VECTOR VALUED MEASURES OF BOUNDED MEAN OSCILLATION

OSCAR BLASCO*

0. Introduction

The duality between H^1 and BMO, the space of functions of bounded mean oscillation (see [JN]), was first proved by C. Fefferman (see [F], [FS]) and then other proofs of it were obtained. Using the atomic decomposition approach ([C], [L]) the author studied the problem of characterizing the dual space of H^1 of vector-valued functions. In [B2] the author showed, for the case $\Omega = \{|z| = 1\}$, that the expected duality result H^1 -BMO holds in the vector valued setting if and only if X^* has the Radon-Nikodym property. If we want to get a duality result valid for all Banach spaces we may consider vector valued measures (see [BT], where the vector valued L_p case is treated, for an explanation) and therefore to deal with the general case it was necessary to consider a new space of vector valued measures closely related to BMO (see [B1]).

In this paper we shall study such space in little more detail and we shall consider the H^1 -BMO duality for vector-valued functions in the more general setting of spaces of homogeneous type (see [CW]).

Throughout the paper X will stand for a Banach space, Ω will be a space of homogeneous type (see definition in the preliminary section) and we write $L_p(\Omega, X)$ for the space of measurable functions on Ω with values in X such that ||f(x)|| belongs to $L_p(\Omega)$. As usual C will denote a constant not necessarily the same at each occurrence.

1. Preliminaries

A space of homogeneous type Ω is a topological space endowed with a Borel measure m and a quasi-distance d, that is $d: X \times X \to \mathbb{R}^+$ with

a)
$$d(x,y) = d(y,x),$$

b) d(x,y) = 0 if and only if x = y,

c)
$$d(x,y) \leq K(d(x,z) + d(z,y)).$$

^{*}Partially suported by the grant C.A.I.C.Y.T. PB85-0338

O. BLASCO

and we assume that the balls $B_r(x) = \{y \in \Omega : d(x, y) < r\}$ form a basis of open neighborhoods of the point x and there exists a constant A satisfying

(1.0)
$$m(B_r(x)) \le A m(B_{r/2}(x))$$

From (1.0) we can assume that $0 < m(B) < \infty$ for every ball B (otherwise m would be identically 0 or ∞) and therefore m is a σ -finite measure on Ω . Denote by Σ_0 the ring of bounded measurable sets. The σ -finiteness condition implies that the σ -algebra generated by Σ_0 coincides with the Borel σ -algebra that we shall denote by Σ .

Let us now recall the notion of atom with values in X. Given $1 , a function a in <math>L_p(\Omega, X)$ is called (X, p)-atom if

a) the support is contained in a ball
$$B = B_r(x_o)$$

b)
$$(\frac{1}{m(B)} \int_B \|a(x)\|^p \, dm(x))^{1/p} \le \frac{1}{m(B)} \quad (p < \infty)$$

b')
$$||a(x)|| \le \frac{1}{m(B)}$$
 $m - a.e.$ $(p = \infty)$

c)
$$\int_B a(x) \, dm(x) = 0$$

In the case $m(\Omega) < \infty$ the constant function $\frac{1}{m(\Omega)}b$, where $b \in X$ with $\|b\| = 1$, is also considered as a (X, p)-atom.

Note that the atoms are in the unit ball of $L_1(\Omega, X)$.

Following [CW] we define $H_p^1(\Omega, X)$ as the space of functions f in $L_1(\Omega, X)$ admitting an atomic decomposition

(1.1)
$$f = \sum_{j=0}^{\infty} \lambda_j a_j$$

where the a_j 's are (X, p)-atoms and $\sum_{j=0}^{\infty} |\lambda_j| < \infty$. (The convergence of (1.1) is taken in $L_1(\Omega, X)$).

We get a Banach space if we consider the norm

$$\|f\|_{H^1_p} = \inf \sum_{j=0}^\infty |\lambda_j|$$

where the infimum is taken over all representations $f = \sum_{j=0}^{\infty} \lambda_j a_j$.

The same arguments as in [CW] show that, in fact, for $1 < p, r \le \infty$ (1.2) $H_p^1(\Omega, X) = H_r^1(\Omega, X)$ (with equivalent norms).

Let us also recall the definition of vector-valued BMO. Let $1 \leq q < \infty$, an X-valued function which is locally in $L_q(\Omega, X)$ is said to belong to $BMO_q(\Omega, X)$ provided that

(1.3)
$$\sup_{ballB} \left(\frac{1}{m(B)} \int_B \|g(x) - g_B\|^q dm(x) \right)^{1/q} \le C$$

where $g_B = \frac{1}{m(B)} \int_B g(x) dm(x)$.

Let us denote by

$$\|g\|_{*,q} = \sup\{\left(\frac{1}{m(B)}\int_{B}\|g(x) - g_{B}\|^{q} dm(x)\right)^{1/q}: B \text{ ball}\}$$

When $m(\Omega) = \infty$ then $||g||_{BMO_q} = ||g||_{*,q}$ gives a norm on the set of equivalence classes of functions which differ by a constant in X.

For $m(\Omega) < \infty$ we consider the norm $\|g\|_{BMO_q} = \|g\|_{*,q} + \|\int_{\Omega} g(x) dm(x)\|$.

Let us recall now a few definitions about vector-valued measures we shall use later on. Let (Ω, Σ, m) be any σ -finite measure space, A a measurable set and 1 . Given a vector valued measure G, we denote by <math>|G| the variation of G, that is

(1.4)
$$|G|(A) = \sup\{\sum_{i=1}^{n} ||G(E_i)|| : (E_i) \text{ partition of } A\}$$

and by $|G|_p(A)$ the *p*-variation on A, that is

(1.5)
$$|G|_{p}(A) = \sup\{\left(\sum_{i=1}^{n} \frac{\|G(E_{i})\|^{p}}{m(E_{i})^{p-1}}\right)^{1/p}\}$$

where the supremum is taken over all finite partitions (E_i) of disjoint measurables sets contained in A with $m(E_i) > 0$.

For the case $p = \infty$ we shall denote by $V^{\infty}(\Omega, X)$ the space of X-valued measures G satisfying

(1.6) $||G(E)|| \le C m(E)$ for all measurable set E

Defining the norm by the infimum of the constants satisfying (1.6) we get a Banach space.

Remark 1.1. It is not hard to see that in fact $||G(E_i)||$ can be replaced by $|G|(E_i)$ in the definition of *p*-variation. (See Lemma 1 in [B3])

Remark 1.2. If G is a vector valued measure defined on Σ_0 which is absolutely continuous with respect to m, that is $\lim_{m(E)\to 0} G(E) = 0$, then it can be extended to a measure on Σ , being still absolutely continuous with respect to m. (See $[\mathbf{D}], [\mathbf{DU}]$)

We refer the reader to ([DU], [D]) and to ([J], [GC-RF]) for general theory and the properties we shall use about vector valued measures and Hardy spaces respectively.

2. Vector valued measures of bounded mean oscillation

Definition 2.1. Let $1 \leq q < \infty$. Given a countably additive measure G defined on Σ and with values in X, it is said that G belongs to $MBMO_q(\Omega, X)$ if

(2.1)
$$|G|_{\star,q} = \sup\{\left(\sum_{i=1}^{n} \|\frac{G(E_i)}{m(E_i)} - \frac{G(B)}{m(B)}\|^{q} \frac{m(E_i)}{m(B)}\right)^{1/q}\} < \infty$$

where the supremum is taken over all balls B and over all finite partitions of B in pairwise disjoint measurable sets E_i with $m(E_i) > 0$.

When $m(\Omega) = \infty$ then $||G||_{MBMO_q} = |G|_{\star,q}$ gives a norm on the set of equivalence classes of measures: $G_1 \sim G_2$ if there is b in X such that $G_1(E) - G_2(E) = bm(E)$ for all measurable set E.

For $m(\Omega) < \infty$ we consider the norm $||G||_{MBMO_q} = |G|_{*,q} + ||G(\Omega)||$. It is obvious that if $1 < q_1 < q_2 < \infty$ then

$$(2.2) V^{\infty}(\Omega, X) \subset MBMO_{q_2}(\Omega, X) \subset MBMO_{q_1}(\Omega, X)$$

Remark 2.1. Let us assume G belong to $MBMO_q(\Omega, X)$. Given a ball B and a measurable set $E \subset B$, it is quite immediate to find a constant C_B depending on B satisfying

(2.3)
$$||G(E)|| \le C_B \max(m(E), m(E)^{1-1/q})$$

Suppose we consider $B_n = \{y \in \Omega : d(x_0, y) < n\}$ and denote by G_{B_n} the measure G concentrated on B_n , that is $G_{B_n}(E) = G(E \cap B_n)$. A glance at (2.3) allows us to say that for any $1 < q < \infty$ if G belongs to $MBMO_q(\Omega, X)$ then G_{B_n} are necessarily absolutely continuous with respect to m and this clearly implies that also G is absolutely continuous with respect to m. (Recall that for vector-measures on σ -algebras it suffices to check that they vanish on m-null sets).

Proposition 2.1. Let $1 \le q < \infty$, g be locally in $L_q(\Omega, X)$ and G be an X-valued measure such that $G(E) = \int_E g(x) dm(x)$ for all measurable bounded set E.

Then g belongs to $BMO_q(\Omega, X)$ if and only if G belongs to $MBMO_q(\Omega, X)$. Moreover $||G||_{MBMO_q} = ||g||_{BMO_q}$.

Proof: Given any ball B, consider $G_B(E) = G(E \cap B) - \frac{G(B)}{m(B)} m(E \cap B)$. Observe that

$$\sup\{\left(\sum_{i=1}^{n} \|\frac{G(E_{i})}{m(E_{i})} - \frac{G(B)}{m(B)}\|^{q} \frac{m(E_{i})}{m(B)}\right)^{1/q} : (E_{i}) \text{ partition of } B\}$$

coincides with the q-variation of G_B on Ω divided by $m(B)^{1/q}$ and G_B is a measure represented by the function $(g-g_B)\chi_B$, that is

$$G_B(E) = \int_E (g(x) - g_B) \chi_B \, dm(x).$$

Therefore the proposition follows from the equality between the q-variation and the norm in L_q of the function which represents the measure (see [D]).

Remark 2.2. In general it is not true that any measure in $MBMO_q(\Omega, X)$ is representable by a function, this depends on the Radon-Nikodym property. We refer the reader to [B1] for the case $\Omega = \{|z| = 1\}$, but a similar result and proof can be established also in this general setting.

Proposition 2.2. Let $1 \le q < \infty$. G belongs to $MBMO_q(\Omega, X)$ if and only if there exists a family of vectors in X, say $\{a_B: B \text{ ball}\}$, such that

(2.4)
$$\sup\{\left(\sum_{i=1}^{n} \left\|\frac{G(Ei)}{m(E_i)} - a_B\right\|^q \frac{m(Ei)}{m(B)}\right)^{1/q}\} < \infty$$

where the supremum is taken over all balls B and over all finite partitions of B in pairwise disjoint measurable sets E_i with $m(E_i) > 0$

Proof: The direct implication is obvious by taking $a_B = \frac{G(B)}{m(B)}$. To show the converse let us assume that we have $\{a_B: B \text{ ball}\}$ with the above property, and notice that

$$\|a_B - \frac{G(B)}{m(B)}\| \le C$$

for all B (simply take the partition of B given only by B).

Therefore for any B and any partition

$$\left(\sum_{i=1}^{n} \left\|\frac{G(E_{i})}{m(E_{i})} - \frac{G(B)}{m(B)}\right\|^{q} \frac{m(E_{i})}{m(B)}\right)^{1/q} \leq \left(\sum_{i=1}^{n} \left\|\frac{G(E_{i})}{m(E_{i})} - a_{B}\right\|^{q} \frac{m(E_{i})}{m(B)}\right)^{1/q} + \left(\sum_{i=1}^{n} \left\|a_{B} - \frac{G(B)}{m(B)}\right\|^{q} \frac{m(E_{i})}{m(B)}\right)^{1/q} \leq C \quad \blacksquare$$

As in the case of functions we can define an equivalent norm in $MBMO_q(\Omega, X)$. Let us take

(2.5)
$$|G|'_{*,q} = \sup_{ball B} \{ \inf_{a \in X} \frac{1}{m(B)^{1/q}} |G - am|_q(B) \}.$$

Note that essentially the same argument as in Proposition 2.2. shows the following

(2.6)
$$|G|'_{*,q} \le |G|_{*,q} \le C |G|'_{*,q}$$

Proposition 2.3. Let $1 < q < \infty$. If G belongs to $MBMO_q(\Omega, X)$ then there exists a non negative function ϕ in $BMO_q(\Omega)$ such that

$$|G|(E) = \int_E \phi(x) \, dm(x).$$

Moreover $\|\phi\|_{BMO_q} \leq C \|G\|_{MBMO_q}$.

Proof: Since G is countably additive and m-continuous then the same is true for the variation of G, |G|. Therefore using the Radon-Nikodym theorem there exists a non negative measurable function ϕ which represents the measure |G|. To show that ϕ belongs to $BMO_q(\Omega)$, we shall use Propositions 2.2 and 2.1. We simply have to find a family of real numbers $\{a_B\}$ such that

$$\sup\{\left(\sum_{i=1}^{n} \left| \frac{|G|(Ei)}{m(Ei)} - a_{B} \right|^{q} \frac{m(E_{i})}{m(B)}\right)^{1/q}\} < \infty$$

Take $a_B = \frac{\|G(B)\|}{m(B)}$, and observe that

$$\left\| |G|(E) - \frac{||G(B)||}{m(B)} m(E) \right\| \le |G - \frac{G(B)}{m(B)} m|(E)|$$

Then

$$\sup\{\left(\sum_{i=1}^{n} \left|\frac{|G|(Ei)}{m(Ei)} - \frac{||G(B)||}{m(B)}\right|^{q} \frac{m(E_{i})}{m(B)}\right)^{1/q}\} \leq \\ \sup\{\frac{1}{m(B)^{1/q}} \left(\sum_{i=1}^{n} \left(|G - \frac{G(B)}{m(B)}m|(E_{i})\right)^{q} m(E_{i})^{1-q}\right)^{1/q}\} \leq |G|_{*,q}$$

The last inequality follows from Remark 1.1.

3. The theorem and its proof

In the sequel $1 < p, q < \infty$, with $\frac{1}{p} + \frac{1}{q} = 1$. In this section we shall achieve the duality result between $H_p^1(\Omega, X)$ and $MBMO_q(\Omega, X^*)$. We shall need several lemmas before we prove the result. The next result was done in [B1] for the circle and for q = 2, and here we present a different approach which is valid for general spaces of homogeneous type. The author would like to point out that a similar and independent proof of the following lemma has been obtained by T. Wolniewicz (personal communication).

Lemma 3.1. Let G be a measure in $MBMO_q(\Omega, X)$. Then for each integer $n \in \mathbb{N}$ we can find a measure G_n in $V^{\infty}(\Omega, X)$ and a constant C_n satisfying $|G_n|_{*,q} \leq C_n$ and such that

$$(3.1) |G|_{\star,q} \le \lim_{n \to \infty} C_n \le K|G|_{\star,q}$$

(3.2)
$$\lim_{n \to \infty} G_n(E) = G(E) \quad \text{for all measurable bounded set } E$$

Proof: Using Proposition 2.3 we first get a function ϕ in $BMO_q(\Omega)$.

Denote by $\Omega_n = \{x \in X : \phi(x) > n\}$ and $\phi_n(x) = \min(1, n/\phi(x))$. Let us define now

(3.3)
$$G_n(E) = \int_E \phi_n(x) \, dG(x) \qquad (E \in \Sigma_0)$$

Notice that

$$\|G_n(E)\| \le |G_n|(E) \le \int_E \phi_n(x) \, d|G|(x) \le \int_E \phi_n(x) \, \phi(x) \, dm(x) \le n \, m(E)$$

This, using Remark 1.2., allows to extend G_n to Σ and shows that G_n belongs to $V^{\infty}(\Omega, X)$.

On the other hand

(3.4)
$$G(E) - G_n(E) = \int_{E \cap \Omega_n} (1 - \phi_n(x)) dG(x)$$

Therefore if E is contained in some ball B

$$\|G(E) - G_n(E)\| \le 2 \int_{E \cap \Omega_n} \phi(x) dm(x)$$

Since $\phi \chi_B$ is in $L_1(\Omega)$ then taking limit as $n \to \infty$ shows (3.2).

From (2.6) we have finally to estimate $m(B)^{-1/q}|G_n - a m|_q(B)$ for all balls B. Using (3.4) we have that for any $E \subset B$

$$\|G(E)-G_n(E)\| \leq \int_{E\cap\Omega_n} (1-n/\phi(x)) d|G|(x)$$

If $||a|| \leq n$ then

$$\|G(E) - G_n(E)\| \leq \int_{E \cap \Omega_n} (\phi(x) - n) \, dm(x) \leq \int_{E \cap \Omega_n} (\phi(x) - \|a\|) \, dm(x)$$

Therefore we have

$$(3.5) |G_n - G|_q(B) \le |G - am|_q(B \cap \Omega_n)$$

Though $|G|_q$ is not a measure for q > 1 the q-variation es subadditive and therefore we get that for all $||a|| \le n$

(3.6)
$$m(B)^{-1/q}|G_n - am|_q(B) \le 2m(B)^{-1/q}|G - am|_q(B)$$

Denoting now by

$$D_n = \sup_{ball B} \inf_{\|a\| \le n} \{m(B)^{-1/q} | G - a m|_q(B)\}$$

we get (3.1) for $C_n = 2CD_n$ where C is the constant appearing in (2.6).

Notice that $V^{\infty}(\Omega, X^*)$ can be obviously identified with the dual of $L_1(\Omega, X)$. Indeed any measure G in $V^{\infty}(\Omega, X^*)$ defines a functional T_G acting on X-valued simple functions (which are dense in $L_1(\Omega, X)$) by the formula

(3.7)
$$T_G\left(\sum_{i=1}^n a_i \chi_{E_i}\right) = \sum_{i=1}^n \langle G(E_i), a_i \rangle$$

where <,> means duality between X and X^* .

Lemma 3.2. Let $1 < p, q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ and G belong to $V^{\infty}(\Omega, X^*)$. Then

$$(3.8) |T_G(f)| \le C ||G||_{MBMO_q} ||f||_{H_p^1} \text{ for all } f \text{ in } H_p^1(\Omega, X).$$

Proof: Let us first take a "simple atom" in $H_p^1(\Omega, X)$, that is $s = \sum_{i=1}^n b_i \chi_{E_i}, E_i \subset B$ for some ball $B, \sum_{i=1}^n b_i m(E_i) = 0$ and $\sum_{i=1}^n \|b_i\|_X^p m(E_i) \le m(B)^{1-p}$. For such an atom we can write

$$T_G(\sum_{i=1}^n b_i \chi_{E_i}) = \sum_{i=1}^n \langle G(E_i), b_i \rangle = \sum_{i=1}^n \langle G(E_i) - \frac{G(B)}{m(B)}m(E_i), b_i \rangle$$

Therefore

$$\begin{aligned} |T_G(s)| &\leq \sum_{i=1}^n \|G(E_i) - \frac{G(B)}{m(B)} m(E_i)\|_{X^*} m(E_i)^{-1/p} m(E_i)^{1/p} \|b_i\|_X \leq \\ &\leq \left(\sum_{i=1}^n \|\frac{G(E_i)}{m(E_i)} - \frac{G(B)}{m(B)}\|_{X^*}^q m(E_i)\right)^{1/q} \left(\sum_{i=1}^n \|b_i\|_X^p m(E_i)\right)^{1/p} \leq \\ &\leq \left(\sum_{i=1}^n \|\frac{G(E_i)}{m(E_i)} - \frac{G(B)}{m(B)}\|_{X^*}^q \frac{m(E_i)}{m(B)}\right)^{1/q} \leq |G|_{*,q} \end{aligned}$$

For a general atom a supported in B in $H_p^1(\Omega, X)$ we can use approximation by simple functions in $L_p(\Omega, X)$, and find a sequence of simple functions d_k supported in B converging to a in $L_p(\Omega, X)$, and take the sequence $s_k = (d_k - \int_B d_k(x) dm(x))\chi_B$ which clearly also converges to a in $L_p(\Omega, X)$. Hence $||s_k||_p \leq 2||a||_p$ for k large enough, and therefore $s_k/2$ are "simple atoms".

Using now that T_G is continuous as operator on $L_1(\Omega, X)$, and that s_k converges to a in $L_1(\Omega, X)$, then

(3.9)
$$|T_G(a)| = \lim_{k \to \infty} |T(s_k)| = 2 \lim_{k \to \infty} |T(s_k/2)| \le 2 |G|_{*,q}$$

For a general function f, take any representation of f in $H_p^1(\Omega, X)$, say $f = \sum_{j=0}^{\infty} \lambda_j a_j$, where the a_j arc (X, p)-atom and $\sum_{j=0}^{\infty} |\lambda_j| < \infty$ and notice that (3.8) follows from (3.9) and the fact that the series $f = \sum_{j=0}^{\infty} \lambda_j a_j$ is absolutely convergent in $L_1(\Omega, X)$ what implies that $T_G(f) = \sum_{j=0}^{\infty} \lambda_j T_G(a_j)$.

Theorem 3.1. Let $1 < p, q < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$(3.10) \qquad (H_p^1(\Omega, X))^* = MBMO_q(\Omega, X^*) \ (equivalent \ norms)$$

Proof: Let us take G in $MBMO_q(\Omega, X^*)$, and define as above

$$T_G\left(\sum_{i=1}^n b_i \chi_{E_i}\right) = \sum_{i=1}^n \langle G(E_i), b_i \rangle$$

From the definition of $H_p^1(\Omega, X)$ we can easily see that simple functions with support in balls are dense in the space, therefore it is enough to see that

(3.11)
$$|T_G(\sum_{i=1}^n b_i \chi_{E_i})| \le C |G|_{*,q} \| (\sum_{i=1}^n b_i \chi_{E_i}) \|_{H^1_p}$$

To see (3.11) we first invoke Lemma 3.1 to find a sequence of measures G_n in $V^{\infty}(\Omega, X^*)$, that according to (3.2) verifies $\lim_{n\to\infty} T_{G_n}(s) = T_G(s)$ for all simple function supported in a ball.

Secondly we use Lemma 3.2, together with (3.1) to get

$$|T_G(s)| \le \lim_{n \to \infty} |T_{G_n}(s)| \le C \lim_{n \to \infty} |G_n|_{*,q} ||s||_{H_p^1} \le C \lim_{n \to \infty} C_n ||s||_{H_p^1} \le C |G|_{*,q} ||s||_{H_p^1}.$$

For the converse we shall deal first with the case $m(\Omega) < \infty$. Let us take now a functional T in $(H_p^1(\Omega, X))^*$. Since constant functions are also considered

as X-atoms in the case of finite measure we have that $a\chi_E \in H^1_p(\Omega, X)$, what allows us to define the following X^* valued measure.

$$(3.12) \qquad \qquad < G(E), a >= T(a\chi_E) \qquad (a \in X)$$

Given a ball B and a partition of B, say $\{E_i\}$, of pairwise disjoint sets, using the duality $(l^p(X))^* = l^q(X^*)$, we have

$$\begin{split} &(\sum_{i=1}^{n} \|\frac{G(E_{i})}{m(E_{i})} - \frac{G(B)}{m(B)}\|_{X^{*}}^{q} \frac{m(E_{i})}{m(B)})^{1/q} = \\ &(\sum_{i=1}^{n} \|\frac{G(E_{i})}{m(E_{i})} - \frac{G(B)}{m(B)})(\frac{m(E_{i})}{m(B)})^{1/q}\|_{X^{*}}^{q})^{1/q} = \\ &\sup\{\sum_{i=1}^{n} < (\frac{G(E_{i})}{m(E_{i})} - \frac{G(B)}{m(B)})(\frac{m(E_{i})}{m(B)})^{1/q}, b_{i} > \| : \sum_{i=1}^{n} \|b_{i}\|_{X}^{p} = 1\}. \end{split}$$

On the other hand we have

$$|\sum_{i=1}^{n} < \left(\frac{G(E_{i})}{m(E_{i})} - \frac{G(B)}{m(B)}\right) \left(\frac{m(E_{i})}{m(B)}\right)^{1/q}, b_{i} > | =$$

$$\frac{1}{m(B)^{1/q}} \sum_{i=1}^{n} < \frac{G(E_{i})}{m(E_{i})^{1/p}}, b_{i} > - < \frac{G(B)}{m(B)}, \sum_{i=1}^{n} m(E_{i})^{1/q} b_{i} > | =$$

$$= \frac{1}{m(B)^{1/q}} |T\left(\sum_{i=1}^{n} m(E_{i})^{-1/p} b_{i} \chi_{E_{i}}\right) - T(b \chi_{B})|$$

where $b = \frac{1}{m(B)} \left(\sum_{i=1}^{n} m(E_i)^{1/q} b_i \right).$

Denote by $a = \frac{1}{2m(B)^{1/q}} \left(\sum_{i=1}^{n} m(E_i)^{-1/p} b_i \chi_{E_i} - b \chi_B \right)$. It is elementary to show that if $\sum_{i=1}^{n} \|b_i\|_X^p = 1$ then a is a (X, p)-atom.

Therefore we obtain

$$\left(\sum_{i=1}^{n} \left\| \frac{G(E_i)}{m(E_i)} - \frac{G(B)}{m(B)} \right\|_{X^*}^{q} \frac{m(E_i)}{m(B)} \right)^{1/q} \le 2 \left\| T(a) \right\| \le 2 \left\| T \right\|$$

This shows $|G|_{\bullet,q} \leq 2 ||T||$. Since T and T_G coincide over simple atoms, we have $T = T_G$.

On the other hand

 $||G(\Omega)|| \le \sup\{-|T(b\chi_{\Omega})| : ||b|| \le 1^{-}\} \le m(\Omega) ||T||$

and this finishes the proof for the finite measure case.

Let us deal now with the case of $m(\Omega) = \infty$. Take a functional T in $(H_p^1(\Omega, X))^*$ and a ball B in Ω . Let us consider the following space

$$L^p_0(B,X) = \{f \in L_p(\Omega,X) : \text{ supp } f \subset B \text{ and } \int_B f(x) dm(x) = 0\}$$

The following function is an (X, p)-atom

$$a(x) = \frac{f(x)}{m(B)^{1/q} \|f\|_p} \text{ for } f \in L^p_0(B, X).$$

hence

$$||f||_{H^1_p} \le m(B)^{1/q} ||f||_p$$

and therefore

$$||Tf|| \le ||T|| m(B)^{1/q} ||f||_{p}$$

This shows that T defines a bounded functional on $L_0^p(B, X)$ and hence from the Hahn-Banach extension theorem, we get an element in the dual of $L_p(B, X)$. The characterization of the dual space $(L_p(B, X))^*$ in terms of X^* -valued measures of bounded q-variation allows us to find a measure G_B with values in X^* verifying

(3.13)
$$T(f) = \int_B f \, dG_B \qquad f \in L^p_0(B, X)$$

(Note that this measure is uniquely determined up to a measure $F(E) = \xi m(E \cap B)$ for some $\xi \in X^*$). Now if we take an increasing sequence of balls converging to Ω , say B_n , and we determine G_{B_n} by the assumption $G_{B_n}(B_1) = 0$, then we can construct a vector-valued measure on Σ_0 , given by $G(E) = G_{B_n}(E)$ for $E \subset B_n$. It is clear that G_{B_n} are absolutely continuous and hence the same is true for G. Now from remark 1.2 we get an extension to Σ .

$$\left(\sum_{i=1}^{n} \left\| \frac{G(E_i)}{m(E_i)} - \frac{G(B)}{m(B)} \right\|_X^q, \frac{m(E_i)}{m(B)} \right)^{1/q} = \sup_{\|f\|_{p}=1} \left| \frac{1}{m(B)^{1/q}} \int_B f \, d(G - \frac{G(B)}{m(B)} m) \right|$$

For each $f \in L_p(B, X)$, consider $a = \frac{1}{2 m(B)^{1/q}} (f - f_B) \chi_B$ and therefore

$$\left(\sum_{i=1}^{n} \left\| \frac{G(E_i)}{m(E_i)} - \frac{G(B)}{m(B)} \right\|_{X^*}^{q} \frac{m(E_i)}{m(B)} \right)^{1/q} = \sup_{a} 2|T(a)| \le 2 \|T\|$$

This completes the proof. \blacksquare

Remark 3.1. For $1 < p, r < \infty$,

$$MBMO_{q}(\Omega, X) = MBMO_{r}(\Omega, X)$$
 with equivalent norms

For dual spaces follows from the theorem and (1.1), and the general case is consequence of the embedding $X \subset X^{**}$

References

- [B1] O. BLASCO, Hardy spaces of vector-valued functions: Duality, Trans. Amer. Math. Soc. 308 (1988), 495-507.
- [B2] O. BLASCO, On the dual space of $H_B^{1,\infty}$, Colloquium Math. 55 (1988), 253-259.
- [B3] O. BLASCO, Boundary values of vector-valued functions in Orlicz-Hardy classes, Arch. Math. 49 (1987), 434-439.
- [BT] S. BOCHNER, A.E. TAYLOR, Linear functionals on certain spaces of abstractly-valued functions, Annals of Math. 39 (1938), 913-944.
- [C] R.R. COIFMAN, A real variable characterization of H_p, Studia Math. 51 (1974), 269-274.
- [CW] R.R. COIFMAN, G. WEISS, Extension of Hardy spaces and their use in Analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [DU] J. DIESTEL, J.J. UHL, Vector Measures, Amer. Math. Soc. Mathematical Surveys 15 (1977).
- [D] N. DINCULEANU, "Vector measures," Pergamon Press, New York, 1967.
- [F] C. FEFFERMAN, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587-588.
- [FS] C. FEFFERMAN, E.M. STEIN, H_p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [GC-RF] J. GARCIA-CUERVA, J.L. RUBIO DE FRANCIA, "Weighted norm inequalities and related topics," North-Holland, Amsterdam, 1985.
- [JN] F. JOHN, L. NIRENBERG, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
- J.L. JOURNE, "Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón," Lectures Notes in Math. 994, Springer-Vertlag, Berlin, 1983.
- [L] R.H. LATTER, A characterization of $H_p(\mathbf{R}^n)$ in terms of atoms, Studia Math. 62 (1978), 93-101.

Departamento de Matemáticas Universidad de Zaragoza Zaragoza 50009 SPAIN