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Abstract

We show that for a metrizable locally convex space X the following condi-
tions are equivalent: (i) every linearly independent sequence in X has an ω-
independent subsequence; (ii) X contains no subspace isomorphic to ϕ; (iii) X
admits a continuous norm. We also show that a dual Banach space equipped
with the weak∗ topology satisfies (i). Moreover, we are concerned with the
algebraic dimension of closed convex subsets of F -spaces.

1. Introduction

The main body of the paper consists of Sections 4, 5 and 6, which are, as far as the
proofs are concerned, mutually independent. Section 3 contains two lemmas, which
are then applied in Section 4, while Section 2 is entirely devoted to notation and
definitions.

The material of Sections 3–5 has origin in the theorem that a linearly inde-
pendent sequence in a Banach space has an ω-independent subsequence, which is
due essentially to Erdős and Straus [4]. This theorem, clearly, extends to topolog-
ical linear spaces which admit a continuous norm. In the class of locally convex
F -spaces a converse holds, as shown by Kadets [7]. We generalize this equivalence
to the class of metrizable locally convex spaces (Theorem 4 of Section 4). In this
connection, we establish in Sections 3 and 4 some properties of the space ϕ of scalar
sequences with finite support equipped with the product topology. In particular, we
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prove some results on the containment of ϕ in topological linear spaces (Theorems 1
and 3 of Section 4), generalizing the corresponding results on the containment of ω
in F -spaces due to Bessaga, Pe3lczyński and Rolewicz [1], [2].

Section 5 is concerned with a strengthening of the Erdős–Straus theorem to the
effect that a linearly independent sequence in a dual Banach space has a subsequence
which is ω-independent with respect to the weak∗ topology (Theorem 5).

The final Section 6 presents two different proofs of the theorem that the alge-
braic dimension of a closed convex subset of an F -space is either finite or at least
2ℵ0 (Theorem 6). This result will be applied in a forthcoming paper [11].

The author is indebted to M. Wójtowicz for some bibliographical comments.

2. Notation and definitions

Throughout the paper X denotes a real topological linear space. (All the results
remain valid in the case of complex scalars, with occasional obvious changes in the
proofs.) The topological dual of X is denoted by X∗.

If X is assumed metrizable, | · | stands for an F -norm generating the topology
of X such that for all λ, µ ∈ R with |λ| ≤ |µ| and x ∈ X we have |λx| ≤ |µx| (cf.
[15], p. 4 and Theorems 1.1.1 and 1.2.2). If X is a normed space, ‖ · ‖ stands for the
norm in X.

By ω we denote the linear space R
N equipped with the product topology and

by ϕ its subspace consisting of sequences with finite support. (In the older literature
the former space was often denoted by (s).)

Let en stand for an element of ϕ with 1 as the nth term and 0 otherwise. We
call (en) the standard basis of ϕ (and of other sequence spaces containing ϕ).

We set

δ = {(λn) ∈ ω : |λn|1/n → 0} .

This is a subspace of ω, familiar from the theory of power series.
We say that a sequence (xn) in X is ω-independent if for each (λn) ∈ ω with

Σ∞
n=1λnxn = 0 we have (λn) = 0. (In [16], Chapter I, § 6, and [9], [10], the names

ω-linearly independent and topologically linearly independent, respectively, are used
instead.) The notions of c0-, l1- and δ-independence, which we also use below, are
defined analogously.
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3. Two properties of ϕ

We shall establish two auxiliary results to be used in Section 4. Namely, Lemma 1
is an essential ingredient of the proof of Theorem 1(b) while Lemma 2 yields the
implication (ii) ⇒ (iii) of Theorem 4.

Lemma 1

Let σ be a locally convex topology on ϕ strictly stronger than the product

topology. Then there exists a σ-continuous linear functional F on ϕ with F (en) �= 0
for infinitely many n ∈ N.

Proof. By assumption, there is a σ-continuous (homogeneous) seminorm p on σ with
p(en) > 0 for infinitely many n. Consider the quotient mapping Q : ϕ → ϕ/p−1(0).
Clearly, Q(en) �= 0 for infinitely many n. Therefore, we can find a continuous linear
functional G on the normed space ϕ/p−1(0) with G(Q(en)) �= 0 whenever Q(en) �= 0
(see, e.g., [13], Theorem 1). Defining F = G◦Q, we get a functional with the desired
properties. �

The local convexity assumption is essential for the validity of Lemma 1. Indeed,
define an F -norm on ϕ by |(λn)|0 = Σ∞

n=1n
−1|λn|(1+ |λn|)−1, and let σ be the linear

topology on ϕ generated by | · |0 (cf. [2], Example; see Example 1 of Section 4 for a
more sophisticated linear topology on ϕ with the same property).

Lemma 2 improves, in some sense, the result that the linearly independent
sequence (2n, 3n, ...), n ∈ N, in ω has no ω-independent subsequence. The latter
was announced in [17], p. 858, and proved in [7]. It is also a direct consequence of
a result of Kalton (see [8], Corollary to Theorem 6, or [12], Theorem (19.6)). The
proof below is a modification of Kadets’ proof [7].

Lemma 2

The linearly independent sequence xn = (2n, ..., (n + 1)n, 0, 0, ...), n ∈ N, in ϕ

has no δ-independent subsequence.

Proof. Denote by H the locally convex F -space of entire functions on C equipped
with the topology of uniform convergence on compact sets (see, e.g., [12], § 3). Fix
an infinite subset M of N, and set

M = {f ∈ H : f (n)(0) = 0 for n ∈ (N \M) ∪ {0}} .
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Then M is a closed subspace of H ([12], Proposition (3.13)). Define a sequence (Fk)
in M∗ as follows:

Fk(f) = f(k) for k = 1, 2,

Fk(f) = f(k) −
k−2∑
n=1

f (n)(0)
n!

kn for k = 3, 4, ...

We also define a sequence (pk) of continuous seminorms on M by

pk(f) = sup
{
|f(z)| : |z| ≤ k − 1

2

}
for k = 1, 2, ...

Clearly, Fk is continuous with respect to pk+1 but not with respect to pk. By
Eidelheit’s theorem ([3], Satz 2 and Bemerkung 3; see also [15], Theorem 4.4.7, and
[7], Lemma 1), the mapping M � f → (Fk(f)) ∈ C

N is surjective. In particular,
there exists g ∈ M with F1(g) �= 0 and Fk(g) = 0 for k = 2, 3, ... . Let (an) be the
coefficients in the power series representation of g. We have (an) �= 0 and an = 0
for n ∈ (N \M) ∪ {0}. Moreover,

∞∑
n=k−1

an kn = 0 for k = 2, 3, ...

It follows that the sequence xn, n ∈ M , is not δ-independent. �

4. Containment of ϕ and ω-independent subsequences

The following result is basic for the rest of this section. In our proof we apply the
main idea of the proof of Theorem 9 in [2].

Theorem 1

Let X be a topological linear space. If xn ∈ X, xn �= 0, and µnxn → 0 for all

(µn) ∈ ω, then

(a) (xn) has an ω-independent subsequence.

(b) (xn) has a subsequence equivalent to the standard basis of ϕ provided that X

is metrizable or locally convex.
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The assertion of (b) means, by definition, that there exists (xnk
) such that the

mapping which assigns xnk
to ek extends (uniquely) to an isomorphism of ϕ into X.

Proof. We start with establishing the first part of (b). Set

dn = sup{ |λxn| : λ ∈ R} for n = 1, 2, ...

By assumption, dn → 0. Choose n1 < n2 < ... so that dn1 < 1 and dnk+1 < 1
3dnk

.
It follows that Σ∞

l=k+1dnl
< 1

2dnk
for all k ∈ N. In particular, Σ∞

k=1dnk
< ∞.

Define T : ϕ → X by T
(
(λk)

)
= Σ∞

k=1λk xnk
. We claim that T has all the desired

properties.
To show the continuity of T at 0, fix ε > 0, and choose k0 with Σ∞

k=k0+1dnk
< ε

2 .
There exists η > 0 such that |λ| < η implies |λxnk

| < ε/(2k0) for k = 1, ..., k0. It
follows that, given (λk) ∈ ϕ with |λk| < η for k = 1, ..., k0, we have

|T
(
(λk)

)
| ≤

k0∑
k=1

|λkxnk
| +

∞∑
k=k0+1

|λk xnk
| < ε .

To show the remaining properties of T , observe that for every k ∈ N we can
find αk > 0 with

∣∣∣
∞∑
l=k

λl xnl

∣∣∣ > 1
4
dk whenever (λn) ∈ ϕ and |λk| > αk .

Indeed, choose αk > 0 that |λxnk
| > 3

4 dnk
whenever |λ| > αk. Then

∣∣∣
∞∑
l=k

λl xnl

∣∣∣ ≥ |λk xnk
| −

∞∑
l=k+1

|λl xnl
| > 1

4
dnk

whenever |λk| > αk. This observation yields that T−1(0) = {0}. Moreover, it
implies, by induction on k, that if T ((λi

k)) → 0 when i → ∞, where (λi
k) ∈ ϕ, then

λi
k → 0 for all k.

To establish (a) and the second part of (b), assume that X is of countable
dimension, and fix a weaker metrizable linear topology τ on X (see [9], Lemma 3).
Applying the first part of (b) to (X, τ), we get (xnk

) which is ω-independent with
respect to τ , and so with respect to the original topology of X. Thus, (a) holds. The
corresponding isomorphism T of ϕ into (X, τ) yields, in the locally convex situation,
a locally convex topology σ on ϕ stronger than the product topology. Moreover,
µk ek → 0 with respect to σ for all (µk) ∈ ω. Hence, in view of Lemma 1, σ

coincides with the product topology of ϕ, and so T is an isomorphism of ϕ into
X. �
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We shall construct an example to the effect that Theorem 1(b) fails in general
topological linear spaces.

Example 1: Denote by N the set of all strictly increasing functions from N into N.
For f ∈ N and (λn) ∈ ϕ set

|(λn)|f =
∞∑

n=1

1
n

|λf(n)|
1 + |λf(n)|

.

Clearly, | · |f is an F -seminorm on ϕ. Moreover, |µn en|f → 0 for every (µn) ∈ ω.
Let σ be the linear topology on ϕ generated by the family | · |f , f ∈ N . It follows
that (ϕ, σ) and (en) satisfy the assumption of Theorem 1. On the other hand, we
can find 1 = k1 < k2 < ... so that

∣∣∣
ki+1∑
k=ki

ef(k)

∣∣∣
f
≥ 1 for all f ∈ N and i = 1, 2, ...

Thus, the assertion of Theorem 1(b) fails in (ϕ, σ).

Theorem 2

For an arbitrary topological linear space X the following two conditions are

equivalent:

(i) every linearly independent sequence in X has an ω-independent subsequence;

(ii) every linearly independent sequence in X has a c0-independent subsequence.

Proof. Suppose (ii) holds and let (xn) be a linearly independent sequence in X.
In view of Theorem 1(a), it is enough to consider the case where there exists a
neighborhood V of 0 in X and (µn) ∈ ω with µn xn /∈ V for all n. In view of (ii),
we can find (µnk

xnk
) which is c0-independent, and so ω-independent. Hence (xnk

)
is also ω-independent. �

In the case where X is an F -space the next result is due to Bessaga, Pe3lczyński
and Rolewicz ([2], Theorem 9; see also [15], Proposition 4.2.7). In that case X

contains an isomorphic copy of ϕ if and only if it contains an isomorphic copy of ω.

Theorem 3

For a metrizable topological linear space X the following two conditions are

equivalent:

(i) X contains a subspace isomorphic to ϕ;

(ii) for every neighborhood V of 0 in X there exists an x ∈ X with x �= 0 and

{λx : λ ∈ R} ⊂ V .
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In the terminology of [15], p. 196, X satisfying (ii) is said to contain arbitrarily
short lines.

Proof. We only need to show that (ii) implies (i). To this end, let (Vn) be a base
of neighborhoods of 0 in X with V1 ⊃ V2 ⊃ ... . In view of (ii), there exist xn ∈ X

with xn �= 0 and λxn ∈ Vn for λ ∈ R. Hence µn xn → 0 for every (µn) ∈ ω. This
implies (i), by Theorem 1(b). �

We note that the metrizability assumption is essential for the validity of the
implication (ii) ⇒ (i) of Theorem 3. Both examples below are, in fact, locally
convex spaces.

Example 2: Let X be an infinite–dimensional linear space, and denote by X ′ its
algebraic dual. Then

(
X,σ(X,X ′)

)
, clearly, satisfies (ii) but it does not contain an

infinite–dimensional metrizable subspace (see [9], Lemma 2).

Example 3: Let X be an infinite–dimensional normed space equipped with its weak
topology. Then (ii), clearly, holds. On the other hand, for every sequence (xn) in
X with xn �= 0 we can find (µn) ∈ ω so that (µn xn) does not converge weakly to 0.
Therefore, (i) does not hold. The latter also follows by Lemma 2 and [10], Theorem′.

In a special case, Theorem 2 can be improved and completed as follows:

Theorem 4

For a metrizable locally convex space X the following four conditions are equiv-

alent:

(i) every linearly independent sequence in X has an ω-independent subsequence;

(ii) every linearly independent sequence in X has a δ-independent subsequence;

(iii) X contains no subspace isomorphic to ϕ;

(iv) X admits a continuous norm.

Proof. Clearly, (i) implies (ii). In view of Lemma 2, (ii) implies (iii).
Let (pn) be an increasing sequence of seminorms generating the topology of X.

If (iii) holds, then p−1
n (0) = {0} for some n (see Theorem 3, (ii) ⇒ (i)). Thus, (iv)

follows.
Finally, it is a known result that (i) holds for every normed space X (see the

bibliographical comments below), and so (iv) implies (i). �



60 Lipecki

Under the additional assumption that X be complete, in which case X is called
a Fréchet space or a B0-space, the implication (i) ⇒ (iv) is due to Kadets ([7],
Theorem; see also [19], Theorem III). In fact, the stronger implication (ii) ⇒ (iv)
is implicit in his proof. Under the same assumption, the equivalence of (iii) (with
“ω” instead of “ϕ”) and (iv) is due to Bessaga and Pe3lczyński ([1], Corollary 1 and
Lemma 1).

That a normed space X satisfies (i) is due essentially to Erdős and Straus ([4];
see also [17], Theorem III.6.1 and pp. 756 and 857–858). Other proofs have been
given in [5], [10] and [18]. The proof in [5] is, however, distorted by misprints (cf.
[10], Remark 2). In particular, formula (1) thereof should read:

ρn = inf
t∈R

inf
max
k

|αk|≥1

∥∥∥t x0 −
n∑
1

αk xk

∥∥∥ .

This correction has been recently communicated to the author by V. M. Kadets.
We also note that the Erdős–Straus result is strengthened in [10], Theorem′; for a
generalization of the latter see Theorem 5 below.

The metrizability assumption is essential for the validity of the implication
(i) ⇒ (iv) of Theorem 4. Indeed, the spaces considered in Examples 2 and 3 both
satisfy (i). This is clear in the first case and is the content of [10], Theorem′, in the
second case. However, neither of these spaces satisfies (iv).

5. ω-independent subsequences with respect
to the weak∗ topology

The following lemma is a special case of a result of Johnson and Rosenthal ([6],
Theorem III.1 and Remark III.1; cf. also [17], Theorem III.1.5). For the reader’s
convenience we present a proof which is much simpler than the proof of that result
given in [6] or [17].

Lemma 3

Let X be a Banach space and let (x∗
n) be a sequence in X∗ with the following

two properties:

(1) x∗
n → 0 with respect to σ(X∗, X) ,

(2) infn∈N ‖x∗
n‖ > 0 .

Then there exists a subsequence (y∗n) of (x∗
n) and a sequence (yn) in X such that

y∗n(ym) = δnm for all n, m ∈ N with n ≤ m. In particular, (y∗n) is ω-independent

with respect to σ(X∗, X).
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The sequences in question are easily constructed, by induction, with the help
of the following sublemma.

Sublemma
Under the assumptions of Lemma 3, there exist (x∗

nk
) and x ∈ X with x∗

n1
(x) =

1 and x∗
nk

(x) = 0 for k = 2, 3, ...

Proof. We begin with establishing the following property of (x∗
n): for every closed

subspace X1 of X of finite codimension there exists m ∈ N with infn≥m ‖x∗
n|X1‖ > 0.

To this end, let P be a projection of X onto X1. Then, by (1), we have ‖x∗
n(I−P )‖ →

0. Moreover,
‖x∗

n‖ − ‖x∗
n(I − P )‖ ≤ ‖x∗

nP‖ ≤ ‖P‖ ‖x∗
n|X1‖ .

Therefore, (2) yields the property in question.
We shall now choose n1 < n2 < ... and xk ∈ X with x∗

n1
(x1) = 1 and, for

k = 2, 3, ...,

x∗
ni

(xk) = 0 whenever i < k, ‖xk‖ ≤ 1
(k + 1)2

and x∗
nk

( k∑
i=1

xi

)
= 0 .

Let n1 = 1, and take x1 ∈ X with x∗
n1

(x1) = 1. Suppose now that n1 < ... < nk

and x1, ..., xk ∈ X with the desired properties have been already defined. Set

X1 = {x ∈ X : x∗
ni

(x) = 0 for i = 1, ..., k} .

By what we have established in the first part of the proof and (1), there exists
nk+1 > nk with

∣∣∣x∗
nk+1

( k∑
i=1

xi

)∣∣∣ < 1
(k + 1)2

∥∥x∗
nk+1

∣∣X1

∥∥ .

Hence we can find xk+1 ∈ X1 so that

∥∥xk+1

∥∥ ≤ 1
(k + 1)2

and x∗
nk+1

(xk+1) = −x∗
nk+1

( k∑
i=1

xi

)
.

It follows that (x∗
nk

) and x = Σ∞
k=1xk satisfy the assertion. �

Since, for every normed space X, we can identify
(
X,σ(X,X∗)

)
with a subspace

of
(
X∗∗, σ(X∗∗, X∗)

)
, the next result generalizes [10], Theorem′.

Theorem 5
If X is a Banach space, then every linearly independent sequence (x∗

n) in X∗

has a subsequence which is ω-independent with respect to σ(X∗, X).
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Proof. We first assume additionally that X is separable. Then, as well known, the
unit ball of X∗ is weak∗ compact and metrizable. We may also confine ourselves to
the case where ‖x∗

n‖ = 1 for all n, and so assume that (x∗
n) is weak∗ convergent.

According as the limit is 0 or not, the assertion now follows from Lemma 3 above
or [10], Theorem (a).

In the general case, we can find a separable closed subspace X0 of X such that
(x∗

n|X0) is linearly independent. Indeed, choose xn ∈ X so that, for all n,

x∗
n(xn) = 1 and x∗

i (xn) = 0 for i = 1, ..., n− 1

(cf. [15], Lemma 5.2.2), and let X0 be the closed linear span of (xn) in X. Applying
the already established special case of the theorem to X0 and (x∗

n|X0), we easily get
the assertion. �

The following simple example shows that the completeness assumption on X in
Theorem 5 in essential.

Example 4: Let X be the subspace of c0 algebraically identical with ϕ. Then
(X∗, σ(X∗, X)) is isomorphic to l1 equipped with the product topology. Therefore,
in view of Lemma 2, it does not satisfy the assertion of Theorem 5.

We also note that there exist dual Banach spaces in which ω-independence with
respect to the weak∗ topology is strictly stronger than that with respect to the weak
topology.

Example 5: (cf. [16], Example I.13.3, and [10], p. 96): Let X = c0, and set
x∗
n = en−en−1, where e0 = 0 and (en) is the standard basis of l1. Then Σ∞

n=1x
∗
n = 0

with respect to σ(l1, c0). On the other hand, (x∗
n) is ω-independent with respect to

σ(l1, l∞). Indeed, setting

x∗∗
1 = (1, 1, ...) and x∗∗

n+1 = x∗∗
1 −

n∑
k=1

ek for n = 1, 2, ... ,

we have x∗∗
n (x∗

m) = δnm for all n,m ∈ N. (In fact, (x∗
n) is a Schauder basis

of l1.)
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6. Dimension of closed convex sets in F -spaces

By the dimension of a subset W of a linear space Y we mean below the algebraic
dimension of lin W , the linear span of W in Y .

The second part of the next result extends a classical theorem that the dimen-
sion of an F -space is either finite or at least 2ℵ0 (see [9], Corollary 2, for a proof and
more references).

Theorem 6

Let X be an F -space and let W be a closed convex subset of X with dim W ≥
ℵ0. Then there exists a continuous injective linear operator T : l1 → lin W . In

particular, dim W ≥ 2ℵ0 .

Proof. By taking a translate of W , we may assume that 0 ∈ W . Then tW ⊂ W

for 0 ≤ t ≤ 1, so that we can find a linearly independent sequence (xn) in W with
Σ∞

n=1|xn| < ∞. In view of [9], Proposition 3, we may also assume that (xn) is l1-
independent. Define T

(
(λn)

)
= Σ∞

n=1λnxn for (λn) ∈ l1. Clearly, T is an injective
linear operator and

T
({

(λn) ∈ l1 :
∞∑

n=1

∣∣λn

∣∣ ≤ 1
})

⊂ W −W .

Moreover, T is easily seen to be continuous.
Since dim l1 = 2ℵ0 (see, e.g., [9], Corollary 2), the second assertion follows from

the first one.
We shall give another proof of the second assertion based on a theorem

of Mycielski [14].
Observe first that for every open subset G of X with G ∩W �= ∅ we have that

dim (G ∩ W ) ≥ ℵ0. Indeed, fix w ∈ G ∩ W and a linearly independent sequence
(wn) in W . Choose µn ∈ (0, 1] with µnwn + (1 − µn)w ∈ G for n = 1, 2, ... . Thus,
G ∩W contains a linearly independent sequence.

Define Rn to be the subset of Wn consisting of all linearly dependent
sequences. We claim that Wn \Rn is dense in Wn. Indeed, fix (w1, ..., wn) ∈ Wn

and open subsets G1, ..., Gn of X with wi ∈ Gi for i = 1, ..., n. By the observation
above, we can find (v1, ..., vn) ∈ Wn such that

vi ∈ Gi ∩W and vi /∈ lin {v1, ..., vi−1} for i = 1, ..., n .
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This establishes the claim. Moreover, Rn is closed, since (w1, ..., wn) ∈ Wn is linearly
dependent if and only if there exists (λ1, ..., λn) ∈ R

n with

n∑
i=1

|λi| = 1 and
n∑

i=1

λi wi = 0 .

In sum, Rn is meager in Wn for n = 1, 2, ..., which implies that there exists a
continuous function f from the Cantor set C into W with

(f(c1), ..., f(cn)) /∈ Rn

whenever (c1, ..., cn) is a sequence of distinct elements of C (see [14], Theorem 1).
It follows that dim f(C) = 2ℵ0 . �

We note that the second part of Theorem 6 cannot be reduced directly to its
classical special case where W = X. This is so because lin W need not be closed in
X. In fact, if W is compact, then lin W is meager in X, by a theorem of Riesz.

Postscript. The second part of Theorem 1(b) already appears in Lemma 1 of the
paper by M. A. Simões: Very strongly and very weakly convergent sequences in
locally convex spaces, Proc. Roy. Irish Acad. 84A (1984), 125–132.
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