, i.e. there are $u_{n} \nearrow \infty$ such that $u_{1}>b$ and $M\left(\frac{u_{n}}{2}\right)>\left(1-\frac{1}{n}\right) \frac{M\left(u_{n}\right)}{2}(n=1,2, \ldots)$. Take subsets $E_{n}, D \supset E_{1} \supset E_{2} \supset \ldots$ satisfying

$$
M\left(u_{n}-b\right) \mu E_{n}+M(a) \mu\left(D \backslash E_{n}\right)=M(b) \mu D
$$

then $\mu E_{n} \rightarrow 0$. Define $x_{n}=x \chi_{G \backslash D}+a \chi_{D \backslash E_{n}}+\left(u_{n}-b\right) \chi_{E_{n}}$ so $R_{M}\left(x_{n}\right)=R_{M}(x)=$ $1(n=1,2, \ldots)$ and

$$
\begin{aligned}
R_{M}\left(\frac{x_{n}+x}{2}\right)= & R_{M}\left(x \chi_{G \backslash D}\right)+M\left(\frac{a+b}{2}\right) \mu\left(D \backslash E_{n}\right)+M\left(\frac{u_{n}}{2}\right) \mu E_{n} \\
\geq & R_{M}\left(x \chi_{G \backslash D}\right)+\frac{M(a)+M(b)}{2} \mu\left(D \backslash E_{n}\right)+\frac{1}{2}\left(1-\frac{1}{n}\right) M\left(u_{n}\right) \mu E_{n} \\
\geq & \frac{R_{M}\left(x \chi_{G \backslash D}\right)+M(b) \mu\left(D \backslash E_{n}\right)}{2} \\
& +\frac{R_{M}\left(x \chi_{G \backslash D}\right)+M(a) \mu\left(D \backslash E_{n}\right)+\left(1-\frac{1}{n}\right) M\left(u_{n}-b\right) \mu E_{n}}{2} \\
& R_{M}(x)=1
\end{aligned}
$$

From $\left\langle x-x_{n}, \chi_{D \backslash E_{1}}\right\rangle=(b-a) \mu\left(D \backslash E_{1}\right)>0$, we get a contradiction since x is a W^{*} UR point.

Sufficiency. Suppose that $x_{n} \in B\left(L_{M}\right),\left\|x_{n}+x\right\| \rightarrow 2$. We will first show that $R_{M}\left(x_{n}\right) \rightarrow 1$ and $R_{M}\left(\frac{x_{n}+x}{2}\right) \rightarrow 1$.

Suppose that $R_{M}\left(x_{n}\right) \leq 1-\delta$ for some $\delta>0(n=1,2, \ldots)$. Take ε small enough such that $\frac{1+\varepsilon}{1-\varepsilon}<\frac{1}{1-\delta}$. For such ε, while n is large enough we have $\left\|(1+\varepsilon) \frac{x_{n}+x}{2}\right\|>1$, and so $R_{M}\left((1+\varepsilon) \frac{x_{n}+x}{2}\right)>1$. Hence applying assumption (1) we get

$$
\begin{aligned}
1< & R_{M}\left((1+\varepsilon) \frac{x_{n}+x}{2}\right)=R_{M}\left(\frac{1+\varepsilon}{2} x_{n}+\frac{1-\varepsilon}{2} \frac{1+\varepsilon}{1-\varepsilon} x\right) \\
\leq & \frac{1+\varepsilon}{2} R_{M}\left(x_{n}\right)+\frac{1-\varepsilon}{2} R_{M}\left(\frac{1+\varepsilon}{1-\varepsilon} x\right) \leq \frac{1+\varepsilon}{2}(1-\delta) \\
& +\frac{1-\varepsilon}{2}(1+o(\varepsilon)) R_{M}(x)
\end{aligned}
$$

If $\varepsilon \rightarrow 0,1 \leq 1-\delta / 2$, so we get $R_{M}\left(x_{n}\right) \rightarrow 1$.
Clearly $\left\|\frac{x_{n}+x}{2}+x\right\| \rightarrow 2$, so we get similarly $R_{M}\left(\frac{x_{n}+x}{2}\right) \rightarrow 1$.
In the following, we show $x_{n}-x \xrightarrow{\mathrm{w}^{*}} 0$, and so it is enough to show $x_{n}-x \xrightarrow{\mu} 0$. Denote $E=\left\{t \in G: x(t) \in S_{M} \backslash\left(\left\{a_{i}\right\} \cup\left\{b_{i}\right\}\right)\right\}$. We first show $x_{n}-x \xrightarrow{\mu} 0$ on E. Suppose for a contrary that there exist $\varepsilon, \sigma>0$ with $\mu\left\{t \in E:\left|x_{n}(t)-x(t)\right| \geq \varepsilon\right\} \geq \sigma$. Since

$$
1 \geq R_{M}\left(x_{n}\right) \geq \int_{\left\{t:\left|x_{n}(t)\right| \geq d\right\}} M\left(x_{n}(t)\right) d \mu \geq M(d) \mu\left\{t:\left|x_{n}(t)\right|>d\right\}
$$

we have that for d large enough $\mu\left\{t:\left|x_{n}(t)\right|>d\right\}<\sigma / 3(n=1,2, \ldots)$ and $\mu\{t:|x(t)|>d\}<\sigma / 3$. Thus $\mu E_{n} \geq \sigma / 3$, where

$$
E_{n}=\left\{t \in E:\left|x_{n}(t)-x(t)\right| \geq \varepsilon, \quad\left|x_{n}(t)\right| \leq d, \quad|x(t)| \leq d\right\}
$$

Clearly there is $\delta>0$ such that for $t \in E_{n}$,

$$
M\left(\frac{x_{n}(t)+x(t)}{2}\right) \leq(1-\delta) \frac{M\left(x_{n}(t)\right)+M(x(t))}{2}
$$

Hence

$$
\begin{aligned}
0 & \leftarrow \frac{R_{M}\left(x_{n}\right)+R_{M}(x)}{2}-R_{M}\left(\frac{x_{n}+x}{2}\right) \\
& =\int_{G}\left(\frac{M\left(x_{n}(t)\right)+M(x(t))}{2}-M\left(\frac{x_{n}(t)+x(t)}{2}\right)\right) d \mu \\
& \geq \int_{E_{n}}\left(\frac{M\left(x_{n}(t)\right)+M(x(t))}{2}-M\left(\frac{x_{n}(t)+x(t)}{2}\right)\right) d \mu \\
& \geq \frac{\delta}{2} \int_{E_{n}}\left(M\left(x_{n}(t)\right)+M(x(t)) d \mu \geq \frac{\delta}{2} M\left(\frac{\varepsilon}{2}\right) \frac{\sigma}{3}\right.
\end{aligned}
$$

This contradiction shows that $x_{n}-x \xrightarrow{\mu} 0$ on E. Denote

$$
\begin{aligned}
& F_{a}^{+}(n)=\left\{t \in G: x(t) \in\left\{a_{i}\right\}, x_{n}(t) \geq x(t)\right\} \\
& F_{a}^{-}(n)=\left\{t \in G: x(t) \in\left\{a_{i}\right\}, x_{n}(t)<x(t)\right\} \\
& F_{b}^{+}(n)=\left\{t \in G: x(t) \in\left\{b_{i}\right\}, x_{n}(t) \geq x(t) \quad \text { or } \quad x_{n}(t)<0\right\} \\
& F_{b}^{-}(n)=\left\{t \in G: x(t) \in\left\{b_{i}\right\}, x_{n}(t)<x(t) \text { and } \quad x_{n}(t) \geq 0\right\} .
\end{aligned}
$$

Analogously as above we have that for any $\varepsilon>0$

$$
\begin{array}{ll}
\mu\left\{t \in F_{a}^{-}(n): x_{n}(t) \leq x(t)-\varepsilon\right\} \rightarrow 0 & (n \rightarrow \infty) \\
\mu\left\{t \in F_{b}^{+}(n): x_{n}(t) \geq x(t)+\varepsilon\right\} \rightarrow 0 & (n \rightarrow \infty)
\end{array}
$$

whence

$$
\limsup _{n \rightarrow \infty} \int_{E \cup F_{a}^{-}(n) \cup F_{b}^{+}(n)} M\left(x_{n}(t)\right) d \mu \geq \limsup _{n \rightarrow \infty} \int_{E \cup F_{a}^{-}(n) \cup F_{b}^{+}(n)} M(x(t)) d \mu .
$$

Consider the case $\mu\left(F_{b}^{+}(n) \cup F_{b}^{-}(n)\right)=0 \quad(n=1,2, \ldots)$. From

$$
\limsup _{n \rightarrow \infty} \int_{E \cup F_{a}^{-}(n)} M\left(x_{n}(t)\right) d \mu \geq \limsup _{n \rightarrow \infty} \int_{E \cup F_{a}^{-}(n)} M(x(t)) d \mu
$$

and $R_{M}\left(x_{n}\right) \rightarrow 1=R_{M}(x)$, it follows that

$$
\liminf _{n \rightarrow \infty} \int_{F_{a}^{+}(n)} M\left(x_{n}(t)\right) d \mu \leq \liminf _{n \rightarrow \infty} \int_{F_{a}^{+}(n)} M(x(t)) d \mu
$$

thus

$$
\liminf _{n \rightarrow \infty} \int_{F_{a}^{+}(n)}\left(M\left(x_{n}(t)\right)-M(x(t))\right) d \mu=0
$$

so for any $\varepsilon>0$

$$
\mu\left\{t \in F_{a}^{+}(n): x_{n}(t) \geq x(t)+\varepsilon\right\} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Combining the above, we have $x_{n}-x \xrightarrow{\mu} 0$ on $E \cup F_{a}^{-}(n) \cup F_{a}^{+}(n)=G$.
Consider the case of $\mu\left(F_{a}^{+}(n) \cup F_{a}^{-}(n)\right)=0 \quad(n=1,2, \ldots)$ and $M \in \nabla_{2}$. We first prove that $\lim _{\mu e \rightarrow 0} \sup _{n} \int_{e} M\left(x_{n}(t)\right) d \mu=0$. Suppose that there exist $\varepsilon>0$ and $e_{n} \subset G$ with $\mu e_{n} \searrow 0$ such that $\int M\left(x_{n}(t)\right) d \mu \geq \varepsilon$.

Take $c>0$ small enough, $M(c) \mu G<\varepsilon / 2$, denote $e_{n}^{\prime}=\left\{t \in e_{n}:\left|x_{n}(t)\right| \geq c\right\}$. Then

$$
\begin{aligned}
\int_{e_{n}^{\prime}} M\left(x_{n}(t)\right) d \mu & =\int_{e_{n}} M\left(x_{n}(t)\right) d \mu-\int_{e_{n} \backslash e_{n}^{\prime}} M\left(x_{n}(t)\right) d \mu \\
& \geq \varepsilon-M(c) \mu G \geq \frac{\varepsilon}{2}
\end{aligned}
$$

Combining $M \in \nabla_{2}$, for $\tau, \delta>0$, while $u \geq c, M\left(\frac{u}{1+\tau}\right) \leq(1-\delta) \frac{M(u)}{1+\tau}$ whence

$$
\begin{aligned}
1 & \leftarrow \\
\leq & R_{M}\left(\frac{x_{n}+x}{2}\right)=R_{M}\left(\frac{x_{n}+x}{2} \chi_{G \backslash e_{n}^{\prime}}\right)+R_{M}\left(\frac{x_{n}+x}{2} \chi_{e_{n}^{\prime}}\right) \\
\leq & \frac{R_{M}\left(x_{n} \chi_{G \backslash e_{n}^{\prime}}\right)+R_{M}\left(x \chi_{G \backslash e_{n}^{\prime}}\right)}{2}+\int_{e_{n}^{\prime}} M\left(\frac{1+\tau}{2} \frac{x_{n}(t)}{1+\tau}+\frac{1-\tau}{2} \frac{x(t)}{1-\tau}\right) d \mu \\
& +\frac{1-\tau}{2} \int_{e_{n}^{\prime}} M\left(\frac{x(t)}{1-\tau}\right) d \mu \\
\leq & \frac{R_{M}\left(x_{n} \chi_{G \backslash e_{n}^{\prime}}\right)+R_{M}\left(x \chi_{G \backslash e_{n}^{\prime}}\right)+R_{M}\left(x \chi_{G \backslash e_{n}^{\prime}}\right)}{2}+\frac{1+\tau}{2} \int_{e_{n}^{\prime}} M\left(\frac{x_{n}(t)}{1+\tau}\right) d \mu \\
& +\frac{1-\tau}{2} \frac{1-\delta}{1+\tau} \int_{e_{n}^{\prime}} M\left(x_{n}(t)\right) d \mu \\
\leq & \frac{R_{M}\left(x_{n} \chi_{\left.G \backslash e_{n}^{\prime}\right)+R_{M}}^{1-\tau} \chi_{e_{n}^{\prime}}\right)}{2}\left(x \chi_{\left.G \backslash e_{n}^{\prime}\right)}^{2}+\frac{1-\tau}{2} o\left(\mu e_{n}^{\prime}\right)+\frac{R_{M}\left(x_{n} \chi_{e_{n}^{\prime}}\right)}{2}-\frac{\delta \varepsilon}{4}\right. \\
\leq & \frac{R_{M}\left(x_{n}\right)+R_{M}(x)}{2}-\frac{\delta \varepsilon}{4}+o\left(\mu e^{\prime}\right) .
\end{aligned}
$$

If $n \rightarrow \infty$, it gives a contradiction: $1 \leq 1-\delta \varepsilon / 4$. So we get

$$
\limsup _{n \rightarrow \infty} \int_{E \cup F_{b}^{+}(n)} M\left(x_{n}(t)\right) d \mu=\limsup _{n \rightarrow \infty} \int_{E \cup F_{b}^{+}(n)} M(x(t)) d \mu
$$

hence

$$
\liminf _{n \rightarrow \infty} \int_{F_{b}^{-}(n)} M\left(x_{n}(t)\right) d \mu=\liminf _{n \rightarrow \infty} \int_{F_{b}^{-}(n)} M(x(t)) d \mu
$$

From $\liminf _{n \rightarrow \infty} \int_{F_{b}^{-}(n)}\left(M(x(t))-M\left(x_{n}(t)\right)\right) d \mu=0$, it follows that $x_{n}-x \xrightarrow{\mu} 0$ on $F_{b}^{-}(n)$, and consequently $x_{n}-x \xrightarrow{\mu} 0$ on G.

By an analogous argumentation, we get the same result for Orlicz sequence spaces.

Theorem 2

Let $x \in S\left(l_{M}\right)$. Then x is a $W^{*} U R P$ point if and only if
(1) there is $\tau>0, R\left(\frac{x}{1-\tau}\right)<\infty$
(2) if there is " i ", $|x(i)| \in(a, b]$, then $M \in \nabla_{2}$ and there is no " j ", $j \neq i$ with $|x(j)| \in[c, d)$, where $[a, b]$ and $[c, d]$ are affine segments of $M(\cdot)$.

References

1. T. Wang, Z. Ren and Y. Zhang, On UR point and WUR point of Orlicz spaces, J. Math. $\mathbf{1 3}$ (1993), 443-452.
2. Y. Li, Lee Pengyee, T. Wang, On UR point and WUR point of Orlicz sequence spaces, Ann. Math. Res. 27 (1994).
3. M.A. Krasnoselskii and Ya. B. Rutiskii, Convex function and Orlicz spaces, Groningen 1961.
