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VECTOR VALUED MEASURES OF
BOUNDED MEAN OSCILLATION

QOscaR Brasco*

0. Introduction

The duality between H? and BM O, the space of functions of bounded mean
oscillation (see [JN]), was first proved by C. Fefferman (see [F], [FS]) and then
other proofs of it were obtained. Using the atomic decomposition approach ([C],
[L]) the author studied the problem of characterizing the dual space of H! of
veclor-valued functions. In [B2] the author showed, for the case @ = {|z] = 1},
that the expected duality result H!-BAM O holds in the vector valued setting if
and only if X* has the Radon-Nikodym property. If we want to get a duality
result valid for all Banach spaces we may consider vector valued measures (see
[BT), where the vector valued L, case is treated, for an explanation) and
therefore to deal with the general case it was necessary to consider a new space
of vector valued measures closely related to BAO (see [B1]).

In this paper we shall study such space in little more detail and we shall
consider the H!-BMO duality for vector-valued functions in the more general
setting of spaces of homogenecus type {see JCW]).

Throughout the paper X will stand for a Banach space, { will be a space
of homogeneous type (see definition in the preliminary section) and we write
L,(Q, X} for the space of measurable functions on {t with values in X such that
[ £{x)|| belongs to Ly(fY}). As usual C will denote a constant not necessarily the
same at each occurrence.

1. Preliminaries

A space of homogeneous type {0 is a topological space endowed with a Borel
measure m and a quasi-distance d, that is d: X x X — R with

2) d(z,y) = d(y, =),
b} d{z,y) =10 if and only if T =1,
c) diz,y) < K(d(z,2) +d{z,uy}}.

*Partially suported by the grant C.A.1L.CY.T. PB85-0338
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and we assume that the balls B.(z) = {y €  : d{z,y} < r} form a basis of
open neighborhoods of the point = and there exists a constant A satisfying

(1.0) m(B,(z)) £ Am(Brp(z}))

From (1.0) we can assume that 0 < m({B) < oo for every ball B (otherwise
m would be identically 0 or oo) and therefore m is a o-finite measure on .
Dencte by Iy the ring of bounded measurable sets. The e¢-finiteness condition
implies that the o-algebra generated by Ly coincides with the Borel o-algebra
that we shall denote by .

Let us now recall the notion of atom with values in X. Given 1 < p < o0, 2
function a in Ly(R, X) is called (X, p)-atom if

a) the support is contained in a ball B = B, (2,)
—_— a(z)||P dml= — o0
b) (55 [, WP ()7 < s (9 < 20)
, 1
b) (@ < gy moae (o)

<) /;; a{z)dm{z) =10

In the case m{{l) < oo the constant function #ﬁ)b, where b € X with
[|5]f = 1, is also considered as a (X, p)-atom.
Note that the atoms are in the unit ball of L ({2, X).

Following [CW] we define H;(Q,X) as the space of functions f in L;(§2, X)
admitting an atomic decomposition

(1.1) f=3 %
3=0

where the a;'s are (X, p)-atoms and Z:ie |A;] < oo. {The convergence of (1.1)
is taken in L;(Q, X) ).
We get 2 Banach space if we consider the norm

Ifllery = inf Y 131
3=0

where the infimum is taken over all representations f = E;ia Ay
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The same arguments as in [CW] show that, in fact, for 1 < p,r < 00
(1.2) H; (2,X) = HYQ,X) (with equivalent norms) .
Let us also recall the definition of vector-valued BMO. Let 1 € ¢ < oo, an X-

valued function which is locally in L {2, X) is said to belong to BMO,(Q, X)
provided that

q /G‘
(19 sup (—z [ lote) — gslldm(@) " < ¢

where gg = WIET fpo(z)dm(z).
Let us denote by

glls,e = SUP{(ﬁ L gz} — gB|* dm(x))”q : B ball}

When m(§2) = oo then ||¢||5ar0, = ||g]l+,¢ gives a norm on the set of equiva-
lence classes of functions which differ by a constant in X

For ({2} < co we consider the norm ||gl|paro, = ||glle.q + ) f; 5(=) dm{z)||.

Let us recall now a few definitions about vector-valued measures we shall use
later on. Let (£, 3, m} be any o-finite measure space, 4 a measurable set and
1 < p < co. Given a vector valued measure G, we denote by |G| the variation

of G, that 1s

(1.4) IG)(4) = sup{z IG(E)| : (E;} partition of A}
and by |G|,{A) the p-variation on A, that is
IG(EDN? K
. Gp{A4) =su
(1.5) IGlp(4) = {(Zm(E},,_ }

i=1

where the supremum is taken over all finite partitions (E;) of disjoint measur-
ables sets contained in 4 with m(E;) > 0.

For the case p = oo we shall denote by V*°(Q1, X'} the spacc of X-valued
measures ( satisfying
(1.6} IG{EY| £ Cm(E) for all measurable set E
Defining the norm by the infimum of the constants satisfying (1.6) we get a
Banach space.

Remark 1.1. It is not hard to see that in fact ||G(E;}|| can be replaced by
|G[{F;) in the definition of p-variation. (See Lemma 1 in [B3})

Remark 1.2. If G is a vector valued measure defined on £y which is abso-
lutely continuous with respect to m, that is m{lg)n_.ﬂ G(E)Y =0, then it can be

extended to a measure on L, being still absolutely continuous with respect to
m. (See [D],[DU}}
We refer the reader to ([DU], [Dj} and to {|J], [GC-RF]) for general theory

and the properties we shall use about vector valued measures and Hardy spaces
respectively.
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2. Vector valued measures of bounded mean oscillation

Definition 2.1. Let 1 < g < oo. Given a countably additive measure G
defined on T and with values in X, it is said that G belongs to MBMO,{Q2, X}
if

G(E } G(B) g m(Ei)\1/e
(2'1) IGl*q —Sup{(z " m(B)" m(B)) } < o0

where the supremun is taken over all balls B and over all finite partitions of B
in pairwise disjoint measurable sets E; with m{E;} > 0.

When m{Q} = oo then |GlimBmo, = |Glsq gives a norm on the set of
equivalence classes of measures: G; ~ Gy if there is b in X such that Gi(E) -
G2(E) = bm{ E) for all measurable set E .

For m{2} < co we consider the norm ||G)laraaro, = |Clu,g + 1G{Q)-
It is obvious that if 1 < g1 < g2 < co then

(2.2) Vo(Q, X) C MBMO,(Q,X) C MBMO,, (@, X)

Remark 2.1. Let us assume & belong to MBMO, (2, X). Given a ball
B and a measurable set £ C B, it is quite immediate to find a constant Cp
depending on B satisfying

(23) IG(B)]| < Cp max(m(E),m(E)~*/7)

Suposse we consider B, = {y € Q : d{zg,y) < n} and dencte by Gg, the
measure (7 concentrated on By, that is Gp (E) = G{ENB,). A glance at {2.3)
allows us to say that for any 1 < ¢ < o0 if G belongs to MBMO,(§), X) then
G p, are necessarily absolutely continuous with respect to m and this clearly
implies that also & is absolutely continuous with respect to m. (Recall that for
vector-measures on o-algebras it suffices to check that they vanish on m-null
sets}.

Proposition 2.1. Let 1 € ¢ < oo, g be locally 1n L, (2, X) end G be en X -
valued measure such that G(E) = [p g(z)dm(z) for all measurable bounded set
E.

Then g belongs to BMO(Q, X} if and only if G belongs te MBMO {1, X}
Moereover |GllmBmo, = |igllamo,-

Proof: Given any ball B, consider Gp{E) = G(EnN B} - %(%% m(E N B).
Observe that

sup{ (z f rigg,)) ri((g§ ||qzi?;)1;q . {E;) partition of B}
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coincides with the g-variation of Gp on § divided by m(B)!/? and Gp is a
measure represented by the function (g — gnlx B, that is

Go(E) = L (o) - 98)x 5 dm(z).

Therefore the proposition follows from the equality between the g-variation and
the norm in L, of the function which represents the measure (see [D]}). W

Remark 2.2. In general it is not true that any measure in M BM O (Q, X}
is representable by a funetion, this depends on the Radon-Nikodym property.
We refer the reader to [B1] for the case {2 = {|z] = 1}, but 2 similar result and
proof can be established also in this general setting.

Proposition 2.2, Let1 < ¢ < co. & belongs to MBMQO, (2, X) if and only
if there exists a family of vectors in X, say {ag: B ball}, such thal

(24) sup{(Z I — ool )"’} < o0

where the supremum i3 faken over all balls B and over all finite pariitions of
B in pairwise disjoint mensureble sets E; with m(E;) > 0

Proof: The direct implication is obvious by taking ap = —%ﬁ% To show the
converse let us assume that we have {ap: B ball] with the above property, and
notice that

G(B)

laz —
jan ~ ol
for all B (simply take the partition of B given only by B).

<C

Therefore for any I? and any partition

Z" G(E;) G(B)”qm(Ei))I/q <

m(B)  m(B) m(B)
G(B) _, 1By G(B) ymED
wiz) N mE)) ”Z” m(B) mE) <™

As in the case of functions we can define an equivalent norm in

MBMQO,(Q, XY}, Let us take

(25) |G, , = sup { inf |G — amly(B)}.

ballyg G€EX m(B}lfv

Note that essentially the same argument as in Proposition 2.2. shows the
following

(2.6) 1G], € |Gleg < C G, ,
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Proposition 2.3. Let 1 < g < oco. If G belongs to MBMO,(Q, X} then
there ezists @ non negaiive funclion ¢ in BMO{(Q) such that

GI(E) = [E 8(z) dm(x)

Moreover |4l apo, < ClGllmBuo,

Proof* Since G is countably additive and m-continuous then the same is true
for the variation of G, |G|. Therefore using the Radon-Nikodym theorem there
exists a non negative measurable function ¢ which represents the measure |G|,
To show that ¢ belongs to BMO,(S?), we shall use Propositions 2.2 and 2.1.
We simply have to find a family of real numbers {eg} such that

" |G ED om{Ei) 1 3
sup{(§| lml({E'a) I m((B))) / <o

Take ag = g(g) , and observe that

i) - ey <16 - ZZ mice)

Then

|GI{ E%) |G(B)" g m{E;) 1*{"
SUP{(Zl m(Ei)  m{B) | m(B))

ot (B)I;Q(Z(IG— (Bgmlwn m(E) T} < Gy

The last inequality follows from Remark 1.1. B

3. The theorem and its proof

In the sequel 1 < p, g < oo, with i;+% = 1. In this section we shall achieve the

duality result between H(9, X) and MBMO,(Q, X*). We shall need several
lemmas before we prove the result. The next result was done in [BI] for the
circle and for ¢ = 2, and here we present a different approach which is valid for
general spaces of homogeneous type. The author would like to point out that
a similar and independent proof of the following lemma has been obtained by
T. Wolniewicz (persenal communication).
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Lemma 3.1. Let G be ¢ measure in MBMQ,(Q, X). Then for each integer
n € N we can find @ messure G, in V(1 X) end a constant C,, salisfying
[Gale,g & Cn and such that

(3.1) |Gleg < lim C < K[Glug

{3.2) Iin;o Go(E) = G(E) for ail measurable bounded set E.

Proof: Using Propesition 2.3 we ﬁ_rst get a function ¢ in BMO,{Q).
Denote by 2, = {z € X : ¢{z) > n } and ¢,(z) = min{1,n/¢(z)). Let us

define now
(3.3) Gn(E):/Eqsn(x)dG(r) (E € T,)
Notice that

IG(E) < IG’nI(E)S/;qén(r)leI(w)SL%(E)fﬁ(r}dm(I)Snm(E)

This, using Remark 1.2., allows to extend G, to T and shows that G, belongs
to V=, X). '
On the other hand

(3.4) G(E) - Gu(E) = /ﬁ (1= 6u(2))dG(z)

ity

Therefore if E is contained in some ball B
1G(E) - GBI <2 [ d(adm(z)
ENf,

Since ¢xp is in L;(§2) then taking himit as n — oo shows (3.2).

From (2.6) we have finally to estimate m(B)~1/%|G,, — am|,(B) for all balis
B. Using (3.4) we have that for any EC B

IG(E) — Gu(E}| < _Lm (1_— n/é(z)) d|G)(z)
If fja]| € nthen

IGCE) — Gu(E ngng (¢(z) —n) dm(I)S/ (¢(z) — [lall) dm{=)

Entt,

Therefore we have

(3.5) |Ge - Gl(BY < |G - am|{BN&,.)
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Though |G|, is not a measure for ¢ > 1 the g-variation es subadditive and
therefore we get that for all |J¢|| < n

(36)  m(B) V|G — amly(B) < 2m(B)9IG — aml,(B)
Denoting now by

D, = sup _inf {m{B) Y9G — am|,(B)}
battB Yali<n

we get (3.1) for Cp, = 2C D, where C is the constant appearing in (2.6). B

Notice that V°(Q, X*) can be obviously identified with the dual of L, (2, X}.
Indeed any measure G in V°({2, X*) defines a functional T acting on X-valued
simple functions (which are dense in L; {2, X') } by the formula

(3.7) To| ZGXE) Z<G(E)a,

where <, > means duality between X and X™.

Lemma 3.2. Leil < p,g < o0, §+ % = 1 and G belong to V™(8, X™).
Then
(3.8) ITe(F)} < CGlmpato, || fllny for ell fin H (R, X).

Proof: Let us first take a “simple atom” in H ({2, X), that is
s= 3" bixg,, Ei C B for some ball B, 37_; bim(E;) =0
and 30, [16ili% m(E:) < m(BY 7P .

For such an atom we can write

To(y bixs) = 3 < GBS >= - < G(B) — Setdm(E), 1>
i=1 i=1 i=1

Therefore

G(B)

(B)m(E Oloe-m(E;)™HPm( By 7 bl x <

ITa (o)) < 3 IGE) -

G(E:) G(B) ifq ifp
_(Zlm(E} e m(B) (Z"b“xm(E)) <

O(B) _6(E) m(E)
Z m(E)  m(B) " m(B)

)% < |Gl
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For a general atom « supported in B in H}{(§2, X} we can use approxima-
tion by simple functions in L,(§2, X}, and find a sequence of simple fune-
tions d; supported in B converging to a in L,(§2, X), and take the scquence
sk = (dr — [z di{x}dm(z))xp which clearly also converges to a in L,{Q, X).
Hence ||sill;, < 2le||, for k large enough, and therefore sp/2 are “simple
atoms”.

Using now that T 1s continuous as operator on Li{{}, X), and that s; con-
verges to @ in Ly(f2, X), then

(3:9) [To(a)l = Jim [T(si)] = 2 Jim [T(sk/2)| < 2(Ghh.q

For a general function f, take any representation of f in H;{Q,X), say f =

Z;ﬁo Aja;, where the a; are (X, p)-atom and Z?in JA;] < oo and notice that

{3.8) follows from (3.9) and the fact that the series f = 3777, A;a; is absolutely
convergent in L;(§2, X) what implies that Ta(f) = 3.2, A; Te{e;). ®

j=0

Theorem 3.1, Let 1 < p, g < oo and % + é =1. Then

(3.10) (H (O, X))* = MBMO,(2, X*) {equivalent norms)

Proof: Let us take G in M BMO{§}, X*}, and define as above
To(D bixe) =) < G(E:), b >
i=1 i=1

From the definition of H ; (£2, X'} we can easily see that simple functions with
support in balls are dense in the space, therefore it is enough to see that

(3.11) 1Ta (D bixe)) € ClClg 1D bixe)lla;
=1 i=1

To see (3.11) we first invoke Lemma 3.1 to find a sequence of measures G,
in V*(, X*), that according to (3.2) verifies Hmn oo T, (8} = T(s) for all
simple function supported in a ball.

Secondly we use Lemma 3.2, together with (3.1} to get

ITo(s)| < Tim {To, () < C lim (Galuglislly <

C nliman lsllzy < CIGlagllsizy

For the converse we shall deal first with the case m({}) < co. Let us take now
a functional T in (H;(Q,X})'. Since constant functions are also considered
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as X-atoms in the case of finite measure we have that ayp € H; (2, X), what
allows us te define the following X™ valued measure.

(3.12) < G(E),a >=T(axp) (a€X)

Given a ball B and a partition of B, say {£;}, of pairwise disjoint sets, using
the duality (IP{X})* = I%(X™), we have

G(E) G(B) g m{E)\ife _

G(E) _G(B)\ U Ei)\1/qpe e _

- G E) G(B 1/q i
Sup{z mEE) mEBg)(m(B)) ; > ; Il = 1)-

On the other hand we have

13 < (G(E,-} _ G(B))(m(Es))Uq)b!_ o=

m{E;) m(B)’ ' m(B)
- G(E:) :
B)Ifqlz: (E 1;pb (B)Z (E)Mb)>[_
i

= m(B) 4 [T(Z m(E) 7 b xg,) - T(bxB)]
i1

where b = L= (T0, m(E:)Y15,).

Denote by a = W(ELI m{E;)" Pb;xp, — bxp). 1t is elementary to
show that if 31, [|16:]/% =1 then a is a (X, p)-atom.

Therefore we obtain

G(E) G(B), m(E)
E:mm3> w(B) 1% m(B)

)17 < 2Tyl < 247

This shows |Gl.; < 2||T||. Since T and Ty coincide over simple atoms, we
have T = Tg.
On the other hand
IGEDN < sup{ [T(bxa)l: flol €1 } <m{Q)||T|

and this finishes the proof for the finite measure case.
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Let us deal now with the case of m{{}) = oco. Take a functional T in
(H, (€,X))" and a ball B in Q. Let us consider the following space

LE(B, X)y={f€ L,(Q,X): supp f C B and ] flz)drm(z) =0}
B
The foliowing function is an {X, p)-atom

alrTy = —fgf""}"‘“"‘" or
@)= mpn, 1o/ € LB

hence

Iz < m(BY 2|51l

and thercfore

ITA < NT| e BY 7| £l

This shows that T defines a bounded functional on LE(B, X) and hence from
the Hahn-Banach extension theorem, we get an element in the dual of L(B, X}.
The characterization of the dual space {L,{B, X))‘ in terms of A*-valued mea-
sures of bounded g-variation allows us to find a measure (75 with values in X*
verifying

(3.18) T(f= /deGB f e L§(B,X)

(Note that this measure is uniquely determined up to a measure F(E) =
¢ m{ENDB) for some £ € X*). Now if we take an increasing sequence of balls con-
verging to £2, say B, and we determine G g, by the assumption Gp,(B:) =0
then we can construct a vector-valued measure on Xy, given by G{E} = G, (E)
for E C B,. It is clear that G g, are absolutely continuous and hence the same
is true for . Now from remark 1.2 we get an extension to I,

G(E) G(B) o m(E)/q _ G(B)
(Z"m(E m(B)"X' m(B)) IJ!II,—I m(B)‘”ff 4@ m(B) ™|

For each f € L,(B, X}, consider o = m(‘f — fB)x B 8nd therefore

G(E) G(B),, m(F)
Z"m(&) m(B) 1% 7n(B)

1
)77 = sup2|T(e)] < 2|17}
a

‘This completes the proof. B
Remark 3.1. For 1 < p,r < oo,

MBMQ (8, XY= MEMO,{Ql, X} with equivalent norms
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For dual spaces follows from the theorem and (1.1), and the general case is
consequence of the embedding X C X**
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