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Abstract

A necessary and sufficient condition is given for a r.i. function space to contain
a complemented isomorphic copy of �1(�2).

1. Introduction

In the paper [3] was investigated the existence of complemented copies of the space
�2 in rearrangement invariant (“r.i”) function spaces. We showed in particular that
if the r.i. space X does not contain a subspace isomorphic to c0, then it contains a
complemented copy of �2 iff either it contains a complemented sublattice isomorphic
to �2 or X and its Köthe dual X ′ both contain a Gaussian variable. In the same
paper was also investigated the existence of an isomorphism between X and its
Hilbert-valued extension X(�2) (which is in fact equivalent to the existence of a
complemented copy of X(�2) in X), in the case where X is a q-concave (q < 2) r.i.
function space over I = [0, 1]. In this case, a necessary and sufficient condition is that
the multiplication operator MG:L0(I) → L0(I × I), f �→ f ⊗G operates from X ′(I)
into X ′(I × I) (where G is a normal Gaussian variable and f ⊗G(s, t) = f(s)G(t)).

Here we are interested in the existence of a complemented copy of the space
�1(�2) in X. When X contains itself �1 as complemented sublattice (which is the
case in particular if simple integrable functions are not dense in X ′), it is clear that
this question is intermediate between the two preceding; thus the criterion we find
is naturally intermediate between the two criterions given above. In the case where
X has finite upper Boyd index, and �1(�2) does not embed in X as complemented
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sublattice, the criterion reduces to the fact that the domain of MG in X ′ is not
included in the closure of simple integrable functions.

We state now our main results.

Proposition 1

Let X be a rearrangement invariant function space over (Ω,A, µ), not containing

c0. Suppose that X does not contain �1(�2) as complemented sublattice. Then X

contains �1(�2) as complemented subspace iff there exist disjoint functions Ai, i ≥ 1
in X+(Ω) and an element B ≥ 0 in the Köthe dual X ′(Ω), such that, denoting by

G a normal Gaussian variable defined on the auxiliary probability space (S,Σ, σ),
i) ∀ ≥ 1, ‖Ai ⊗G‖X = 1 = 〈Ai, B〉 and

ii) B ⊗G belongs to X ′(Ω × S).

Corollary 2

Suppose that X satisfies the hypotheses of Proposition 1 and, moreover, has

finite upper Boyd index. Then a necessary and sufficient condition for X to contain

�1(�2) as complemented subspace is the existence of an element B of X ′ which is

not in the closure of the space of simple integrable functions but such that B ⊗ G

still belongs to X ′(Ω × S).

We give now some definitions.
If X is a r.i. space over I = [0,m] and (Ω,A, µ) is a measure space with µ(Ω) = m

(possibly infinite), we denote by X(Ω,A, µ) the space of measurable functions over
(Ω,A, µ) whose non-increasing rearrangement is in X = X(I).

We say that a bounded sequence (xn)n in the r.i. space X is X-equiintegrable

if the following conditions are satisfied:

i) lim
µ(A)→0

sup
n

‖1Axn‖X = 0 ii) inf
µ(A)<∞

sup
n

‖1Acxn‖X = 0

where Ac denotes the complementary set of A.
We say that a sequence (xn)n converges weakly conditionally in distribution

(in short “wcd”) if there exists a measurable function Y ∈ L0(Ω × S), defined on a
superspace of measure (Ω×S,A⊗Σ, µ⊗σ) (where σ is a probability measure) such
that for every µ-integrable subset U of Ω, and every bounded continuous function
ϕ on R,

∫
U
ϕ(xn)dµ −−−→

n→∞

∫
U×S

ϕ(Y )dµdσ.

We say that Y is conditionally Gaussian (r.r. to the first variable) iff for µ-
a.e. ω ∈ Ω, the partial function Yω = Y (ω, ·) has Gaussian probability distribution
(hence is equimeasurable with A(ω)G(·), where G is a normal gaussian variable).
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The main tool used here (as in [3]) is the following: for every �2-basic sequence
(xn)n in L1(Ω), there exists a sequence of successive normalized blocks (yn) build
on the xn which converges wcd to a conditionally Gaussian variable. This is for
instance a consequence of [1] and [4], as noticed in [5].

In section 2 below, we prepare the proof of Proposition 1 by several technical
lemmas. The proof of Proposition 1 itself and of its corollary are given in section 3.

Unexplained notions or facts about r.i. spaces can be found in [2], which we
follow in particular for the precise definition of r.i. spaces ([2], 2a1).

2. Some technical lemmas

The first lemma is a refinement of Lemma 10 of [3]:

Lemma 3
Let X be a r.i. function space not containing c0 and (xj,n)j,n∈N be a system

of elements of X such that for each j ∈ N, the sequence (xj,n)n is X-equiintegrable
and converges wcd to a conditionally Gaussian variable. Then for each j there is a
subsequence (x

j,n
(j)
�

)� such that for every finite system (λj,�) of reals:∥∥∥∥∑
j,�

λj,�xj,n
(j)
�

∥∥∥∥ ∼
1+ε

∥∥∥∥∑
j

( ∑
�

|λj,�|2
)1/2

x
j,n

(j)
�

∥∥∥∥. (1)

Moreover we can choose these subsequences such that each Fj = span[x
j,n

(j)
�

]� has

X-equiintegrable unit ball, and every weakly null subsequence of Fj converges wcd
to a conditionally Gaussian variable.

Proof. We have xj,n
wcd−−−→

n→∞
Aj ⊗ Gj ∈ X(Ω × S), where we may suppose the Gj

to be independent. We suppose that L0(S) contains a sequence (G′
j) of Gaussian

variables which are independent and independent of the Gj . We fix a sequence of
positive reals εj with ε =

∑
j

εj . Suppose we have chosen the n
(j)
� , with j, � ≥ 1 and

j + � ≤ m, verifying:

Hm



For every system (λj , �) with j ≥ 1, � ≥ 1 and j + � ≤ m
and every sequence (ρj), j ≤ m:∥∥∥∥ ∑

j,�≥1
j+�≥m

λj,�xj,n
(j)
�

+
m∑
j=1

ρjAj ⊗Gj

∥∥∥∥
−

∥∥∥∥ m∑
j=1

(m−j∑
�=1

|λj,�|2 + |ρj |2
)1/2

Aj ⊗Gj

∥∥∥∥ ≤
m∑
j=1

εj .
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Then we have for every systems (λj,�)j,�≥1,j+�≤m+1 and (ρj)j≤m+1:

un1,n2,...,nm

(
(λj,�), (ρj)

)
:=

∑
j,�≥1

j+�≤m

λj,�xj,n
(j)
�

+
m∑
j=1

λj,m+1−jxj,nj

+
m+1∑
j=1

ρjAj ⊗Gj

wcd−→
nm→∞;nm−1→∞;...n1→∞

∑
j,�≥1

j+�≤m

λj,�xj,n
(j)
�

+
m∑
j=1

λj,m+1−jAj ⊗G′
j

+
m+1∑
j=1

ρjAj ⊗Gj

dist∼
∑
j,�≥1

j+�≤m

λj,�xj,n
(j)
�

+
m+1∑
j=1

(|λj,m+1−j |2 + |ρj |2)1/2Aj ⊗Gj

=: u∞
(
(λj,�), (ρj)

)
.

Hence we deduce the convergence a.e. of the rearrangements:

un1,n2,...,nm

(
(λj,�), (ρj)

)∗ → u∞
(
(λj,�), (ρj)

)∗
. (2)

As in the proof of Lemma 10 in [3], using the order-continuity of X, we deduce the
convergence of:

Fn1,n2,...,nm

(
(λj,�), (ρj)

)
:=

∥∥∥∥ ∑
j,�≥1

j+�≤m

λj,�xj,n
(j)
�

+
m∑
j=1

λj,m+1−jxj,nj

+
m+1∑
j=1

ρjAj ⊗Gj

∥∥∥∥
X

to

F∞
(
(λj,�), (ρj)

)
:=

∥∥∥∥ ∑
j,�≥1

j+�≤m

λj,�xj,n
(j)
�

+
m+1∑
j=1

(|λj,m+1−j |2

+ |ρj |2)1/2Aj ⊗Gj

∥∥∥∥
X
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and by Ascoli’s theorem, this convergence is uniform on each set

{m+1∨
j=1

(m+1−j∑
�=1

|λj,�|2 + |ρj |2
)1/2

≤ K

}
.

Hence we can choose n
(1)
m , n

(2)
m−1, . . . , n

(m)
1 such that:∣∣∣Fn

(1)
m ,n

(2)
m−1,...,n

(m)
1

(
(λj,�), (ρj)

)
− F∞

(
(λj,�), (ρj)

)∣∣∣ ≤ εm+1

uniformly on the set{
(λj,�), (ρj) :

∥∥∥∥m+1∑
j=1

m+1−j∑
�=1

(|λj,m+1−j |2 + |ρj |2)1/2Aj ⊗Gj

∥∥∥∥
X

≤ 1

}
.

Together with (Hm) we obtain (Hm+1). The subsequences (x
j,n

(j)
�

)� we obtain satisfy
then the equivalence (1) (take m sufficiently large and ρj = 0 in (Hm)).

Finally the assertions about equiintegrability and wcd convergence of blocks
are also a consequence of the convergence of rearrangements (2) (see [3] for more
details). �

Lemma 4

Let X be a r.i. space over (Ω,A, µ), not containing c0. If X contains �1(�2)
as complemented subspace, but not as complemented sublattice, then X(Ω × [0, 1])
contains a complemented subspace with a �1(�2)-basis of the form (Aj ⊗ Gn

j )j,n≥1,

where Aj ∈ L+
0 (Ω) and the Gn

j ∈ L0([0, 1]) are independent Gaussian variables.

Proof. A) Let E be a complemented subspace of X, isomorphic to �1(�2); write
E = ⊕jEj , where the “fibers” Ej are isomorphic to �2, and the direct sum is a
�1 sum: for every finite sequence (xj)j , xj ∈ Ej , we have ‖∑

j

xj‖ ∼ ∑
j

‖xj‖. We

remark first that for all but a finite numbers of indices j, there exists a subset Uj of
Ω, of finite µ-measure, such that the X-norm and the L1(Uj)-norm are equivalent
on Ej (these equivalence need not be uniform with respect to j).

For, if not we have an infinite subset J of N, such that for each j ∈ J , and
every µ-finite subset U of Ω, the L1(U)-norm and the X-norm are not equivalent
on Ej . It is then easy to find, for each j, a normalized sequence (fj,n)n in Ej which
is weakly null and converges to 0 locally in measure. It follows that this sequence
is quasidisjoint for both the lattice structures of X and of Ej (this last one being
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given by the isomorphism with �2), i.e. fj,n − gj,n −−−→
n→∞

0 and fj,n − hj,n −−−→
n→∞

0,

where (gj,n)n is disjoint in X and (hj,n)n is disjoint in Ej w.r. to the �2-basis. Then
(hj,n)j∈J,n∈N is a �1(�2)-basic sequence, spanning a complemented subspace of X. If
we suppose, as we may, that: ‖hj,n−gj,n‖X ≤ ε2−(j+n), then by Bessaga-PeClczyński
perturbation principle the same holds for the doubly indexed sequence (gj,n)j∈J,n∈N,
providing a complemented sublattice of X isomorphic to �1(�2), a contradiction.

B) From now on we suppose that J = N. There exists for each j a normalized
sequence (xj,n)n in Ej which converges wcd on Uj to a conditionally Gaussian vari-
able. This can be done in fact on every U ⊃ Uj (since the L1(U) and the X-norm are
still equivalent on Ej), hence by a diagonal argument we can obtain this wcd con-
vergence on the whole of Ω. Now the subspace Fj = span[xj,n] is C-complemented
in the hilbertian space Ej (with C independent from j), hence F = ⊕Fj is com-
plemented in E. Thus we suppose from now on that E has a �1(�2)-basis (xj,n)j,n
such that for every j, the sequence (xj,n)n converges wcd to a conditionally gaussian
variable.

Now using a “subsequence splitting lemma” (see [6] for instance), after extrac-
tion, we may decompose: xj,n = x′

j,n + x′′
j,n, where x′

j,n ⊥ x′′
j,n, the sequence (x′

j,n)n
is X-equiintegrable and the sequence (x′′

j,n)n is disjoint. We have for all fixed j

two operators S′
j and S′′

j :Ej → X, such that S′xj,n = x′
j,n and S′′xj,n = x′′

j,n and
which are uniformly bounded (w.r. to j). Since E = ⊕Ej is a �1-direct sum (up
to isomorphism), we deduce the existence of two bounded operators S′, S′′:E → X,
whose restriction to each subspace Ej are respectively S′

j and S′′
j .

C) Let P be a projection from X onto E. For each j, n, we denote by Ej,n the
closed span of (xj,m)m>n.

We claim that for all but a finite number of indices j, there exist a positive real
σj and an integer Nj such that:

∀y ∈ Ej,Nj
, ‖PS′y‖ ≥ σj‖y‖.

For, if not, there exist an infinite subset J of N, and for all j ∈ J a sequence yj,n in
Ej , such that:

‖uj,n‖ = 1, yj,n
w−−−→

n→∞
0 and ‖PS′yj,n‖ −−−→

n→∞
0 .

We can suppose that ‖PS′yj,n‖ ≤ ε2−(j+n). After extraction, the doubly indexed
sequence (yj,n)j,n is equivalent to the �1(�2) basis and spans a 2-complemented
subspace F of E. Let Q be a projection from E onto F with ‖Q‖ ≤ 2. Since
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yj,n − QPS′′yj,n = QPS′
j,n, we see that J = QPS′′ is an isomorphism of F ; S′′F

is isomorphic to F and complemented in X (by S′′J−1QP ). Thus (S′′yj,n)j,n spans
a complemented �1(�2) subspace of X. For each j, (y′′j,n)n is a disjoint sequence.
Using the order continuity of X and the Bessaga-PeClczyński perturbation principle,
we deduce that �1(�2) embeds as complemented sublattice in X, a contradiction.

D) We want now to extract subsequences (x
j,n

(j)
�

)∞�=1 such that for some δ > 0
and every element y of the closed span F of (x

j,n
(j)
�

)j,�, one has ‖S′y‖ ≥ δ‖y‖.
(It will be also useful for the sequel that the unit ball of each closed subspace F ′

j

generated by the sequence (x′
j,n

(j)
�

)� is X-equiintegrable, and that every weakly null

sequence in F ′
j converges wcd to a conditionally Gaussian variable).

Using Lemma 3, we can extract subsequences (x
j,n

(j)
�

)∞�=1 such that:

∥∥∥ ∑
j,�

x′
j,n

(j)
�

∥∥∥
X

∼
1+ε

∥∥∥ ∑
j

( ∑
�

|λj,l|2
)1/2

x′
j,n

(j)
�

∥∥∥
X

. (3)

Relabeling, in order to simplify notations, we can suppose n
(j)
� = �(∀j, �). If

(x′
j,1)

∞
j=1 is not equivalent to the �1-basis, there exist �1-normalized blocks yp =∑

j∈Jp

αjx
′
j,1, (

∑
j∈Jp

|αj | = 1) such that ‖yp‖ −−−→
p→∞

0. Supposing ∀p, ‖yp‖ ≤

ε
∥∥ ∑

j∈Jp

αjxj,1

∥∥, and setting: zp,� =
∑

j∈Jp

αjxj,�, we obtain for every finite sys-

tem of scalars (λp,�):∥∥∥ ∑
p,�

λp,�PS′zp,�
∥∥∥≤ (1 + ε)‖P‖

∥∥∥ ∑
p

( ∑
�

|λp,�|2
)1/2

yp

∥∥∥
≤ ε(1 + ε)‖P‖

∑
p

( ∑
�

|λp,�|2
)1/2 ∥∥∥ ∑

j∈Jp

αjxj,1

∥∥∥≤ Cε(1 + ε)‖P‖
∥∥∥ ∑

p,�

λp,�zp,�

∥∥∥
where C is the equivalence constant of (xj,�) with the basis of �1(�2). Hence for
small ε, the operator (I − PS′) = PS′′ is an isomorphism from Z = span[zp,�] onto
its image. In particular, S′′Z and PS′′Z are isomorphic to �1(�2). The subspace
PS′′Z, being a copy of �1(�2) in the space E, which is itself isomorphic to �1(�2),
contains a further subspace G, which is isomorphic to �1(�2), build on a subset of
the �1(�2)-basis of PS′′Z, and complemented in E. Let Z1 = (PS′′)−1(G), and Q

be a projection of E onto G. Let J = P|S′′Z1
. Then J−1QP is a projection from

X onto S′′Z1, which proves that X contains a complemented �1(�2) sublattice, a
contradiction.



254 Raynaud

Hence in fact the sequence (x′
j,1)j is equivalent to the �1-basis, which implies

by (3) that (x′
j,�) is equivalent to the �1(�2)-basis (and S′ is an isomorphism on its

range).

E) From now on we suppose that ‖S′y‖ ≥ δ‖y‖ for y ∈ E, and we prove
now the existence of a closed subspace F of E, generated by a system of block
sequences (yj,�)� of the (xj,�)�(j ∈ N), on which PS′ is an isomorphism, i.e.
∀y ∈ E, ‖PS′y‖ ≥ ρ‖y‖. Since the subspace PS′Ej is hilbertian by the point C)
above, so is the subspace S′PS′Ej (S′ being an isomorphism), and we can find ap-
propriate normalized successive blocks (yj,�)� on each sequence (xj,�)� such that the
sequence (S′PS′yj,�)� converges wcd to a (nonzero) conditionally Gaussian variable.
By Lemma 3, we can suppose that:∥∥∥ ∑

j,�

λj,�S
′PS′yj,�

∥∥∥ ∼
1+ε

∥∥∥ ∑
j

( ∑
�

|λj,�|2
)1/2

S′PS′yj,1
∥∥∥

hence, using again the fact that S′ is an isomorphism, we have:∥∥∥ ∑
j,�

λj,�PS′yj,�
∥∥∥ ∼

1+ε

∥∥∥ ∑
j

( ∑
�

|λj,�|2
)1/2

PS′yj,1
∥∥∥

and, reasoning as in the point D above (using PS′ = I − PS′′ on E), this implies
that (PS′yj,1)j is equivalent to the �1-basis, hence:∥∥∥ ∑

j,�

λj,�S
′PS′yj,�

∥∥∥∼ ∑
j

( ∑
�

|λj,�|2
)1/2

.

F) Let Y = span[yj,�]j,�. The subspace PS′(Y ), being a �1(�2)-subspace of the
�1(�2)-subspace E, contains a subspace G which is isomorphic to �1(�2), comple-
mented in E and spanned by a subset of the PS′yj,�. Set Z = (PS′)−1(G): then
S′Z is a subspace of X isomorphic to �1(�2) and complemented in X. Note that
the basis zi,m of S′Z is a subset of the basis of S′Y : zi,m = S′yj(i),�(i,m), hence each
sequence (zi,m)m is X-equiintegrable and converges wcd to a conditionally Gaussian
variable.

G) We have thus reduced the situation to the case where the elements (xj,n)j,n
of a �1(�2) basis (spanning a complemented closed subspace of X) are, for each fixed
j, X-equiintegrable and converging wcd to a conditionally Gaussian variable.

Now we apply the ultrapower procedure of the §3 in [3]. We have for every dou-
bly indexed finite set of natural numbers S = (n(j, �))1≤j,l≤k a projection πS :X →
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span [xj,n(j,�)]1≤j,�≤k with norm bounded by a constant K (independent of S). Let
U be a free ultrafilter over N. Passing to the ultrapower X̃ (of X) relative to the
iterated limit:

lim
k,U

lim
n(k,k),U

. . . lim
n(k,1),U

lim
n(k−1,k),U

. . . lim
n(1,1),U

we obtain a doubly indexed sequence (ξj,n)j,n≥1 in X̃, which is equivalent to the
�1(�2)-basis, and a bounded projection π: X̃ → span[ξj,n]j,n. Moreover the ξj,n lie in
fact in X̃eq, the subspace of X̃ whose elements can be defined by X-equiintegrable
families of elements of X, since for each j, the sequence (xj,n)n is in fact X-
equiintegrable. It is known that X̃eq identifies to a space X(Ω̃, Ã, µ̃), the measure
space (Ω,A, µ) identifying to that generated by a sub-σ-algebra in (Ω̃, Ã, µ̃) ([6]).
The conditional distribution of the elements ξj,n, w.r. to the initial σ-field A is
the same as the limit conditional distribution of the xj,n, i.e. that of a sequence
Aj ⊗Gn

j in X(Ω× [0, 1]), where the Aj are nonnegative, A-measurable, and the Gn
j

are independent normal Gaussian variables in [0, 1].
The last point is to use a transformation of the measure algebra (Ã, µ̃) con-

serving the measure, leaving the elements of A invariant and carrying each ξj,n on
Aj ⊗ Gn

j , where Aj is A-measurable, and Gn
j are normal Gaussian variables inde-

pendent of A. That such a transformation exists, at least after enlarging (Ã, µ̃) is
an easy measure-theoretic exercise. �

Lemma 5

Let X be a r.i. space not containing c0 and (xn)n a basic sequence in

X , equivalent to the �1-basis. There exists a sequence of �1-normalized suc-

cessive blocks fi build on the sequence (xn) , which is quasidisjoint in X (i.e.

∀i, ‖|fi| ∧ |fj |‖X −−−→
j→∞

0).

Proof. Passing to a subsequence, we may suppose (by the subsequence splitting
lemma) that we have a decomposition: xn = x′

n + x′′
n, into a X-equiintegrable

part (x′
n)n and a disjoint part (x′′

n)n, with ∀n, x′
n ⊥ x′′

n. Let F = span[xn], F ′ =
span[x′

n], F ′′ = span[x′′
n] and S′:F → F ′, (resp. S′′:F → F ′′) be the bounded linear

operator such that S′xn = x′
n, (resp. S′′xn = x′′

n). If there are no n0 ∈ N and δ > 0
such that ‖S′x‖ ≥ δ‖x‖ for every x ∈ Fn0 = span[xn]n≥no , then there is a sequence
(yn)n of successive normalized blocks on the basis of F such that ‖yn − S′′yn‖ → 0,
hence (yn) is quasidisjoint. If at the contrary ‖S′x‖ ≥ δ‖x‖ for every x ∈ Fn0 ,
then (x′

n)n≥n0 is equivalent to the �1-basis. This implies that the X-norm and the
L1(U)-norm are equivalent on F ′

n0
for no integrable subset U of Ω (since a �1-basic
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sequence in L1(U) cannot be equiintegrable for the norm of L1(U), and a fortiori for
that of X). Hence there exists a sequence of normalized successive blocks on the x′

n

which converges to 0 in measure, hence is quasidisjoint (by order continuity). The
homologous blocks build on the xn are also quasidisjoint. �

Lemma 6

Let X be a r.i. space not containing c0 nor �1(�2) as a complemented sublattice.

If X contains �1(�2) as a complemented subspace, then there exists in the extended

r.i. space X(Ω × S,A⊗Σ, µ ⊗ σ) a �1(�2)-basis (spanning a complemented closed

subspace too) having the form (Aj ⊗Gn
j )j,n, where the Gn

j ∈ L0(S) are independent

normal Gaussian variables, and the functions Aj ∈ L+
0 (Ω) have disjoint supports.

Proof. We start from the elements (Aj ⊗ Gn
j ) given by Lemma 4. By applying

Lemma 5 to the �1-basic sequence (Aj ⊗ G1
j )j , we obtain a quasidisjoint sequence

of successive �1-normalized blocks y� =
∑
j∈J�

αjAj ⊗ G1
j ; due to the symmetry of

the variables G1
j , we may suppose in fact that the αj are nonnegative. We set now:

yn� =
∑
j∈J�

αjAj⊗Gn
j . The doubly indexed sequences (yn� )�,n and (B�⊗Gn

� )�,n, where

B� = (
∑
j∈J�

(αjAj)2)1/2, are equivalent in distribution (in fact, conditionally w.r. to

the first coordinate).
It follows that F = span[B� ⊗Gn

� ] is complemented in X(Ω × S). For, we may
suppose that the variables (Gn

� ) generate the σ-algebra Σ. There exists a measure
presenting set transformation T defined on the A⊗Σ, with µ⊗σ-measurable values,
whose associated isometry T̃ :X(Ω⊗S) → X(Ω×S) maps φ⊗Gn

� onto φ
B�

∑
j∈J�

α�A�⊗

Gn
� , for all φ ∈ L∞(Ω): then T̃ (B� ⊗ Gn

� ) = yn� . The subspace span[yn� ] = T̃F

is complemented in E = span[Aj ⊗ Gn
� ] by the projection Q:

∑
jn

λj,nAj ⊗ Gj,n �→∑
�,n

(
∑
j∈J�

λj,n)y�,n. Since E is itself complemented in X(Ω × S) by a projection P, F

is also complemented by the projection T̃−1QPT̃ .
On the other hand, the sequence (z�)� := (B� ⊗ G1

�)� is quasidisjoint in X

(since it is equimeasurable with (y1
� )�). This implies that (z�) converges to zero

locally in measure. Hence (B�) itself goes to zero locally in measure; hence ‖(B� ∧
Bp)⊗G‖ −−−→

p→∞
0 by ordercontinuity, and we can find a disjoint sequence (C�) with

‖(B�−C�)⊗G‖ −−−→
l→∞

0; equivalently, ‖B�⊗G1
� −C�⊗G1

�‖ → 0, and by a standard

reasoning, we deduce that for some subsequence (D�)� of (C�)�, the double sequence
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(D� ⊗Gn
� )�,n is equivalent to the �1(�2)-basis and spans a closed subspace which is

complemented. �

3. Proof of the main results

Proof of Proposition 1. A) We prove first the necessity of the given conditions.
Suppose that X contains �1(�2) as subspace, and let (Aj ⊗Gn

j )j,n be a special
(�1(�2))-basis given by Lemma 6. If P is a projection from X(Ω × S) onto E =
span[Aj ⊗Gn

j ]j,n, we can replace it by another projection Q conserving the support
Uj of each function Aj ; we set simply:

Qf =
∑
j

1Uj
P1Uj

f .

This series is norm-convergent in X, and ‖Qf‖ ≤ ‖P‖‖f‖. For, denote by Sj the
isometry of X defined by: Sjf = 1Ujf − 1Uc

j
f , and define recursively a sequence

(Pn) of projections by: P0 = P, Pj+1 = 1
2 (Pj + SjPjSj). Then ‖Pj‖ ≤ ‖P‖ and

Pnf =
n∑

j=1

1UjP1Ujf + Rnf , with Rnf = 1⋂n

j=1
Uc

j
P1⋂n

j=1
Uc

j
f . Then ‖Rnf‖ ≤

‖1⋂n

j=1
Uc

j
f‖ which goes to zero as n → ∞ when f is supported by the union of

the Uj , by order-continuity of X, and the sequence (Pnf)n is stationary when f

is supported in a finite union of the Uj . Denoting by π the band projection in X

defined by the union of the Uj , this shows that Pnπ −−−→
n→∞

Q (in strong operator

topology).
Now let Qj = 1UjQ1Uj , which acts as a projection from Xj = X(Uj × S) onto

Ej = span[Aj ×Gn
j ]n≥1. By [3] §2, there is another projection Rj :Xj → Ej , having

the form:
Rjf =

∑
n

〈f,Bj ,⊗Gn
j 〉Aj ⊗Gn

j

with Bj ⊗ G ∈ X ′, 〈Aj , Bj〉 = 1 and ‖Rj‖ ≤ ‖Qj‖. More precisely, the proof in [3]
shows that:

∀f ∈ X,
∥∥ Rj1Ujf + 1Uc

j
f

∥∥≤∥∥ Qj1Ujf + 1Uc
j
f

∥∥
hence: ∥∥∥ n∑

j=1

Rj1Ujf + 1⋂n

j=1
Uj

f
∥∥∥≤∥∥∥ n∑

j=1

Qj1Ujf + 1⋂n

j=1
Uj

f
∥∥∥ .
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Note that we may suppose that Bj is supported by Uj , and that Bj ≥ 0 (replacing
if necessary Bj by |Bj |

〈Aj ,|Bj |〉 ). Thus Rf :=
∑∞

j=1 Rj1Uj
f converges in norm and

‖Rf‖ ≤ ‖Qf‖. We have then:

Rf =
∑
j,n

〈f,Bj ⊗Gn
j 〉Aj ⊗Gn

j .

Since (Bj ⊗Gn
j )j,n is biorthogonal with (Aj ⊗Gn

j )j,n, which spans a complemented
�1(�2) subspace, it is a c0(�2)-basis, and in particular:∥∥∥ n∑

j=1

Bj ⊗G1
j

∥∥∥
X′

≤ ‖P‖
∥∥∥ n∑

j=1

Bj ⊗G1
j

∥∥∥
E∗

≤ C‖P‖

but since the Bj are disjoint,
∥∥∥ n∑

j=1

Bj⊗G1
j

∥∥∥
X′

=
∥∥∥ n∑

j=1

Bj⊗G
∥∥∥
X′

(same distribution),

and consequently B ⊗G ∈ X ′, where B =
∞∑
j=1

Bj .

B) Now we prove the sufficiency of the conditions.
Let Ui be the support of Ai and Bi = 1UiB. Then in X ′, the sequence (Bi⊗G)i

is equivalent to the c0 basis, since ‖Bi ⊗ G‖ ≥ 〈Bi ⊗ G,Ai ⊗ G〉 = 〈Bi, Ai〉 = 1,

and ∀n, ‖
n∑

i=1

Bi ⊗G‖ ≤ ‖B ⊗G‖; the biorthogonal sequence (Ai ⊗G)i in X is thus

equivalent to the �1-basis; then F = span[Ai⊗G]i is complemented by the projection
R defined by Rf =

∑
i

〈f,Bi ⊗G〉Ai ⊗G, since:

‖Rf‖ ≤
∑
i

|〈f,Bi ⊗G〉| ≤
∑
i

〈f,Bi ⊗ |G|〉 ≤ f,
〈( ∑

i

Bi

)
⊗ |G|

〉
= 〈f,B ⊗ |G|〉 ≤ ‖f‖X‖B ⊗G‖X′ .

We remark now that the same happens when we replace the Ai ⊗ G by elements
Ai ⊗Gi, where (Gi)i is a sequence of independent normal Gaussian variables. For,
we may suppose that Gi = ZiG, where Zi is an onto isometry of X(S) induced by a
measure preserving set transformation. Let Z̃i = id ⊗ Zi be the natural extensions
of these isometries to X(Ω × S). If f ∈ X(Ω × S), set fi = 1Ui

f and Z̃f =
∑
i

Zifi.

We define Rf =
∑
i

〈f,Bi ⊗Gi〉Ai ⊗Gi. We have then:

Rf =
∑
i

〈fi, Bi ⊗Gi〉Ai ⊗Gi =
∑
i

〈Z̃−1
i fi, Bi ⊗G〉

=
∑
i

〈Z̃−1f,Bi ⊗G〉Ai ⊗Gi
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which is equimeasurable with
∑
i

〈Z̃−1f,Bi ⊗ G〉Ai ⊗ G = R(Z̃−1f); hence ‖R‖ ≤

‖RZ̃−1‖ = ‖R‖.

Finally let (Gi,n)i,n be a doubly indexed sequence of independent normal Gaus-
sian variables. Then (Ai ⊗Gi,n) is equivalent to the �1(�2)-basis. Let us show that
E = span[Ai ⊗Gi,n]i,n is complemented. We set:

Rf =
∑
i,n

〈f,Bi ⊗Gi,n〉Ai ⊗Gi,n .

We have:

Rf =
∑
i

( ∑
n

|〈f,Bi ⊗Gi,n〉|2
)1/2

Ai ⊗Gi

=
∑
i

∑
n

λi,n〈f,Bi ⊗Gi,n〉Ai ⊗Gi

(for some sequence (λi,n) with
∑
n
|λi,n|2 = 1)

=
∑
i

〈
f,Bi ⊗

( ∑
n

λi,nGi,n

)〉
Ai ⊗Gi

=
∑
i

〈f,Bi ⊗ Γi〉Ai ⊗Gi

where the Γi =
∑
n

λi,nGi,n are independent normal Gaussian variables. By the

preceding, we deduce:
‖Rf‖ ≤ ‖f‖X‖B ⊗G‖X′

R is the desired projection. �

Proof of Corollary 2. If X contains �1(�2) as a complemented subspace, let Ai, B be
given by Proposition 1, Ui be the support of Ai, and Bi = 1Ui

B. Then B ∈ X ′(Ω)
and ‖Ai‖X ≤ (E|G|)−1‖Ai ⊗ G‖ = C, hence ‖Bi‖ ≥ 1

C 〈Bi, Ai〉 ≥ 1
C . The order

ideal generated by B in X ′ is thus not order continuous, while the closure SX′ , of
the space of simple integrable functions in X ′ is order continuous (since X ′ �= L∞).
Hence B �∈ SX′ .

Conversely if B ≥ 0 verifies: B ⊗ G ∈ X ′, B �∈ SX′ , there exists a disjoint
sequence (Bi) in X ′

+, which is bounded from below (say ‖Bi‖ ≥ 1), and such that
B =

∨
i

Bi. Let Ai ∈ X+ verify 1 ≤ ‖Ai‖ ≤ (1+ ε)〈Ai, Bi〉, with support included in
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that of Bi. Since X has finite upper Boyd index, we have ‖f ⊗ G‖X ≤ C‖f‖X for
every f ∈ X; in particular:

‖Ai ⊗G‖ ≤ C ′〈Ai, Bi〉 = C ′〈Ai, B〉 .

Since ‖Ai ⊗ G‖ ≥ (E|G|)‖Ai‖ = E|G|, we see that up to a constant factor the
conditions i) and ii) of Proposition 1 are fulfilled. �
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