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EXISTENCE AND UNIQUENESS
OF SOLUTIONS FOR A DEGENERATE
QUASILINEAR PARABOLIC PROBLEM

MAURIZIO BADII

Abstract

‘We consider the following quasilinear parabolic equation of degen-
erate type with convection term uy = @(u)zg + b(u)z in (=L, 0) x
(0,T). We solve the associate initial-boundary data problem, with
nonlinear flux conditions. This problem, describes the evaporation
of an incompressible fluid from a homogeneous porous media. The
nonlinear condition in £ = 0, means that the flow of fluid leaving
the porous media depends on variable meteorological conditions
and in a nonlinear manner on u. In £ = —L, we have an imper-
vious boundary. For a sufficiently smooth initial data, one proves
the existence and uniqueness of the global strong solution in the
class of bounded variation functions.

1. Introduction

In this paper we study the existence and uniqueness of solutions for
the following degenerate quasilinear parabolic problem

(1) Ut = ‘P(u).’:z + b(u),;, in (—L,O) X (O:T)
(2)  ©(u(0,t))s + b(u(0,t)) = —v(u(0,t))q(t), forte (0,T)

(3) @(u(—~L,t))s + b(u(—-L,t)) =0, for t € (0,T)

(4) u(z,0) = up(z), in (~L,0).

Partially supported by G.N.A.F.A.-C.N.R. and M.U.R.S.T. 40%.
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Throughout the remainder of the paper we shall assume that the fol-
lowing hypothesis are satisfied

(H,) @ € C'([0,1]), ¢(0) = ¢’(0) = 0 and ¢'(s) > 0 for s > 0 and
Vo lis Hélder continuous of order 6 € (0, 1);

(Hy) b € C**([0,1]), b(0) = 0 and |b(s)| < p|s];

( ){ v :[0,1] — [0,1] is continuous, increasing with -
"7 v(0) =0 and v(1) = 1;

(Hq)Vt €[0,TY, q(t) > 0 is continuous and nonincreasing;
(Ho)up € H'(—L,0), 0 < ug(z) < 1,VYz € [-L,0].

Problem (1)-(4) describes the evaporation of a homogeneous, incom-
pressible fluid from a homogeneous, isotropic and rigid soil, with variable
meteorological conditions. In z = 0 the nonlinear condition of Fourier-
Robin means that the flow of water leaving the soil, vanishes for u = 0
while assume its maximal value when u is maximal. Between these val-
ues, the flow of water depends in a nonlinear manner on u and with a
q(t) which represents variable meteorological conditions. Assumption (3)
means an impervious boundary.

Equation (1) is a useful model in many different applications as, for
instance, the flow of groundwater in a homogeneous, isotropic, rigid, and
unsaturated porous medium. If we choose the coordinate x to measure
the vertical height from ground level and pointing upward, the soil is
represented by the vertical column (—L,0).

If 6(z,t) denotes the moisture content, defined as the volume of water
present per unit volume of soil and v(z,t) is the seepage velocity of
the water, the law by which fluid flows through porous media can be
described, was found by Darcy experimentally and is given by

(5) v=—k(0)®,
and the continuity equation
(6) Bt + Uy = 0.

In (5), k(@) is the hydraulic conductivity of soil and @ is the total po-
tential. When absorption and chimical osmotic and thermal effect are
negligible, the total potential may be expressed as ® = ¥(f) + z, where
¥(6) is the hydrostatic potential due to capillary suction. Combining
both equations (5), (6), we obtain

(7) 0 = (k(0)y6(0)0z + k(6)) = (D(0)0; + k(6))-
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where D(0) := k(8)g(6) denotes the soil moisture diffusivity.

By defining ¢(s) := f; D(r) dr and b(s) := k(s), (7) yields (1).

In problem (1)-(4), u denotes the saturation of soil, for this we require
the condition u > 0.

In the present paper, we prove the existence and uniqueness of solu-
tion for (1)-(4), considering at first a quasilinear parabolic problem of
nondegenerate type, approximating problem (1)-(4).

This nondegenerate problem is obtained adding a so called “artifi-
cial viscosity” term, substituting ¢ with ¢ + 1/k, kK € N in (1). The
nondegenerate problem, is studied using a semi-discretization scheme in
the time. One proves the existence and uniqueness of solution uy for
the approximate problem. Existence of solution u for (1)-(4) is then
proved, going to the limit for k — oco. For this reason, we look for
estimates which are independent of k. With the assumption ¢(ug)s +
b(ug) € BV (—L,0), we prove the existence of solution u for (1)-(4) in the
BV (0,T; L*(—L,0)) spaces. Finally, we prove the uniqueness of solution
for (1)-(4), with the further assumption that b(¢~') is Hélder contin-
uous of order 1/2 draw our inspiration from [6] where is proved the
uniqueness of a bounded variational solution for a nonlinear degenerate
diffusion-convection variational inequality connected to an oil engineer-
ing problem. In [2], [11] is studied a nonlinear parabolic problem, with
a nonlinear integro-differential term and with nonlinear boundary condi-
tions. This authors, prove the uniqueness of solution in the class of BV
functions. We remember also [1] and [7].

Related work, although rather different, can be found in [5] and [10]
and references given therein.

2. Existence of solutions for an approximate problem

In the following, we denote with BV (0, T) the space of functions u such
that are locally integrable on (0, T") and whose generalized derivative is an
integrable measure of Radon on (0,T). For more details on BV spaces,
see [10].

Let V := HY(—L,0) and V’ its dual space, we denote with (-,-) both
the pairing of duality V', V and the usual inner product in L?(—L,0).
The inner product in V is defined by (u,v); = (u,v) + (g, vz)-

By Sobolev’s embedding Theorem, V C C([—L,0]), with continuous
injection.

Definition 1. For a strong solution of (1)-(4) on (0,7), we mean a
function w € BV(0,T; L*(-L,0)) N L>®(Qr), 0 < u(z,t) < 1 a.a. on
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QT = (_L,O) X (O!T}a such that ug € L2(0,T; V’): ‘P(U’) € HI(QT} n
L>*(Qr), u(z,0) = ug(z)}, a.a. on (—L,0) and

f(ug,v)ds+/ v{u(0, s))q(s)v(0, s) ds
(8) % o ’
+ [ [ totu)e + by dzds =0,

for any v € L?(0,T;V) and for all t € (0, 7).
To prove the existence of solutions for (1)-(4), we consider a semi-
discretized scheme. Divide [0, T in steps of ugual length h = At = T//N,

N
N € N (discretization time step) so, [0,7] = U [(n — 1)k, nh].

n=1

Now, we consider an approximation of u at time nh defining u™(z) :=
u(x,nh). Set ¢" := (1/h) fﬂ 1yn 4(t) dt and Gy(r) := o(r)+r/k,Vk € N.
Since ¢(-) is an increasing function, there exists ¢ ' (-).

It is not a priori known that solution  is in [0, 1], therefore we consider
the continuations on all R 9, ¢, b, respectively of v, ¢ and b, defining
(s) = b(s) = @(s) = 0 for s < 0 and &(s) = v(1), b(s) = b(1), ¢(s) =

(1) for s > 1. Now, we can resolve the following

Problem (P,):

Let ug be given such that 0 < up(z) < 1, a.a. in (—L,0). To find
up € V,Vn > 1 solution of the nonlinear elliptic equation

0
/R (uf = ug™",v) + #(uf(0))g™v(0) + /_ 5 P(uj)o vz dz

0 0
-I—(l/k}/ u}c‘xvzd$+f blup)vydz=0,YVveV,n=12,...,N-1
-L -L

u® =
U = Uo-

The solution of (P,) is based on the solution of the following nonlinear
equation
Equation (FPs):
To find 2z, € V, such that
0 0
(o) + (@) 0(0) + [ Gar)svndo+ (1) [ v da
-L -L

0
+/ b(z)vz dz = (g,v), YveEV,u>0,g¢€ L*(-L,0).
—-L
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Proposition 1. If (H,), (Hp), (H,) hold, there exists a solution z €
V' of equation (Ps).

Proof: The existence of solution, is proved by Schauder’s fixed point
Theorem. W

Proposition 2. If(H,), (Hy), (H,) hold, there ezists a solution u} €
V' for problem (P,).

Proof: Solved equation (F), it is possible to resolve problem (P,) by
recurrence with respect to n. B
We show some properties of solutions u}.

Proposition 3. Let ug be given with 0 < ug(z) < 1, a.a. in (—L,0)
and (Hy,), (Hy), (H,) hold, then u} are nonnegative on [—L,0].

Proof: We proceed by recurrence. We consider
0
O (/) ~u0,0) + PhO)g's(0) + [ plubvs da
~L

0 0
+ (l/k)/ Uk, Vg dT + f b(ut)vy dz =0
-L

-
and choose v = (u})~, one has

(10)  (1/h)(ui — vo, (uk) ™) + #(ui(0))q* (ux(0))~
0 0

+ [ pub)atu); do+1/m) [ bt do [ bubh)s dz =o.

_L -L -L

Now, #(uj(0))g*(u;(0))~ = 0, thus (10) gives

w —am [

k

|u,§|2dx-(1/k)] |2 dz
<0] [u;<0]

= —(1/h) / uouy, d
[ul <0]

that is a contradiction. Hence, u; > 0 and by recurrence one proves that
u >0in [-L,0]. m

In the following Proposition, we use a Lipschitz increasing approxima-
tion of the function of Heaviside, which is well posed with respect to the
following assumption

(12) 1b(¢5(5)) — (5 (3))] < cls — 5"/,
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Proposition 4. With assumptions (H,), (Hy), (H,) and (12), prob-
lem (P,) has a unique solution.

Proof: 1t is sufficient to prove the uniqueness of u;. Let uj, 4 be
solutions of problem (P;). We define

(13) sE(w){:O‘ ifw<e<l1

=1-—logw/loge, if0<e<w
where w := @ (ul) — Pr(}).

(14) (1/R)(ub — B, 5e(w)) + (P(uh(0)) — H(@L(0)))g"5e (w(0))
—(1/loge wy|?/w)d
(/g)f (el da

[w>e
- (1/10g2) |

[w>e

]((5(’%?;) — b(ay))(wi/w) dz

1/2
< (—C\/Elloge) (f[ (i’wz|2/w) dz)

>g]

for (12) and the inequality of Holder.
Since, (uj — @},se(w)) = 0 and (#(u}(0)) — #(@4(0)))g se(w(0)) > 0
because of the monotonicity of v(-), we have

(15) (—1/10g€)/ (Jwz|? /W) dz

[w>e}

1/2
< (-cvVL/loge) ( /[ (lwe|?/w) dw)

>e]

which implies

(16) / (Jwe|?/w) < L.
[w>e]

Going to the limit as € — 0 in (14), since s.(w) — sgn™ w and because
of (16), one has

0
(17) (umﬁﬁd—ﬁvws&

Thus, the claim holds. &
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Now we specialize the choice of ug, assuming that
u €V, 0<uy(z)<1,Vze[-L,0]:p(u) eV

(18) satisfies the condition

0 0
] or(ug)zvy dz + / b(ug)vzdz >0, VveV
-L -L

with v(z) > 0 in [-L,0].
Then we obtain:

Proposition 5. If (H,), (Hs), (H,), (12) and (18) hold and ¢'~' >
¢, i=1,2,...,N — 1, then

(19) up(z) < up~l(z) < - Swo(z), Vz€([-L,0).
Proof: We proceed by recurrence.
(20)  (1/h)(uk — uo,v) + (uk(0))g"v(0)
+ [ GL Ge(ub)avs do + / DL B(ub)v dz = .
Subtracting (18) by (20), we obtain for v = s.(w), s(w) as in (13), and
w = Pr(ug) — Pk (uo)

(21) (1/h)(u} — o, se(w)) + Pk (0))q se(w(0))
— (1/loge) f (hwal? /1) dz

w>e

< (-1/loge) ((b(u0) — b(u}))(ws/w) da.

[w>e]
Arguing as in Proposition 4 and going to the limit for € — 0, one has
(22) ui(z) < uo(x), Vz €[-L,0).
Now,
(23)  (1/h)(uf — ui,v) + #(uZ(0))g*v(0)

0 0
+/ Ok (u2) v, dz + / b(u?)vy dz = 0.
~L -L
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Subtracting (20) by (23), one has

(24) (1/R) (2 — ik — ik + uo, ) + (2 (0))q? — 7(uk(0))g")(0)
. 0 o~ ey
+ /_ (@) = Bu(ub)szda + ] (b(u2) — B(ud))u, dz = 0.

-L

By (22), for v = sc(w), w := ¢ (u2) — ¢x(u}), ¢ < ¢* and going to the
limit as € — 0 in (24), we obtain

0
(25) (l/h)/ (uf —up)tdz <0
~L
which implies
(26) up(z) < up(z), Vze[-L,0].
By recurrence, (19} follows. B

From uj, we construct functions

(27) up k(, 1) ug (z)x"(t

||P12

where x"(-) is the characteristic function of [nh, (n+1)h], (un is a step
approximation of ux) and

= (t — nh)((uf(z) —u ™' (2))/h) t€ [nh,(n+1)h]
(28) op,k(z,t) +up~}(z), n=1,...,N-1
= ug(x), t e [0,h]

(o x is a piecewise linear approximation of uk, continuous in ).
We can prove the following

Proposition 6. With the assumptions of Proposition 5, then up i is
bounded with respect to h in L*(0,T;V) N L>(0,T; L?(-L,0)).

Proof: Choosing in (P,)v = up, one has
(29)  (1/h)(up — ™" uf) + v(up(0))g"ui (0) + (1/k)|luge |13

0 0
+ / o (W) ? de + ] b(uf)uf, dz = 0
-L - L
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since,

(30) (ug —up™",up)

= (1/2)[(ug, ug) — (uphup™h) + (up —up Ll —up )],
by (29) we obtain

(31) (/2RI — 13 + e — w2~ 12] + v(uf (0)) g™} (0)
0 0
(/R 13 + ] YDl o+ ] b(up ), dz = 0.

-L

Hence,

0
(32) (1/2h)[llug )3 — llug = 3] + (1/k)|uf |13 + / i b(uy)ug, dz < 0.
By the inequality of Young and multiplying by h, one has

1/2)[lluRZ = lluz =" 13] + (h/k)luiz 13

0
< (hk/2) f b0 -+ (128

(33) 0
< (p°hk/2) /_ LIHEIQd-’uH“(h/%)IIuLII% (for (Hs))
< (p*hk/2)|luoll3 + (h/2k)||uk, I3 (for (19)). -
Thus,
(34) lugll — lluk =113 + (R/k)||ufz |13 < hCklluoll3
where

Cy. := p’k.
Adding up on n, we obtain
(35) Rl + (h/k) D luiell3 < (TCk + Vlluol3, (AN =T).
s=1

Hence,

(36) a7 < (TCk +1)[uoll3
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and
N-1

(37) RS lluiell? < k(TCk + 1)luoll3).
s=1

The (36) and (37) give
(38) Nun,kllL20.1;v)nLe0,1;L2(-L,0)) < Ch- W

By (38), there exists a subsequence, that we denote again with wup x,
such that up x — ux as h—0in L2(0,T; V) and in L*°(0, T; L*(- L, 0))-*
weak.

Thus, ux € L?(0,T; V)N L>®(0,T; L?>(-L,0)). Now, we consider (28).
Then,

= (up(z) — u;:"l(:v))/h, t € [nh, (n+ 1)A],
(39)  (oni(z, 1)) n=12...,N—-1
=0, t € [0,hA].

It is easy to prove that

(40) ||‘7h,k||%,2{0.'r;v)
< Tlluollfn + (7/3)Ck;  (onp)ell2(,y < Cos YO <6<T

where Qs := (—L,0) x (6,T) and Cjs is independent of h,k; from the
problem (P,) one has

(41) I(onk)ellZ2 0,757y < Cik-
Set
(42) W(0,T) := {v e L*(0,T;V) : v; € L*(0,T; V")}

from a classic result, it is known that W(0,T') is compactly embedded in
L*(Qr). Since Ohk is in a fixed bounded set of W(0,T) and holds the
following estimate:

llonk = unkllLa(@ry < VhlluollLac-L,o),

there exists a subsequence denoted by o7, ., such that when h— 0t

Ofx — Uk in L*(Qr) and a.a.

uf  — Uk in L*(Qr) and a.a.
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That is, because of (27), uf — wux in L?(Qr) and a.a. as n — oo.
By the Theorem of Lebesgue, b(u}) — b(ux) in-L?(Qr) and a.a. for
n — 00. Also [(unk)zllL2(@r) < Cj s0, for a subsequence, we have that
ul, — Uy in L2(Qr). Therefore, ¢ (uf)ul, — ¢'(ug)uke in L?(Qr) as
n — oo and by (41), for a subsequence, one has that (ohk): — Uk in
L2(0,T; V') and in L2(Qs5), V6 > 0 for (40), as h — 0.

Going to the limit in (P,) for n — oo, we obtain

(43)  (ukt,v) + v(uk(0,))g(t)v(0,2) + (1/k)(uz, vz)

0 0
+f w(uk)zVz dx+/ b(ug)vy,dz =0, Vu(t)eV forae. te(0,T).
-L -L

So, we have proved the

Theorem 7. If assumptions of Proposition 5 hold then there
exists a unique strong solution uy of (43) such that ux € L*(0,T;V),
uee € L2(0,T;V') N LA(Qs)¥6 > 0, ux € C([0,T); L*(~L,0)),
uk(mzﬂ) = UU(:{:), in [_L:O]! 0< Uk(xrt) < uD(I): in GTJ ¢k(uk) €
L?(8,T; H*(~L,0)).

Proof: The uniqueness follows as in Proposition 4. ®

Moreover,

Theorem 8. If assumptions of Theorem 7 hold, uyx is nonincreasing
with respect to t.

Proof: Let ug, @ be the solutions of (43) corresponding to the initial
data ug, respectively, ip. Since ux: € L2(Qs), we have, for v = se(w),
w := Pk (ug) — dr(x), going to the limit for € — 0, that

0

(44) d/dt/ (uk — k)" dz = (ure — e, sgnt (dr(ur) — Pr(iix))) < 0.
-L

Integrating (44) from s to ¢, one has, since uy € C([0,T]; L?(—L,0)),

f} (ur(z,t) — ix(z,t))* dz

—L

1]
(45) < f ((@,5) — iz, ) do

0
5/ (uo(2) — di0(z))* dv, VO<s<t<T.
-L
Now, if 0 <t <t+ h < T, (45) gives

0 0
(46) ~/_L(uk{m,t+h)—uk($,t]}+ dx S[L(Uk(x,h)“uo(ﬂ))+ dr. |
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3. Estimates on u,

Set v(¢) := [¢ \/#/(7) dr and B(() := [§ b(r) dr, then

- /u «/;L B(uk); dz ds < (pT/2)(uo(~L)* + uo(0)*) < pT.

If in (43) we choose v = u; and integrate from 0 to ¢, we have

(48) (1/2[ lug(z, t)12d3:—(1/2)/ lu (z,0)|% dz

+(1/k) / f |2 dz ds + / / o) sruny dz ds

- _/ V(ux(0, 5))a(s)ux (0, ) ds—/ / (ur)ure de ds,

because ux, € C([0,T]; L*(-L,0)).
Then by (48) one has

(49) (1/2) /OT[0L|Uk(I: t)* dedt < /: (/DT v(uo(z))q(s) dS) dt

- " Tt +(1)2) / ' / UL e (,0)|? da dt

< (QTv(uo(0)) + pT + (1/2)luo13)T
< (QT + pT + (1/2)|luoli3)T

(Q = maxq(t)), and (1/k) S L2, lue|? dz dt < QT + pT + (1/2) uoll3,
thus,

T 1] T 0
(51) [ ] @) dede + (1/6) ] ] sl dzde<C

which implies
(52) llukll L2 0,vy < CVE,

(here and through, C denotes various constants independent of k).
Moreover, by (48) one obtains

(53) Iy (uk)zllzz(ory < TQ + 6T + (1/2)||uoll3,
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and
Iwe)lEran = : / :L (/ Vo) dedt
o < /0 T /_ . ( fa o'(r) d'r) u(z, t) de dt
< /0 / (s, 1) de
< /0 ’ /; OL o(uo)uo(z) dz dt < C.
Therefore,
(55) w2y < C

and by (53) follows that

T 0
(56) llo(ui)l3aorv) = fo / pluc)? d

T 0 0
+[ [ duiidedt<T [ pluo) do+Q In(wnlEaan < €
[} —-L L

(Q" = ||¢’(ux)|| Lo (@), independent of k).
Now, (52) and (56) give

(57) llgk(wellZao.ivy < 2le(ui)lZz(o,zvy + @/E)lurlZzorivy < C.
From (43) and (57) we have that
(58) llukellL20,7,v7) < C.
Set & := v(ux), by (55) & is bounded in L?(0,T;V) c L%*(0,T;
Ws2(-L,0)),0<s <1,

Now, ux = v~ ' (&) and if we suppose that

(59) v~! is Holder continuous of order 8 € (0,1),

for a classical result due to [3], one has

1/e —111/86
(60)  Nuk(ONonro_1.0) S IEx(®)lwear.oylr ™ ¥ oser
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that integrate with respect to t, gives

2/6 2 —12/8
(61) "uk"L"IZIO(Q,T;WB.-;,M&(_L‘U)) < “ék"LZ(U,T;W"-z(——L,O))”’Y HHEjlder
< C, because of (55).

Again by [3],
(62) wos2/%(_L,0) c L?/°(~L,0)
with compact injection, as
(63) wos2/9(—L,0) c L*%(~L,0) ¢ L*(-L,0) C V',
the set
(64) W(0,T) :={v e L¥?(0,T; W9?°(—L,0)) : v, € L*(0,T; V")}
is compactly embedded in L?/?(0,T; L?/°(—L,0)) (see [8]).
By (Thm 7), (58) and (61), there exists a subsequence still denoted

by u, such that when k — oo

(65) up — u in L*(0,T;L*(~L,0)) —* weak as consequence of (Thm 7);
(66) ux — u in L*(Qr) and a.a. because of (58) and (61);
(67) uge — ug in L*(0,T; V') by (58)

and
(68) [lwtl| L2¢0,15v7) < C.

uy verifies the condition 0 < ux(x,t) < ug(z) in @, hence it follows
that

(69) k| z=(ry < C-

(70) o(u) = ¢(u) in L*(0,T; V)

because of (56); one verifies that the limit is y(u) for (66) and the
Lebesgue's Theorem.

By (57) and (52) it follows that

(71) dx(ux) — ¢(u) in L*(0,T; V),
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since @x(ur) — @(ux) = (1/k)ux — 0 in L2(0,T; V).
A classic result, implies that for subsequence,

(72) ux — u in C([0,T); V')

because of (61) and (67).

By (65) and (72) it follows that u € C4([0,T); L?(—L,0)) where
Cs([0,T); L?*(—L,0)) is the space of functions u € L*(0,T; L?(-L,0))
such that ¢ — (u(t),v) is continuous on [0,7T], Vv € L?(-L,0). Finally,
since ug(0) — u(0) in V' as k — oo for (72), we have that u(0) = ug.

By the Lebesgue’s Theorem and (66) it follows that

(73) b(ux) — b(u) in L?*(Qr) for k — oo,

because b(ux) — b(u) a.a. when k — oo.

4. L' estimates on uy

We are interested to obtain a better estimate on the time derivative
for uy and on ¢k (ug). Now, if we consider assumption (18) which assure
the monotonicity with respect to ¢ of u;, we are able to show that there
exists a constant C' > 0 such that u; verifies

(74)  ue(t+71)— uk(t)[|L1(._L,U) <Cr,V7€(0,T),Vte[0,T -]
and

(75) Nurell oo 0,752 (- L,0)) < C.

In fact, choosing v = 1, v € V, in (43) we have

t+r t+T
/ (uke, vy ds + / v(ux (0, 5))q(s) ds = 0
t t

which implies that

0

luk(t + 1) — uk(t) |22 (~L,0) = —/L(ﬂk(fr,t+ 7) — uk(t)) dz < Cr,

since |v(ug(0,s))g(s)] £ C with C independent of s. For (75) see the
proof of the Proposition 11.

Properties (74) and (75) hold also without reference to a class of mono-
tonic functions as we are going to show.

Let us recall some results that will be used in the following.
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Lemma 9. For any v € V, ‘?l_i’r(r}l+ j[zE[—L,D]:lﬂ(I)Kn] |vgz|dz = 0 (see

[9])-

=1, zz>0 =1, z >N
sgn(z)s =0, z=0 sgn.(z)s =z/n |z|<nn>0
=-1, <0 =-1, z<-n

The function sgn, is a Lipschitz function on R.

Lemma 10. Foranyp, 1 <p < oo, ifv € LP(~L,0), then sgn,(v) —
sgn(v) in LP(—L,0), when n — 0 (see [9]).

To obtain an estimate on u;; uniformly with respect to k, we assume
the following condition
(76) 0<wug <1, aa.in (-L,0), p(ug) €V
and ¢(ug)z + b(ug) € BV(-L,0).
We can prove '
Proposition 11. If assumptions (H,), (Hy), (H,), (Hg) are satisfied

and (76) holds, there exists a constant C > 0 such that uy verifies (74)
and (75).

Proof: For0 < s < s+7<T,7 € (0,T),Vv(t) € V,fora.a. t € (0,T)
we consider

(77)  (uks(s + 7),v) + v(ur(0,s + 7))g(s + 7)v(0, s)

+ ]_UL Ok (ur(s + 7))zve dz + /_UL bug(s + 7))vydz =0

(78)  (uks(s),v) + v(ux(0,5))g(s)v(0, 5)

+ [ OL Sulun())svz o+ [

0

b(ug(s))vg dz = 0.
L
Subtracting (78) to (77), we obtain

(79)  (ups(s + 1) — ugs(s),v)
+ ((ur(0,5 4 7))g(s + 7))a(s + 7) — v(uk(0, 5))q(s))v(0, 5)

1]
+ / (Sx(ur(s + 7)) — bi(uk(s)))avs de

-L

]
+ f (b(uk(s + 7)) = b(ux(s)))ve dz =0

—L
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choosing v(s) := sgn, (¢ (ur(s + 7)) — Px(uk(s))) € V in (79), one has

(80)  (urs(s+7) — urs(s), sgny, (dx(ur(s + 7)) — ¢ (ux(s))))
+ (U(uk(0,5 + 7))g(s + 1) — v(ux(0, 5))q(s)) sgn, (dx (ue (0, s + 7))

— $u(ur(0,9))) + _/ (Ouuals+ 7)) = Bu(un(5))a 581, (B un(s +7)
0 .
~ on(un(s)ada+ [ Oue(s +7) = bk () 58y (B s 5+ 7)
— ¢r(ur(s))))z dz = 0.

Now,

0 |
(81) / (b(un(s + 7)) = b(ue(9)) (s (B (x5 + 7)

- ¢k(‘uk(8))))zdm‘

(b(¢5 " (zk(s + 7))

A%(Hﬂ—zk(sn{n]

— b(¢g " (2k()))(1/m) 2k (s + 7) — 2k(5)) dax
(where 2z (o) := ¢r(ur(c)))
<ef (zk(s +7) = 24(5))z do
[lzk(s+7)—zi(s)|<n}

(since bo ¢! is Lipschitz continuous with constant ¢).
Since 2zx(s + 7) — 2x(s) € V, Lemma 9 implies that

(82) lim |(zk(s +7) — 2k(8))z|dz =0
10 J{|zk (s+7)— 2k (s)| <)

hence, by the Lebesgue’s Theorem we obtain

t p0
) Jim [ [ (busis+n)
b (5))) (58 (B (s + 7)) — G (wr () dz = 0.
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Moreover,

0
s [ (@ulue(s + 7)) = Gulua(5)s sy (G0 ue(s +7)
1]
— Sn(ur(s))))a de = f (G (un(s + 7)) — Su(ur(s)))s[2dz > 0;
nJ-r

by (H,) and (Hy)

(85) |(v(ux(0,s +7))g(s +7)
— v(ux(0, 5))q(s)) sgn, (Sx (uk (0,5 + 7)) — ¢k (ux(0,5)))| < C,

with C a constant independent of s.
Thus because of (84) and (85), equality (80) gives us

(86)  (uks(s +7) — uks(s), sgn,(dx(ur(s + 7)) — de(ui(s)))) <C

0
+ /_L(b(uk(s +7) — b(u(s))) (sgny, (6x (uk(s + 7)) — S (ur(s))))e da| -

Integrating (86) on [é,¢], t € (6,7 — 7] and going to the limit as n — 07,
because of (83), one has

0
(87) /_I (u(t + 1) — uk(t)) sgn(dr(u(t + 7)) — dr(ux(t)))) dz

< [ (wa67) e (6)) sen(Bu (we(6-+ 7))~ u((6)) d+ O )

Vé>0,Vte (5T -1

Since ¢i(-) is increasing, then sgn(gi(ur(s + 7)) — dr(ux(s))) =
sgn(ug(s + 7) — uk(s)), thus (87) gives us

0 0
(88) /_Lluk(t+r)—uk(t)|da:$/_L [ug(é+7) — uk(6)| dz + C(7 — §)

V6 > 0,Vt € (6§,T —7]. But ux € C([0,T}; L?(~L,0)), hence when
8 — 0% we have

0 0
(89) /_L lu(t + 1) — ux(t)| dz < /_L |ug(T) — uoldz + Cr,
Vte[0,T - 7).
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We look for an uniform estimate with respect to k for f_n 1 Juk(T) —
ug| da.

For this, we take v := sgn, (¢ (ux)—¢r(uo)) € V in (78) and s € (6, 7).
Then,
(90)  (uks,sgny,(Br(ur) — ¢r(uo))) + v(uk(0, 8))g(s) sgn,, (¢ (ux(0, s))

0
— ok (u0(0))) + /_L(fi’k(uk))x(sgﬂq(%(uk) — ¢x(w0)))z dz

+ f b (s, (0 () — Bi(u0)))z d = O,
-L
hence
(91)  (uks, sgn, (P (ur) — ¢x(uo))) + v(u(0, s))q(s) sgn, (¢x (ux(0, s))
— ¢x(u0(0))) +/ ((#k(uk) — dr(uo))z + bluk) — b(uo))(sgn, (Px (ux)

—b(0))) / (6 (o)) +b(uo)) (580 (5 ()~ b1 (o)) .

Proceeding as above, one proves that

0 [ @ulue) = Bu(u0))a(o80, (G1(ur)  Bu(u0))s 2 0

(93) v (uk(0, 5))a(s) sgn,, (6x (uk(0, 8)) — dk(u0(0)))| < C

with C' independent of s;

o) Jim [ / (b(ask) — b(auo)) (s, (4 asx) — (o)) = = 0.

n—0+

Therefore
(95)  (uks,sgn,(Bx(ur) — dr(uo)))

sC+ f_L(b(%} — b(uo)) 50, (d(ux) — D (uo))= d| .

Integrating (95) from § to T and going to the limit when n — 07 we have
because of (76), (92), (93) and (94) that

0
(96) /_ lua(r) ~ woldz < Cr
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for 6 — 0%, because ux € C([0,T]; L*(—L,0)).
Thus, (89) and (96) gives us

(97) lluk(t +7) — ur ()| L2(-L,0) < CT-

Now, ugs € L?(Qs), V6 > 0 hence (1/7)|ux(t + 7) — ur(t)] — urs(t) in
L?(Qs), and in L*(—L,0) for a.a. t € (6,T). Thus (97) gives us (75),
because C is independent of 6.

This ends the proof. &

5. Existence of solutions for degenerate problem

By definition, ¢x(-) € C1([0,1]) and as for as above, one has

(98) |k (ur)tll oo 0,752 (- L,0)) < C-
By (57) and (98) it follows that

(99) |k (ur)ll 10,7501 (~2.,0)) < C-
Hence,

(100) ér(ux) is bounded in L*®(Qr) N HY(0,T; L'(-L,0)).
The (57) and (98) say that ¢x(ux) € W(0,T), therefore
(101) ér(ur) — o(u) in  LYQr) as k — oo.

Hence, (u) € BV(0,T; L'(—L,0)), because it is the limit of a sequence
in L>°(Qr) N HY(0,T; LY(—-L,0)).

By (66), ux — u in L}(Qr), moreover, (69) and (75) imply that
ug is bounded in L*(Qr) N H'(0,T; L*(—L,0)), hence u € BV(0,T;
L'(-L,0)); a such u has a trace for ¢t = 0.

Since ¢r(ux); weakly converges to @(u), in L*(Qs), V6 > 0 as k —
oo, we obtain the estimate: |[[o(w)¢|lz2(s,1;01(~L,0)) < C, where C is
a constant independent of 6. Thus, |¢(u)t||z2(0,m;01(-L,0)) < C and
consequently, since V. C L*(—L,0) with continuous injection,
llp(u)ell 2o, r;v7y < C-

Then, ¢(u) € C([0,T]; L?>(—L,0)) and the Holder continuity of ¢~
implies that v € C([0,T); L?(—L,0)). Moreover, u € L*®(Qr) and
o(u) € L=(Qr) N H*(Qr). Finally, the trace in t = 0 for u in L'(—L,0)
coincides with ug.

Thus, we have proved the following existence result

Theorem 12. If (H,), (Hy), (H,), (Hy) and (76) hold, then there
exists a strong solution for problem (1)-(4).
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6. Uniqueness of solution for degenerate problem

To study this problem, we introduce in R? the one dimensional Haus-
dorff’s measure H; (for a definition, see [4]). Since ¢ is an homeomor-
phism and ¢(u) € L®(Qr) N H'(Qr), in [6, Lemmas 1 and 2], is proved
that o(u) and any solution u of (1)-(4) are Hy-a.a. L2-approximately
continuous on Qr (see [4, pg. 158]).

Now u € BV(0,T; L*(—L,0)) hence its distributional time derivative
u; is an integrable Radon’s measure on Qr, Hj absolutely continuous
(see [6]). This means that u; do not charge the complementary set of £2-
approximate continuity points of u, thus we can utilize the integration
by parts formula.

Let u, i be solutions for (1)-(4) with initial data ug, respectively, to.
Then

/IJ (ug — g, v)vr,vp(T) dr
+ [ w(u(0,7)) = (a0, 7)a(r)(0,7)o(r) dr
(102) ut .
+ A /_L(tp(u) — (11))gvzp(T) dz dr
+ /D ]_  (00) ~ b@unplr) dadr =0,

Vo € LX(0,T; V), ¥t > 0 and p € D(0,t), p(t) > 0.

Set w := p(u) — () and Hy(w) := wt?/(w?+n), n > 0 and suppose
that
(103) b2 (£)) — bl (s))] < |t — s[>

It is easy to prove that, Vr € R,

(104) lil’(I}l+ rHy(r) =0,0 < Hp(r) <1and 0 < rHy(r) < 1/2.
1?—?
Choosing v = Hy,(w) € H*(Q7) in (102) one has,

/D (W(w(0,7)) - (a(0,7)))a(r) Hy(w(0, 7))p(r) dr > 0



348 M. BApI

because ¢ is increasing, then

[ sy dr

(105) / ] (p(w) = p(@)a Hy(w)p(r) da dr

+ /0 /_ (b0 — b)) i w)xp(r)dxdréo.
Now,

/ ] ) Hy ()ap(r) da dr

- j (o) - (@) Hy(w)p(r) de dr
v A /[ 1b(w) = (@) [(o(w) = @)1y (w)p(r) d d

<d /03 /_UL |s — 8)/2|(s - 8)c|Hy (s — 8)p(r) dx dr
<am | [ OL (s — 8)=PH}(s — $)o(r) e dr
+ ¢ /ﬂt /_OL |s — 3|H, (s — 8)p(7) dx dt

by (103) with s := ¢(u), § := ¢(&) and the inequality of Young.
Therefore, (105) gives us

[ =t o) ar
t 0
an 42 [ [ ls=9.PHy s s)p(r) dodr
t 0
<a /0 /_L |s — 3|Hy (s — 8)p(r) dz dr

which implies
t
(108) [ (e — e, Hy(w))vov p(r) dr
0

t 0
<q / ] |s — 8|Hy (s — 8)p(7) dz dr.
0 J-L
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H,(-) is an C' approximation of the Heaviside’s function and as far as
above claimed in (104) and by the Lebesgue’s Theorem, we have

t 0
lim / / |s — 5|Hy (s — 8)p(7) dz dr = 0.
0 J-L

ﬂ—»0+

Now, we treat the term fot(ug — Uy, Hy(w))vrvp(T) dr.
We known that u— 4 € L?*(Qr) and (u—1); € L(0,T; V'), pH,(w) €
L2(0,T;V) (Hy(w) € H'(Qr) N L®(Q7)) and (pHy(w)); € L*(Qr).
Since V is embedded in L?(—L,0) with dense and continuous injec-
tion, then defined the intermediate spaces Y := [V,L?];/; and Y’ :=
[L2,V']12 (see [8, pg. 11]) one has that v — @& € C([0,T);Y’), pH, €
C([0,T];Y) and the following formula holds

(109) /0 (ue = g, Hy(w))vvp(7) dr = (u(t) — a(t), Hy (w(t))p(t))yry

— (u(0) — &(0), Hy(w(0))p(0))yy — /D /_ L(u — @) (pHy(w)): dz dr.

But u € C,([0,T]; L%*(—L,0)), so the pairing of duality Y’, Y is an
integral in L?(—L,0) (see [11, Chapter III]) and for p € D(0,t) (109)
becomes

(110) /0 (ug — Uy, Hy(w))vrv p(7) dr

= - /Ot ]_OL(u — )(pHy(w)); dz dr.

To the purpose of apply the results of [11, Chapter 1I], see also [2], we
work with the Borelian representative @ of u in the £2-a.a. class (that is
u =uL%-a.a.), this allow to use the Borel measure. We agree to write

t 0
- [ [ - et@)dzdr =~ [ (w=a)oH,w)
0 J-L Q¢

because pH,(w) € H'(Qr), belongs to BV(0,T;L*(—L,0)) and the
Borel measure (pH,(w)); is £?-Lebesgue absolutely continuous, with
density (pHy, (w))s. '
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Moreover, u — @ € BV(0,T;L'(-L,0)) N L®(Qr), pH,(w) €
L®(Qr)NHYQr) ad (u— 1), is a Radon’s measure H;-absolutely con-
tinuous, by a result of [12, sections 13.2 and 14.4], (u — @)pH,(w) €
BV (0,T; L*(—L,0)) and we can use in (110) the formula of integration
by parts (see [2] and [11]) to obtain

(111) /0 (e — e, Hy(1))yrvp(7) dr = ] () Hy(w) (u — ).

t

Taking in consideration that H, converges pointwise to sgn™ as n — 0%
and @(u) — (@) is defined and bounded H;-a.a. in @7 by its L>®(Qr)
norm, the increasing of (-} implies that

Jim, Hy(w) =sgn™ (p(u)—p(a)) =sgn™ (u—1), Hi-a.a., (sgn™ € BV(R)).

By the boundedness of H,(w) it is possible to apply the Theorem of
Lebesgue, since (u — i) is bounded.

Then,

2 tim [ p0H 0= [ 0=

t

n / o(t)((u — @) )e,

(see Corollary 3.3 in [11], sgn™ is a bounded Borel function).
Going to the limit as 7 — 0% in (108), we have

(113) ] p(t)((u - 3))e <0,

t

that implies the nonincreasing of (u(z,-) — @(z,-))* as function of .
Hence,

0 0
(114) /_L(u(x,t) —d(z,t))Tdzr < j;r (uo(z) — Go(x)) T dz, Vt>0

and the application ug — u(-,t) is a T-contraction in L'(—L,0). For
ug = 1ig in [—L,0] the uniqueness of solution follows. Thus, the choice
of 7 becomes no more important.

At last, the following result holds
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Theorem 13. If (H,)— (H,), (76) and (103) hold, the problem (1)-

(4) has a unique strong solution. Moreover, (114) holds for any t > 0
and gives an order preserving for the solution.
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