Pub. Mat. UAB Vol. 27 nº 1

ON THE ENDOMORPHISM RING OF A FREE MODULE

Pere Menal

Throughout, let R be an (associative) ring (with 1). Let F be the free right R-module, over an infinite set C, with endomorphism ring H.

In this note we first study those rings R such that H is left coherent.By comparison with Lenzing's characterization of those rings R such that H is right coherent [8, Satz 4], we obtain a large class of rings H which are right but not left coherent.

Also we are concerned with the rings R such that H is either right (left) IF-ring or else right (left) self-FP-injective. In particular we prove that H is right self-FP-injective if and only if R is quasi-Frobenius (QF) (this is an slight generalization of results of Faith and Walker [3] which assure that R must be QF whenever H is right self-injective) moreover, this occurs if and only if H is a left IF-ring. On the other hand we shall see that if R is pseudo-Frobenius (PF), that is R is an injective cogenerator in Mod-R, then H is left self-FP-injective. Hence any PF-ring, R, that is not QF is such that H is left but not right self FP-injective.

A left R-module M is said to be FP-*injective* if every R-homomorphism $N \rightarrow M$, where N is a finitely generated submodule of a free module F, may be extended to F. In other words M is FP-injective if and only if $Ext^{1}(K,M)=0$ for every finitely presented module K. R is said to be *left self*-FP-*injective*

if R is FP-injective as left R-module. In [7, 2.3] Jain characterizes left self-FP-injective rings as those rings in which every finitely presented right R-module is torsionless. By using Morita equivalence, this is to say that for each $a \in R_n$ (where R_n denotes the ring of all n by n matrices) the right ideal aR_n is a right annihilator, for all $n \ge 1$.

R is said to be a *right* IF-*ring* if every right injective module is flat. Colby [1] characterizes the right IF-rings as those rings such that every finitely presented right R-module embeds in a free module, by Morita equivalence this is to say: for all $n \ge 1$ given $a \in R_n$ the right ideal aR_n is the right annihilator of a finite subset of R_n . In particular we see that a right IF-ring is left self-FP-injective.

Recall that R is said to be *right coherent* if every finitely generated right ideal is finitely presented, this is equivalent to say that the right annihilator (in R_n) of each $a \in R_n$ is a finitely generated right ideal, for all $n \ge 1$. We also use the fact, discovered by Chase, cf [11, p.43]; that R is right coherent if and only if the direct product of any family of copies of R is flat as left R-module.

If S is a subset of R we denote by r(S) and I(S) its right and left annihilator, respectively.

Because F is a free module of infinite rank we see that $F \cong F^n$ all $n \ge 1$. It follows that $H \cong H^n$ as right (or left) H-modules. So H is isomorphic (as ring) to H_n , for all $n \ge 1$. Further every finitely generated right (or left) H-module is cyclic.

From the above remark we see that H is right (left) coherent if and only if the right (left) annihilator of every element of H is finitely generated.

A right R-module is said to be *torsionless* if it is contained in a direct product of copies of R. If M is a right R-module, we denote by \overline{M} the torsionless module associated to M, that is $\overline{M} = M/N$, where $N = \bigcap_{\substack{k \in Hom(M,R)}} Kert$

Proposition 1. H is left coherent if and only if for each right R-module, M, generated by a set of cardinality $\leq |C|$ and defined by a set of relations of cardinality $\leq |C|$ there exists a monomorphism $\varepsilon : \overline{M} \rightarrow F$ such that every R-homomorphism $\varepsilon(\overline{M}) \rightarrow F$ may be extended to F.

Proof. Suppose H is left coherent. Let M be a right R-module generated by a set of cardinality $\leq |C|$ and defined by a set of relations of cardinality

 $\leq |C|$, then there exists $n \in H$ such that $F/Im \ n \cong M$ and we may assume $M = F/Im \ n$. Since H is left coherent there exists $\varphi \in H$ such that $H\varphi = \underline{1}(n)$. In particular $\varphi_n = 0$ and so $Im \ n \leq Ker \ \varphi$. Suppose t: F + R is an R-homomorphism with $t(Im \ n) = 0$, then tn = 0 and hence $t \in H\varphi$. So $Ker \ \varphi \leq Ker \ t$, that is $N = Ker \ \varphi/Im \ n \leq 0$ Kert and, the equality holds because $M/N = t \in Hom(M,R)$ $= F/Ker \ \varphi$ is torsionless. Thus we have shown that $\overline{M} = F/Ker \ \varphi$. Set $\varepsilon : \overline{M} + F$ the natural homomorphism induced by φ . Let $t: \varepsilon(\overline{M}) \to F$ be an R-homomorphism, then $t\varphi \in H$ and $t\varphi_n = 0$ so $t\varphi = u\varphi$, for some $u \in H$. Clearly $u|\varepsilon(\overline{M}) = t$.

Conversely, let $n \in H$ and set M = F/Im n. Certainly M is generated by a set of cardinality $\leq |C|$, so let $\varepsilon:\overline{M} + \overline{F}$ satisfying the hypothesis of the proposition. Consider $\alpha_1: \overline{F} + M$ and $\alpha_2: \overline{M} + \overline{M}$ the natural projections. If $\beta = \varepsilon \alpha_2 \alpha_1$, we claim that $H\beta = \underline{1}(n)$. Since Im $n \leq Ker \beta$ we have $\beta n = 0$. On the other hand, if $t \in H$ and $t_n = 0$ then t induces an R-homomorphism $\overline{t}: \overline{M} + \overline{F}$ such that $\overline{t}\alpha_2\alpha_1 = t$. By hypothesis there exists $u \in H$ such that $u_{\varepsilon} = \overline{t}$. Therefore $u_{\overline{B}} = u_{\overline{\varepsilon}\alpha_2}\alpha_1 = \overline{t}\alpha_2\alpha_1 = t$. This proves the claim and the result follows. \Box

For completeness we mention without proof the following result of Lenzing.

Theorem 2. (Lenzing [8]). H is right coherent if and only if every finitely generated right ideal of R can be defined by a set of relations of cardinality $\leq |C|$. \Box

By comparison of the above theorem and the following result one can obtain a large class of rings which are right but not left coherent.

Recall that a ring R is said to be *right perfect* if the following equivalent conditions hold:

- (a) All flat right R-modules are projective
- (b) J(R), the Jacobson radical of R, is right T-nilpotent, and R/J(R) is artinian.
- (c) R satisfies the descending chain condition on principal left ideals.

For proofs that these are equivalent the reader is referred to [6, 5.7].

A submodule N of a right R-module M is *pure* if $M^{m}A \cap N^{n} = N^{m}A$ for each m x n matrix, A, of elements in R.

It is a consequence of Chase's Lemma, cf [2, 20.20, 20.21], that R is right perfect provided that any direct product of any family of copies of R is a pure submodule of a free right R-module.

Theorem 3. The endomorphism ring of every free right R-module of infinite rank is left coherent if and only if R is right perfect and left coherent. Proof. Suppose that R is left coherent and right perfect. Let F be a free right R-module generated by an infinite set, say C, and set $H = Hom_R(F,F)$. We have only to prove that H^I , the direct product of I-copies of H, is right H-flat, for every set I. Since R is right perfect and left coherent, F^I is projective, cf [6, 5.15], so $F^I \oplus T \cong \oplus_J F$, for some R-module T and some set J. Now, as right H-modules, we have the following isomorphisms

$$\mathsf{H}^{\mathrm{I}} \cong \mathsf{Hom}(\mathsf{F},\mathsf{F}^{\mathrm{I}}), \quad \mathsf{Hom}(\mathsf{F},\mathsf{F}^{\mathrm{I}}) \oplus \mathsf{Hom}(\mathsf{F},\mathsf{T}) \cong \mathsf{Hom}(\mathsf{F}, \oplus_{\mathfrak{I}}\mathsf{F}).$$

Hence we need only to prove that $Hom(F, \bigoplus_j F)$ is H-flat, that is the multiplication map

h : Hom(F, $⊕_1$ F) \otimes_H I → Hom(F, $⊕_1$ F)

is injective, for every finitely generated left ideal I of H. Since H is

left Bezout we have that I = HF, for suitable $f \in H$. Suppose now that $\varphi f = 0$, where $\varphi \in Hom(F, \bigoplus_{J} F)$. Let $(f_{c})_{c \in C}$ and $(e_{b})_{b \in B}$ be R-basis for F and $\bigoplus_{J} F$ respectively. We can write $\varphi(f_{c}) = \sum_{b \in B_{c}} e_{b} r_{cb}$, where B_{c} is a finite subset of B for all $c \in C$. Since C is infinite, clearly $| \bigcup_{c \in C} B_{c} | c |$ so that we can choose an injective map i: $\bigcup_{c \in C} B_{c} \to C$. Define now the right R-linear $c \in C$ $t : F \to \bigoplus_{J} F$ by

If $n: F \rightarrow F$ is the right R-linear map given by $n(f_c) = \sum_{\substack{b \in B_c}} f_i(b)^r cb$, then it is clear that $\varphi = t_n$. Moreover Ker $t \cap Im_n = (0)$, thus from $\varphi f = 0$ we deduce that nf = 0. Then $\varphi \otimes f = t_n \otimes f = t \otimes nf = 0$. Therefore h is injective.

Conversely, assume H is left coherent for all free right R-module F of infinite rank. Let I be any infinite set, by proposition 1 there exists a monomorphism $\varepsilon : \mathbb{R}^{I} \to \bigoplus_{j} \mathbb{R}$ such that every R-hemomorphism $\varepsilon(\mathbb{R}^{I}) \to \bigoplus_{j} \mathbb{R}$ can be extended to $\bigoplus_{j} \mathbb{R}$. Now we will prove that $\varepsilon(\mathbb{R}^{I})$ is a pure submodule of $\bigoplus_{j} \mathbb{R}$. For if suppose that $A = (a_{ij})$ is a p x k matrix over R and $(f_1, \ldots, f_p)A =$ $= (\varepsilon(\mathfrak{m}_1), \ldots, \varepsilon(\mathfrak{m}_k))$, where $f_i \in \bigoplus_{j} \mathbb{R}$ and $\mathfrak{m}_j \in \mathbb{R}^{I}$. Clearly we may assume there is an injective map, say j: I $\to J$ (for this it suffices to choose, from the beginning, an infinite set I such that $|I| > \mathbb{R}$). For each $i \in I$ denote by $\pi_i(\pi_{j}(i))$ the natural projection $\mathbb{R}^{I} + \mathbb{R}_i = \mathbb{R} (\bigoplus_{j} \mathbb{R} + \mathbb{R}_{j}(i) = \mathbb{R})$ and let $e_i : \mathbb{R} = \mathbb{R}_{j}(i) \to \bigoplus_{j} \mathbb{R}$ be the natural embedding. Set $t_i = e_i \pi_i$ then, by hypothesis, there exists $u_i \in \operatorname{End}_{\mathbb{R}}(\bigoplus_{j} \mathbb{R})$ such that $u_i c = t_i$. Thus we have $t_i(\mathfrak{m}_\alpha) =$ $= u_i(f_1a_{1\alpha} + \ldots + f_pa_{p\alpha})$, for $1 \le \alpha \le k$ and so $\pi_i(\mathfrak{m}_\alpha) = \pi_j(i)t_i(\mathfrak{m}_\alpha) =$ $(\pi_{j(i)}u_{i}(f_{1}))a_{1\alpha} + \ldots + (\pi_{j(i)}u_{i}(f_{p}))a_{p\alpha}$. If we define $g_{s} \in \mathbb{R}^{I}$, the element whose i th component is $\pi_{j(i)}u_{i}(f_{s})$, $s = 1, \ldots, p$, then

$$(\epsilon(g_1),\ldots, \epsilon(g_p))A = (\epsilon(m_1),\ldots, \epsilon(m_k)).$$

Hence $e(R^1)$ is pure in $\bigoplus_{J} R$. It follows from Chase's Lemma that R is right perfect. Since a pure submodule of a flat module is flat, we see that R^1 is flat, for any set I, and so R is left coherent. \square Example. Let $F = \bigoplus_{I} Z$ be a free Z-module (Z denotes the ring of rational integers). By Lenzing's Theorem, the ring $End_{T}(F)$ is right coherent.

If $|I| \leq x_0$ then every torsionless Z-module, M, generated by |I|elements is contained (as a submodule) in $\prod_{i=1}^{\infty} Z$ and so M is free by Specker's Theorem [5]. It follows from proposition 1 that $End_7(F)$ is left coherent.

If $|I| \ge \chi_1$ it follows from the fact that ii Z is not Z-free and i=1proposition 1 that End₇(F) is not left coherent.

Now we shall characterize those rings R such that H is left self-FP-. injective or right IF-ring. First we need a lemma.

Lemma 4. If $n \in H$ then nH is the right annihilator of a subset S of H if and only if \cap Ker $\varphi = Im n$. $\varphi \in S$ Proof. Suppose nH = r(S), then Sn = 0 and so $Im n < \cap$ Ker φ . On the other

Proof. Suppose nH = r(S), then Sn = 0 and so $Im n \le \cap$ Ker φ . On the other $\varphi \in S$ hand, let $x \in \cap$ Ker φ and take any element $f \in F$ belonging to an R-basis $\varphi \in S$ of F. If $fR \oplus G = F$, define $t \in H$ by t(f) = x and t(G) = 0. Then $Im \ t \le \cap$ $\varphi \in S$ Ker φ and hence St = 0. By hypothesis $t \in nH$ and thus $x = t(f) \in Im n$.

Conversely, if \cap Ker $\varphi = \text{Im } n$, then Sn = 0 and so $n\text{H} \leq r(\text{S})$. Let $\varphi \in \text{S}$ t $\in \text{H}$ such that St = 0. Then we have Im t $\leq \text{Im } n$. Set $(f_i)_{i \in \mathbb{C}}$ a basis of F over R, then there exist elements $(s_i)_{i \in \mathbb{C}}$ of R such that $t(f_i) = n(s_i)$. If we define $u \in \text{H}$ by $u(f_i) = s_i$ we obtain t = nu as required. \Box Theorem 5. (i) H is left welf-FP-injective if and only if every right R-module defined by a set of relations of cardinality $\leq |C|$ is torsionless. (ii) H is a right IF-ring if and only if every right R-module defined by a set of relations of cardinality $\leq |C|$ is contained in a free module. Proof. (i) Suppose H is left self-FP-injective and assume that M is a right R-module such that 0 + U + L + M + 0, where L is free and U is generated by a set of cardinality $\leq |C|$. It is then clear that $M \cong (F/W) \oplus L'$, where W is a homomorphic image of F and L' is free. In order to prove that M is torsionless it suffices to prove that F/W so is. Let $n \in H$ such that Imn = W. Since H is left self-FP-injective we know that nH is the right annihilator of a subset S of H. It follows from lemma 4 that Imn = -0 Ker φ and so $\varphi \in S$ $F/Im n \hookrightarrow H$ $F/Ker \varphi \subseteq N$ F. Thus F/W is torsionless.

Conversely, suppose that every right R-module defined by a set of relations of cardinality $\leq |C|$ is torsionless. We need only to prove that nH is a right annihilator for each $n \in H$. Since F/Im n is defined by a set of relations of cardinality $\leq |C|$ we see that it is torsionless. Hence there is a homomorphism $t: F \rightarrow \pi$ F with Im n as kernel. If $\pi_i: \pi F \rightarrow F$ denotes $i \in S$ the natural projection we see that Im n = Ker t = 0 Ker $\pi_i t$. Now the result follows from lemma 4. \Box

The proof of (ii) is similar.□

Faith-Walker [3] and Sandomierski [10] have shown that H is right self-injective if and only if R is QF. In our next result we prove that R is QF by assuming only that H is right self-FP-injective, this allows to us to characterize the rings R such that H is right self-FP-injective and then we obtain examples of rings H that are left but not right self-FP-injective.

Theorem 6. The following statements are equivalent

(i) H is a left IF-ring

(ii) H is right self-FP-injective

(iii) R *is* QF

(iv) H is right self-injective

Proof. Trivially (i) \Rightarrow (ii).

(ii) \Rightarrow (iii) Suppose H is right self-FP-injective. First we prove that for each right ideal I of R there exists a finite subset $J \leq I$ such that I(I) = I(J). Suppose this is not the case and choose $x_n \in I$, then $I(x_0) \neq I(I)$ so there exists $y \in I(x_0)$ with $yI \neq 0$. If $x_1 \in I$ and $yx_1 \neq 0$ we have $I(x_1,x_0) < I(x_0)$, by this procedure we can construct an infinite descending chain $I(S_0) > I(S_1) > \dots$, where $S_0 < S_1 < \dots$ and each S_0 is a finitely generated right ideal of R. Set $T = \bigcup_{i=1}^{n} S_i$, then T is a countably i > 0generated right ideal of R. Now we claim that every R-homomorphism t: L + F, where L is a countably generated right ideal of R may be extended to R. Let us fix $i_{0} \in C$ and consider $\alpha_{0} : R \neq F$ defined by $\alpha_{0}(r) = (r_{1})$ with $r_{1} = r$ and $r_i = 0$ if $i \neq i_0$. Set L' = $\alpha_0(L)$ so that L' is countably generated and hence there is an R-homomorphism β : F \rightarrow F such that Im B = L'. Define δ : F \rightarrow F by δ = t $\pi_{\alpha}\beta$, where π_{α} : F \rightarrow R is the natural projection on the i_{α} .th component. By hypothesis H is right self-FP-injective so HB = I(S) where S is contained in H. Since βS = 0 we have that δS = 0 thus $\delta \in HB$. Let $h_0 \in H$ such that $\delta \approx h_0 \beta$. Now we prove that $h: R \neq F$ defined by $h = h_0 \alpha_0$ is an extension of t. If $x \in L$ then $x = \pi_{\alpha}(\beta(y)), y \in F$. Thus $h(x) = h_{\alpha}(\beta(y)) =$ = $\delta(y) = t\pi_{\rho}(\beta(y)) = t(x)$ as claimed. Now choose a sequence $x_{\rho} \in R$ such that $x_n \in I(S_n) \setminus I(S_{n+1})$. Define $\varphi: T \to \bigoplus_{i=1}^{\infty} R \leq F$ by $r \to (x_n r)$, clearly φ is well-defined and, by the above φ is left multiplication by some element of F, so there exists $m \ge 1$ with $x_n r = 0$ for all $r \in T$ and $n \ge m$. But this contradicts the choice of the x_n 's.

In order to prove that R is QF it suffices to prove that F is selfinjective as right R-module, cf [2, 24.18, 24.20]. With the above notation suppose $n: I \rightarrow F$ is an R-homomorphism. Since J is finitely generated n/J is left multiplication by some $t \in F$. Let $x \in I$, then J + xR is finitely generated so that n/J + xR is left multiplication by some t' \in F. Clearly t - t' \in $= -1 \int_F (0_1 + 2 \int_F (1_1)$. Hence is a (x_1) -This shows that γ is left multiplication by t.

(iii) \Rightarrow (iv) Is due to Sandomierski [10] and (iv) \Rightarrow (iii) to Faith and Walker [3]. Since trivially (iv) \Rightarrow (ii), the result will follow if we prove that H is right coherent whenever R is QF. Obviously R is right coherent so H is right coherent by theorem 2. \Box

Corollary 7. Let R be a ring such that every right R-module is torsionless but R is not QF. Then the endomorphism ring of any free right R-module of infinite rank is left-FP-injective but not right self-FP-injective. Proof. It follows from theorem 5(i) and theorem 6. \Box

Notice that the rings of corollary 7 occur in nature. For example if R is an injective cogenerator in mod-R (that is R is PF) it is clear that every right R-module is torsionless but there are examples due to Osofsky, cf [2, pp. 213-216], of PF rings not QF.

I suspect there are rings R with the property that for some infinite cardinal c the endomorphism ring of a free right R-module over a set of c-elements is left but not right IF-ring. In view of theorem 5(ii) and theorem 6 this is true if the following question has negative answer.

<u>Question</u> 1. Let R be a ring and let c be an infinite cardinal. If every right R-module defined by a set of relations of cardinality $\leq c$ is contained in a free module. Is R QF?

Theorem 5(ii) says that if the endomorphism ring of every free right R-module is a right IF-ring then every right R-module is contained in a free module. By a well-known theorem of Faith and Walker [2, 24.12] this happens if and only if R is QF. It seems to be unknown if R is QF by assuming only that R is a right FGF-ring (any finitely generated right R-module embeds in a free R-module), (the reader is referred to [4] for a discussion on this problem). We conjecture that R is not QF even in the case that

every countably generated right R-module embeds in a free module. If this is true then Question 1 would have a negative answer.

We shall see as the proof of Osofsky's theorem [9, Theorem 1] may be slightly modified in order to prove that if R is a right FGF-ring (in fact, we need only that every cyclic right R-module embeds in a free module) such that E(R), the injective hull of R, (as right R-module) embeds in a free module, then R is QF. In particular, this says that for a given ring R there is a cardinal c such that if every right R-module defined by a set of relations of cardinality $\leq c$ is contained in a free module, then R is QF.

For any ring R denote by $\Omega(R)$ the set of isomorphism classes of simple right R-modules, and if M is a right R-module we denote by C(M) the set of isomorphism classes of simple submodules of M. Theorem 8. Let R be a ring which possesses a finitely generated projective and injective right R-module P with $|\Omega(R)| \leq |C(P)|$ then $|\Omega(R)| < \infty$. Proof: By the theorem of Morita we need only consider the case where P is cyclic, say P=eR for some idempotent e in R. Since $|\Omega(R)| \leq |C(P)|$ th<u>e</u> re exists an injective map $F:\Omega(R) \rightarrow C(P)$. Assume $\Omega = \Omega(R)$ is infinite. Using Tarski's Theorem Ω can be decomposed into a class Γ of subsets of Ω with $|\Gamma\rangle > |\Omega|$ and for all X, $Y \in \Gamma |X| = |Y| > |X \cap Y|$ if $X \neq Y$.

For each $A \leq \Omega$ set $S(A) = \Sigma U$ where the summation is taken over all simple submodules U of P such that $U \in M$ for some $M \in A$. Notice that PS(A) = S(A). Let E(A) be an injective hull of S(A) contained in P. CLAIM I. E(A) = fR where $f \in eRe$ is an idempotent.

Since E(A) is a direct summand of R it is generated by an idem potent $g \in R$, that is E(A)= $gR \le eR$ so g=eg. On the other hand geS(A)=S(A)so $geR \le gR$. But ge is idempotent, hence geR=gR and f=ege is the desired idempotent.

CLAIM II. If E(A)=fR with $f \in eRe$ an idempotent then \overline{f} is central in

 \overline{eRe} . For each \overline{a} R, a denotes a+J where J is the Jacobson radical of R.

If x a ker ker (e-f)xfS(A) $\leq (e-f)s(A)=0$. Furthermore (e-f)xf(e-f)=0. Inasmuch $S(A) \leq_e fR$ we have $S(A) = (e-f)R \leq_e fR = (e-f)R=eR$. Hence $r_{eR}((e-f)xf) \leq_e eR$, that is $(e-f)xf \leq J(eRe) \leq J(R)$ and so $(\overline{e}-\overline{f})\overline{R}\overline{f} = \overline{0}$. Since \overline{R} is semiprime also $\overline{fR}(\overline{e}-\overline{f}) = \overline{0}$. From these it follows that \overline{f} is central in \overline{eRe} .

CLAIM III. If E(A)=fR and gR is an injective hull of S(A) contained in eR with f,g idempotents in eRe then $f=\overline{g}$.

Clearly (g-gfg)S(A)=0 and, since S(A) \leq_{e} gR and gR is injective, it follows that $\overline{g=gfg}$. According to CLAIM II \overline{f} and \overline{g} commute so that $\overline{g=gf}$. By symmetry $\overline{f=fg}$ and thus $\overline{f=g}$.

If E(A)=fR where f is an idempotent of eRe we set $e_A = \overline{f}$. According to CLAIM I,II,III, e_A depends on A only.

We shall prove the following

(i) $e_A \overline{R} \leq e_B \overline{R}$ if and only if $A \subseteq B$

(ii) $e_A e_B = e_{A \cap B}$ for all $A, B \subseteq \Omega$

(iii) $e_A \overline{R} + e_B \overline{R} \subseteq e_A \cup_B \overline{R}$

(i) If $A \subseteq B$ then $S(A) \subseteq S(B)$. Choose an injective hull E(A) such that $E(A) \subseteq E(B) \leq eR$. Then $e_A \overline{R} \leq e_B \overline{R}$.

Conversely, if $e_A \overline{R} \leq e_B \overline{R}$ then $e_A \overline{R}$ is a direct summand of $e_B \overline{R}$ and thus there exist $\pi : e_B \overline{R} \to e_A \overline{R}$ and $\epsilon : e_A \overline{R} \to e_B \overline{R}$ with $\pi \epsilon = 1$. Since E(B) is projective we obtain a commutative diagram

$$E(A) \xleftarrow{f} E(B)$$

$$\pi A \downarrow \qquad \qquad \downarrow^{\pi} B$$

$$0 \nleftrightarrow e_{A} R \xleftarrow{\varepsilon}{\pi} e_{B} R$$

where π_A , π_B denote the natural projections. Then f(E(B)) + E(A)J = E(A)

and by Nakayama's Lemma f(E(B))=E(A). If $M \equiv A$ choose $U \equiv F(M)$ Since $E(A) \leq E(B)$ there exists $V \in F(N)$ with $N \in B$ and $V \approx U$. Therefore F(M) = F(N) and since F is 1-1 $M = N \in B$. Thus $A \subseteq B$ and (i) follows.

(ii) If A,B $\subseteq \Omega$ then it is clear that $S(A\cap B)=S(A)\cap S(B)\leq_{n}$ $E(A)\cap E(B)$. Then $E(A)\cap E(B) \le E(A\cap B)$ and so $fR\cap gR \le hR$ with f,g,h idempotents of eRe such that $\overline{f}=e_A$, $\overline{g}=e_B$ and $\widetilde{h}=e_{A\cap B}$. Let $0\neq x\in e_Ae_B\overline{R}$. Since \overline{R} is semiprime $x\overline{R} e_A \neq 0$. Hence $x\overline{R}e_A$ is a nonzero right ideal of the regular ring $e_{\overline{A}}\overline{R}e_{A}$ so that it contains a nonzero idempotent say $\overline{u} \in x\overline{R}e_{A}$. Inasmuch $e_{A}\overline{R}e_{A}$ is right self-injective we can choose $\Box \in fRf$ to be an idempotent. But then uR is a direct summand of fR and hence injective. On the other hand: $S(A) \leq_{e} fR$ implies $uR \geq U$ where $U \in F(M)$ for some $M \in A$. Thus uRcontains an injective hull, U, of U and so $\overline{U} \ \overline{R}$ contains the simple module $U+J/J \cong U/UJ$ where $U \in F(M)$ for some MEA. According to CLAIM II, $e_{\Delta}e_{R}=e_{R}e_{\Delta}$ so, by symmetry, $\widehat{U}/\widehat{U}J\approx \widehat{V}/\widehat{V}J$ where $V\in F(N)$ for some NEB. But then $U \approx V$ and so $U \approx V$, which implies F(M) = F(N) and, since F is injective, M=N. Hence UkhR. Choose an injective hull, H, of S(AOB) such that Therefore we have shown that $Soc(e_A e_B \overline{R})$ is essential and contained in $e_{\Delta \cap \mathbb{R}}\overline{R}$. We conclude that $e_{\Delta}e_{\mathbb{R}}\overline{R} = e_{A \cap \mathbb{R}}\overline{R}$, but this implies $e_{A}e_{\mathbb{R}}(\overline{eRe}) = e_{A \cap \mathbb{R}}(\overline{eRe})$. lnasmuch $e_A e_B$ and $e_{A \cap B}$ are central in \overline{eRe} we see that $e_A e_B = e_{A \cap B}$.

(iii) It follows from (i)

Let $I = \Sigma e_A \overline{\mathbb{R}}$, where the summation is taken over all subsets A of Ω such that |A| < |X| for $X \in \Gamma$. Now for each $X \in \Gamma$ set $I_X = I + (e - e_X)\overline{\mathbb{R}}$. Since X is infinite it is not contained in a finite union sets of cardin – ality < |X|. By (iii) and (i), $e_X \notin I$ and so it is clear that $e_X \notin I_X$. On the other hand, if $Y \in \Gamma$ and $Y \neq X$ then $|X \cap Y| < |X|$ and so $e_X e_Y = e_{X \cap Y} \in I$. Thus $e_Y = (1 - e_X)e_Y + e_X e_Y \in I_X$. For each $X \in \Gamma$ fix a maximal submodule of $\mathbb{R}\overline{X}$, J_X , con taining I_X so that we produce a family $M_X = \mathbb{R}\overline{A}J_X$, $X \in \Gamma$ of simple right \overline{R} -modules. By the above $M_{\chi}e_{\chi}=0$ and $M_{\gamma}e_{\gamma}\neq 0$ for all $\chi, \gamma\in\Gamma$, $\chi\neq\gamma$. So $|\Omega(\overline{R})|>|\Omega(R)|$ noting that $\Omega(\overline{R})=\Omega(R)$ we get a contradiction. The theorem is proved.

Corollary 9. Let R be a ring such that every cyclic right module is contained in a free right R-module and the injective hull of R is projective. Then R is QF.

Proof: By hypothesis R contains a copy of each simple right R-module. Hence E, the injective hull of R, is an injective cogenerator; moreover E is projective so it is finitely generated. By theorem 8 $|\Omega(R)| \ll$. It follows from the proof of [2, Proposition 24-9] that R is right self-in jective. By the proof of Theorem 3.5 A of [4] we conclude that R is QF. \Box

REFERENCES

- R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239-252 (1975).
- (2) C. Faith Algebra Ring Theory, Springer-Verlag Berlin Heidelberg 1976.
- (3) C. Faith, and E.A. Walker, Direct sum representations of injective modules, J. Algebra 5, 203-221 (1967).
- (4) C. Faith, Embedding modules in projectives (preprint).
- (5) L. Fuchs, Infinite abelian groups, Vol. 1, Academic Press, New York, San Francisco, London, 1970.
- (6) K.R. Goodearl, *Ring theory*, *Nonsingular rings and modules*, Dekker, New York, 1976.
- (7) S. Jain, Flat and FP-injectivity, Proc. AMS, 41,2, 437-442 (1973).
- (8) H. Lenzing, Über Kohärente Ringe, Math, Z, 114, 201-212 (1970).
- (9) B.L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4, 373-387 (1966).
- (10) F.L. Sandomierski, Some examples of right self-injective rings which are not left self-injective, Proc. AMS 26, 244-245 (1970).
- (11) Bo Stenstrom, Rings of quotients, Spring Verlag Berlin Heidelberg (1975)

Rebut el 10 de juliol del 1981 Revisat el 26 de gener del 1982

Secció de Matemātiques Universitat Autōnoma de Barcelona Barcelona-Bellaterra Spain