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ABSTRACT 

 

The facility layout problem is one of the most classical yet influential problems in the 

planning of production systems. A well-designed layout minimizes the material handling 

costs (MHC), personnel flow distances, work in process, and improves the performance of 

these systems in terms of operating costs and time. Because of this importance, facility 

layout has a rich literature in industrial engineering and operations research. Facility layout 

problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some 

criteria or objectives under certain constraints. Traditional FLPs try to put facilities with 

the high material flow as close as possible to minimize the MHC. In static facility layout 

problems (SFLP), the product demands and mixes are considered deterministic parameters 

with constant values. The material flow between facilities is fixed over the planning 

horizon. However, in today’s market, manufacturing systems are constantly facing changes 

in product demands and mixes. These changes make it necessary to change the layout from 

one period to the other to be adapted to the changes. Consequently, there is a need for 

dynamic approaches of FLP that aim to generate layouts with high adaptation concerning 

changes in product demand and mix. This thesis focuses on studying the layout problems, 

with an emphasis on the changing environment of manufacturing systems.  

Despite the fact that designing layouts within the dynamic environment context is more 

realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a 

math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are 

grouped into many possible vertical clusters, second, the best combination of the generated 

clusters to be in the final layout are selected by solving a linear programming model, and 

finally, the selected clusters are sequenced within the shop floor. Although the presented 

math-heuristic approach is effective in solving SFLP, applying approaches to cope with the 

changing manufacturing environment is required.  

One of the most well-known approaches to deal with the changing manufacturing 

environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable 

manufacturing systems since their machinery and material handling devices are 

reconfigurable to encounter the new necessities for the variations of product mix and 

demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a 

layout for each period to minimize the total MHC for all periods and the total 
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rearrangement costs between the periods. Dynamic programming (DP) has been known as 

one of the effective methods to optimize DFLP. In the DP method, all the possible layouts 

for every single period are generated and given to DP as its state-space. However, by 

increasing the number of facilities, it is impossible to give all the possible layouts to DP 

and only a restricted number of layouts should be fed to DP. This leads to ignoring some 

layouts and losing the optimality; to deal with this difficulty, an improved DP approach is 

proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that 

lead to the best solution of DP for DFLP. The proposed approach includes two phases. In 

the first phase, a large set of layouts are generated through a heuristic method. In the second 

phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be 

given to DP. DP, improved by starting with the most promising initial layouts, is applied 

to find the multi-period layout. Finally, a tabu search algorithm is utilized for further 

improvement of the solution obtained by improved DP. Computational experiments show 

that improved DP provides more efficient solutions than DP approaches in the literature.  

The improved DP can efficiently solve DFLP and find the best layout for each period 

considering both material handling and layout rearrangement costs. However, 

rearrangement costs may include some unpredictable costs concerning interruption in 

production or moving of facilities. Therefore, in some cases, managerial decisions tend to 

avoid any rearrangements. 

To this aim, a semi-robust approach is developed to optimize an FLP in a cellular 

manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the 

cells are changed to adapt the layout with changes in product demand and mix. This 

approach suits more a cellular flexible manufacturing system or a conventional system. A 

multi-objective nonlinear mixed-integer programming model is proposed to 

simultaneously search for the optimum number of cells, optimum allocation of facilities to 

cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D 

points of the cells in each period. A modified non-dominated sorting genetic algorithm 

(MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified 

dynamic crowding distance procedure is used to find Pareto-optimal solutions. The 

computational experiments are carried out to show the effectiveness of the proposed 

MNSGA-II against other popular metaheuristic algorithms. 
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CHAPTER 1 

INTRODUCTION 

 

The facility layout problem (FLP) is concerned with the most efficient placement of 

departments, cells, or machines (depending on the industry) in a given area. The general 

factors of efficiency for a layout include material handling cost (MHC), space utilization, 

and flexibility as well as ergonomic, psychological and technological factors [1]. FLP 

usually takes into account the first three mentioned factors (MHC, space utilization, and 

flexibility). 

The major part of the assets of a manufacturing system is occupied by its facilities [2]. FLP 

is a fundamental issue that must be reflected when designing a manufacturing system. It 

can reduce up to 50 percent of the operating costs and up to 70 percent of manufacturing 

expenses [3]. It can also indirectly affect the throughput time, overall productivity, quality 

and inventory levels [4-6]. It is shown that implementing not a proper layout will result in 

around a 35% reduction in the system's efficiency [7]. 

Hence, FLP is worthy of being studied and has attracted many researchers in the fields of 

industrial engineering and operations management in the latest decades [8]. 

 

1.1 Types of Layout based on Production Systems  

Considering the type of production system, four basic layout types, including product 

layout, process layout, fixed product layout, and cellular layout, exist. The most suitable 

layout for a manufacturing system is selected based on the volume and the variety of 

products to be produced (Figure 1) [3, 9].  
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Figure 1.1. Types of layout [3] 

1.1.1 Product Layout 

When the machines are placed based on the sequence of the operations, the layout is called 

the product layout (also known as production layout, flow-line layout, or assembly line 

layout). A product moves from one machine to another based on its predetermined 

sequence of operations.  Hence, multiple flows may exist in the system if more than one 

type of product is produced. 

An example of a product layout is illustrated in Figure 1.2. Product layout is most suitable 

for assembly manufacturing firms that produce a single type of product or more than one 

type yet in high volume [3, 9].  

Advantages of product layout include [3]:  

 Smoother and more logical flow lines  

 Lower amount of work in process (WIP) inventories; work is transferred directly 

from one process into the next 

 Less required space for WIP and temporary storage 

 Shorter total production time per unit 



3 

 

 Lower MHC; minimization of distances between machines that perform 

consecutive operations 

 Simpler, shorter and less expensive required training for operators 

 Simpler production planning control systems 

On the other hand, the disadvantages include [3]: 

 Blockage of the entire line because of a breakdown of one machine or absence of 

one operator 

 Lower process flexibility; a change in product design may impose a major change 

in the layout 

 Lower time flexibility; the slowest task of a product reduces the speed of the flow 

of that product 

 Requirement for more general supervision and less specialized; high dependency 

between stations 

 Higher investment; distribution of identical machines (that may not be fully 

utilized) along the line 

 Higher worker boredom and fatigue; tasks are repetitive and simple 
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Figure 1.2. An example of a product layout [3] 

1.1.2 Process Layout 

When all the same types of operations are placed together, the layout is called the process 

layout (also known as functional layout or job shop layout). For instance, in the process 

layout shown in Figure 1.3, all grinding machines are put together in one department; all 

assembly machines are placed in another and so on. This layout type is suitable for 
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manufacturing firms that produce various types of products, yet in small quantities that 

each product type has a unique sequence of operations [3, 9]. 

Benefits of this layout include [3]:  

 Higher task allocation flexibility to operators and facilities 

 Lower investment; identical facilities are duplicated only if the others of the same 

type are fully utilized 

 Lower worker boredom and fatigue; tasks are not repetitive and are more diverse 

 Requirement for more specialized supervision 

Its disadvantages are [3]: 

 Lower process efficiency; long movements for handling the materials and 

backtrackings 

 Lower time efficiency; the waiting time of workers between finishing a task and 

starting the next task 

 Lower productivity; requirement for different setup and training for each job. 

 Higher complexity of production planning and control. 

 Requirement for more skilled workers 

 Higher amount of WIP 
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Figure 1.3. An example of a process layout [3] 
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1.1.3 Fixed Product Layout 

Sometimes the products are complex, large, or heavy so that it is not possible to move them 

(e.g., aircraft, shipyards, and heavy constructions such as roads, buildings, and bridges). In 

such cases, a fixed product layout is suitable to be used, that instead of moving the product, 

the resources (equipment, operator, machine) are moved and brought to the product’s 

location (Figure 1.4) [3, 9].  

Advantages of a fixed product layout include [3]: 

 Lower material handling movements and cost 

 Lower probability of product damages; no product movement is required 

 Higher flexibility to the possible changes of product design, mix, and/or volume 

 Lower total production time; the production centers are independent so better 

scheduling is allowed 

 Supports job enlargement; the workers are allowed to operate on the entire job 

 Lower amount of re-planning and worker training when starting a new activity 

Disadvantages of a fixed product layout include [3]: 

 Costs increase due to the increased movement of people and equipment 

 Difficulties of combining different types of skills 

 Difficulties and the expense of installing equipment 

 Lower equipment utilization 

 Requirement for general supervision 

 Requirement for more skilled workers as they get in charge of more operations 

 May Require the duplication of equipment 
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Figure 1.4. An example of a fixed product layout [3] 
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1.1.4 Cellular Layouts 

Cellular layouts are designed based on the concept of group technology. This type of 

layouts group the machines into cells that each cell processes a certain part/product family. 

A set of parts/products that have similar shapes or require the same processing 

requirements (machine operations, tooling, machinery, jig, or fixtures) are called a 

part/product family. Typically, all the processes involved in manufacturing a part/product 

from raw material to a finished part/product are done in one cell. Hence, there is a need for 

operators that are skilled in several fields. 

Cellular layouts divide a manufacturing facility physically into production cells and offer 

both the efficiency of product layouts and the flexibility of process layouts. The three stages 

of designing a cellular layout are as follows: (1) assigning machines to different cells (cell 

formation), (2) the layout of machines within each cell (intra-cellular layout), and (3) the 

layout of cells within the shop floor (inter-cellular layout). When designing a cellular 

layout, the most important objective is to minimize the total inter- and intra-cellular MHC 

[3, 10]. 

Advantages of the cellular layout include [3]: 

 Lower MHC 

 Lower setup time 

 Lower amount of tooling 

 Lower amount of WIP inventory 

 Better relationships between workers 

 Supports job enlargement  

 Requirement for more general-purpose equipment 

Disadvantages of the cellular layout include [3]:  

 Lower flexibility 

 Higher job flow times 

 Unbalanced workload  
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 Lower machine utilization than process layout 

 Requirement for buffers in case of imbalanced material flow between product 

layout and process layout 

 Requirement for general supervision 

 Requirement of more skilled workers than product layout 
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Figure 1.5. An example of a cellular layout [3] 

 

1.2 Equal-Area vs. Unequal-Area FLP 

In the equal-area facility layout problem (EA-FLP), it is assumed that facilities have equal 

sizes and are in the same shape (Figure 1.6 (a)). In most EA-FLPs, the problem is to assign 

facilities to fixed, predetermined locations and lodge any of the facilities [14]. In order to 

have a feasible assignment, the number of locations should be at least equal to the number 

of facilities. In case the number of locations is more than the number of facilities, dummy 

facilities can be considered to make the balance. The flow between these dummy facilities 

and other facilities is set to zero. 

In the unequal-area facility layout problem (UA-FLP), the facilities must not have equal 

size and shape. The UA-FLP formulation was first introduced by Armour and Buffa [15]. 

An example of UA-FLP is shown in Figure 1.6 (b). As can be seen, facilities are located 

anywhere on the available space yet not have overlap with each other. Usually, a facility 

(𝑖) is assumed to have rectangular shape with fixed dimensions; length (𝑙𝑖) and width (𝑤𝑖). 

But sometimes, the facility can be defined using its area (𝐴𝑖) and aspect ratio (𝛼𝑖) [16]. 
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Aspect ratio is the ratio of the length to the width of a facility (𝛼𝑖 = 𝑙𝑖 ⁄ 𝑤𝑖). The UA-FLP 

is usually formulated by a mixed-integer programming (MIP) model [17]. 

 

 Figure 1.6. (a) An example of EA-FLP (b) An example of UA-FLP 

 

The interested readers are suggested to read quoted articles [18-20] for more information 

about EA-FLP and UA-FLP and their applications. 

 

1.3 Discrete vs. Continuous FLP 

There are two types of geometric representation for FLP, called discrete and continuous 

[21]. In a discrete FLP problem, a set of locations is determined in advance, and facilities 

are assigned to that predetermined locations to search for the optimum assignment subject 

to some criteria [22]. This is possible only if all the facilities can be accommodated in all 

locations (called EA-FLP) [23]. Discrete representation is not suitable for UA-FLP since 

additional constraints are needed for modeling the problem.  Discrete FLP problems are 

often formulated by the quadratic assignment problem (QAP). The QAP model for discrete 

FLP is as follows [24]: 
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𝑀𝑖𝑛 ∑ ∑ ∑ ∑ 𝐹𝑖𝑗𝐷𝑘𝑙𝑋𝑖𝑘𝑋𝑗𝑙

𝑁

𝑙=1

𝑁

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

                                                                                              (1.1) 

 

Subject to: 

 

∑ 𝑋𝑖𝑘 = 1𝑁
𝑘=1      ∀ 𝑖                            (1.2) 

∑ 𝑋𝑖𝑘 = 1𝑁
𝑖=1       ∀ 𝑘                                 (1.3) 

𝑋𝑖𝑘  ∈  {0,1}      ∀ 𝑖, 𝑘                                            (1.4) 

where 𝐹𝑖𝑗 is the flow from facility 𝑖 to facility 𝑗, 𝐷𝑘𝑙 is the distance from location 𝑘 to 

location 𝑙, and 𝑋𝑖𝑘 is a binary decision variable that is equal to one if facility 𝑖 is assigned 

to location 𝑘 and zero otherwise. 

The objective function (1.1) minimizes the total MHC. Constraint (1.2) is to guarantee that 

each facility is assigned to one location, and constraint (1.3) is to guarantee that each 

location has accommodated only one facility. Lastly, constraint (1.4) specifies that the 

decision variable is binary.  

In the continuous representation of FLP, the facilities have different sizes and shapes and 

can be located in any position, provided that no overlapping happens. Continuous FLPs are 

usually formulated using the MIP model, as there is a need for auxiliary binary variables 

in the model [18].  

 

1.4 Static vs. Dynamic FLP 

The material flow between facilities is assumed as a constant parameter in most of the 

research in the area of FLP. This type of FLPs is known as static facility layout problems 

(SFLP). Considering today’s competitive and volatile manufacturing environment, this 

assumption can be unrealistic. In such a volatile environment of manufacturing systems, 

the product mix and demand are constantly changing, so the current layout loses its 

efficiency. Therefore, to adapt to these changes, the layout needs to be rearranged from one 
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period to the other. However, changing the layout at the beginning of each period imposes 

rearrangement costs to the system (e.g., the costs of moving the machines and loss of 

production). Therefore, there should be a balance between MHC and rearrangement costs 

which is the main aim of dynamic facility layout problems (DFLP). In DFLP, the planning 

horizon is divided into some periods, with deterministic and known demands, and the 

layout in each period is determined so that total MHC and the total rearrangement costs are 

minimized [25, 26]. Figure 1.7 illustrates an example of a DFLP with three periods. 

 

Figure 1.7. An example of a discrete DFLP with three periods 

 

1.5 Deterministic vs. Stochastic FLP 

In both static and dynamic FLPs, the system parameters such as demand and product mix 

are assumed to be deterministic in each planning horizon (for static, there is only one 

planning horizon). In real-world applications, it is impossible to forecast the exact amount 

of some parameters due to the extreme volatility of today’s markets and the uncertainty 

present inherent in some of the manufacturing processes and their processing times. 

Stochastic static facility layout problem and stochastic dynamic facility layout problem are 

used to deal with uncertainty in the area of FLP [5, 27-34]. 
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1.6 Robust FLP 

Both stochastic single-period or deterministic multi-period FLPs can be addressed through 

a robust FLP [35]. A DFLP plan for a multi-period FLP consists of a set of layouts each of 

which is concerned with a period. If the product mix and demand are known and uncertain, 

each period’s layout needs to be robust with respect to uncertainty in that period. 

Consequently, a set of robust layouts for all periods is required. A robust layout is not 

inevitably an optimal layout for any of the scenarios/periods, but it is near-optimal for 

different demand scenarios [36]. To obtain the performance of a robust layout, which is 

called the robustness of a layout, first the optimum solutions for different demand scenarios 

are calculated. Then, the number of times that the robust solution is within a pre-specified 

percentage of the optimum solutions is calculated [37]. Since the layout is not being 

changed during the planning horizon, no rearrangement costs are incurred and the total 

MHC over all the planning periods is minimized. 

 

1.7 Objectives of FLP 

Generally, the FLP tries to obtain the optimum arrangement of facilities within an available 

space based on a quantitative or a qualitative objective. FLPs with quantitative objectives 

attempt to determine the optimum layout by minimizing the total travel distance or time by 

all units, total rearrangement cost, the space occupied by facilities, total work-in-process 

(WIP), or throughput time [38], to name a few. On the other hand, the ones with qualitative 

objectives achieve the same by maximizing the adjacency function. However, in real-world 

scenarios, more than one objective is usually involved when solving the problem. Hence, 

some researchers try to find the best layout using multi-objective optimization models [39-

41].  

For multi-objective problems, the objectives can be combined into a single one that leads 

to a single optimum solution [42]. The Pareto approach can also be employed that result in 

a set of non-dominated solutions with respect to different objectives. In order to select one 

solution from this set, the Electre method can be used [39]. 
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1.8 Resolution Approaches of FLP 

There is a lot of research done on the area of FLP focusing on obtaining the optimum 

solution to this problem. However, due to the NP-hardness and combinatorial nature of the 

optimization problem in FLP [11-13], the exact algorithms can solve only small-sized 

problems (with 20 or fewer facilities) in a polynomial time [10]. As a result, near-optimal 

algorithms (heuristics and metaheuristics) are needed for solving the larger instances of the 

problem. 

1.8.1 Exact Algorithms 

The main character of exact approaches is their ability to reach the global optimum 

solution. This can be counted as the major draw of exact approaches. To guarantee 

optimality, the solution space must be comprehensively searched. Some partial/selective 

enumeration algorithms are applicable to conduct a comprehensive search for small-sized 

problems. However, by increasing the problem size, the possibility to do a comprehensive 

search for the solution space will be computationally intractable. 

Exact algorithms are demonstrated to be able to solve DFLPs, with MIP formulation, in a 

timely manner for problems up to the size of twelve facilities and three periods [43]. 

Branch-and-bound (B&B), branch and cut (B&C), cutting plane algorithms and direct 

methods are the prominent exact algorithms used to solve FLP optimally [24, 44]. Dynamic 

programming (DP), if it enumerates all the possible layouts in its state-space, is the classic 

exact method for solving DFLP [45]. 

1.8.2 Heuristic Algorithms 

As mentioned in Section 1.8,  FLP is NP-hard [12, 13]. Hence, heuristic methods are 

introduced to solve large instances of the problem. Each heuristics algorithm is tailored to 

solve a specific optimization problem in a reasonable time [46].  These algorithms are 

usually based on experiential strategies, and their search process is not dependent on a strict 

mathematical model. Hence, they can not come up with an optimal solution. 

The heuristic solution procedures of the FLP can be categorized into construction 

algorithms versus improvement algorithms. A construction algorithm generates a layout 
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from scratch, giving the flow between facilities or the adjacency relationship data. 

However, an improvement algorithm makes subsequent improvements in an existing 

(initial) layout to reduce the total cost or increase the total adjacency function. One of the 

most well-known improvement algorithms is the pair-wise exchange algorithm. This 

algorithm modifies the existing layout by exchanging two facilities in each iteration and 

accepts the change if it improves the objective function value. The algorithm continues 

until all exchange possibilities are considered. 

1.8.3 Metaheuristic Algorithms 

Metaheuristics are less greedy, and more problem-independent algorithms compare to the 

heuristic approaches. As a result, they can perform better in solving combinatorial 

optimization problems such as FLP, but still, a near-optimal solution can be achieved rather 

than optimum. This drawback of metaheuristics is because of the random search 

mechanisms that are employed in these algorithms and that they are less reliant on 

mathematical relationships between the decision variables [47]. 

There are numerous metaheuristic algorithms proposed in the literature for solving the FLP. 

Some of these metaheuristics include genetic algorithms [48-53], simulated annealing [21, 

54-56], tabu search [14, 57-59], particle swarm optimization [60, 61], ant colony 

optimization [62-65], and bee colony algorithm [66-70]. 

1.8.4 Hybrid Approaches 

Hybrid approaches are the ones that combine two or more exact, heuristic, or metaheuristic 

approaches. These approaches can be either construction or an improvement method [71, 

72]. In hybrid methods, both the practically important factors and the optimization of 

objectives of designing a layout can be considered by combining knowledge-based systems 

and analytical algorithms, respectively [73]. 

Metaheuristic hybrid algorithms have been widely used in the literature. In these 

algorithms, a population-based evolutionary algorithm is improved by being hybridized 

with a local search solution-based algorithm [74-85]. Sometimes an exact approach is 

hybridized by a metaheuristic algorithm [17, 25, 86, 87].  
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1.9 Layout Design Software Packages 

Layout software packages have been used since 1963. Computerized relative allocation of 

facilities technique (CRAFT) is the first layout software and is originally presented by 

Armour and Buffa [15]. It is an improvement algorithm and considers exchanging the 

location of facilities only if they are adjacent or have equal areas. CRAFT can do two-way 

exchanges, three-way exchanges, two-way exchanges followed by three-way exchanges, 

and three-way exchanges followed by two-way exchanges [9]. The input data are the 

dimension of the given area, dimensions of the facilities, the flow between facilities, and 

an initial layout. In case needed, the user can also put some restrictions on the location of 

some facilities. Moving a facility physically has a cost that has to be considered when 

deciding on any change. A relocation proposal should be accepted only if the estimated 

savings as far as the MHC is concerned is more than the incurred relocation costs. To deal 

with the fixed and variable rearrangement cost, CRAFT is extended to CRAFT-M by Hicks 

and Cown [88]. 

Since then, many more software packages have been developed for optimizing the layout 

design problem. Selection of material handling equipment and area placement evaluation 

(SHAPE) [89] is a constructive heuristic algorithm with the objective of minimizing the 

total flow distance. DISCON [90] and KTM [91] are two hybrid construction and 

improvement algorithms. TESSA [92] and SPIRAL [93] are graph-theoretic algorithms for 

solving the layout problem. Multi-floor plant layout evaluation (MULTIPLE) [60] is a 

CRAFT-based improvement algorithm wherein the number of exchanges is increased due 

to the usage of space-filling curves and allowance of flexible department areas.  

Some other tools ease the layout design and simulation by supporting 3D components 

programming and assembly such as those present in the current state of the art Digital 

Manufacturing PLM packages (namely Tecnomatix and DELMIA) as well as in Visual 

Components, SmartDraw, and CAD Schroer.  
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1.10 Contribution of the Research 

In this dissertation, new models and solution algorithms are developed for different FLP 

problems, which entail different manufacturing contexts and settings (see Figure 1.8). This 

can be summarized as follows: 

 

Chapter 2: 

 A hybrid math-heuristic approach is presented to solve UA-FLP. 

 This constructive algorithm solves the problem by generating many clusters of the 

facilities, obtaining the optimum set and sequence of clusters in the final layout, 

and locating them on the shop floor. 

 It can be used as an initial solution to the metaheuristic algorithms especially when 

the area of the available space compare to the total area of the facilities is relatively 

small as the proposed method ensures feasible solutions. 

 By selecting one of the clusters of the final layout randomly, the algorithm is able 

to generate different near-optimum layouts each time the algorithm is used. 

 This randomness characteristic of the algorithm will result in having more than one 

initial layout which is desirable for initializing a population-based metaheuristic 

algorithm. 

 

Chapter 3: 

 A hybrid genetic algorithm-dynamic programming metaheuristic is proposed to 

solve the discrete DFLP. 

 A heuristic procedure is presented to generate a set of good layouts as the state-

space of DP. 

 GA selects amongst the generated state-space to feed the DP. This way, even 

though DP does not enumerate all the generated state-space but still gets good 

results. 

 The algorithm is further improved by employing tabu search metaheuristic. 

 The system under study is a reconfigurable manufacturing system (RMS). 
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Chapter 4: 

 A semi-robust layout is designed for cellular manufacturing systems (CMS) that 

are either flexible or conventional manufacturing systems. 

 A multi-objective cellular FLP is considered. 

 The number of cells, the assignment of machines to the cells, the location of cells 

and the machines inside the cells are optimized simultaneously. 

 Only a few articles in the literature have addressed obtaining the optimum layout 

design in CMS in a dynamic environment. 

 The proposed semi-robust approach catches the benefits of both dynamic and robust 

approaches and to the best of the author’s knowledge, has not been used previously.  

 

 

Figure 1.8. Summary of the developed models and solution algorithms in this dissertation 

for different FLP problems considering different manufacturing contexts and settings 
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1.11 Outline of the Dissertation  

This dissertation is comprised of five chapters. Chapter 1 presents the definition of the FLP 

along with its different characteristics and variants. Chapter 2 provides an efficient math-

heuristic algorithm for solving the UA-FLP along with computational results assessing its 

performance. In Chapter 3, a hybrid genetic algorithm-dynamic programming approach is 

presented for the DFLP which is improved by tabu search and is validated against a well-

known benchmark test set in the literature. Chapter 4 studies the cellular layout problem in 

a dynamic environment and presents a semi-robust layout. The problem is formulated as a 

multi-objective mathematical programming model. A modified non-dominated sorting 

genetic algorithm (MNSGA-II) is then used to obtain Pareto-optimal solutions for the 

problems. An experimental design and analysis for performance evaluation of the proposed 

MNSGA-II is also included in this chapter. Finally, the conclusions and some directions 

for future research are provided in Chapter 5. 
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CHAPTER 2 

A CLUSTERING-SEQUENCING MATH-HEURISTIC APPROACH FOR THE 

UNEQUAL-AREA FACILITY LAYOUT PROBLEM 

 

In this chapter, the unequal-area facility layout problem (UA-FLP) is addressed, which 

aims at finding the best arrangement of unequal-area rectangular-shaped facilities with 

fixed dimensions in a given area. As explained in Chapter 1, since FLP is NP-Hard, exact 

optimization approaches can only solve smaller instances of the problem. For larger 

instances, heuristic, metaheuristic, and else are used to find sub-optimal solutions. The 

math-heuristic approach presented in this chapter splits the UA-FLP problem theoretically 

into three subproblems of clustering, selecting, and sequencing. This constructive 

algorithm can be used to obtain an initial solution for metaheuristics. A feasible solution is 

guaranteed even when the available shop floor space is relatively tight. Two computational 

experiments are done to demonstrate the advantages of using the proposed approach. 

Particle swarm optimization is implemented and proposed to demonstrate how the 

developed math heuristic approach can be used to initialize metaheuristics. The resulting 

hybridized math heuristic metaheuristic approach is validated using test cases from the 

literature.  

 

Nomenclature 

𝑖, 𝑖ʹ  Index set of machines 𝑖, 𝑖′ ∈ {1,2, … , 𝑀} 

𝑗  Index set of clusters 𝑗 ∈ {1,2, … , 𝑁} 

𝑘  Index set of locations 𝑘 ∈ {1,2, … , 𝑀} 

𝑙  Index set of levels 𝑙 ∈ {1,2, … , 𝐿𝑗}  

𝑟   Random number 𝑟 ∈ {1,2, … , 𝑁} 

𝐻  The horizontal dimension of the shop floor 

𝑉  The vertical dimension of the shop floor 
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ℎ𝑖
𝑚  The horizontal dimension of machine 𝑖 

𝑣𝑖
𝑚  The vertical dimension of machine 𝑖 

𝑓𝑖𝑖′   The flow of material between machines 𝑖 and 𝑖’  

𝑅𝑘  The rank of the position 𝑘 on the shop floor 

𝐿𝑗  The number of levels of cluster 𝑗 

ℎ𝑗
𝑐  The horizontal dimension of cluster 𝑗 

𝑣𝑗
𝑐  The vertical dimension of cluster 𝑗 

ℎ𝑗𝑙
𝑐   The horizontal dimension of level 𝑙 of cluster 𝑗 

𝑣𝑗𝑙
𝑐   The vertical dimension of level 𝑙 of cluster 𝑗 

𝑓𝑗
𝑐 The total flow of material between machines in cluster 𝑗 and the rest of the 

machines. 

𝑆𝑖𝑗   = {
1   if machine 𝑖 is in cluster 𝑗 
0   otherwise                              

  

𝑆𝑖𝑗𝑙
′    = {

1   if machine 𝑖 is in cluster 𝑗 at level 𝑙 
0   otherwise                                               

  

𝑋𝑗   = {
1   if cluster 𝑗 is in the final layout 
0   otherwise                                        

  

𝑋𝑗𝑘
′    = {

1   if cluster 𝑗 is in the final layout at position k 
0   otherwise                                                                 

  

(𝑥𝑖, 𝑦𝑖)  The coordination of the centroid of machine 𝑖 

 

2.1. Introduction 

The optimal arrangement of facilities in a given area is called the facility layout problem 

(FLP). According to Tompkins et al. [1], facilities planning and material handling costs 

account for about 20% to 50% of the operating expenses that these costs can be reduced by 

10% to 20% having an efficient layout. 
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The FLP can be studied discretely or continuously [2]. Quadratic assignment problem 

(QAP) is well-known in the literature for modeling discrete FLP which assumes that the 

areas of the facilities are equal and the facilities’ locations are fixed [3]. Koopmans and 

Beckman [4] were the first who formulated the facility layout problem as a QAP. The FLP 

with unequal-area facilities is too complex to be modeled using a discrete QAP model 

unless locations are going to be considered large enough to accommodate the largest 

facility. Of course, this is an approximation that could entail wasting in production floor 

footage square as well as unnecessary material handling costs. If the problem does not have 

any of these restrictions, it needs a continuous representation. In the continuous 

representation, facilities can have any size and shape and can be placed in any position as 

long as no overlapping occurs. The continuous representation of the facility layout problem 

usually ends up being a mixed-integer programming (MIP) model due to the need for 

auxiliary binary variables [5]. Other than QAP and MIP, the facility layout problem is also 

modeled as a linear integer programming [6], mixed-integer programming [7], the graph-

theoretic problem [8], and the quadratic set-covering problem [9].  

Sahni and Gonzalez [10] demonstrated that the FLP is an NP-Complete problem and hence 

the optimum answer is not achievable in polynomial time for the large size problems. There 

are heuristic and metaheuristic algorithms that can be employed to solve the large instances 

of the FLP sub-optimally.  

Armour and Buffa [11] described the unequal-area facility layout problem (UA–FLP) as a 

rectangular region with fixed dimensions and a number of facilities, that each has a specific 

area, to be placed in that region. The sum of the areas of the facilities must be less than or 

equal to the plant area. In the following, some heuristic and metaheuristic approaches that 

have been used in the literature to address the UA-FLP are reported. 

Systematic layout planning (SLP) introduced by Muther [12] is one of the successful 

heuristic strategies to solve the facility layout problem. SLP methodology has three steps. 

In the first step, the relative position of the machines (ignoring their required spaces) is 

determined by a relationship diagram or an adjacency graph. In the second step, a space 

relationship diagram is produced by incorporating the area of each machine to the 
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adjacency graph. Finally, a feasible block layout is produced in the third step by 

considering all other constraints.  

An iterative heuristic and a Branch and Bound algorithm were presented by Bhowmik [13] 

for solving FLP. In this approach, using clustering methods, departments that are highly 

related are grouped into levels; using the Branch and Bound method, a mathematical model 

is solved to obtain the locations of the generated clusters at the different levels; and using 

the iterative heuristic algorithm, the different departments are located within each level. 

Park and Seo [14] considered the input and output points of facilities when studying the 

UA-FLP and proposed a two-step heuristic algorithm for solving the problem. Salimpour 

et al. [15] firstly proposed a clustering-sequencing approach for solving the UA-FLP.  

An iterative heuristic procedure was presented by Taghavi and Murat [16] for solving the 

integrated layout design and product flow assignment. This procedure is based on the 

sequential location heuristic, the alternating heuristic of Cooper [17], and the perturbation 

algorithm. Karray et al. [18] developed an integrated approach for solving the UA-FLP 

using the fuzzy set theory and a genetic algorithm (GA). 

Paes et al. [19] proposed two heuristic methods for solving the UA-FLP that are a basic 

GA and a GA with decomposition phases and quadrant restrictions. Palomo-Romero et al. 

[20] examined the use of parallel GA based on the island model to solve UA–FLP with a 

flexible bay structure and showed that the proposed approach improves the algorithm’s 

exploration and the quality of solutions and prevents premature convergence and 

unnecessary execution time. An algorithm based on the artificial immune system was 

introduced by Ulutas and Kulturel-Konak [21] to solve the UA-FLP with a flexible bay 

structure. Wang et al. [22] solved the multi-objective UA-FLP using GA; the objectives 

were minimizing the material flow factor cost, minimizing the shape ratio factor, and 

maximizing the area utilization factor were the objectives. 

Allahyari and Azab [23] formulated the UA-FLP by a mixed-integer nonlinear 

programming model and solved their model using a multi-start search simulated annealing 

(SA) algorithm. Moreover, the authors proposed a heuristic algorithm for the initialization 

of the SA. Nordin et al. [24] developed a mixed-integer nonlinear programming model for 
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the UA-FLP and proposed a hybrid GA-SA metaheuristic algorithm for solving the model. 

Different orientations of the departments were considered in their model.  

Asl and Wong [25] presented a modified particle swarm optimization (PSO) algorithm to 

solve the UA-FLP in which two local search and department swapping methods were 

applied to improve the quality of solutions and avoid trapping in the local optima and. 

Kulturel-Konak and Konak [26] proposed a hybrid PSO and local search approach for UA-

FLP. The authors used a relaxed flexible bay structure in which empty spaces in bays were 

allowed. A multi-objective PSO algorithm was presented by Liu et al. [27] to solve the 

UA-FLP. The objectives were the minimization of the material handling cost, 

maximization of the total adjacency value, and the maximization of the utilization ratio of 

the shop floor. Zhang and Wang [28] solved the construction site UA-FLP using a PSO-

based methodology. 

In this chapter, a hybrid heuristic- and mathematical programming-based approach is 

presented to solve UA-FLP. The remainder of the chapter is structured as follows. The 

problem statement is presented in Section 2.2; Section 2.3 explains the four steps of the 

math heuristic approach for solving the UA-FLP; the application of the developed 

constructive approach for initializing a PSO metaheuristic is presented in Section 2.4; two 

comparative analyses are provided in Section 2.5, and finally, conclusions are provided in 

Section 2.6. 

 

2.2. Problem Statement 

The problem at hand is to arrange unequal-area facilities in a given area to minimize the 

total material handling cost, which is proportional to the flow of materials between these 

facilities and the distances they travel. In this chapter, the arrangement of production 

facilities, which are mostly machine tools, on the shop floors of manufacturing plants is 

of interest and one of the most popular applications of FLP. Hence, in this chapter, the 

facilities are referred to simply as machines for brevity. The following assumptions are 

taken for the purpose of modeling and solving the problem: 
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(a) Machines have an unequal-area rectangular shape with predetermined 

dimensions. 

(b) The machines’ dimensions are determined considering the space required for the 

operator, material handling equipment, maintenance, etc.  

(c) The shop floor has a rectangular shape with known dimensions. 

(d) The flow of material between machines is known a priori. 

(e) Machines must be located within the shop floor in a way where no overlap occurs 

between them. 

(f) In calculations of the distances between machines, rectilinear distances between 

the machines’ centroids are used.  

 

2.3. Methodology 

As mentioned in Section 2.1, FLP is NP-Hard and hence, there is a need for a heuristic or 

metaheuristic approach to solve large-sized instances of the problem. This section proposes 

a math heuristic approach, which is comprised of a combined heuristic- and mathematical-

programming technique that has four steps for solving the problem. By definition, math 

heuristics are algorithms where mathematical programming is used in a heuristic fashion 

[29]. 

2.3.1. Step 1: Grouping Machines in Different Clusters 

In this step, 𝑁 clusters are generated in a way that machines are selected randomly to form 

the clusters created from bottom up. Each machine is considered to form a level. When 

machine 𝑖 is selected to be in cluster 𝑗 at level 𝑙, the 𝑆𝑖𝑗𝑙
′  and hence, the 𝑆𝑖𝑗 and is set to 1 

(Equation 2.1). For any cluster, level (𝑙 + 1) is not to be assigned until that of 𝑙 is (Equation 

2.2). 

𝑆𝑖𝑗 = 𝑚𝑎𝑥{𝑆𝑖𝑗𝑙
′ |∀ 𝑙}      ∀𝑖, 𝑗   (2.1) 

∑ 𝑆𝑖𝑗(𝑙+1)
′𝑀

𝑖=1 ≤ ∑ 𝑆𝑖𝑗𝑙
′𝑀

𝑖=1        ∀ 𝑗, 𝑙  (2.2) 
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Then, the vertical dimension of level 𝑙 in cluster 𝑗, 𝑣𝑗𝑙
𝑐 , is set to be equal to the vertical 

dimension of the assigned machine within that level, 𝑣𝑖
𝑚 (Equation 2.3).  

𝑣𝑗𝑙
𝑐 = 𝑣𝑖

𝑚𝑆𝑖𝑗𝑙
′         ∀ 𝑖, 𝑗, 𝑙  (2.3) 

The vertical dimension of each cluster is that of the shop floor (Equation 2.4). The sum of 

the vertical dimensions of all levels in a cluster can not be more than the vertical dimension 

of that cluster. As the dimensions of machines are different, the number of levels generated 

in each cluster, 𝐿𝑗, is also different (Equation 2.5).  

𝑣𝑗
𝑐 = V        ∀ 𝑗 (2.4) 

∑ 𝑣𝑗𝑙
𝑐𝐿𝑗

𝑙=1 ≤ 𝑣𝑗
𝑐      ∀ 𝑗  (2.5) 

The horizontal dimension of a cluster is the maximum of the horizontal dimensions of the 

machines assigned to that cluster (Equation 2.6). The horizontal dimension of each level in 

a cluster is equal to the horizontal dimension of that cluster (Equation 2.7). 

ℎ𝑗
𝑐 = 𝑚𝑎𝑥{ℎ𝑖

𝑚𝑆𝑖𝑗|∀ 𝑖}       ∀ 𝑗 (2.6) 

ℎ𝑗𝑙
𝑐 = ℎ𝑗

𝑐         ∀ 𝑗, 𝑙 (2.7) 
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Figure 2.1. Flowchart of the algorithm for generating clusters 



36 

 

Next, it is examined if those machines that have not been selected to be in a cluster can be 

located horizontally beside the assigned machine at each level and the variables 𝑆𝑖𝑗 and 𝑆𝑖𝑗𝑙
′  

are updated accordingly. This happens only if the vertical dimension of a machine is less 

than that of a cluster’s level and the machine’s horizontal dimension plus the horizontal 

dimension of the machine that is already assigned to that level, is less than the horizontal 

dimension of the cluster’s level. This algorithm is repeated 𝑁 times in order to provide 𝑁 

clusters in such a way that it is possible to have the same machine in different clusters. The 

steps the algorithm undertakes to group the machines into clusters are summarized in the 

flowchart presented in Figure 2.1. 

The parameter 𝑓𝑖𝑖′  which represents the flow of material between machines 𝑖 and 𝑖′, is used 

to calculate the flow of material between machines in each cluster with the rest of the 

machines (Equation 2.8). 

𝑓𝑗
𝑐 = ∑ ∑ 𝑓𝑖𝑖′𝑆𝑖𝑗(1 − 𝑆𝑖′𝑗)𝑀

𝑖′=1
𝑀
𝑖=1       ∀ 𝑗  (2.8) 

2.3.2. Step 2: Selecting Between Clusters and Sequencing Them 

In this section, clusters that are going to be in the final layout are selected optimally and 

sequenced horizontally with the objective that the clusters that have a higher flow of 

materials with the rest of the clusters, 𝑓𝑐, be in positions that have a higher rank on the 

shop floor. It should be noted that each machine should be naturally assigned to one and 

only one cluster in the final layout and hence, if a cluster is selected, other clusters that 

contain the same machines as the chosen cluster can not be selected. In step 1, clusters are 

generated in a way that their vertical dimensions do not exceed the vertical dimension of 

the shop floor. In this step, the horizontal dimension of the shop floor should not be violated 

by controlling the summation of the horizontal dimensions of the selected clusters. To 

provide different solutions, the first cluster is selected randomly. 

Parameter 𝑅𝑘 represents the rank of the position 𝑘 on the shop floor (Equation 2.9). It is 

assumed that the centroid of the shop floor has the maximum rank, 𝑀, which is the number 

of machines. The rank of a position is decremented by one as you move away from the 

centroid either way due to the symmetry, as shown in Figure 2.2.  

𝑅𝑘 = 𝑘 + ⌊(𝑀 − 𝑘) 2⁄ ⌋       ∀ 𝑘  (2.9) 
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Figure 2.2. Possible positions on the shop floor and their corresponding rankings 

 

To solve this step, the following integer linear programming model is formulated:  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝑓𝑗
𝑐𝑅𝑘𝑋𝑗𝑘

′𝑀
𝑘=1

𝑁
𝑗=1    (2.10)  

Subject to: 

∑ 𝑋𝑗𝑆𝑖𝑗 = 1𝑁
𝑗=1         ∀ 𝑖  (2.11) 

𝑋𝑟 = 1        (2.12) 

∑ 𝑋𝑗𝑘
′ − 𝑋𝑗

𝑀
𝑘=1 ≤ 0           ∀ 𝑗  (2.13) 

∑ 𝑋𝑗𝑘
′ ≤ 1𝑁

𝑗=1                ∀ 𝑘  (2.14) 

∑ 𝑋𝑗ℎ𝑗
𝑐𝑁

𝑗=1 ≤ 𝐻   (2.15) 

𝑋𝑗, 𝑋𝑗𝑘
′ ∈ {0,1}          ∀ 𝑗, 𝑘 (2.16) 

The objective function (2.10) maximizes the sum of the flow of materials of the selected 

clusters with the rest of the clusters multiplied by the ranks of their assigned positions. The 

objective function is maximized when the clusters, which have more amount of flow with 

other clusters, are selected and are assigned to positions with the highest of merit. The 

cluster, which has the highest amount of flow with other clusters is located in the centroid 

𝑅𝑘, the next two are at positions with the rank of 𝑅𝑘−1, and the next two are at positions 

with the rank of 𝑅𝑘−2 and so forth. 
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Constraint (2.11) ensures that each machine is in one and only one cluster in the final 

layout. Constraint (2.12) ensures that the first cluster is chosen randomly, which is key to 

the overall working of the developed approach; it is necessary to avert having the model 

being trapped in a local optimum by having it act greedy and assign the best cluster with 

the most of the interactions to the highest rank position at the centroid of the shop floor. 

Instead, the model is run a number of times each time having a different set of clusters; this 

way various clusters are being assigned to the centroid position and tried. The best of these 

generated layouts and cluster sequences is then chosen. Constraint (2.13) ensures that a 

cluster is only assigned once if it is chosen. Constraint (2.14) ensures that not more than 

one cluster is assigned to each position. Constraint (2.15) ensures that the sum of the 

horizontal dimensions of the selected clusters does not exceed that of the overall given 

shop. Finally, constraint (2.16) indicates that the decision variables are binary.             

2.3.3. Step 3: Sequencing Machines in Each Cluster 

In the previous steps, machines that are horizontally together in each cluster and the clusters 

that are in the final layout are selected. In this step, first, the coordinates of the selected 

clusters based on their dimensions and positions on the shop floor are determined. Second, 

the best arrangement of the machines in each cluster and accordingly the coordinates of the 

machines are obtained. 

For finding the coordinates of the clusters, it should be noted that centering a cluster on the 

shop floor does not mean that the cluster is exactly in the middle of the shop floor in the 

final layout. Sometimes after placing the cluster that has the most amount of flow with the 

rest of the clusters at the centroid of the shop floor and the rest of the clusters one after the 

other next to it in their positions as shown in Figure 2.3 (a), the layout may exceed the 

dimensions of the shop floor; see Figure 2.3 (a) for an illustration of this. To fix this issue, 

all the clusters are treated as a batch and placed in the centroid of the shop floor as depicted 

in Figure 2.3 (b).  

The basic idea for sequencing the machines vertically in each cluster is the same as 

sequencing the clusters horizontally on the shop floor. This means that the centroid of each 

cluster is assumed to have the maximum position rank and the machine that has the most 

flow of material with the rest of the machines is assigned to that position and so forth. It 
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should be noted that if two machines are in one level, they are treated as a single entity 

(practically one single machine) in regards to the flow of material calculations, which are 

the summation of the flow of material of both of these machines with the rest of the 

machines. The arrangement of machines should be in a way that machines should not have 

any overlap with each other and they should not exceed their clusters’ boundaries. Locating 

a machine at the centroid of a cluster follows the same scheme explained in Figure 2.3.  

The machines that are located at the endpoint clusters only have interaction between 

themselves and the machines that are located on one side of them. Hence, to lower the total 

material handling cost, these machines are not horizontally centralized and are moved 

toward the centroid of the shop floor as long as the boundaries of their cluster are not 

violated (see Figure 2.4). 

 

Figure 2.3. A sample layout (a) The cluster which contains machines 3 and 6 is 

centralized and the configuration of the clusters exceeds the horizontal dimension of the 

shop floor. (b) All the clusters are treated as a batch and placed in the centroid of the shop 

floor. 
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Figure 2.4. Decentralizing machines which are in the endpoint clusters 

 

2.3.4. Step 4: Calculation of Total Distance Traveled by All Units  

In this step, the coordinates of the machines are known. Hence, the distance between them 

can be easily obtained. The total material handling cost (𝑇𝐶) is the sum of the product of 

the flow of materials between each pair of machines and the rectilinear distance between 

them. This cost is calculated using Equation 2.17. 

𝑇𝐶 = ∑ ∑ 𝑓𝑖𝑖′(|𝑥𝑖 − 𝑥𝑖′| + |𝑦𝑖 − 𝑦𝑖′|)𝑀
𝑖′=𝑖+1

𝑀−1
𝑖=1   (2.17) 

 

2.4. Particle Swarm Optimization (PSO) 

As mentioned in Section 2.1, FLP is NP-Hard, and hence no exact solutions can be 

produced in polynomial time solving larger instances of the problem (more than 15 

facilities). To overcome this issue, a hybridized math heuristic metaheuristic approach is 

used. Generally speaking, metaheuristics perform better than heuristics. And, hence 

combining a powerful math-heuristic initializing a metaheuristic is proving to provide 

better results.  

One of these metaheuristic methods is PSO that is used here as an example. Kennedy and 

Eberhart [30] are the first who developed the particle swarm optimization, which is an 

evolutionary computation algorithm based on the social behavior of swarms (swarm 

intelligence) [31]. 
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PSO is initialized by creating a population of random solutions, named particles that each 

is assigned a random velocity. Each particle represents a candidate solution that is located 

somewhere in the solution space with a fitness value. In each iteration, the best location a 

particle has experienced up to the current iteration as well as the best location of all the 

particles (the whole population) thus far is saved in the memory. In every iteration, a 

particle moves towards both its own best location and the global best location so far using 

its velocity [32]. The basic PSO algorithm is modified by introducing an inertia weight 

(also named as damping weight) to the model [33]. This weight controls the effect of the 

previous velocities on the current velocity. A large inertia weight (closer to one) results in 

a better exploration, while smaller inertia (less than 0.4) leads to better exploitation [27, 

34]. The particles are maneuvered according to Equations (2.18) and (2.19): 

𝑉𝑖𝑡 = 𝑤 × 𝑉𝑖(𝑡−1) + 𝑐1 × 𝑟𝑎𝑛𝑑1𝑡 ∙ (𝑋𝑏𝑒𝑠𝑡𝑖(𝑡−1) − 𝑋𝑖(𝑡−1))  (2.18) 

+𝑐2 × 𝑟𝑎𝑛𝑑2𝑡 ∙ (𝑋𝑔𝑏𝑒𝑠𝑡(𝑡−1) − 𝑋𝑖(𝑡−1))  

𝑋𝑖𝑡 = 𝑋𝑖(𝑡−1) + 𝑉𝑖𝑡   (2.19) 

where 𝑡 is the index for iterations, 𝑖 is the index for particles, 𝑤 is the inertia weight, 𝑋 is 

the position vector and 𝑉 is the velocity vector of a particle in an iteration, 𝑋𝑏𝑒𝑠𝑡 is the 

best position vector that a particle has experienced so far before the current iteration and 

the 𝑋𝑔𝑏𝑒𝑠𝑡 is the global best position vector that all the particle have experienced so far 

before the current iteration. To prevent a particle from moving faraway outside the 

boundaries of the search space, the velocity of particles should be anywhere between the 

predefined upper limit, 𝑉𝑚𝑎𝑥, and the lower limit, 𝑉𝑚𝑖𝑛. The cognition coefficient, 𝑐1, and 

the social coefficient, 𝑐2, facilitate the convergence of the PSO algorithm and take a value 

between 0 to 2 [27]. 𝑟𝑎𝑛𝑑1𝑡 and 𝑟𝑎𝑛𝑑2𝑡 are vectors of uniform random numbers between 

0 and 1 in iteration t. The size of all the above-mentioned vectors are equal to the total 

number of decision variables.  

PSO is a population-based search method that has the ability to search for the optimum 

solution simultaneously in many directions [35]. PSO is shown to be successful when 

dealing with static optimization problems [36]. 
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2.4.1. PSO Algorithm 

The PSO algorithm has the following steps [37]: 

1. Particles are created, their position vector and velocity vector are initialized and the 

corresponding cost of the position of each particle is evaluated  

2. The best position of each particle is set to be equal to the initial position of that 

particle and the one that has the best fitness function value (minimum cost or 

maximum profit) is set as the global best position. 

3. The steps “a” to “f” are repeated until the stopping criteria is met. The stopping 

criteria can be reaching the maximum number of iterations, or no improvement for 

a certain number of iterations. 

(a) Each particle’s velocity is updated using Equation (2.18). 

(b) If the updated velocity is less than the lower limit, then it is set to the lower 

limit and if it is higher than the upper limit, it is set to the upper limit. 

(c) Each particle’s position is updated using Equation (2.19). 

(d) The fitness of the updated position of each particle is evaluated 

(e) The local improvement is applied 

(f) If the current position of a particle is better than the particle’s best position, then 

the best position of the particle is updated and then if his position is better than 

the global best position as well, the global best position is updated, too. 

4. The global best position and cost is reported. 

2.4.2. Solution Representation 

The decision variables of the UA-FLP are the 𝑥 and 𝑦 coordinates of the centroid of all the 

machines. 𝑥𝑖
𝑚𝑖𝑛 and 𝑥𝑖

𝑚𝑎𝑥 are the minimum and maximum possible values for the x-

coordinate of the centroid of machine i, and 𝑦𝑖
𝑚𝑖𝑛 and 𝑦𝑖

𝑚𝑎𝑥 are the minimum and 

maximum possible values for the y-coordinate of the centroid of machine i which are 

calculated using Equations (2.20)-(2.25). 
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𝑥𝑖
𝑚𝑖𝑛 = 

ℎ𝑖
𝑚

2
      ∀ 𝑖  (2.20) 

𝑥𝑖
𝑚𝑎𝑥 = 𝐻 −

ℎ𝑖
𝑚

2
      ∀ 𝑖  (2.21) 

𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥       ∀ 𝑖  (2.22) 

𝑦𝑖
𝑚𝑖𝑛 =

 𝑣𝑖
𝑚

2
      ∀ 𝑖  (2.23) 

𝑦𝑖
𝑚𝑎𝑥 = 𝑉 −

𝑣𝑖
𝑚

2
       ∀ 𝑖 (2.24) 

𝑦𝑖
𝑚𝑖𝑛 ≤ 𝑦𝑖 ≤ 𝑦𝑖

𝑚𝑎𝑥       ∀ 𝑖 (2.25) 

The usual practice encoding solutions in PSO is using normalized variables, �̂�𝑖 and �̂�𝑖, the 

values of which ranges from 0 to 1 [25]. However, for evaluating the solutions, the values 

of 𝑥𝑖 and 𝑦𝑖 are needed that can be found using Equations (2.26)-(2.28). 

𝑥𝑖 = 𝑥𝑖
𝑚𝑖𝑛 + (𝑥𝑖

𝑚𝑎𝑥 − 𝑥𝑖
𝑚𝑖𝑛)�̂�𝑖      ∀ 𝑖  (2.26) 

𝑦𝑖 = 𝑦𝑖
𝑚𝑖𝑛 + (𝑦𝑖

𝑚𝑎𝑥 − 𝑦𝑖
𝑚𝑖𝑛)�̂�𝑖      ∀ 𝑖  (2.27) 

0 ≤ �̂�𝑖, �̂�𝑖 ≤ 1       ∀ 𝑖 (2.28) 

2.4.3. Objective Function 

The objective function, 𝑍, is the summation of 𝑇𝐶 calculated by Equation (2.17) as well as 

the total penalty function to prevent overlapping between machines which can be obtained 

using Equations (2.29)-(2.32). 

𝑍 = 𝑇𝐶 + ∑ ∑ 𝑝𝐼𝑖𝑖′
𝑀
𝑖′=𝑖+1

𝑀−1
𝑖=1    (2.29) 

𝐼𝑖𝑖′
𝑥 =

ℎ𝑖
𝑚+ℎ

𝑖′
𝑚

2
− |𝑥𝑖 − 𝑥𝑖′|       ∀ 𝑖′ > 𝑖  (2.30) 

𝐼
𝑖𝑖′
𝑦

=
𝑣𝑖

𝑚+𝑣
𝑖′
𝑚

2
− |𝑦𝑖 − 𝑦𝑖′|       ∀ 𝑖′ > 𝑖 (2.31) 

𝐼𝑖𝑖′ = {
𝐼𝑖𝑖′

𝑥 × 𝐼
𝑖𝑖′
𝑦

     𝑖𝑓 𝐼𝑖𝑖′
𝑥 , 𝐼

𝑖𝑖′
𝑦

> 0

0                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
       ∀ 𝑖′ > 𝑖  (2.32) 

where 𝑝 is the penalty cost per square unit of overlapping between a pair of machines. The 

calculation of the amount of Infraction between a pair of machines, 𝐼𝑖𝑖′ , is similar but not 

completely the same as the one used by Chwif et al. [38]. Moreover, the way the total 

penalty function is involved in the objective function is different. 
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2.4.4. Local Improvement Search 

The local improvement method — similar to the one proposed by Asl and Wong [25] — 

is used to improve the updated solution of each particle in each iteration. For each machine, 

the algorithm checks whether a move with a length 𝑑𝑒𝑙𝑡𝑎 to the right, left, up, or down can 

provide a better feasible solution. The value of 𝑑𝑒𝑙𝑡𝑎 is selected randomly by the algorithm 

but it is restricted to a prespecified range.  

 

2.5. Computational Results 

In this section, first, the performance of the proposed math heuristic is compared with one 

of the benchmarks in the literature (Comparison I). And next, the proposed approach is 

used to generate the initial solution for the PSO metaheuristic and the results are compared 

with the case where the initial solutions are generated randomly (Comparison II). 

Steps 1, 3, and 4 of the algorithm, as well as the PSO algorithm, are deployed using 

MATLAB, while Step 2 is using Xpress Mosel algebraic modeling language and solvers. 

The algorithms are tested on a 64-bit architecture with an Intel Xeon processor, the clock 

speed of which is 3.07 GHz, and a 6 GB of memory personal computer. 

2.5.1. Comparison I 

In Comparison I, the computational results of the proposed math heuristic are presented 

and compared with those obtained by Karray et al. [39]. The input data of the problem, 

presented in Tables 2.1, 2.2 and 2.3, are the same as the data they have used; however, with 

two small differences. The first difference is that facility 6 in that example [39] is a building 

consists of two attached buildings, the total area of which is given. For comparison and as 

the facilities in the proposed approach are assumed to have a rectangular shape, facility 6 

is split into two separate ones (rectangular shape and equal in the area) and named 6 and 7. 

However, in order to make sure that they stick together in the final layout, the flow of 

material between them is set to a very high amount. The second difference is the 

terminology used; to maintain consistency the term “facility” is replaced by “machine.” 
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The values in Table 2.3 are not integer because Karray et al. [39] have assumed that there 

are three different types of flow between facilities which are material flow, information 

flow, and equipment flow; each of these variables is assumed to have five membership 

functions and also a weight factor. After applying fuzzification, which results in closeness 

relationship values being generated for each pair of facilities, and after establishing the 

decision-making rules, the min-max composition rule of the interface and the centroid of 

the area are used for the defuzzification process and generation of the values of the facility 

relationship chart which are not integer values. To be consistent with the terminology used 

in this chapter, Table 2.3 is named the material handling flow between pairs of machines. 

The final layout obtained solving the problem using the proposed math heuristic is 

presented in Figure 2.5. (a) Having this layout, the total material handling cost is $9976.3. 

The best layout presented by Karray et al. [39] is depicted in Figure 2.5. (b). To compare 

the two layouts, the total material handling cost of this layout is calculated using Equation 

16. The obtained result is $9990.5. 

Table 2.1. Dimensions of the shop in meter 

Horizontal Dimension (𝑯) Vertical Dimension (𝑽) 

27 16 

Table 2.2. Dimensions of the machines in meter 

Machine’s Number 1 2 3 4 5 6 7 

Horizontal Dimension (𝒉𝒎) 4 3 5 3 3 12 6 

Vertical Dimension (𝒗𝒎) 2 4 5 2 1 6 12 

Table 2.3. The material handling flow between pairs of machines 

Machine’s Number 7 6 5 4 3 2 1 

1 81.7 81.7 48.4 11.2 10.6 10.5 - 

2 36.8 36.8 12.3 15.3 52.9 - 

3 36.5 36.5 46.9 29.8 - 

4 10.8 10.8 10.8 - 

5 11.3 11.3 - 

6 100 - 

7 - 
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      (a)      (b) 

Figure 2.5. The best layout (a) result of solving by proposed hybrid heuristic- and 

mathematical-programming-based approach (b) obtained by Karray et al. [39] using 

genetic algorithms. 

 

It can be concluded that the proposed approach obtained a better solution even though the 

solutions are quite close (0.14% better). Moreover, this solution makes better use of the 

available space; and hence, the resulting unutilized spaces can be used to make room for 

larger restrooms, cafeterias, or secondary functions.  

2.5.2. Comparison II 

In Comparison II, the proposed math heuristic is used to generate an initial solution for the 

PSO metaheuristic approach to solve UA-FLP and the results are compared with the case 

where PSO starts with completely random initial solutions. 

Some of the benchmarks on UA-FLP have not restricted the floor space’s dimensions and 

considered that the dimensions of the shop floor are allowed to be decided by the algorithm 

[19, 23, 40-44] or have considered that the area of the shop floor is far larger than that of 

the total machines combined [25, 27]. However, this is not the case in real manufacturing 

systems; the shop floor has specific dimensions and its area may not be that relatively large.  

The proposed constructive approach performs well and results in feasible solutions in the 

cases where the area of the shop is restricted and the difference in required vs available 

areas/aspect-ratio is tight. When this layout is given to PSO as one of the initial solutions, 

PSO improves this solution and results in a better feasible layout. Nevertheless, PSO, when 

fed with random initial solutions, does not come up with feasible solutions in such cases. 
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Two data sets, one with 11 machines and the other one with 20 machines, are used to test 

the benefit of this constructive algorithm. The data sets are available in the original 

references.  

The PSO parameters 𝑤, 𝑐1, and 𝑐2 are set to 0.4, 2, and 2, respectively. The size of the 

population is 50 and the stopping criteria is reaching the maximum number of iterations 

that is set to 500. 

2.5.2.1.  Data Set 1 

The first data set with 11 facilities is first introduced by Imam and Mir [43]; the area of the 

shop floor in the test case is not restricted. The total area of the facilities is 124.4 m2.  

Figure 2.6 displays the result for this problem considering a shop floor with an area of 156 

m2 (13 m × 12 m). As can be seen in Figure 2.6 (a), the proposed math heuristic algorithm 

generates a feasible solution with the total material handling cost of $1567. By using this 

layout as one of the initial solutions for PSO, an improved layout shown in Figure 2.6 (b) 

is obtained with the total material handling cost of $1520.11. However, when the PSO is 

initialized all randomly, the generated layout is not feasible (Figure 2.6. (c)). It can be 

concluded that the proposed algorithm can find a feasible solution for the problem even if 

the empty space is only 20%. 

Figure 2.7 shows the solution of the problem considering a shop floor with an area of 169 

m2 (13 m × 13 m). Figure 2.7 (a) depicts that the proposed math heuristic algorithm 

generates a feasible solution with the total material handling cost of $1495.3. As this layout 

is used as one of the initial solutions of PSO, an improved layout shown in Figure 2.7 (b) 

is obtained with the total material handling cost of $1478.90. However, by randomly 

initializing the PSO, the resulted layout is not feasible (Figure 2.7. (c)). It can be concluded 

that the proposed algorithm can find a feasible solution for the problem even if the empty 

space is only 26%. 
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(a)      (b) 

 
(c) 

Figure 2.6. A shop floor with the size of 13 m × 12 m (a) The layout resulted from the 

proposed math heuristic (b) The layout resulted applying PSO when one of the initial 

solutions is obtained by the math heuristic algorithm (c) The resulting layout obtained by 

PSO when all the initial solutions are generated randomly (infeasible). 
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(a)      (b) 

 
(c) 

Figure 2.7. A shop floor with the size of 13 m × 13 m (a) The layout resulted from the 

proposed math heuristic (b) The layout resulted applying PSO when one of the initial 

solutions is obtained by the math heuristic algorithm (c) The resulting layout obtained by 

PSO when all the initial solutions are generated randomly (infeasible). 

 

2.5.2.2. Data Set 2 

The second data set with 20 facilities is first introduced by Mir and Imam [40]; the area of 

the shop floor in the test case is not restricted. The total area of the facilities is 101 m2.  

Figure 2.8 presents the result of solving the problem considering a shop floor with an area 

of 112 m2 (14 m × 8 m). As shown in Figure 2.8 (a), the proposed math heuristic algorithm 

generates a feasible solution with the total material handling cost of $3421. When this 

layout is used as one of the initial solutions of the PSO algorithm, PSO improves the layout 

and results in the layout presented in Figure 2.8 (b) with the total material handling cost of 

$3418.04. However, when PSO is initialized randomly, the generated layout is not feasible 

(Figure 2.8. (c)). Thus, it can be concluded that the proposed algorithm can find a feasible 

solution for the problem even if the empty space is only 10%. 
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Figure 2.9 shows the result of solving the problem considering a shop floor with an area of 

120 m2 (15 m × 8 m). As shown in Figure 2.9 (a), the proposed math heuristic algorithm 

generates a feasible solution with the total material handling cost of $3948. When this 

layout is used as one of the initial solutions of the PSO algorithm, PSO improves the layout 

and results in the layout presented in Figure 2.9 (b) with the total material handling cost of 

$3770. However, when PSO is initialized all randomly, the generated layout is not feasible 

(Figure 2.9. (c)). It can be concluded that the proposed algorithm can obtain a feasible 

solution for the problem even if the surplus in the area is only 16% of the total shop area. 

Considering a shop floor with an area of 126 m2 (14 m × 9 m), the solution to the problem 

is presented in Figure 2.10. The proposed math heuristic algorithm generates a feasible 

solution with the total material handling cost of $3557, which is shown in Figure 2.10 (a). 

By utilizing this as an initial solution for PSO, the PSO algorithm improves the layout and 

reduces the total material handling cost to $3432.32. This layout is presented in Figure 2.10 

(b). When the PSO is initialized all randomly, the generated layout is not feasible which is 

depicted in Figure 2.10 (c). It can be concluded that the proposed algorithm can find a 

feasible solution for the problem even if the empty space is only 20%. 
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(a)      (b) 

 
(c) 

Figure 2.8. A shop floor with the size of 14 m × 8 m (a) The layout resulted from the 

proposed math heuristic (b) The layout resulted applying PSO when one of the initial 

solutions is obtained by the math heuristic algorithm (c) The resulting layout obtained by 

PSO when all the initial solutions are generated randomly (infeasible). 
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(a)      (b) 

 
(c) 

Figure 2.9. A shop floor with the size of 15 m × 8 m (a) The layout resulted from the 

proposed math heuristic (b) The layout resulted applying PSO when one of the initial 

solutions is obtained by the math heuristic algorithm (c) The resulting layout obtained by 

PSO when all the initial solutions are generated randomly (infeasible). 
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      (a)                   (b) 

 
(c) 

Figure 2.10. A shop floor with the size of 14 m × 9 m (a) The layout resulted from the 

proposed math heuristic (b) The layout resulted applying PSO when one of the initial 

solutions is obtained by the math heuristic algorithm (c) The resulting layout obtained by 

PSO when all the initial solutions are generated randomly (infeasible). 

 

2.6. Conclusions 

FLP is one of the most critical functions in production and manufacturing system design. 

There is a lot of interest in the facility layout problem; and due to the NP-hardness of the 

problem, near-optimal algorithms and heuristics have been developed as substitution of 

optimal exact algorithms solving large instances of FLP. 

A math heuristic approach is introduced in this chapter for the UA-FLP with continuous 

representation. This constructive algorithm solves the problem by clustering the facilities, 

which in this chapter are referred to as machines, selecting and sequencing the clusters and 

then locating them on the shop floor. Consequently, facilities in each cluster are sequenced 

and placed. The common objective of the FLP is to minimize the material handling cost. 

In this algorithm, this goal is reached by using the developed alternate objective function 
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based on the proposed ranking scheme. By maximizing the objective function, clusters that 

have more flow of materials with other clusters are assigned closer to the centroid of the 

shop. Hence, the inter-distances between facilities that have a higher amount of flow of 

materials among each other are minimized and as a result, the total material handling cost 

is minimized. 

One of the prominent aspects of this method is that it can be used as an initial solution to 

the metaheuristic algorithms such as PSO, which was explained in this chapter. The 

experimental results showed that if the total area of all the facilities compares to the area 

of the shop floor is not relatively small, PSO is not able to come up with a feasible solution. 

Whereas, if the proposed constructive layout is given as one of the initial solutions, the 

result is always feasible and PSO improves the given layout. Moreover, the randomness by 

which different facilities are assigned to different clusters and the selection of the first final 

layout’s cluster provides the ability to generate different sub-optimum layouts each time 

the proposed algorithm is used. As this constructive algorithm can be used for initializing 

metaheuristic algorithms, the randomness improves not only the exploration capability of 

the algorithm but also makes it possible to have more than one initial layout for the 

population-based metaheuristic algorithms such as PSO and GA. 

Moreover, even when the total area of the machines compare to the area of the shop floor 

is relatively large, the proposed method guarantees feasible solutions when initializing 

metaheuristics. However, it is not possible to advocate a generalized percentage for the 

area of the shop floor relative to the total area of the machines since this really depends on 

the problem at hand. PSO is implemented and two comparisons with available benchmark 

problems are made to validate and prove this feature of the presented hybridized math 

heuristic metaheuristic approach; the results show the benefits of using the developed 

algorithm. 

 

Bibliography 

1. Tompkins, J.A., J.A. White, Y.A. Bozer, and J.M.A. Tanchoco, Facilities planning. 

2010: John Wiley & Sons. 



55 

 

2. Chwif, L., M.R.P. Barretto, and L.A. Moscato, A solution to the facility layout 

problem using simulated annealing. Computers in Industry, 1998. 36(1–2): p. 125-

132. 

3. Kusiak, A. and S.S. Heragu, The facility layout problem. European Journal of 

operational research, 1987. 29(3): p. 229-251. 

4. Koopmans, T.C. and M. Beckmann, Assignment problems and the location of 

economic activities. Econometrica: journal of the Econometric Society, 1957: p. 

53-76. 

5. Drira, A., H. Pierreval, and S. Hajri-Gabouj, Facility layout problems: A survey. 

Annual Reviews in Control, 2007. 31(2): p. 255-267. 

6. Lawler, E.L., The quadratic assignment problem. Management science, 1963. 9(4): 

p. 586-599. 

7. Bazaraa, M.S. and H.D. Sherali, Benders' partitioning scheme applied to a new 

formulation of the quadratic assignment problem. Naval Research Logistics 

Quarterly, 1980. 27(1): p. 29-41. 

8. Foulds, L. and D.F. Robinson, Graph theoretic heuristics for the plant layout 

problem. The International Journal of Production Research, 1978. 16(1): p. 27-37. 

9. Bazaraa, M.S., Computerized layout design: a branch and bound approach. AIIE 

transactions, 1975. 7(4): p. 432-438. 

10. Sahni, S. and T. Gonzalez, P-complete approximation problems. Journal of the 

ACM (JACM), 1976. 23(3): p. 555-565. 

11. Armour, G.C. and E.S. Buffa, A heuristic algorithm and simulation approach to 

relative location of facilities. Management Science, 1963. 9(2): p. 294-309. 

12. Muther, R., Systematic Layout Planning/by Richard Muther. 1973. 

13. Bhowmik, R., An approach to the facility layout design optimization. International 

Journal of Computer Science and Network Security, 2008. 8(4): p. 212-220. 



56 

 

14. Park, H. and Y. Seo, An efficient algorithm for unequal area facilities layout 

planning with input and output points. INFOR: Information Systems and 

Operational Research, 2019. 57(1): p. 56-74. 

15. Salimpour, S., S.C. Viaux, A. Azab, and M.F. Baki, A Clustering-Sequencing 

Approach for the Facility Layout Problem. In Proceedings of the Seventh 

International Forum on Decision Sciences, 2020 (pp. 135-142). Springer, 

Singapore. 

16. Taghavi, A. and A. Murat, A heuristic procedure for the integrated facility layout 

design and flow assignment problem. Computers & Industrial Engineering, 2011. 

61(1): p. 55-63. 

17. Cooper, L., Location-allocation problems. Operations research, 1963. 11(3): p. 

331-343. 

18. Karray, F., E. Zaneldin, T. Hegazy, A. Shabeeb, and E. Elbeltagi, Computational 

intelligence tools for solving the facilities layout planning problem. in American 

Control Conference, 2000. Proceedings of the 2000. 2000. 

19. Paes, F.G., A.A. Pessoa, and T. Vidal, A hybrid genetic algorithm with 

decomposition phases for the unequal area facility layout problem. European 

Journal of Operational Research, 2017. 256(3): p. 742-756. 

20. Palomo-Romero, J.M., L. Salas-Morera, and L. García-Hernández, An island model 

genetic algorithm for unequal area facility layout problems. Expert Systems with 

Applications, 2017. 68: p. 151-162. 

21. Ulutas, B.H. and S. Kulturel-Konak, An artificial immune system based algorithm 

to solve unequal area facility layout problem. Expert Systems with Applications, 

2012. 39(5): p. 5384-5395. 

22. Wang, M.J., M.H. Hu, and M.Y. Ku, A solution to the unequal area facilities layout 

problem by genetic algorithm. Computers in Industry, 2005. 56(2): p. 207-220. 



57 

 

23. Allahyari, M.Z. and A. Azab, Mathematical modeling and multi-start search 

simulated annealing for unequal-area facility layout problem. Expert Systems with 

Applications, 2018. 91: p. 46-62. 

24. Nordin, N.N., Z.M. Zainuddin, S. Salim, and R.R. Ponnusamy, Mathematical 

modeling and hybrid heuristic for unequal size facility layout problem. Malaysian 

Journal of Fundamental and Applied Sciences, 2009. 5(1). 

25. Asl, A.D. and K.Y. Wong, Solving unequal-area static and dynamic facility layout 

problems using modified particle swarm optimization. Journal of Intelligent 

Manufacturing, 2017. 28(6): p. 1317-1336. 

26. Kulturel-Konak, S. and A. Konak, A new relaxed flexible bay structure 

representation and particle swarm optimization for the unequal area facility layout 

problem. Engineering Optimization, 2011. 43(12): p. 1263-1287. 

27. Liu, J., H. Zhang, K. He, and S. Jiang, Multi-objective particle swarm optimization 

algorithm based on objective space division for the unequal-area facility layout 

problem. Expert Systems with Applications, 2018. 102: p. 179-192. 

28. Zhang, H. and J.Y. Wang, Particle swarm optimization for construction site 

unequal-area layout. Journal of construction engineering and management, 2008. 

134(9): p. 739-748. 

29. Caserta, M. and S. Voß, A math-heuristic Dantzig-Wolfe algorithm for capacitated 

lot sizing. Annals of Mathematics and Artificial Intelligence, 2013. 69(2): p. 207-

224. 

30. Kennedy, J. and R. Eberhart. Particle swarm optimization (PSO). in Proc. IEEE 

International Conference on Neural Networks, Perth, Australia. 1995. 

31. Parsopoulos, K.E., D.K. Tasoulis, and M.N. Vrahatis. Multiobjective optimization 

using parallel vector evaluated particle swarm optimization. in Proceedings of the 

IASTED international conference on artificial intelligence and applications. 2004. 

Acta Press. 



58 

 

32. Trelea, I.C., The particle swarm optimization algorithm: convergence analysis and 

parameter selection. Information processing letters, 2003. 85(6): p. 317-325. 

33. Shi, Y. and R. Eberhart. A modified particle swarm optimizer. in 1998 IEEE 

international conference on evolutionary computation proceedings. IEEE world 

congress on computational intelligence (Cat. No. 98TH8360). 1998. IEEE. 

34. Eberhart, R.C. and Y. Shi. Comparison between genetic algorithms and particle 

swarm optimization. in International conference on evolutionary programming. 

1998. Springer. 

35. Paul, R.C., P. Asokan, and V. Prabhakar, A solution to the facility layout problem 

having passages and inner structure walls using particle swarm optimization. The 

International Journal of Advanced Manufacturing Technology, 2006. 29(7-8): p. 

766-771. 

36. Parsopoulos, K. and M. Vrahatis, Particle swarm optimization for imprecise 

problems, in Scattering and Biomedical Engineering: Modeling and Applications. 

2002, World Scientific. p. 254-264. 

37. Marini, F. and B. Walczak, Particle swarm optimization (PSO). A tutorial. 

Chemometrics and Intelligent Laboratory Systems, 2015. 149: p. 153-165. 

38. Heragu, S.S. and A.S. Alfa, Experimental analysis of simulated annealing based 

algorithms for the layout problem. European Journal of Operational Research, 

1992. 57(2): p. 190-202. 

39. Karray, F., et al. Computational intelligence tools for solving the facilities layout 

planning problem. in Proceedings of the 2000 American Control Conference. ACC 

(IEEE Cat. No. 00CH36334). 2000. IEEE. 

40. Imam, M.H. and M. Mir, Automated layout of facilities of unequal areas. 

Computers & industrial engineering, 1993. 24(3): p. 355-366. 

41. Gonçalves, J.F. and M.G. Resende, A biased random-key genetic algorithm for the 

unequal area facility layout problem. European Journal of Operational Research, 

2015. 246(1): p. 86-107. 



59 

 

42. Dunker, T., G. Radons, and E. Westkämper, A coevolutionary algorithm for a 

facility layout problem. International Journal of Production Research, 2003. 41(15): 

p. 3479-3500. 

43. Imam, M. and M. Mir, Nonlinear programming approach to automated topology 

optimization. Computer-aided design, 1989. 21(2): p. 107-115. 

44. Tam, K.Y. and S.G. Li, A hierarchical approach to the facility layout problem. The 

International Journal of Production Research, 1991. 29(1): p. 165-184. 

 

 

  



60 

 

CHAPTER 3 

A DYNAMIC PROGRAMMING APPROACH TO SOLVE THE FACILITY 

LAYOUT PROBLEM FOR RECONFIGURABLE MANUFACTURING 

 

Since in today's competitive and volatile manufacturing environment, the products' life 

cycles are short and the product mix and demand changes constantly, the layout needs to 

be designed in such a way that these changes are considered or can be able to be 

reconfigured. Reconfigurable manufacturing systems (RMS) which are characterized by 

being rapid and cost-effective in response to market changes, are a good alternative to cope 

with such events. From the layout point of view, in an RMS, the layout of facilities needs 

to be changeable and able to be redesigned easily. Dynamic facility layout problem (DFLP) 

is a good approach to develop layouts that are capable to be changed and redesigned. 

Dynamic programming (DP) has been known as one of the effective methods to deal with 

DFLP. To optimize DFLP by DP, the set of possible layouts for every single period which 

is called the state-space is given to DP and the best multi-period layout is found. Since the 

number of possible layouts increases rapidly with the increase in the number of facilities, 

considering all these layouts encounters two major difficulties; memory requirements and 

computer time requirements. This chapter proposes a method that has two main phases. In 

the first phase, the set of layouts to be considered in each period are determined using a 

heuristic approach. These layouts are the states in the DP approach where the periods 

constituted the decomposition stages. The recursive formulation of DP is solved in the 

second phase using a hybridized metaheuristic approach. The proposed approach restricts 

the DP to a good subset of the state-space. A genetic algorithm is applied to search for the 

best subset of layouts where each chromosome represents one subset of layouts. This subset 

is given to DP to be solved and the result is considered as the fitness of the chromosome. 

By the evolution of the chromosomes, the best subset of layouts that leads to the best multi-

period layout plan is found. Finally, the resulted layout plan is improved by a tabu search 

metaheuristic. The proposed approach is evaluated against DP benchmarks in the literature. 

Computational results show that the proposed approach is able to provide more efficient 

solutions, especially for large-sized problems. 
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Nomenclature 

𝑖, 𝑗  Indices for the machines 𝑖, 𝑗 ∈ {1,2, … , 𝑁} 

𝑘, 𝑙  Indices for the locations 𝑘, 𝑙 ∈ {1,2, … , 𝑁} 

𝑡  Index for the periods 𝑡 ∈ {1,2, … , 𝑇} 

𝐹𝑡𝑖𝑗  Flow of material between machines 𝑖 and 𝑗 in period 𝑡 

𝐷𝑘𝑙  Rectilinear distance between the centroids of locations 𝑘 and 𝑙 

𝐶𝑡𝑖𝑗
𝑀   Material handling cost per unit distance from machine 𝑖 to machine 𝑗 in 

period 𝑡 

𝐶𝑡𝑖𝑘𝑙
𝑅  Rearrangement cost of machine 𝑖 from location 𝑘 to location 𝑙 at the 

beginning of period 𝑡 

𝑋𝑡𝑖𝑘   {
1 if machine 𝑖 is at location 𝑘 in period 𝑡
0 otherwise                                                      

 

𝑌𝑡𝑖𝑘𝑙  {
1 if machine 𝑖 is rearranged from location 𝑘 to l at beginning of period 𝑡
0 otherwise                                                                                                                  

 

𝑇𝐶   Total material handling and rearrangement cost 

𝐿   Set of all layouts to be considered in each period  

𝑍𝑡,𝑚  Material handling costs for layout 𝐿𝑚 in period 𝑡 

𝐶𝑘,𝑚  Rearrangement cost from layout 𝐿𝑘 to layout 𝐿𝑚  

𝑈𝑡,𝑚
∗  Minimum total material handling and rearrangement costs for all periods up 

to period 𝑡, where the layout 𝐿𝑚 is used in period 𝑡 (optimal-value function)  

𝑈𝑡−1,𝑚
∗  Minimum total material handling and rearrangement costs for all periods 

from after period 𝑡 − 1 to the end, where the layout 𝐿𝑚  is used in period 

𝑡 − 1 (optimal-value function) 
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3.1. Introduction 

Finding the most efficient placement of machines, cells, or departments in a facility is 

called the facility layout problem (FLP). The term to be used depends on the industry; for 

the purpose of this chapter, it is going to be referred to as machines. One of the most popular 

applications of FLP is in the manufacturing systems; the arrangement of production 

facilities (machines) on the shop floor. In this chapter, the facility layout design for 

reconfigurable manufacturing systems (RMS) is being tackled and discussed. RMS offers 

a customizable type of flexibility to reconfigure both capacity and functionality to adapt to 

the ongoing evolving demand. RMS machinery and material handling devices are 

reconfigurable to meet the new requirements for the new product mix. Thus, it must be able 

to handle configuration changes to be more robust, flexible, and reconfigurable while 

adapting to diverse production process requirements. One of the enablers for RMS is the 

layout of facilities [1]. 

Layout for RMS needs to be designed considering the variability in product demand and 

material flow between the machines. Most of the research in the area of the facility layout 

problem assume that the material flow between machines is constant over all planning 

horizons, which is called the static facility layout problem (SFLP). However, considering 

the fluctuations in demand, this is not always the case and the layout needs to be changed 

from one period to the other to adapt to the changes in product demand. Otherwise, there 

is an increase in material handling costs. Nevertheless, there is also a rearrangement cost 

related to changing the layout at the beginning of each period (e.g., the equipment and labor 

cost for moving the machines and also the loss of production cost). Dynamic facility layout 

problem (DFLP) is all about finding a layout for each period in a planning horizon to 

minimize the total material handling costs, for all periods and the total rearrangement costs 

between the periods [2]. FLP, and hence the DFLP are NP-hard, a class of problems for 

which there is no polynomial-time algorithm [3]. Hence, there is a need to use heuristic or 

metaheuristic methods to solve large instances of the problem. 

Hitchings [4] is the first who recognized the need for change in the layout of facilities in a 

continuous review and reports on the dynamic nature of the facility layout problem. The 

author suggests that when the rearrangement cost is less than the incurred savings resulting 
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from the change due to higher efficiency, a change in a layout system is appropriate. 

Rosenblatt [5] proposes a dynamic programming (DP) formulation to solve the 

deterministic multi-period plant layout problem in an exact or heuristic manner. In his 

model, each layout to be considered in each period is a state and the stages are the periods. 

The number of states to be considered for each period and the solution method used to 

solve SFLP determines whether the procedure is optimal or heuristic. Enumerating all 

possible layouts for each period will result in an optimum solution, but it is computationally 

prohibitive for large instance problems. 

Hence, Rosenblatt [5] suggests a simplifying procedure based on Sweeney and Tatham  [6] 

theorem. In this procedure, a branch and cut algorithm is used to generate a number of best 

layouts for each period. The author's computational results show that if the optimal solution 

is desired, there is not a large number of layouts (states) that can be ignored for the DP 

procedure. Therefore, to solve a DFLP practically with DP, only a subset of all possible 

layouts should be selected by a heuristic procedure and as a result, two heuristic approaches 

were developed. In the first approach, which is similar to the heuristic procedure proposed 

by Ballou [7] for the warehouse location problem, the SFLP is solved optimally for each 

period and the set of all the best layouts of all periods is considered as the states of the DP. 

The second approach is appropriate when it is not computationally feasible to solve SFLP 

optimally. In such cases, either the SFLP can be solved using heuristic procedures such as 

CRAFT [8] or different layouts can be generated randomly. As the number of random 

layouts generated increases, the accuracy will also increase. 

Lacksonen and Enscore [9] propose a heuristic procedure to find the set of layouts to be 

considered as states of the DP method proposed by Rosenblatt [5] for solving the DFLP. 

Urban [10] presents a  steepest-decent pairwise-interchange heuristic procedure for solving 

DFLP. This method is similar to the CRAFT method yet different by including the concept 

of forecast window and rearrangement cost for a DFLP. The forecast window is the number 

of successive periods whose flow data is aggregated to generate the best layout of each 

period, from a given initial layout, using the steepest-decent pairwise-interchange 

(CRAFT) method. The forecast window starts from one and is increased to the total number 

of time periods. Urban [10] assumes that there are two types of rearrangement costs in this 
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problem: one is variable that is incurred when a particular machine is relocated in a period 

and the other is the fixed rearrangement cost that has to be considered if there are any 

rearrangements in a period. The initial layout of the first period is generated randomly but 

for the rest of the periods, the initial layout of a period is the final layout of its previous 

period. The process of interchanging machines continuous until all the possibilities are 

evaluated. For each interchange, the difference between the material handling costs of the 

initial layout after doing the exchange and the initial layout is calculated and subtracted 

from the sum of variable rearrangement costs of the exchanged machines. The exchange 

that has the maximum improvement is then selected and the amount of improvement is 

compared with the fixed rearrangement cost. If the improvement is more, the exchange will 

be accepted and the new layout is generated for the current period otherwise the layout of 

the previous period will be used for the current period as well. When for each forecast 

window, a layout plan for DFLP is generated, as explained, the sum of the material 

handling and rearrangement costs is calculated. Finally, the best layout plan with the 

minimum total cost is chosen as the solution to the DFLP problem. This model seems to 

be suitable for DP under rolling planning horizon as it uses different forecast windows.  

Urban’s model [10] is modified and improved by Balakrishnan et al. [11] using two 

heuristic procedures. The first heuristic improves the layout plan of each forecast window 

by using a backward-pass pairwise-exchange procedure. The exchange starts at the 

penultimate period and moves backward until the first period. In each period, if a pairwise-

exchange makes an improvement, the exchange is accepted and results in a new layout for 

that period. This improvement is measured based on both material handling and 

rearrangement costs. Having the forecast window in the backward pass equal to one 

signifies that for each period only product flow of its own is considered to calculate the 

material handling cost. The rearrangement cost is the cost of shifting the exchanged 

machines from their locations in the previous period’s layout to their new locations in the 

current period and those of moving them again to their locations in the next period’s layout. 

But in the forward path exchange procedure, the rearrangement cost is only the cost of 

shifting the exchanged machines from their locations in the previous period’s layout to 

their new locations in the generated layout for the current period as that for the next periods 

are not known. The second heuristic improves the model by combining it with DP. The set 
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of all layouts generated for the entire forecast windows in the forward pass pairwise-

exchange procedure are used as the states of the DP. The solution of these two heuristic 

procedures introduced by Balakrishnan et al. [11] is at least as good as the Urban [10] since 

the solution of the forward pass pairwise-exchange method is embedded in them. 

Balakrishnan et al. [12] use a hybrid genetic algorithm (GA) to solve DFLP. They propose 

a crossover operator that is based on DP. In their model, each gene is represented by one 

single string consisting of layouts in each period from period one to the end. The crossover 

operator engages many strings and crossover points. The crossover points are all the places 

that two consecutive periods of each string meet, for all the strings. The result of doing the 

crossover cuts on strings is that many feasible static layouts will become available to be 

used as the states of DP approach. DP finds the best combination of those layouts for the 

DFLP and hence, generates a new string as an offspring. The proposed crossover operator 

always generates feasible solutions. As for mutations, the authors choose one period 

randomly and apply CRAFT to the static layout of that period. The mutant replaces the 

original layout. 

Erel et al. [13, 14] propose a different heuristic procedure for generating a subset of all 

possible layouts to have as the states of DP to solve the DFLP. They consider viable layouts 

that are defined as the layouts that are more likely to be in the optimal DFLP solution. 

These layouts have the lowest material handling cost solving SFLP for the flow data of a 

single period or the combination of the flow data from two or more consecutive periods 

using a weighting scheme. After solving the DP, the solution of DFLP is improved by 

applying a simulated annealing procedure. 

Dunker et al. [15] combine DP and genetic search to solve the DFLP with unequal-area 

departments. In their proposed method, a GA is used to generate a population for each 

period where each individual in the generated population denotes a specific layout. The 

fitness of a layout for a particular period is evaluated considering the previous and next 

periods by DP. Udomsakdigool and Bangsaranthip [16] utilize the ant colony metaheuristic 

procedure to obtain the best-ranked solutions for each period in order to restrict the state-

space of DP when solving DFLP. 
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In this chapter, a hybrid algorithm based on DP is proposed to find the optimum/near 

optimum multi-period facility layout plan in an RMS. This approach has two main phases 

in alignment with the previous work to solve DFLP using DP [5, 13, 16]. A heuristic 

approach is used in the first phase to generate a large set of good layouts that can be used 

as the state-space of DP. Then, a hybrid genetic algorithm-dynamic programming approach 

is developed that feeds DP with the best subset of the generated layouts. The obtained 

layout plan is further improved by a tabu search metaheuristic. 

This chapter is organized as follows; the methodology starts in Section 3.2 where the QAP 

formulation for DFLP is presented. Section 3.3 proposes a heuristic procedure, for 

determining the state-space of each period, and a hybrid genetic algorithm-dynamic 

programming approach, which is called the improved DP (IDP) algorithm, to solve the 

problem. The IDP algorithm is then additionally improved using a tabu search 

metaheuristic (IDP-TS algorithm). The methods presented are validated and compared 

against a well-known benchmark test set in Section 3.4. Finally, the conclusions and future 

work are presented in Section 3.5. 

 

3.2. Problem Formulation 

Considering the layout to be discrete with equal-sized machines, the DFLP can be 

formulated as modified QAP [12, 16-20]: 

(𝑃) 𝑀𝑖𝑛 𝑇𝐶 = ∑ ∑ ∑ ∑ 𝐶𝑡𝑖𝑘𝑙
𝑅 𝑌𝑡𝑖𝑘𝑙

𝑁

𝑙=1

𝑁

𝑘=1

𝑁

𝑖=1

𝑇

𝑡=2

+ ∑ ∑ ∑ ∑ ∑ 𝐹𝑡𝑖𝑗𝐶𝑡𝑖𝑗
𝑀 𝐷𝑘𝑙𝑋𝑡𝑖𝑘𝑋𝑡𝑗𝑙                                                     (3.1)

𝑁

𝑙=1

𝑁

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

𝑇

𝑡=1

 

Subject to: 

∑ 𝑋𝑡𝑖𝑘 = 1𝑁
𝑘=1       ∀ 𝑖, 𝑡                   (3.2) 

∑ 𝑋𝑡𝑖𝑘 = 1𝑁
𝑖=1        ∀ 𝑘, 𝑡            (3.3) 
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𝑌𝑡𝑖𝑘𝑙 = 𝑋(𝑡−1)𝑖𝑘𝑋𝑡𝑖𝑙      ∀ 𝑖, 𝑘, 𝑙 & 𝑡 > 1                 (3.4) 

𝑋𝑡𝑖𝑘, 𝑌𝑡𝑖𝑘𝑙  ∈  {0,1}      ∀ 𝑖, 𝑘, 𝑙, 𝑡                                        (3.5) 

The objective function (3.1) minimizes the total material handling and rearrangement costs 

during the planning horizon. Constraint (3.2) ensures that each machine is assigned to one 

location in each period. Constraint (3.3) ensures that each location has one machine 

assigned to it in each period. Constraint (3.4) states that the 0–1 machine rearrangement 

variable, 𝑌𝑡𝑖𝑘𝑙, takes on a value of 1 only if a machine is rearranged from one location to 

another in two consecutive periods. Constraint (3.5) specifies that the decision variables 

are binary.   

           

3.3. Methodology 

Considering all possible layouts for each period in the DP procedure will ensure an 

optimum solution. However, for a discrete DFLP with 𝑁 machines and 𝑇 time periods, 

there are (𝑁!)𝑇 different possible solutions. Hence, for the large problems enumerating all 

of the possible solutions is computationally prohibitive, and researchers propose heuristic 

methods for selecting a set of layouts among all to consider as states of the DP [5, 13, 16]. 

3.3.1. DP for DFLP 

In the following, the general procedure of DP to solve a discrete DFLP is described. It 

consists of two phases: In the first phase, a heuristic procedure is presented to determine a 

set of layouts to be considered as states of the DP, and in the second phase, the DP recursive 

formulation is solved. 

3.3.1.1. State-Space Determination 

To obtain these layouts, first, the multi-period problem (P) is decomposed to 𝑇 single 

period FLPs.  Then these SFLPs are solved, and the best layouts of each period are 

determined. For small-sized problems, a mathematical programming approach can be used 

to solve SFLP exact, but for larger-sized problems, because of its intractable nature, a 

heuristic or metaheuristic approach should be used.  
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If there is a rectangular layout like the example in Figure 3.1, then there exist three other 

layouts that are symmetric, matching the best layout in each period and having the same 

material handling cost. Considering all four symmetric layouts is trivial for discrete one 

period FLP. However, for DFLP, the rearrangement cost contributes to the total cost and 

carries a significant impact. 

 

Figure 3.1. All four layouts are symmetric and have the same material handling cost 

 

For each period, the best layout is obtained and its other three symmetric layouts are 

generated. It should be noted that for larger-sized problems that the exact optimum solution 

cannot be obtained, more than one near-optimum layout, depending on the size of the 

problem, is found. Then, 𝑙 neighborhood solutions for each of the optimum or near 

optimum solutions and their symmetric layouts are generated in such a way that 𝐿 good 

layouts are created in total for all the periods. 

3.3.1.2.  DP Recursive Formulation 

In this phase, using the recursive formulations (3.6) and (3.7), the state-spaces at each stage 

are searched, and hence DFLP is solved. The recursive formulations for this DP approach, 

as presented by Rosenblatt [5] are as follows: 

𝑈𝑡,𝑚
∗ = min

𝑘
{𝑈𝑡−1,𝑘

∗ + 𝐶𝑘,𝑚} + 𝑍𝑡,𝑚   ∀𝑡 , 𝑚              (3.6)                     

𝑈0,𝑘
∗ = 0      ∀ 𝑘                         (3.7)            
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This method of computation used in Equation (3.6) is forward induction. If the calculations 

start from the last period and move backward, one stage at a time, then is called backward 

induction. The recursive relationship for backward induction is: 

𝑈𝑡−1,𝑚
∗ = min

𝑘
{𝑈𝑡,𝑘

∗ + 𝐶𝑘,𝑚} + 𝑍𝑡−1,𝑚  ∀𝑡 , 𝑚                        (3.8)              

𝑈𝑇,𝑘
∗ = 0      ∀ 𝑘                       (3.9)               

Although the nature of both calculations is the same, the interpretation of the optimal value 

function is changed. 

In Figure 3.2, the stages represent the time periods, while the nodes at each stage represent 

the material handling cost for that particular layout in the stage. The arcs between the nodes 

in two consecutive stages represent the rearrangement cost from one layout to another. 

Figure 3.2 is adapted from the constrained shortest-path problem proposed by Balakrishnan 

et al. [21]. They show that if all possible layouts are considered, the discrete DFLP can be 

modeled by the shortest-path problem. In their model, the arcs represent the total material 

handling and rearrangement costs. The nodes in each period are the static layouts. The 

number of nodes (layouts) considered at each period is constant across periods. By using 

dynamic or network programming, this SP can be solved exact [13]. 

As depicted in Figure 3.2, there are two situations: a. There is no initial layout at the 

beginning of the planning horizon. In this situation, Equation (3.6) for 𝑡 = 1 becomes: 

𝑈1,𝑚
∗ = 𝑍1,𝑚                                   ∀ 𝑚                                (3.10)    

b. There exists an initial layout in period 0. In this situation, Equation (3.6) for 𝑡 = 1 

becomes: 

𝑈1,𝑚
∗ = 𝐶0,𝑚 + 𝑍1,𝑚                                      ∀ 𝑚                            (3.11) 

In the literature, the state-space considered in each stage of DP is identical [5, 13, 16]. In 

this chapter, a heuristic approach is proposed to find the state-space of the problem. 
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However, not all of these layouts are going to be given to DP, and GA is used to select the 

best layouts from this state-space to be used by DP. 

 

Figure 3.2. The dynamic facility layout problem adapted from [21]. a. There is no initial 

layout to begin with (starting from scratch) b. There is an initial layout at the beginning 

(period 0) 
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3.3.2. Improved DP Algorithms (IDP and IDP-TS) 

The main challenge of DP is computation time and the required memory that increases 

rapidly with the increment in the size of state-space. Because of this limitation, a restricted 

number of layouts is fed to DP, but that may lead to ignoring some good layouts, and so 

optimality is lost. Therefore, to preserve the optimality, the initial layouts should be 

intelligently given to DP.  

In this section, an approach that can select the most promising initial layouts that lead to 

the best solution of DP for DFLP is proposed. GAs are population-based optimization 

algorithms that are proved to be efficient for solving FLPs [12, 15, 18, 22]. In this approach, 

a GA is used to solve the problem and find the best initial layouts for DP. This algorithm is 

called IDP. 

In IDP, first, according to the method explained in Section 3.3.1.1, for each single period 

FLP a large set of good layouts, 𝐿,  is generated. The layouts of each period are partitioned 

into 𝐺 groups. These groups of layouts are considered as the initial input of the GA. Then, 

𝑁𝑝𝑜𝑝 number of chromosomes are generated as the initial population called 𝑝𝑜𝑝. Each 

chromosome determines the amount of contribution of each group of a period to create the 

state-space of DP. The state-space corresponding to each chromosome is given to DP; DP 

is executed, and the result is considered as the fitness function of the chromosome. Then 

better chromosomes in terms of fitness function value are selected as parents, and GA 

operators such as crossover and mutation are applied on 𝑝𝑐 and 𝑝𝑚 percentage of the 

population to generate new populations of chromosomes, 𝑝𝑜𝑝𝑐 and 𝑝𝑜𝑝𝑚, respectively. 

The generated populations are merged with the original population, 𝑝𝑜𝑝 = 𝑝𝑜𝑝 ∪ 𝑝𝑜𝑝𝑐 ∪

𝑝𝑜𝑝𝑚, which results in having a 𝑝𝑜𝑝 with more than 𝑁𝑝𝑜𝑝 chromosomes. Hence, the 𝑝𝑜𝑝 

is sorted in ascending order and the extra chromosomes are truncated and got rid of, 𝑝𝑜𝑝 =

𝑝𝑜𝑝(1: 𝑁𝑝𝑜𝑝). The process will be continued until the stopping criteria is satisfied which 

here is reaching the maximum number of GA iterations, 𝑀𝑎𝑥𝐼𝑡.  

For further improvement, a tabu search (TS) is used to improve the IDP. This algorithm is 

called IDP-TS. The best multi-period layout plan obtained by GA, 𝐵𝑒𝑠𝑡𝑆𝑜𝑙, is given to TS 

as the initial solution, 𝑆𝑜𝑙𝑇𝑆 = 𝐵𝑒𝑠𝑡𝑆𝑜𝑙, and in each iteration TS performs a neighborhood 
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search on the current solution. The actions that can be applied on a solution to generate a 

neighborhood solution are stored in an 𝐴𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 with the size of 𝑁𝑎𝑐𝑡𝑖𝑜𝑛. All the actions 

except the ones that are in the tabu list are being tried and the one that results in a better 

solution is accepted. Then the current solution is updated, that corresponding action 

becomes a tabu action and is being stored and remained in the tabu list for 𝑇𝐿 (tabu list 

length) number of times. TS accepts non-improving moves and to prevent being trapped in 

local optima. The process will be continued until the termination criteria is met which here 

is also reaching the maximum number of TS iterations, 𝑀𝑎𝑥𝑆𝑢𝑏𝐼𝑡. The flowchart of the 

proposed algorithm is shown in Figure 3.3. 
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Figure 3.3. The flowchart of the proposed IDP algorithms 
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3.3.2.1. Chromosome Representation 

The proposed chromosome is concerned with determining the state-space of DP. It is shown 

by a 𝑇 × 𝐺 matrix in which 𝑇 is the number of time periods and 𝐺 is the number of groups. 

The value in each gene shows the percentage of layouts of that group that should participate 

in DP. It is generated in such a way that the sum of all the genes is equal to one, and so the 

feasibility of the chromosomes is satisfied. For example, Figure 3.4 illustrates the form of 

a chromosome in six periods of time. The generated layouts for each have been partitioned 

into five groups. According to this chromosome, 0.10 of the DP state-space are the layouts 

that belong to group one of period 1. 

 

Figure 3.4. The structure of chromosome 

 

3.3.2.2. Roulette Wheel Selection 

Roulette wheel selection strategy is the main selection strategy used in GAs. In this 

selection strategy, the probability that a chromosome is being selected is proportional to its 

fitness in such a way that better chromosomes have a higher chance to be selected and 

survive. 

3.3.2.3. Crossover Operator 

The crossover is designed to enhance the quality of the population in each generation. In 

the proposed algorithm, a uniform crossover operator is designed that is able to preserve 

the feasibility of the chromosomes; two parents are selected using a roulette wheel selection 

strategy, and the value of each offspring gene is set equal to the average value of 
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corresponding genes in parents. An example of a crossover operator is illustrated in Figure 

3.5. 

 

Figure 3.5. An example of crossover operator 

 

 

3.3.2.4. Mutation Operator 

After crossover, the chromosomes are subjected to mutation. The mutation operator 

prevents premature convergence to local optima and maintains the diversity in the 

population. Therefore, it should be designed in such a way that it creates a dramatic change 

in the chromosome.  To this aim, in each row, all the genes are inversely rearranged (Figure 

3.6). 
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Figure 3.6. An example of mutation operator 

 

3.4. Computational Results 

In this section, the effectiveness of two algorithms: 1. DP improved by being hybridized 

with GA (IDP) and 2. DP improved by being hybridized with GA and TS (IDP-TS) are 

evaluated. To this aim, a data set of Balakrishnan and Cheng [22] is used. This data set 

consists of 48 test instances with 6, 15, and 30 facilities, each with 5 and 10 periods.  The 

proposed method is compared against the following DP benchmarks for discrete DFLP 

problem: 

 GADP (R) and GADP (U) [12] 

 DP_10L, DP_10LI, DP_5L, DP_5LI, DP_10S, DP_10SI, DP_5S, DP_5SI, 

SA_EG_1 and SA_EG_2 [13, 14] 

The details of each method can be found in Section 3.1. Notably, the correct results 

obtained by Erel et al. [13] are used in this comparison. These are not published in their 
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erratum [14] but by Rodríguez et al. [23] who published them for the 15 and 30 facilities 

instances.   

The proposed algorithms are programmed in Matlab (release 2018a) and are tested on a 

64-bit architecture with an Intel Xeon processor, the clock speed of which is 3.07 GHz, 

and a 6 GB of memory personal computer. The parameter tuning is done using Design 

Expert 7. 

3.4.1. Calibration of Parameters 

Tuning the parameters of metaheuristics will ensure higher quality solutions that can be 

done using experimental design. To this aim, all the parameters of the proposed algorithms 

are tuned using the response surface method. Preliminary experiments are executed to 

determine the levels of the parameters of each algorithm which are presented in Table 3.1. 

Subsequently, experiments are designed and executed. Lastly, to obtain the relationship 

between the objective function value and the parameters of the algorithms, a stepwise 

regression method with 𝛼 = 0.1 is used and the quadratic Equations (3.13) and (3.14) are 

developed.  

It should be noted that as explained in Section 3.3.2, TS has two parameters; 𝑀𝑎𝑥𝑆𝑢𝑏𝐼𝑡 

and 𝑇𝐿 which 𝑇𝐿 = (𝛽 × 𝑁𝑎𝑐𝑡𝑖𝑜𝑛). Since 𝑁𝑎𝑐𝑡𝑖𝑜𝑛 is the input data of the problem, only 𝛽 

needs to be tuned. 

Table 3.1. The parameters of the IDP and IDP-TS algorithms and their optimum values 

Algorithm Parameter Description Low level (-1) High level (+1) Optimum 

IDP  𝑁𝑝𝑜𝑝 Initial pop size 30 70 54 

𝑝𝑐 Percent of crossover 0.4 0.8 0.79 

𝑝𝑚 Percent of mutation 0.2 0.4 0.35 

𝑀𝑎𝑥𝐼𝑡 Number of iteration 50 150 149 

IDP-TS 𝑁𝑝𝑜𝑝 Initial pop size 30 70 69 

𝑝𝑐 Percent of crossover 0.4 0.8 0.4 

𝑝𝑚 Percent of mutation 0.2 0.4 0.2 

𝑀𝑎𝑥𝐼𝑡 Number of iteration 50 150 150 

𝛽 TL Coefficient 0.2 0.7 0.69 

𝑀𝑎𝑥𝑆𝑢𝑏𝐼𝑡 Number of iteration 800 1000 999 
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𝑂𝐹𝐼𝐷𝑃       =     1174143.886048 − 792.04062500004 × 𝑁𝑝𝑜𝑝

− 133758.55902778 × 𝑝𝑐 − 199167.07070708 × 𝑝𝑚

− 333.43618055557 × 𝑀𝑎𝑥𝐼𝑡 + 460.95312500003

× 𝑁𝑝𝑜𝑝 ×  𝑝𝑐 + 1.6594375000001 × 𝑁𝑝𝑜𝑝 × 𝑀𝑎𝑥𝐼𝑡

+ 154.68125000001 × 𝑝𝑐 × 𝑀𝑎𝑥𝐼𝑡 + 247419.1919192

× 𝑝𝑚² 

  (3.13) 

  𝑂𝐹𝐼𝐷𝑃−𝑇𝑆   =   1016860 − 153.83049 × 𝑁𝑝𝑜𝑝 − 6512.27273 × 𝑝𝑐

− 7051.64773 × 𝑝𝑚 − 159.37905 × 𝑀𝑎𝑥𝐼𝑡 − 4495.15152

× 𝛽 − 10.07152 × 𝑀𝑎𝑥𝑆𝑢𝑏𝐼𝑡 + 0.245812 × 𝑁𝑝𝑜𝑝

× 𝑀𝑎𝑥𝐼𝑡 + 50.55 × 𝑝𝑐 × 𝑀𝑎𝑥𝐼𝑡 + 69.59375 × 𝑝𝑚 × 𝑀𝑎𝑥𝐼𝑡 

   (3.14) 

By optimizing the Equations (3.13) and (3.14), the optimum values for the parameters of 

the algorithms are obtained which are bolded in Table 3.1. 

3.4.2. Evaluating the Proposed Algorithms 

The comparative results of all the algorithms are given in Tables 3.2-3.7. In these tables, 

the best solution value obtained for each test instance is bolded. In Tables 3.2 and 3.3, the 

results are shown for the test instances with five facilities. For the test instances with five 

periods (Instance 1– Instance 8), SA_EG_2 and IDP-TS obtain the optimal solutions for 

all eight test instances, and so these algorithms are the preferred choices for this set of eight 

instances. However, for the test instances with ten periods (Instance 9– Instance 16), IDP 

and IDP-TS are the only algorithms that find the best solutions for all instances (0.0992% 

and 0.0180% improvement for instances 12 and 13, respectively). Therefore, it can be said 

that for test problems with five facilities, IDP-TS performs slightly better than all other 

algorithms. 

In Tables 3.4 and 3.5, the results obtained for the instances consisting of 15 facilities can 

be seen. Clearly, the two algorithms SA_EG_1 and IDP-TS outperform all the other 

algorithms. SA_EG_1 algorithm obtains the best results for ten instances, and IDP-TS 

finds the best solutions for five instances (0.1245%, 0.2555%, 0.1365%, 0.0972%, and 

0.1228% improvement for instances 17, 21, 25, 28, and 32, respectively).  

The results for the test instances with 30 facilities are presented in Tables 3.6 and 3.7. As 

shown in these tables, the proposed IDP-TS algorithm finds the best solutions for six out 
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of eight instances with five periods (0.2564%, 0.1604%, 0.1942%, 0.1304%, 0.2576%, and 

0.2815% improvement for instances 33, 35, 36, 37, 38, and 40 respectively) and achieves 

the best results for six out of eight instances with ten periods (0.1590%, 0.1987%, 0.1474%, 

0.0749%, 0.0930%, and 0.1379% improvement for instances 41-46, respectively). Hence, 

it can be concluded that IDP-TS outperforms other methods in solving large-sized 

problems. In summary, the proposed IDP-TS obtained the best solutions for 33 out of 48 

instances. This is due to the intelligent GA-based procedure applied in the proposed IDP-

TS algorithm that feeds the DP with the best possible set of layouts from the state-space. 

 

Table 3.2. Computational results for instances with 6 facilities and 5 periods 

Approach Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6 Instance 7 Instance 8 

GADP 106,419 104,834 104,529 106,583 105,628 104,315 106,447 103,771 

DP_10 106,419 104,834 104,320 106,509 105,628 103,985 106,447 103,771 

DP_10I 106,419 104,834 104,320 106,509 105,628 103,985 106,447 103,771 

DP_5 106,419 104,834 104,320 106,885 105,737 104,053 106,447 104,185 

DP_5I 106,419 104,834 104,320 106,515 105,737 104,053 106,447 104,185 

SA_EG_1 106,419 104,834 104,520 106,399 105,737 103,985 106,439 103,771 

SA_EG_2 106,419 104,834 104,320 106,399 105,628 103,985 106,439 103,771 

IDP 106,419 104,834 104,320 106,509 105,628 104,987 106,439 103,771 

IDP-TS 106,419 104,834 104,320 106,399 105,628 103,985 106,439 103,771 

 

Table 3.3. Computational results for instances with 6 facilities and 10 periods 

Approach Instance 9 Instance 10 Instance 11 Instance 12 Instance 13 Instance 14 Instance 15 Instance 16 

GADP 214,313 212,134 207,987 212,741 210,944 210,000 215,452 212,588 

DP_10 214,313 212,134 207,987 212,741 211,022 209,932 214,252 212,588 

DP_10I 214,313 212,134 207,987 212,741 211,022 209,932 214,252 212,588 

DP_5 214,313 212,138 208,246 213,117 211,022 210,000 214,252 213,002 

DP_5I 214,313 212,138 208,060 212,747 211,022 210,000 214,252 213,002 

SA_EG_1 214,313 212,134 207,987 212,747 211,076 210,000 214,823 212,588 

SA_EG_2 214,313 213,015 208,351 212,747 211,072 209,932 214,438 212,588 

IDP 214,313 212,134 207,987 212,530 210,906 209,932 214,252 212,588 

IDP-TS 214,313 212,134 207,987 212,530 210,906 209,932 214,252 212,588 
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Table 3.4. Computational results for instances with 15 facilities and 5 periods 

Approach Instance 17 Instance 18 Instance 19 Instance 20 Instance 21 Instance 22 Instance 23 Instance 24 

GADP (R) 493,707 494,476 506,684 500,826 502,409 497,382 494,316 500,779 

GADP (U) 484,090 485,352 489,898 484,625 489,885 488,640 489,378 500,779 

DP_10L 484,054 489,322 491,310 487,884 491,617 490,205 490,544 494,994 

DP_10LI 483,568 489,322 491,310 487,275 491,346 489,847 490,051 493,577 

DP_5L 484,972 491,102 493,632 489,929 494,040 490,782 491,984 496,841 

DP_5LI 482,123 488,840 493,632 489,480 494,040 490,782 490,251 496,672 

DP_10S 484,369 487,274 491,790 487,956 491,178 490,305 490,161 494,954 

DP_10SI 483,708 485,702 491,790 486,851 491,178 489,947 489,583 494,534 

DP_5S 484,369 489,819 493,224 489,698 493,097 492,275 492,430 496,990 

DP_5SI 483,708 488,382 492,597 489,698 491,738 492,202 489,155 496,473 

SA_EG_1 481,738 485,167 487,886 481,628 489,304 482,321 485,384 489,072 

SA_EG_2 481,792 488,592 492,536 485,862 489,946 488,452 487,576 493,030 

IDP 483,526 485,483 491,695 486,747 491,117 490,748 489,882 493,688 

IDP-TS 481,138 485,215 491,205 485,594 488,054 489,390 488,601 492,850 

 

Table 3.5. Computational results for instances with 15 facilities and 10 periods 

Approach Instance 25 Instance 26 Instance 27 Instance 28 Instance 29 Instance 30 Instance 31 Instance 32 

GADP (R) 1,004,806 1,006,790 1,012,482 1,001,795 1,005,988 1,002,871 1,019,645 1,010,772 

GADP (U) 987,887 980,638 985,886 976,025 982,778 973,912 982,872 987,789 

DP_10L 986,811 985,154 989,081 979,139 986,029 976,917 985,535 990,844 

DP_10LI 984,344 984,779 988,635 976,456 983,846 974,436 982,790 990,372 

DP_5L 991,093 987,453 993,799 983,208 989,680 979,297 992,897 992,962 

DP_5LI 988,322 985,147 993,318 982,632 985,966 978,683 989,272 988,959 

DP_10S 986,592 984,601 990,218 978,726 984,975 976,610 987,019 990,247 

DP_10SI 983,070 983,826 990,153 977,548 983,053 975,290 986,325 988,584 

DP_5S 995,319 988,396 992,824 982,270 987,963 981,406 992,807 993,902 

DP_5SI 991,801 985,360 990,794 982,112 982,893 979,731 988,870 990,376 

SA_EG_1 982,298 982,714 985,364 974,994 975,498 968,323 977,410 988,304 

SA_EG_2 984,013 983,550 988,465 980,045 982,191 973,199 985,270 989,520 

IDP 981,771 986,862 987,729 974,597 985,972 987,317 987,484 987,129 

IDP-TS 980,431 982,651 986,734 973,650 985,972 987,070 986,486 985,917 
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Table 3.6. Computational results for instances with 30 facilities and 5 periods 

Approach Instance 33 Instance 34 Instance 35 Instance 36 Instance 37 Instance 38 Instance 39 Instance 40 

GADP (R) 603,339 589,834 592,475 586,064 580,624 587,797 588,347 590,451 

GADP (U) 578,689 572,232 578,527 572,057 559,777 566,792 567,873 575,720 

DP_10L 581,805 574,657 581,030 571,730 561,079 568,047 572,262 575,445 

DP_10LI 579,741 569,482 578,506 569,874 561,079 568,047 568,196 575,445 

DP_5L 583,082 576,592 581,691 575,024 561,424 570,435 573,878 576,091 

DP_5LI 581,942 571,563 580,549 574,070 561,424 570,435 571,254 576,091 

DP_10S 581,805 575,004 581,170 571,749 561,078 568,554 572,706 574,813 

DP_10SI 579,741 570,906 577,402 569,596 558,792 568,554 568,721 574,813 

DP_5S 582,858 576,106 581,262 574,110 562,857 570,356 572,797 576,149 

DP_5SI 581,369 572,511 580,186 569,723 562,857 570,356 569,145 576,149 

SA_EG_1 579,570 573,965 580,102 572,139 563,503 574,805 573,361 581,614 

SA_EG_2 583,227 574,116 577,787 573,446 565,735 570,905 571,499 581,966 

IDP 579,808 585,744 578,675 570,828 558,109 567,158 577,851 574,778 

IDP-TS 577,205 577,728 576,476 568,490 557,381 565,332 574,741 573,160 

 

Table 3.7. Computational results for instances with 30 facilities and 10 periods 

Approach Instance 41 Instance 42 Instance 43 Instance 44 Instance 45 Instance 46 Instance 47 Instance 48 

GADP (R) 1,194,084 1,199,001 1,197,253 1,184,422 1,179,673 1,178,091 1,186,145 1,208,436 

GADP (U) 1,169,747 1,168,878 1,166,366 1,154,192 1,133,561 1,145,000 1,145,927 1,168,657 

DP_10L 1,174,773 1,175,323 1,174,023 1,155,879 1,128,136 1,145,858 1,143,814 1,168,142 

DP_10LI 1,171,853 1,169,138 1,168,720 1,150,265 1,128,013 1,145,858 1,143,144 1,167,900 

DP_5L 1,180,120 1,179,022 1,175,920 1,157,918 1,131,518 1,147,517 1,147,016 1,170,929 

DP_5LI 1,171,413 1,174,421 1,170,019 1,156,016 1,131,518 1,147,517 1,145,934 1,170,929 

DP_10S 1,172,434 1,175,551 1,175,240 1,155,998 1,129,143 1,144,539 1,143,788 1,165,994 

DP_10SI 1,171,178 1,170,092 1,165,525 1,153,981 1,128,784 1,144,092 1,143,183 1,165,994 

DP_5S 1,181,743 1,177,212 1,176,997 1,158,507 1,132,926 1,149,893 1,147,041 1,171,658 

DP_5SI 1,180,087 1,170,810 1,173,529 1,156,517 1,132,926 1,149,893 1,146,987 1,171,428 

SA_EG_1 1,173,483 1,173,015 1,166,295 1,154,196 1,141,738 1,158,322 1,157,505 1,179,888 

SA_EG_2 1,174,815 1,177,743 1,171,932 1,154,945 1,140,116 1,158,227 1,163,761 1,177,565 

IDP 1,169,304 1,170,561 1,164,542 1,149,681 1,128,783 1,144,088 1,163,224 1,186,306 

IDP-TS 1,167,445 1,166,556 1,162,825 1,148,820 1,126,964 1,142,510 1,162,256 1,183,492 
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3.5. Conclusions  

In this chapter, DP and GA are hybridized to solve DFLP for RMS. The state-space of each 

stage of DP is determined using a heuristic procedure. In this procedure, the optimal or best 

layouts for each of the periods are to be found. For small-sized problems, SFLP can be 

solved exact using a mathematical programming approach. However, for larger instances 

of the problem, and because of the combinatorial NP-hard nature of the problem, it cannot 

be solved optimally in polynomial time. The GA is employed for larger instances to find 

near-optimal solutions. Then, the neighborhood solutions of the best layouts of all periods 

are generated, and the state-space of DP is shaped. 

As the state-space is still large and enumerating all these layouts are highly time-consuming 

for DP, GA is used to select from this state-space in such a way that the best result for 

DFLP is obtained. Finally, the multi-period layout resulted from GA, and DP is improved 

using TS. Computational results show that the proposed approach outperforms other DP 

benchmarks in the literature in many instances. 
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CHAPTER 4 

SEMI-ROBUST LAYOUT DESIGN FOR CELLULAR MANUFACTURING IN A 

DYNAMIC ENVIRONMENT 

 

Chapter 3 deals with the changes in product mix and demand from a period to the next by 

rearranging the layouts. However, sometimes due to some restrictions the managerial 

decision is to avoid any rearrangements. To this aim, a semi-robust cellular approach is 

proposed in this chapter, which is able to cope with both the continuous change of product 

mix and the volatility in product demand. Cellular manufacturing system (CMS) which is 

one of the modern manufacturing paradigms is studied that has the advantages of high 

flexibility and throughput. In this chapter, the problems of cell formation (CF) and cellular 

layout (CL) encountered in the design of a CMS are investigated. At heart of the proposed 

robust approach, the facility layout is not being changed from one period to the other, but 

rather the positions of the pick-up/drop-off points of cells. The developed model and 

solution algorithms can concurrently make the decisions regarding the optimum number of 

cells and grouping facilities into different cells (CF), the layout of unequal-area facilities 

inside a cell (intra-cellular layout) and the layout of cells in the planar site (inter-cellular 

layout). The problem is formulated as a multi-objective mathematical programming model. 

A modified non-dominated sorting genetic algorithm (MNSGA-II) is then used to obtain 

Pareto-optimal solutions for the problems. In the proposed MNSGA-II, an improved non-

dominated sorting strategy and a modified dynamic crowding distance procedure are 

implemented. The effectiveness of the MNSGA-II is evaluated against two well-known 

multi-objective optimization algorithms, namely multi-objective particle swarm 

optimization and non-dominated ranking genetic algorithm. To this aim first, the input 

parameters of all three algorithms are tuned using the response surface method. Then, 

several numerical examples and computational experiments are carried out; four metrics 

are employed to evaluate the quality of the developed algorithms. The results show that the 

proposed methodology is efficient in finding Pareto-optimal solutions. 
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Nomenclature 

Indices: 

𝑖, 𝑗  Index set of machines 𝑖, 𝑗 ∈ {1, 2, … , 𝑁} 

𝑘, 𝑙   Index set of cells 𝑘, 𝑙 ∈ {1,2, … , 𝐾 = 𝑁} 

𝑡   Index set of periods 𝑡 ∈ {1,2, … , 𝑇} 

Parameters: 

𝐿  The length of the shop floor along the x-axis 

𝑊  The length of the shop floor along the y-axis 

𝑙𝑖
𝑀   The length of the longer side of machine 𝑖  

𝑤𝑖
𝑀   The length of the shorter side of machine 𝑖 

𝐹𝑖𝑗𝑡
𝑀   The flow of materials between machine 𝑖 and machine 𝑗 in period 𝑡 

𝑐𝑀 The intra-cellular MHC per unit distance  

𝑐𝑃𝐷𝐶 The inter-cellular MHC per unit distance 

𝛿𝑀  The clearance distance that is required around the machines 

𝛿𝐶   The clearance distance that is required around the cells 

𝐻𝑖𝑗  The similarity between machines 𝑖 and 𝑗 

𝑀  A large enough number 

Decision Variables: 

(𝑥𝑖
𝑀, 𝑦𝑖

𝑀)  The coordinates of the centroid of machine 𝑖 

(𝑥𝑘
𝐶 , 𝑦𝑘

𝐶)  The coordinates of the centroid of cell 𝑘 

(𝑥𝑘𝑡
𝑃𝐷𝐶 , 𝑦𝑘𝑡

𝑃𝐷𝐶)  The coordinates of the P/D point of cell 𝑘 in period 𝑡 

𝑙𝑥𝑖
𝑀   The length of machine 𝑖 along the x-axis  

𝑙𝑦𝑖
𝑀   The length of machine 𝑖 along the y-axis  
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𝑙𝑘
𝐶   The length of cell 𝑘 along the x-axis 

𝑤𝑘
𝐶   The length of cell 𝑘 along the y-axis 

𝑑𝑖𝑗𝑡
𝑀    The weighted distance between machine 𝑖 and machine 𝑗 in period 𝑡 

𝑑𝑥𝑖𝑗
𝑀  The horizontal distance between the centroids of machines 𝑖 and 𝑗 

𝑑𝑦𝑖𝑗
𝑀   The vertical distance between the centroids of machines 𝑖 and 𝑗 

𝑑𝑘𝑙𝑡
𝐶   The weighted distance between the P/D points of cells 𝑘 and 𝑙 in period 𝑡 

𝑑𝑥𝑘𝑙𝑡
𝐶    The horizontal distance between the P/D points of cells 𝑘 and 𝑙 in period 𝑡 

𝑑𝑦𝑘𝑙𝑡
𝐶   The vertical distance between the P/D points of cells 𝑘 and 𝑙 in period 𝑡 

𝑑𝑥𝑖𝑘𝑡
𝑀𝐶  The horizontal distance between the centroid of machine 𝑖 and the P/D point 

of cell 𝑘 in period 𝑡 

𝑑𝑦𝑖𝑘𝑡
𝑀𝐶 The vertical distance between the centroid of machine 𝑖 and the P/D point 

of cell 𝑘 in period 𝑡 

𝛼𝑘𝑡   The percentage of a side of cell 𝑘 for locating the P/D point in period 𝑡 

𝑙𝑒𝑓𝑡𝑖𝑗
𝑀                  = {

1      𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 𝑖𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                          

  

𝑏𝑒𝑙𝑜𝑤𝑖𝑗
𝑀              = {

1      𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

  

𝑙𝑒𝑓𝑡𝑘𝑙
𝐶                  = {

1      𝑖𝑓 𝑐𝑒𝑙𝑙 𝑘 𝑖𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑙
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

  

𝑏𝑒𝑙𝑜𝑤𝑘𝑙
𝐶              = {

1      𝑖𝑓 𝑐𝑒𝑙𝑙 𝑘 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝑐𝑒𝑙𝑙 𝑙
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

  

𝑆𝑙𝑘𝑡
𝐶                      = {

1      𝑖𝑓 𝑡ℎ𝑒 𝑃/𝐷 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑘 𝑖𝑠 𝑜𝑛 𝑖𝑡𝑠 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                        

  

𝑆𝑟𝑘𝑡
𝐶                      = {

1      𝑖𝑓 𝑡ℎ𝑒 𝑃/𝐷 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑘 𝑖𝑠 𝑜𝑛 𝑖𝑡𝑠 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                           

  

𝑆𝑢𝑘𝑡
𝐶                     = {

1      𝑖𝑓 𝑡ℎ𝑒 𝑃/𝐷 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑘 𝑖𝑠 𝑜𝑛 𝑖𝑡𝑠 𝑢𝑝𝑝𝑒𝑟 𝑠𝑖𝑑𝑒 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                             

  

𝑆𝑏𝑘𝑡
𝐶                     = {

1      𝑖𝑓 𝑡ℎ𝑒 𝑃/𝐷 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑘 𝑖𝑠 𝑖𝑛 𝑖𝑡𝑠 𝑏𝑜𝑡𝑡𝑜𝑚 𝑠𝑖𝑑𝑒 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                              
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𝑂𝑖                         = {
1      𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 ℎ𝑎𝑠 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                            

  

𝑉𝑖𝑘                        = {
1      𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 𝑖𝑠 𝑖𝑛 𝑐𝑒𝑙𝑙 𝑘
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

  

𝑈𝑖𝑘𝑗𝑙                     = {
1      𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 𝑖𝑠 𝑖𝑛 𝑐𝑒𝑙𝑙 𝑘 𝑎𝑛𝑑 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 𝑖𝑠 𝑖𝑛 𝑐𝑒𝑙𝑙 𝑙
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                             

  

 

4.1. Introduction 

With the rise in global competition, manufacturing firms try to reduce time-to-market and 

to become cost-effective while improving product quality. To achieve this goal, many 

manufacturing systems have turned out to cellular manufacturing, which is one of the 

modern manufacturing paradigms that captures the advantages of both job-shops (high 

flexibility allowing for the production of a wide variety of products) and flow-shops (high 

throughput) [1]. The implementation of cellular manufacturing systems (CMSs) results in 

improvement of the system’s efficiency, system management and the quality of the 

products, as well as reduction of the setup time, work-in-process inventory and material 

flow [2, 3].  To reach all these advantages, the CMS should be designed efficiently. Cell 

formation (CF) and cellular layout (CL) problems are key elements in designing a CMS 

[4]. Since CF and CL problems are interrelated, it is important to integrate the two problems 

and obtain a global optimum solution for the combined problem [5]. 

CF is the problem of grouping machines and parts based on their similarities into machine 

cells and part families, respectively [6]. CL problem includes both the inter- and intra-

cellular layout problems [7]. The inter-cellular layout problem includes that of locating the 

cells on the shop floor to minimize the total material handling cost (MHC) between cells 

and the intra-cellular layout problem involves laying out machines within each cell to 

minimize the total MHC between machines. An efficient layout design is a flexible one 

that can rapidly be adapted to the dynamicity, uncertainty, and in some cases the volatility 

even of market demand with variable products’ mix and shorter product lifecycles. These 

variations change the material flow between machines and deem the optimal design of 
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CMS in a given period completely inefficient provided the following period’s varying 

demand, and hence, necessitate rearrangements in the CMS. 

There are two main approaches to handle the changes in the flow of materials between 

machines from a period to the next in a planning horizon. The first approach is called 

dynamic CMS (DCMS). In DCMS, it is assumed that the system can be reconfigured in 

each period. The reconfiguration of a manufacturing system involves some costly activities 

such as machine relocation, installation and uninstallation costs, as well as any lost 

production time [8]. In this case, finding a design that minimizes the total inter- and intra-

cellular MHC and rearrangement costs over all the planning periods are of interest. The 

optimal DCMS layout is considered a trade-off where a compromise is being made between 

the cumulative increased MHC in the coming period because of a layout design that is 

deemed inefficient and obsolete versus the reconfiguration costs. 

The second approach is to design a robust CMS (RCMS).  The goal of RCMS is to find a 

single layout, called a robust layout, that is efficient over the planning horizon [9]. Hence, 

unlike DCMS, in RCMS the layout remains unchanged. The main reason for using the 

RCMS approach is that in some cases because of high layout rearrangement costs such as 

those due to interruption in production or moving of facilities, the managerial decision is 

to avoid any rearrangements. However, it is worthy to note that changing some particular 

limited aspects of the layout might not be necessarily costly. Therefore, it is effective in 

RCMS to change such elements in the layout in order to make the robust layout more 

adaptable to changes in product mix and demand. The locations of the pick-up/drop-off 

(P/D) points of the cells are one of these layout elements. In many CMSs, it is not costly 

to change the location of the P/D points of the cells. Doing such changes results in a semi-

robust layout where on one hand the utility of the robust approach in eliminating layout 

rearrangement costs is preserved by keeping fixed positions for the facilities, while on the 

other hand, the advantage of the dynamic approach is to some extent preserved and kept. 

This chapter looks at the design of a semi-robust CMS (SRCMS) in a dynamic environment 

and presents a multi-objective mixed-integer nonlinear programming (MINLP) model for 

the integrated CF and CL (inter- and intra-cellular) problems.  
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As both the CF and CL problems are NP-hard combinatorial optimization problems [10, 

11], the resulting integrated problem is clearly highly intractable and hence, finding the 

exact solution for large-sized problems are computationally prohibitive and heuristic or 

metaheuristic approaches are needed to find the near-optimum solutions. A modified non-

dominated sorting genetic algorithm (MNSGA-II) metaheuristic is used. The structure of 

the rest of the chapter is as follows. Section 4.2 provides a critical review of the related 

work in the literature. The problem description and the mathematical model are explained 

in Sections 4.3 and 4.4, respectively. Section 4.5 presents the proposed multi-objective 

optimization algorithm to solve the problem. The computation results are reported in 

Section 4.6 and finally, the conclusions are given in Section 4.7. 

 

4.2. Literature Review 

Since this study develops a semi-robust layout for CMSs in a dynamic environment, only 

the studies that have addressed the layout (inter- and/or intra-cellular) problem in CMSs 

are included. The reviewed literature is classified according to the following: (1) dynamic 

cellular manufacturing system (2) robust cellular manufacturing system (3) conclusions. 

4.2.1. Dynamic Cellular Manufacturing System (DCMS) 

An integer nonlinear programming (INLP) model was proposed by Kia et al. [12] for 

simultaneously designing the CF and intra-cellular layout of equal-area facilities in a 

DCMS in a fuzzy environment, where they assumed demand for each part type in each 

period in the form of an asymmetrical trapezoidal fuzzy number. The model was linearized 

and solved using a fuzzy linear programming approach. Kia et al. [13] proposed an MINLP 

model for the integrated CF and inter- and intra-cellular layout problems in a DCMS. In 

their model, the equal area facilities were supposed to have a multi-row layout in each cell. 

The authors assumed that there was no physical partitioning between cells but the number 

of cells and the maximum and the minimum number of facilities that could be assigned to 

each cell were predetermined. They developed a simulated annealing (SA) metaheuristic 

procedure to solve the model. Another MINLP model was presented by Kia et al. [14] for 

integrated CF and intra-cellular layout problems in a CMS in a dynamic environment. In 
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their model, multi-row layouts for unequal-area facilities were obtained in a continual 

space with the objective of minimizing the total inter- and intra-cellular MHC and 

rearrangement costs. However, the number, shapes, locations, and dimensions of the cells, 

as well as the location of their P/D points and the maximum and the minimum number of 

machines that could be assigned to each cell were predetermined. It was also assumed that 

the orientations of the machines were fixed and known during the planning horizon. 

Moreover, the authors did not develop a solution approach for the proposed NP-hard 

model. 

An integrated multi-objective INLP model was presented by Bagheri and Bashiri [15] to 

solve the CF, inter-cellular layout, and operator assignment problems of DCMS. The LP-

metric approach was implemented to obtain the most preferred solution. Moreover, to 

validate the model, it was linearized and solved using a branch and bound (B&B) 

algorithm. The shortcoming of the proposed model was that the MHC and rearrangement 

costs only depended on the inter-cellular layout which was not realistic. This was because 

the model did not determine the locations of machines inside the cells. Besides, the number 

of cells and the maximum and the minimum number of machines that could be assigned to 

each cell were predefined and fixed for all the periods.  

An MINLP model was proposed by Kia et al. [16] that was similar to the one presented by 

Kia et al. [14] yet overcame some of its shortcomings. First, this model optimized both the 

inter- and intra-cellular layouts. Second, the number, locations, and dimensions of the 

rectangular-shaped cells, as well as the locations of their P/D points were considered as 

decision variables that were optimally obtained by the model for each period on the 

continuous shop. An SA algorithm was developed to solve the model. 

Sakhaii et al. [5] proposed an integrated mixed-integer linear programming (MILP) model 

for a CMS in a dynamic environment, where the demand for each part was changing from 

one period to the next. The model determined the CF, the inter-cellular layout in a discrete 

manner, the number of operators and their allocations to machines, and the production plan 

for each period. The authors solved the model using a branch and cut algorithm. The 

drawback of this model, the same as the one proposed by Bagheri and Bashiri [15], was 

that only the inter-cellular layout was determined and the locations of the machines inside 
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each cell were not considered. Hence, the real intra-cellular MHC was not calculated. Also, 

the number of cells to be constructed and the minimum and the maximum number of 

machines that could be assigned to each cell were predetermined and constant over all the 

planning periods.  

A multi-objective MINLP model was proposed by Mehdizadeh and Rahimi [17] for 

solving the integrated CF, inter- and intra-cellular layout, and operator assignment 

problems in a DCMS. The authors assumed that the layout of machines inside each cell 

was linear. In their model, the first objective was to minimize the inter- and intra-cell 

material handling and rearrangement costs, the second was to minimize the costs related to 

machines and operators, and the third was to maximize the successive forward flow ratio. 

The model was linearized and solved by a B&B algorithm for small-sized instances and a 

multi-objective SA procedure and vibration-damping optimization algorithm were 

presented for solving large-sized instances. Although the model determined the locations 

of the cells and the machines inside the cells, for calculating the cost, the distance between 

two machines that were not located in the same cell was not calculated based on the real 

locations of machines inside the cells and was only calculated as the distance between two 

different cells that the machines were located in. Moreover, the number of cells and the 

maximum and the minimum number of machines that could be assigned to each cell were 

known and constant over all the planning periods. 

The CF and discrete inter- and intra-cellular layout problems of a DCMS were addressed 

by Bayram and Şahin [18]. An integrated model was presented and two hybrid heuristic 

algorithms were proposed to solve the model. In their model, it was assumed that no 

physical partitioning existed between cells but the number of cells and the maximum and 

the minimum number of machines that could be assigned to each cell were predetermined. 

Kumar and Singh [19] considered the same assumptions and proposed a similarity score-

based heuristic approach for solving the CF and discrete inter- and intra-cellular layout 

problems of a DCMS. This method had two phases. In the first phase, using the similarity 

scores between machines, the machine-cellular cluster formation was identified assuming 

that the number of cells and the number of machines to be assigned to cells were known in 

advance. In the second phase, based on the result of the first phase, the locations of 
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machines in each period were obtained in a way that the inter- and intra-cellular MHC and 

rearrangement costs were minimized over all the planning periods.  

An integrated CF and CL problem was addressed by Golmohammadi et al. [20] for DCMS 

in a discrete manner. The demand for parts in each period was assumed to be uncertain and 

have a normal distribution. Their model objective function included but was not limited to 

the inter- and intra-cellular MHC, rearrangement costs and the cost of the difference 

between the estimated demand and its expected value. The authors formulated the problem 

as an MINLP model and solved it using a GA.  

4.2.2. Robust Cellular Manufacturing System (RCMS) 

In this section, articles that have studied a robust layout for CMSs when there is a change 

or uncertainty in product mix and/or demand are covered. Wang et al. [21] presented a 

model for CL problem that minimized both the inter- and intra-cellular MHC under varying 

demand. Since the products’ demands are not fixed over their lifecycles, the authors 

calculated the present value of the unit distance MHC of the products and determined a 

robust layout for the planning horizon. In their model, it was assumed that CF had been 

done in advance and machines were assigned to different cells. A bi-quadratic assignment 

problem (bi-QAP) was used to model the inter- and intra-cellular layout problems. An SA 

metaheuristic algorithm was adopted to solve the model. 

Tavakkoli-Moghaddam et al. [22] developed an INLP model to minimize the total inter- 

and intra-cellular MHC when designing a robust layout for a CMS in a discrete manner. It 

was assumed that the demand had a normal distribution, the CF was done in the prior and 

the layout of machines in cells was U-shaped. The authors linearized the model using an 

approximate approach and solved it by B&B algorithm. A stochastic MINLP model was 

proposed by Ariafar et al. [23] for the discrete layout problem in a CMS. The authors 

assumed that the demand for each product in the planning horizon was uniformly 

distributed and that CF was done beforehand. The result of their model was a robust layout 

based on the cumulative occurrence probability of demand scenarios. The model was 

solved by two solution approaches, a B&B algorithm and an enumeration method. An 

MILP was presented by Paydar et al. [24] for a CMS in a discrete manner that integrated 
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the CF problem, CL problem, supplier selection, and many other aspects. The demand of 

each part type was assumed to be uncertain (scenarios based) and hence the model was 

solved using a robust optimization model.  

Kumar et al. [25] presented an embedded SA-based metaheuristic to solve an integrated 

sustainable robust stochastic CF and CL problem with discrete representation. The problem 

was modeled as a bi-QAP to minimize the total inter- and intra-cellular MHC. It was 

assumed that the demand had a normal distribution and the locations and the number of 

cells were predetermined. The authors generated layout alternatives using their proposed 

method and Big Data approach and obtained the final layout by applying multi-criteria 

decision-making techniques.  

4.2.3. Conclusions 

After reviewing the literature, it is revealed that with respect to the articles of CMS there 

are a few articles that have addressed finding the optimum layout in CMS in a dynamic 

environment. Gaps and overlaps in the literature could be identified by examining the 

synthesis matrix (Table 4.1). Some of these articles used a sequential approach wherein CF 

and CL problems are solved in two separate steps. However, CF and CL problems are 

interrelated problems and optimizing them sequentially may lead to a suboptimal solution.  

Many other articles have paid less attention to important considerations such as 

optimization of the number of cells, P/D points, inequality in the area of facilities and multi-

objective optimization, and have used restrictive assumptions. These restrictive 

assumptions make the model unrealistic and not applicable. For instance, despite the 

importance of the clearance distance, none of the studied articles have considered it. 

Clearance distance is the distance required around machines for loading and unloading 

materials or products, access of the workers to machines to operating them or carrying out 

maintenance [26].  However, the importance of considering clearance distance is high only 

when there is a continuous representation as the locations of facilities are predefined in 

discrete representation [27]. 

Furthermore, Table 4.1 shows that either a robust or dynamic approach was used to deal 

with the problem in a dynamic environment and none of them has used a semi-robust 
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approach to catch the benefits of both robust and dynamic approaches. As a consequence, 

to cope with these limitations, this research proposes a semi-robust optimization approach. 

The proposed approach can optimize the number of cells, the assignment of machines to 

the cells, the location of cells and the machines inside the cells, simultaneously. 

Table 4.1. Summary of the related works 

Article Problem characteristics 

 

Solution Characteristics 

Cell 

Formation 

Layout Continues Clearance 

Distance 

P/D  

Point 

Multi-

Objective 

Number of 

Cells 

 

Integrated Approach 

Inter-

cellular 

Intra-

cellular 

 

[21] No Yes Yes No N/A No No Predetermined 
 No Robust 

[22] No Yes Yes No N/A No No Predetermined 
 No Robust 

[23] No Yes Yes No N/A No No Predetermined  No Robust 

[12] Yes No Yes No N/A No No Predetermined  Yes Dynamic 

[13] Yes Yes Yes No N/A No No Predetermined  Yes Dynamic 

[14] Yes No Yes Yes No Yes No Predetermined  Yes Dynamic 

[15] Yes Yes No No N/A No Yes Predetermined  Yes Dynamic 

[24] Yes Yes Yes No N/A No No Predetermined  Yes Robust 

[16] Yes Yes Yes Yes No Yes No Optimized  Yes Dynamic 

[5] Yes Yes No No N/A No No Predetermined 
 Yes Dynamic 

[18] Yes Yes Yes No N/A No No Optimized 
 Yes Dynamic 

[17] Yes Yes Yes No N/A No Yes Predetermined 
 Yes Dynamic 

[19] Yes Yes Yes No N/A No No Predetermined 
 No Dynamic 

[20] Yes Yes Yes No N/A No No Predetermined 
 Yes Dynamic 

[25] Yes Yes Yes No N/A No No Predetermined 
 Yes Robust 

This 

work 
Yes Yes Yes Yes Yes Yes Yes Optimized 

 Yes 
Semi-

Robust 

 

4.3. Problem Description 

The problem is to arrange unequal-area facilities within a shop floor and group them into 

different cells for a multi-period CMS. The CF and the layout of facilities are robust; i.e., 

the assignment of facilities to the cells and the locations of the facilities and cells are fixed 

over all the planning periods. However, in the proposed model, the locations of the P/D 

points of the cells can be changed from one period to the next in order to minimize the cost 

and improve the robust layout for each period without doing any rearrangements. 

Therefore, an SRCMS can be defined as a multi-period CMS that has a single layout for 

all the periods in such a way that in each period, the assignment of facilities to the cells and 
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the locations of the facilities and the cells are fixed yet the locations of the P/D points of 

the cells are changed to adapt the layout with the changes in the flow. This is a good 

compromise between robust and dynamic layout design. 

Two objectives are considered, namely minimization of the total MHC and maximization 

of the similarity (minimization of the dissimilarity) between the facilities in each cell. The 

MHC includes both the total inter- and intra-cellular transportation costs. Because cells do 

not usually have tangible physical boundaries, changing the locations of P/D points does 

not incur a considerable cost to the system but at the same time reduces the total MHC.  

Since the most important objective in designing the layout of facilities is to minimize the 

total MHC, an optimal layout tries to position the facilities as close as possible to each 

other. In real-world problems, though, a minimum space is required around each facility 

which is called the clearance distance. To elaborate, for instance, in manufacturing systems 

a clearance distance is necessary around each machine for safety issues and to allow for 

maintenance and repair of the machines, temporarily storing work-in-process (WIP), 

proper ventilation and minimizing the vibration effects of neighboring machines [26, 27]. 

However, some authors integrate the clearance distance into the dimensions of the facilities 

by adjusting their length and width [28] which simplifies the model yet does not provide 

the possibility of sharing the clearance distances between facilities when applicable.  

Assumptions: 

 The flow of materials changes from one period to the other; the periods can have 

any length (a month, a season, or even a year). 

 The facilities and the shop floor have rectangular shapes with known dimensions. 

 Facilities can rotate and have either horizontal or vertical orientations. 

 Facilities can be located at any place within the shop floor yet they should not 

overlap with each other or the boundaries of the cells/shop floor. 

 A clearance distance is required around each facility. 

 Cells should not overlap with each other. 

 The intra-cellular MHC per unit distance is less than the inter-cellular MHC per 

unit distance. 

 The material flow of each period is known and deterministic. 
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Figure 4.1. An example of the SRCMS with 16 facilities and 4 cells 

 

4.4. Mathematical Model  

In this section, an MINLP formulation is presented to solve the integrated CF and CL 

problem of an SRCMS with unequal-area facilities in a dynamic environment. Since each 

facility contains a machine as shown in Figure 4.1, from this point on and to the end of the 

manuscript a facility is simply referred to as a machine without loss of generality. 

 

4.4.1. Objective Functions 

The first objective function (4.1) minimizes the total MHC over all the planning periods. 

This cost objective function is calculated by summing the product of the flow of materials 

between each pair of machines in each period and the weighted distance between them. 

The term weighted distance is used since the cost of material handling per unit distance is 

not constant. To be precise, it is assumed that the cost of moving the materials between 

cells per unit distance is more than that of moving the materials between machines within 

a cell. 

The second objective function (4.2) minimizes the dissimilarity of machines in each cell 

by avoiding assigning machines that are less similar to each other in the same cell. The 
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similarity here is the likeness of the machines based on their processes. A number of 

researchers have used different types of similarity and dissimilarity coefficients for solving 

the CF problem [29]. Among these coefficients, the Jaccard similarity coefficient 𝐻𝑖𝑗 =

𝑎

𝑎+𝑏+𝑐
 is used to calculate the similarity between machines where 𝑎 is the number of parts 

that need to be processed in both machines, 𝑏 the number of parts that need to be processed 

in machine 𝑖 but not 𝑗, and 𝑐 the number of parts that need to be processed in machine 𝑗 

but not 𝑖 [30, 31]. According to Yin and Yasuda [31], the Jaccard similarity coefficient is 

the most stable similarity coefficient among all other coefficients. 

𝑀𝑖𝑛 𝑍1 = ∑ ∑ ∑ 𝐹𝑖𝑗𝑡
𝑀 𝑑𝑖𝑗𝑡

𝑀𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

𝑇
𝑡=1                   (4.1) 

𝑀𝑖𝑛 𝑍2 = ∑ ∑ ∑ 𝑈𝑖𝑘𝑗𝑘(1 − 𝐻𝑖𝑗)𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

𝐾
𝑘=1                              (4.2) 

If machines 𝑖 and 𝑗 are located in the same cell, the distance between them is the rectilinear 

distance between their centroids. This distance is calculated using constraints (4.3)-(4.7). 

The first two terms in constraint (4.3) calculate the weighted rectilinear distance between 

machines 𝑖 and 𝑗 while the third term ensures that machines 𝑖 and 𝑗 are in the same cell. It 

should be noted that as the locations of the machines are fixed over all the planning periods, 

this distance does not depend on t. 

𝑑𝑖𝑗𝑡
𝑀 ≥ 𝑐𝑀𝑑𝑥𝑖𝑗

𝑀 + 𝑐𝑀𝑑𝑦𝑖𝑗
𝑀 − 𝑀(1 − 𝑈𝑖𝑘𝑗𝑙)          ∀ 𝑖, 𝑗, 𝑡, 𝑘 = 𝑙                (4.3) 

𝑑𝑥𝑖𝑗
𝑀 ≥ 𝑥𝑖

𝑀 − 𝑥𝑗
𝑀                         ∀ 𝑖, 𝑗                    (4.4) 

𝑑𝑥𝑖𝑗
𝑀 ≥ 𝑥𝑗

𝑀 − 𝑥𝑖
𝑀                        ∀ 𝑖, 𝑗             (4.5) 

𝑑𝑦𝑖𝑗
𝑀 ≥ 𝑦𝑖

𝑀 − 𝑦𝑗
𝑀            ∀ 𝑖, 𝑗                   (4.6) 

𝑑𝑦𝑖𝑗
𝑀 ≥ 𝑦𝑗

𝑀 − 𝑦𝑖
𝑀           ∀ 𝑖, 𝑗             (4.7) 

If machines 𝑖 and 𝑗 are located in different cells, then the distance separating them is the 

total of the weighted rectilinear distance between the centroid of each machine to the P/D 

point of its cell plus the weighted distance between the P/D points of their cells as shown 

in Figure 4.2. Constraints (4.8)-( 4.18) are used to calculate the distance between machines 

that are not in the same cell. The first term in constraint (4.8) is the distance between the 

P/D points of the cells which is calculated using constraints (4.9)-(4.13). The second and 
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third terms in constraint (4.8) are the distances between the centroid of each machine and 

the P/D point of its cell which are calculated using constraints (4.14)-(4.18). And finally, 

the last term of constraint (4.8) is to ensure that two machines are not located in the same 

cell.  

As the locations of the P/D points of the cells are changing from one period to the next, 

these distances are all dependent on the t. 

𝑑𝑖𝑗𝑡
𝑀 ≥ 𝑐𝑃𝐷𝐶𝑑𝑘𝑙𝑡

𝐶 + 𝑐𝑀𝑑𝑖𝑘𝑡
𝑀𝐶 + 𝑐𝑀𝑑𝑗𝑙𝑡

𝑀𝐶 − 𝑀(1 − 𝑈𝑖𝑘𝑗𝑙)        ∀ 𝑖, 𝑗, 𝑡, 𝑘 ≠ 𝑙          (4.8) 

𝑑𝑘𝑙𝑡
𝐶 ≥ 𝑑𝑥𝑘𝑙𝑡

𝐶 + 𝑑𝑦𝑘𝑙𝑡
𝐶                              ∀ 𝑘, 𝑙, 𝑡           (4.9) 

𝑑𝑥𝑘𝑙𝑡
𝐶 ≥ 𝑥𝑘𝑡

𝑃𝐷𝐶 − 𝑥𝑙𝑡
𝑃𝐷𝐶                      ∀ 𝑘, 𝑙, 𝑡          (4.10) 

𝑑𝑥𝑖𝑗𝑡
𝐶 ≥ 𝑥𝑙𝑡

𝑃𝐷𝐶 − 𝑥𝑘𝑡
𝑃𝐷𝐶                    ∀ 𝑘, 𝑙, 𝑡         (4.11) 

𝑑𝑦𝑘𝑙𝑡
𝐶 ≥ 𝑦𝑘𝑡

𝑃𝐷𝐶 − 𝑦𝑙𝑡
𝑃𝐷𝐶                     ∀ 𝑘, 𝑙, 𝑡               (4.12) 

𝑑𝑦𝑘𝑙𝑡
𝐶 ≥ 𝑦𝑙𝑡

𝑃𝐷𝐶 − 𝑦𝑘𝑡
𝑃𝐷𝐶                          ∀ 𝑘, 𝑙, 𝑡         (4.13) 

𝑑𝑖𝑘𝑡
𝑀𝐶 ≥ 𝑑𝑥𝑖𝑘𝑡

𝑀𝐶 + 𝑑𝑦𝑖𝑘𝑡
𝑀𝐶                     ∀ 𝑖, 𝑘, 𝑡        (4.14) 

𝑑𝑥𝑖𝑘𝑡
𝑀𝐶 ≥ 𝑥𝑘𝑡

𝑃𝐷𝐶 − 𝑥𝑖
𝑀              ∀ 𝑖, 𝑘, 𝑡            (4.15) 

𝑑𝑥𝑖𝑘𝑡
𝑀𝐶 ≥ 𝑥𝑖

𝑀 − 𝑥𝑘𝑡
𝑃𝐷𝐶                    ∀ 𝑖, 𝑘, 𝑡       (4.16) 

𝑑𝑦𝑖𝑘𝑡
𝑀𝐶 ≥ 𝑦𝑘𝑡

𝑃𝐷𝐶 − 𝑦𝑖
𝑀                             ∀ 𝑖, 𝑘, 𝑡               (4.17) 

𝑑𝑦𝑖𝑘𝑡
𝑀𝐶 ≥ 𝑦𝑖

𝑀 − 𝑦𝑘𝑡
𝑃𝐷𝐶                          ∀ 𝑖, 𝑘, 𝑡         (4.18) 
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Figure 4.2. The distance between machine 𝑖 in cell 𝑘 and machine 𝑗 in cell 𝑙 

 

4.4.2.  Cell Formation Constraints 

The decision variable 𝑉𝑖𝑘 is equal to one if machine 𝑖 is assigned to cell 𝑘. For any cell 𝑘, 

if the value of 𝑉𝑖𝑘 is equal to zero for all 𝑖, it means that cell 𝑘 is not generated. Constraint 

(4.19) ensures that each machine is assigned to one and only one cell and constraint (4.20) 

controls the value of the dependent variable 𝑈𝑖𝑘𝑗𝑙, which should be equal to one only if 

both the variables 𝑉𝑖𝑘 and 𝑉𝑗𝑙 are equal to one.    

∑ 𝑉𝑖𝑘 = 1𝐾
𝑘=1            ∀ 𝑖                (4.19) 

𝑈𝑖𝑘𝑗𝑙 ≥ 𝑉𝑖𝑘 + 𝑉𝑗𝑙 − 1                         ∀ 𝑖, 𝑗, 𝑘, 𝑙               (4.20) 

 

4.4.3.  Non-Overlapping Constraints  

Constraints (4.21) and (4.22) are to determine the length of a machine along the x- and y-

axis based on the orientation of the machine. If machine 𝑖 has a horizontal orientation, 𝑂𝑖 =

1, the longer side of the machine is located along the x-axis and its shorter side is along the 
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y-axis. If machine 𝑖 has a vertical orientation, 𝑂𝑖 = 0, the shorter side of it is along the x-

axis and its longer side is along the y-axis. 

𝑙𝑥𝑖
𝑀 = 𝑙𝑖

𝑀𝑂𝑖 + 𝑤𝑖
𝑀(1 − 𝑂𝑖)            ∀ 𝑖                 (4.21) 

𝑙𝑦𝑖
𝑀 = 𝑙𝑖

𝑀(1 − 𝑂𝑖) + 𝑤𝑖
𝑀𝑂𝑖                 ∀ 𝑖           (4.22) 

Constraints (4.23)-(4.25) are to prevent any overlapping between machines. A machine can 

be below, above, to the left, or the right of the other machine. Two decision variables 𝑙𝑒𝑓𝑡𝑖𝑗
𝑀 

and 𝑏𝑒𝑙𝑜𝑤𝑖𝑗
𝑀 determine the position of machine 𝑖 relative to machine 𝑗. If machine 𝑖 is to 

the left of machine 𝑗, constraint (4.23) holds and hence, the x-coordinate of the centroid of 

machine 𝑖 plus half of its length along the x-axis plus the clearance distance of machines 

should be less than or equal to the x-coordinate of the machine 𝑗 minus the half of its length 

along the x-axis. 

In a similar fashion, if machine 𝑖 is below machine 𝑗, constraint (4.24) is imposed and 

hence, the y-coordinate of the centroid of machine 𝑖 plus the half of its length along the y-

axis plus the clearance distance of machines should be less than or equal to the y-coordinate 

of the machine 𝑗 minus the half of its length along the y-axis. 

Constraint (4.25) ensure that only one of its four terms is equal to one, which in turn ensures 

that only one of the two constraints (4.23) or (4.24) holds. 

(𝑥𝑖
𝑀 + 0.5𝑙𝑥𝑖

𝑀) + 𝛿𝑀 ≤ (𝑥𝑗
𝑀 − 0.5𝑙𝑥𝑗

𝑀) + 𝑀(1 − 𝑙𝑒𝑓𝑡𝑖𝑗
𝑀)                ∀ 𝑖 ≠ 𝑗          (4.23) 

(𝑦𝑖
𝑀 + 0.5𝑙𝑦𝑖

𝑀) + 𝛿𝑀 ≤ (𝑦𝑗
𝑀 − 0.5𝑙𝑦𝑗

𝑀) + 𝑀(1 − 𝑏𝑒𝑙𝑜𝑤𝑖𝑗
𝑀)      ∀ 𝑖 ≠ 𝑗           (4.24) 

𝑙𝑒𝑓𝑡𝑖𝑗
𝑀 + 𝑙𝑒𝑓𝑡𝑗𝑖

𝑀 + 𝑏𝑒𝑙𝑜𝑤𝑖𝑗
𝑀 + 𝑏𝑒𝑙𝑜𝑤𝑗𝑖

𝑀 = 1                                            ∀ 𝑖 > 𝑗      (4.25) 

Constraints (4.26)-(4.28) ensure that there is no overlapping between cells. A cell can be 

below, above, to the left, or the right of the other cell. Two decision variables 𝑙𝑒𝑓𝑡𝑘𝑙
𝐶  and 

𝑏𝑒𝑙𝑜𝑤𝑘𝑙
𝐶  determine the position of cell 𝑘 relative to cell 𝑙. If cell 𝑘 is to the left of cell 𝑙, 

constraint (4.26) is imposed and hence, the x-coordinate of the centroid of cell 𝑘 plus half 

of its length along the x-axis plus the clearance distance of cells should be less than or equal 

to the x-coordinate of the cell 𝑙 minus the half of its length along the x-axis. 
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Similarly, if cell 𝑘 is below cell 𝑙, constraint (4.27) is imposed and hence, the y-coordinate 

of the centroid of cell 𝑘 plus the half of its length along the y-axis plus the clearance 

distance of cells should be less than or equal to the y-coordinate of the cell 𝑙 minus the half 

of its length along the y-axis. Constraint (4.28) ensure that only one of its four terms is 

equal to one, which in turn ensures that only one of the two constraints (4.26) or (4.27) 

holds. 

(𝑥𝑘
𝐶 + 0.5𝑙𝑘

𝐶) + 𝛿𝐶 ≤ (𝑥𝑙
𝐶 − 0.5𝑙𝑙

𝐶) + 𝑀(1 − 𝑙𝑒𝑓𝑡𝑘𝑙
𝐶 )              ∀ 𝑘 ≠ 𝑙     (4.26) 

(𝑦𝑘
𝐶 + 0.5𝑤𝑘

𝐶) + 𝛿𝐶 ≤ (𝑦𝑙
𝐶 − 0.5𝑤𝑙

𝐶) + 𝑀(1 − 𝑏𝑒𝑙𝑜𝑤𝑘𝑙
𝐶 )              ∀ 𝑘 ≠ 𝑙            (4.27) 

𝑙𝑒𝑓𝑡𝑘𝑙
𝐶 + 𝑙𝑒𝑓𝑡𝑙𝑘

𝐶 + 𝑏𝑒𝑙𝑜𝑤𝑘𝑙
𝐶 + 𝑏𝑒𝑙𝑜𝑤𝑙𝑘

𝐶 = 1                         ∀ 𝑘 > 𝑙            (4.28) 

 

4.4.4.  Within-Site Boundaries Constraints 

Constraints (4.29)-(4.32) guarantee that if a machine is assigned to a cell, it is located 

within the boundaries of that cell considering its clearance distance.  

(𝑥𝑖
𝑀 + 0.5𝑙𝑥𝑖

𝑀) + 𝛿𝑀 ≤ (𝑥𝑘
𝐶 + 0.5𝑙𝑘

𝐶) + 𝑀(1 − 𝑉𝑖𝑘)             ∀ 𝑖, 𝑘        (4.29) 

(𝑥𝑖
𝑀 − 0.5𝑙𝑥𝑖

𝑀) − 𝛿𝑀 ≥ (𝑥𝑘
𝐶 − 0.5𝑙𝑘

𝐶) − 𝑀(1 − 𝑉𝑖𝑘)         ∀ 𝑖, 𝑘               (4.30) 

(𝑦𝑖
𝑀 + 0.5𝑙𝑦𝑖

𝑀) + 𝛿𝑀 ≤ (𝑦𝑘
𝐶 + 0.5𝑤𝑘

𝐶) + 𝑀(1 − 𝑉𝑖𝑘)               ∀ 𝑖, 𝑘               (4.31) 

(𝑦𝑖
𝑀 − 0.5𝑙𝑦𝑖

𝑀) − 𝛿𝑀 ≥ (𝑦𝑘
𝐶 − 0.5𝑤𝑘

𝐶) − 𝑀(1 − 𝑉𝑖𝑘)                         ∀ 𝑖, 𝑘              (4.32) 

Constraints (4.33)-(4.36) ensure that the cells are located within the boundaries of the shop 

floor considering their clearance distances. 

𝑥𝑘
𝐶 + 0.5𝑙𝑘

𝐶 + 𝛿𝐶 ≤ 𝐿               ∀ 𝑘               (4.33) 

𝑥𝑘
𝐶 − 0.5𝑙𝑘

𝐶 − 𝛿𝐶 ≥ 0                 ∀ 𝑘               (4.34) 

𝑦𝑘
𝐶 + 0.5𝑤𝑘

𝐶 + 𝛿𝐶 ≤ 𝑊                ∀ 𝑘               (4.35) 

𝑦𝑘
𝐶 − 0.5𝑤𝑘

𝐶 − 𝛿𝐶 ≥ 0                ∀ 𝑘               (4.36) 
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4.4.5.  Constraints for Determining the Locations of P/D Points 

The P/D point of a cell can be located on any side of the cell. As the locations of P/D points 

change in each period, the coordinates of the P/D points and their corresponding decision 

variables are a function of 𝑡. Constraint (4.37) ensures that there is one and only one P/D 

point for each cell. Constraints (4.38)-(4.43) determine the x-coordinate of the P/D point 

of a cell, based on the side where the P/D point is located. For instance, if the P/D point of 

cell 𝑘 is located on the left side of the cell as shown in Figure 4.3, constraints (4.40) and 

(4.41) are imposed and constraints (4.38), (4.39), (4.42), and (4.43) are relaxed.  

𝑆𝑙𝑘𝑡
𝐶 + 𝑆𝑟𝑘𝑡

𝐶 + 𝑆𝑢𝑘𝑡
𝐶 + 𝑆𝑏𝑘𝑡

𝐶 =1                                                   ∀ 𝑘, 𝑡                 (4.37) 

𝑥𝑘𝑡
𝑃𝐷𝐶 ≤ (𝑥𝑘

𝐶 + (𝛼𝑘𝑡 − 0.5)𝑙𝑘
𝐶) + 𝑀(1 − 𝑆𝑢𝑘𝑡

𝐶 − 𝑆𝑏𝑘𝑡
𝐶 )          ∀ 𝑘, 𝑡               (4.38) 

𝑥𝑘𝑡
𝑃𝐷𝐶 ≥ (𝑥𝑘

𝐶 + (𝛼𝑘𝑡 − 0.5)𝑙𝑘
𝐶) − 𝑀(1 − 𝑆𝑢𝑘𝑡

𝐶 − 𝑆𝑏𝑘𝑡
𝐶 )          ∀ 𝑘, 𝑡               (4.39) 

𝑥𝑘𝑡
𝑃𝐷𝐶 ≤ (𝑥𝑘

𝐶 − 0.5𝑙𝑘
𝐶) + 𝑀(1 − 𝑆𝑙𝑘𝑡

𝐶 )            ∀ 𝑘, 𝑡    (4.40) 

𝑥𝑘𝑡
𝑃𝐷𝐶 ≥ (𝑥𝑘

𝐶 − 0.5𝑙𝑘
𝐶) − 𝑀(1 − 𝑆𝑙𝑘𝑡

𝐶 )             ∀ 𝑘, 𝑡               (4.41) 

𝑥𝑘𝑡
𝑃𝐷𝐶 ≤ (𝑥𝑘

𝐶 + 0.5𝑙𝑘
𝐶) + 𝑀(1 − 𝑆𝑟𝑘𝑡

𝐶 )               ∀ 𝑘, 𝑡               (4.42) 

𝑥𝑘𝑡
𝑃𝐷𝐶 ≥ (𝑥𝑘

𝐶 + 0.5𝑙𝑘
𝐶) − 𝑀(1 − 𝑆𝑟𝑘𝑡

𝐶 )               ∀ 𝑘, 𝑡               (4.43) 

Likewise, constraints (4.44)-(4.49) determine the y-coordinate of the P/D point of a cell, 

based on the side that P/D point is located on. For instance, if the P/D point of cell k is 

located on the left side of the cell as shown in Figure 4.3, constraints (4.44) and (4.45) are 

imposed and constraints (4.46)-(4.49) are relaxed. 

𝑦𝑘𝑡
𝑃𝐷𝐶 ≤ (𝑦𝑘

𝐶 + (𝛼𝑘𝑡 − 0.5)𝑤𝑘
𝐶) + 𝑀(1 − 𝑆𝑙𝑘𝑡

𝐶 − 𝑆𝑟𝑘𝑡
𝐶 )            ∀ 𝑘, 𝑡    (4.44) 

𝑦𝑘𝑡
𝑃𝐷𝐶 ≥ (𝑦𝑘

𝐶 + (𝛼𝑘𝑡 − 0.5)𝑤𝑘
𝐶) − 𝑀(1 − 𝑆𝑙𝑘𝑡

𝐶 − 𝑆𝑟𝑘𝑡
𝐶 )            ∀ 𝑘, 𝑡    (4.45) 

𝑦𝑘𝑡
𝑃𝐷𝐶 ≤ (𝑦𝑘

𝐶 + 0.5𝑤𝑘
𝐶) + 𝑀(1 − 𝑆𝑢𝑘𝑡

𝐶 )                 ∀ 𝑘, 𝑡        (4.46) 

𝑦𝑘𝑡
𝑃𝐷𝐶 ≥ (𝑦𝑘

𝐶 + 0.5𝑤𝑘
𝐶) − 𝑀(1 − 𝑆𝑢𝑘𝑡

𝐶 )                 ∀ 𝑘, 𝑡        (4.47) 

𝑦𝑘𝑡
𝑃𝐷𝐶 ≤ (𝑦𝑘

𝐶 − 0.5𝑤𝑘
𝐶) + 𝑀(1 − 𝑆𝑏𝑘𝑡

𝐶 )                   ∀ 𝑘, 𝑡               (4.48) 

𝑦𝑘𝑡
𝑃𝐷𝐶 ≥ (𝑦𝑘

𝐶 − 0.5𝑤𝑘
𝐶) − 𝑀(1 − 𝑆𝑏𝑘𝑡

𝐶 )                ∀ 𝑘, 𝑡               (4.49) 
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Figure 4.3. An example for the location of P/D point of cell k 

 

4.4.6. Domain Constraints 

The decision variables of the model are defined by constraints (4.50)-(4.52). 

0 ≤ 𝛼𝑘𝑡 ≤ 1                    ∀ 𝑘, 𝑡                           (4.50) 

𝑂𝑖, 𝑉𝑖𝑘, 𝑈𝑖𝑘𝑗𝑙, 𝑙𝑒𝑓𝑡𝑖𝑗
𝑀, 𝑏𝑒𝑙𝑜𝑤𝑖𝑗

𝑀, 𝑙𝑒𝑓𝑡𝑘𝑙
𝐶 , 𝑏𝑒𝑙𝑜𝑤𝑘𝑙

𝐶 , 𝑆𝑙𝑘𝑡
𝐶 , 𝑆𝑟𝑘𝑡

𝐶 , 𝑆𝑢𝑘𝑡
𝐶 , 𝑆𝑏𝑘𝑡

𝐶 ∈ {0,1}   

∀ 𝑖, 𝑗, 𝑘, 𝑙, 𝑡                     (4.51) 

𝑥𝑖
𝑀 , 𝑦𝑖

𝑀 , 𝑥𝑘
𝐶 , 𝑦𝑘

𝐶 ≥ 0         ∀ 𝑖, 𝑗, 𝑘,                (4.52) 

 

4.5. The Proposed Multi-Objective Optimization Algorithm 

Some real-world optimization problems, such as the one that is studied in this chapter, have 

more than one possibly contradictory objectives that need to be optimized simultaneously. 

The general form of a multi-objective optimization problem can be formulated as: 

Max / Min 𝑓𝑚(�̅�)     𝑚 = 1, 2, … ,  𝑁𝑜𝑏𝑗               (4.53) 

Subject to:  

𝑔𝑝(�̅�) ≥ 0      𝑝 = 1, 2, … , 𝑁𝑐𝑜𝑛1               (4.54) 

ℎ𝑞(�̅�) = 0                  𝑞 = 1, 2, . . , 𝑁𝑐𝑜𝑛2    (4.55) 
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𝑥𝑣
𝑙 ≤ 𝑥𝑣 ≤ 𝑥𝑣

𝑢                  𝑥𝑣 ∈ �̅�, 𝑣 = 1, 2, … , 𝑁𝑣              (4.56)

     

where the objective functions are represented by 𝑓𝑚 , and inequality and equality 

constraints are represented by 𝑔𝑝 and ℎ𝑞, respectively. Decision variables are represented 

by 𝑥𝑣 that are the components of a solution vector �̅� with the size of 𝑁𝑣 [32]. 

Despite the single-objective optimization problems, the multi-objective ones do not have a 

single optimum solution and instead have multiple equivalent alternative solutions that are 

not dominated by any solution [33]. For a minimization problem, a solution �̅�1 dominates 

the other solution �̅�2 if �̅�1 is strictly better than the �̅�2 in at least one of the objectives and 

no worse than �̅�2 in any of the objectives [34]. Hence, �̅�1 dominates �̅�2, expressed using 

�̅�1 ≺ �̅�2, if:  

1)  𝑓𝑚(�̅�1) ≤ 𝑓𝑚(�̅�2)    ∀ 𝑚 ∈ {1, 2, … , 𝑁𝑜𝑏𝑗}    (4.57) 

and 

2) 𝑓𝑚(�̅�1) < 𝑓𝑚(�̅�2)    ∃ 𝑚 ∈ {1, 2, … , 𝑁𝑜𝑏𝑗}    (4.58)  

Solution �̅�1 is said to be a Pareto-optimal solution if it is not dominated by any other 

solution in the solution space.  

Evolutionary algorithms such as genetic algorithms (GAs) are known to be suitable for 

solving multi-objective optimization problems [35]. In this chapter, an MNSGA-II is 

proposed to solve the SRCMS problem. To this aim, in Section 4.5.1, the modified non-

dominated sorting procedure is explained and in Section 4.5.2, the steps of the proposed 

MNSGA-II are explained. 

4.5.1. The Modified Non-Dominated Sorting Procedure 

This sorting approach sorts the population based on the non-dominated fronts that they 

belong to. The set of solutions that are not dominated by any other solution forms the 

Pareto-optimal front, which is also referred to simply as the front one, 𝐹1. To find the 

solutions that belong to other fronts, it should be noted that some solutions are only 

dominated by Pareto-optimal solutions. Hence, if the 𝐹1 solutions are assumed to be 

removed from the population, another set of solutions can be found that are not dominated 
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by any solution, and hence termed front two, 𝐹2. Likewise, further removing the solutions 

that belong to 𝐹2, another set of non-dominated solutions can be found that are in front 

three, 𝐹3, and so forth. 

The concept of crowding distance, first introduced by Deb et al. [36] is to ensure that not 

only the algorithm converges to the Pareto-optimal front but also it obtains a diverse set of 

solutions [36]. This concept demonstrates and quantifies the density of solutions around a 

particular one in the same non-dominated front. It calculates the distance of two neighbors 

of a solution. This distance is computed separately for each objective. Then, the average of 

the distances for all objectives is calculated to evaluate the crowding distance.   

To calculate the crowding distance, first, all the solutions are sorted in ascending order 

according to the values of each respective objective function. Second, for each solution, 

the absolute distances of two solutions on either side of that solution are calculated and are 

divided by the distance between the minimum and the maximum solutions of that objective 

function. The crowding distance of the individuals in a non-dominated front that have the 

minimum/maximum value along any of the objective functions is set to be infinite. 

𝐶𝐷𝑖
𝑚 =

|𝑓𝑖+1
𝑚 −𝑓𝑖−1

𝑚 |

𝑓𝑚𝑎𝑥
𝑚 −𝑓𝑚𝑖𝑛

𝑚                        (4.59) 

𝐶𝐷𝑖 = 1
𝑚⁄ ∑ 𝐶𝐷𝑖

𝑚
𝑚            (4.60) 

where 𝐶𝐷𝑖
𝑚 is the crowding distance of ith individual along with the mth objective, 𝐶𝐷𝑖 is 

the crowding distance of individual i, 𝑓𝑖
𝑚 is the mth objective value of the ith individual, and 

𝑓𝑚𝑎𝑥
𝑚   and 𝑓𝑚𝑖𝑛

𝑚  are the maximum and minimum values of the mth objective, respectively.  

After sorting the population using the crowding distance, the excess population of a front 

is truncated all at once. To clarify, in Fig 4, let us say there are three individuals that should 

be removed. Solutions D, E, and F have the lowest values of crowding distance and will be 

deleted simultaneously. Hence, after this truncation, there are no solutions between points 

C and G which is not the desired result. To overcome this issue, Luo et al. [37] proposed a 

dynamic crowding distance strategy. This way, the excess individuals are removed one at 

a time and after each elimination, the crowding distances of the remaining population are 

recalculated. 
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Figure 4.4. Illustration of the drawbacks of the original crowding distance method 

 

Despite how useful the concept of crowding distance is it provides limited information on 

the uniformity of solutions on a front. To further explain, in Figure 4.4 the crowding 

distance of solution B for both cases (a) and (b) are the same. However, in Figure 4.4 (a), 

the solution B is very close to solution C and in terms of uniformity, the position of B in 

Figure 4.4 (b) is preferred. To cope with this limitation, a new method for calculating the 

crowding distance is presented that takes into account the distance of a solution to each of 

the neighboring solutions on either side of it. The average of these two distances, which is 

the crowding distance of that solution, and their variance are calculated. The lower the 

variance, the better the solution is in terms of uniformity. For the presented two-objective 

problem, Equations (4.61)-(4.64) are proposed to calculate the crowding distance. 

𝐷𝑖,𝑖+1 = √(
|𝑓𝑖+1

1 −𝑓𝑖
1|

𝑓𝑚𝑎𝑥
1 −𝑓𝑚𝑖𝑛

1 )2 + (
|𝑓𝑖+1

2 −𝑓𝑖
2|

𝑓𝑚𝑎𝑥
2 −𝑓𝑚𝑖𝑛

2 )2                   (4.61) 

𝐷𝑖−1,𝑖 = √(
|𝑓𝑖

1−𝑓𝑖−1
1 |

𝑓𝑚𝑎𝑥
1 −𝑓𝑚𝑖𝑛

1 )2 + (
|𝑓𝑖

2−𝑓𝑖−1
2 |

𝑓𝑚𝑎𝑥
2 −𝑓𝑚𝑖𝑛

2 )2         (4.62) 

𝐷𝐶𝐷𝑖 = 1
2⁄ (𝐷𝑖−1,𝑖 + 𝐷𝑖,𝑖+1)          (4.63) 

𝑉𝑖
𝐶𝐷 = 1

2⁄ [(𝐷𝑖,𝑖+1 − 𝐷𝐶𝐷𝑖)
2

+ (𝐷𝑖−1,𝑖 − 𝐷𝐶𝐷𝑖)
2

]        (4.64) 

where, 𝐷𝑖−1,𝑖 and 𝐷𝑖,𝑖+1 are the Euclidean distances between each individual and its 

neighboring solutions when the solutions are sorted based on one of the objectives, the 
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𝐷𝐶𝐷𝑖 is the dynamic crowding distance (DCD) of individual 𝑖, and the 𝑉𝑖
𝐶𝐷 is the variance 

of crowding distances of individual 𝑖. 

In the proposed sorting procedure, the chromosomes are initially sorted according to their 

front. Then the solutions in each front are sorted ascendingly based on their crowding 

distance value. If the crowding distances (rounded to two decimal places) of two 

chromosomes in the same front are equal, the one that has a lower variance of crowding 

distance is preferred. The procedure of the non-dominated sorting is described in Algorithm 

1.  

 

Algorithm 1. Modified Non-Dominated Sorting Procedure 

Input: 𝑃𝑜𝑝, 𝑁𝑝𝑜𝑝 

Output: Sorted population, 𝑃𝑜𝑝𝑠𝑜𝑟𝑡𝑒𝑑, the list of solutions that belong to each front, 𝐹. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

[𝑃𝑜𝑝 , 𝐹] ← 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝐹𝑟𝑜𝑛𝑡(𝑃𝑜𝑝)  

[𝑃𝑜𝑝. 𝐷𝐶𝐷 , 𝑃𝑜𝑝. 𝑉𝐶𝐷] ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝐶𝐷(𝑃𝑜𝑝, 𝐹)  

𝑃𝑜𝑝𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝐸𝑚𝑝𝑡𝑦𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒𝑁𝑝𝑜𝑝  

for 𝑖 = 1 to 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐹𝑟𝑜𝑛𝑡𝑠 do 

 𝑃𝑜𝑝(𝐹{𝑖}) ← 𝐴𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔𝑆𝑜𝑟𝑡_𝐵𝑎𝑠𝑒𝑑𝑂𝑛𝐷𝐶𝐷(𝑃𝑜𝑝(𝐹{𝑖}))  

for 𝑗 = 1 to |𝐹{𝑖}|-1 do 

for 𝑘 = 𝑗 + 1 to |𝐹{𝑖}| do 

if 𝑃𝑜𝑝(𝐹{𝑖})(𝑗). 𝐷𝐶𝐷 =  𝑃𝑜𝑝(𝐹{𝑖})(𝑘). 𝐷𝐶𝐷 then 

if   𝑃𝑜𝑝(𝐹{𝑖})(𝑘). 𝑉𝐶𝐷 <  𝑃𝑜𝑝(𝐹{𝑖})(𝑗). 𝑉𝐶𝐷 then 

𝑡𝑒𝑚𝑝 = 𝑃𝑜𝑝𝑠𝑜𝑟𝑡𝑒𝑑(𝑘)  

𝑃𝑜𝑝𝑠𝑜𝑟𝑡𝑒𝑑(𝑘) = 𝑃𝑜𝑝𝑠𝑜𝑟𝑡𝑒𝑑(𝑗)  

𝑃𝑜𝑝𝑠𝑜𝑟𝑡𝑒𝑑(𝑗) = 𝑡𝑒𝑚𝑝  

end if 

end if 

end for 

end for 

𝑃𝑜𝑝𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝑃𝑜𝑝𝑠𝑜𝑟𝑡𝑒𝑑 ∪  𝑃𝑜𝑝(𝐹{𝑖})   

end for 
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4.5.2. Implementation of Modified Non-Dominated Sorting Genetic Algorithm 

(MNSGA-II) 

The proposed MNSGA-II is the improved version of the original fast non-dominated 

sorting genetic algorithm (NSGA-II) introduced by Deb et al. [36]. The steps of the 

MNSGA-II are as follows: 

The parameters of the proposed MNSGA-II algorithm are set; the initial parent population, 

𝑃𝑜𝑝, of size 𝑁𝑝𝑜𝑝 is generated randomly; the fitness of each individual in the population 

(chromosome) is evaluated according to each objective function; and all the chromosomes 

are sorted based on the proposed non-dominated sorting procedure (lines 1-3). Then, the 

main loop of the proposed MNSGA-II is repeated until the stopping criteria is met. The 

termination criterion is to reach the maximum number of iterations, 𝑀𝑎𝑥𝐼𝑡. 

In each iteration, some individuals in the population are selected as parents to generate the 

offspring population using crossover and mutation operators. For crossover, 𝑝𝑐 percentage 

of the population is selected as parent chromosomes using the binary tournament selection 

strategy and is pair-wisely combined to generate offspring chromosomes, 𝑃𝑜𝑝𝑐𝑟𝑜𝑠𝑠 (line 

5). To generate offspring chromosomes using the mutation operation, 𝑃𝑜𝑝𝑚𝑢𝑡𝑒, the 

selection of the parent chromosomes which are the 𝑝𝑚 percentage of the population is done 

randomly (line 6). When the offspring are generated, they are merged with the rest of the 

population and their fitness are evaluated (lines 7 and 8) and the duplicate solutions are 

removed from the population (line 9). 

Since the size of the new population could expand more than 𝑁𝑝𝑜𝑝, excess individuals in 

the new population should be removed. Hence, the new population is ranked using the 

modified non-dominated sorting procedure and the truncation process is done one at a time 

until the size of the population decreases to 𝑁𝑝𝑜𝑝 in a way that each time the last individual 

of the population is removed from the population, the solutions are sorted again using the 

non-dominated sorting procedure (lines 10-13). Next, the Pareto-optimal solutions of the 

population in that iteration are improved using an improvement algorithm (line 14) and 

then the population is sorted again (line15). 
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Algorithm 2. Procedure of MNSGA-II 

Input: 𝑁𝑝𝑜𝑝, 𝑀𝑎𝑥𝐼𝑡, 𝑝𝑐, 𝑝𝑚 

Output: The Pareto-optimal solutions 𝑃𝑜𝑝(𝐹{1}) 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

𝑃𝑜𝑝. 𝑆𝑜𝑙 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝 (𝑁𝑝𝑜𝑝)  

𝑃𝑜𝑝. 𝐶𝑜𝑠𝑡 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐶𝑜𝑠𝑡 (𝑃𝑜𝑝)  

[𝑃𝑜𝑝 , 𝐹] ← 𝑁𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡𝑖𝑛𝑔(𝑃𝑜𝑝)(𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1)  

for 𝑖 = 1 to 𝑀𝑎𝑥𝐼𝑡 do 

𝑃𝑜𝑝𝑐𝑟𝑜𝑠𝑠 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑃𝑜𝑝, 𝑝𝑐)  

             𝑃𝑜𝑝𝑚𝑢𝑡𝑒 ← 𝑀𝑢𝑡𝑎𝑡𝑒 (𝑃𝑜𝑝, 𝑝𝑚)    

             𝑃𝑜𝑝 ← 𝑃𝑜𝑝 ∪ 𝑃𝑜𝑝𝑐𝑟𝑜𝑠𝑠 ∪ 𝑃𝑜𝑝𝑚𝑢𝑡𝑒  

𝑃𝑜𝑝. 𝐶𝑜𝑠𝑡 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐶𝑜𝑠𝑡 (𝑃𝑜𝑝)  

𝑃𝑜𝑝 ← 𝑅𝑒𝑚𝑜𝑣𝑒𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (𝑃𝑜𝑝)  

while |𝑃𝑜𝑝| >  𝑁𝑝𝑜𝑝 do 

[𝑃𝑜𝑝, 𝐹] ← 𝑁𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡𝑖𝑛𝑔(𝑃𝑜𝑝)(𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1)   

𝑃𝑜𝑝 ← 𝑅𝑒𝑚𝑜𝑣𝑒(𝑃𝑜𝑝(𝑒𝑛𝑑))  

end while 

𝑃𝑜𝑝(𝐹{1}) ← 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠(𝑃𝑜𝑝(𝐹{1}))  

[𝑃𝑜𝑝, 𝐹] ← 𝑁𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡𝑖𝑛𝑔(𝑃𝑜𝑝)(𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1)  

end for 

 

4.5.2.1.  Chromosome Representation 

Solution representation is one of the important issues that affect the performance of 

metaheuristics. In GAs a solution is represented by a chromosome. A chromosome of the 

proposed MNSGA-II contains genes that all take continuous random numbers between 

[0, 1]. Figure 4.5 depicts the proposed chromosome and its corresponding first-period 

layout for a problem with ten machines (𝑁 = 10) and three periods (𝑇 = 3). As shown in 

Fig 5, the chromosome consists of seven segments. The segment “A” determines the 

number of cells to be generated, 𝑁𝑐𝑒𝑙𝑙. If this number is between [0, 1
𝐾⁄ ], where K is the 

maximum number of cells, one cell is created, 𝑁𝑐𝑒𝑙𝑙 = 1; if it is between (1
𝐾⁄ , 2

𝐾⁄ ], two 
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cells are created, 𝑁𝑐𝑒𝑙𝑙 = 2, and so forth. Taking into account that the maximum number 

of cells is equal to the number of machines, 𝐾 = 𝑁, in the example chromosome of Figure 

4.5, as the value 0.26 lays in the interval (2
10⁄ , 3

10⁄ ], three cells are generated and hence 

𝑁𝑐𝑒𝑙𝑙 = 3. Segments “B” and “C” each consist of 𝑖 = 1, 2, … , 𝑁 genes, which show the �̂� 

and �̂� of the centroid of machines, respectively. According to the values of �̂� and �̂� and 

Equations (4.65)-(4.71) the x- and y-coordinates of the centroid of machines are obtained. 

𝑥𝑖
𝑀 = 𝑥𝑖

𝑀,𝑚𝑖𝑛 + (𝑥𝑖
𝑀,𝑚𝑎𝑥 − 𝑥𝑖

𝑀,𝑚𝑖𝑛)�̂�𝑖   ∀ 𝑖                 (4.65)  

𝑦𝑖
𝑀 = 𝑦𝑖

𝑀,𝑚𝑖𝑛 + (𝑦𝑖
𝑀,𝑚𝑎𝑥 − 𝑦𝑖

𝑀,𝑚𝑖𝑛)�̂�𝑖   ∀ 𝑖      (4.66) 

𝑥𝑖
𝑀,𝑚𝑖𝑛 =

𝑙𝑥𝑖
𝑀

2
+ 𝛿𝑀     ∀ 𝑖      (4.67) 

𝑥𝑖
𝑀,𝑚𝑎𝑥 = 𝐿 −

𝑙𝑥𝑖
𝑀

2
− 𝛿𝑀     ∀ 𝑖      (4.68) 

𝑦𝑖
𝑀,𝑚𝑖𝑛 =

𝑙𝑦𝑖
𝑀

2
+ 𝛿𝑀      ∀ 𝑖      (4.69) 

𝑦𝑖
𝑀,𝑚𝑎𝑥 = 𝑊 −

𝑙𝑦𝑖
𝑀

2
− 𝛿𝑀     ∀ 𝑖      (4.70) 

0 ≤ �̂�𝑖, �̂�𝑖 ≤ 1      ∀ 𝑖      (4.71) 

where, the 𝑥𝑖
𝑀,𝑚𝑖𝑛

 and 𝑥𝑖
𝑀,𝑚𝑎𝑥

 are the minimum and maximum values that the x-coordinate 

of machine i can take, and the 𝑦𝑖
𝑀,𝑚𝑖𝑛

 and 𝑦𝑖
𝑀,𝑚𝑎𝑥

 are the minimum and maximum values 

that the y-coordinate of machine i can accept, respectively. 
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Figure 4.5. An example of a chromosome and its corresponding layout for first period 

 

The segment “D" is used to determine the orientation of machines. It consists of 𝑖 =

1, 2, … , 𝑁 genes each of which corresponds to an orientation of a machine. If the value of 

a gene 𝑖 is between [0, 0.5], the machine 𝑖 takes a vertical orientation; otherwise, the 

machine 𝑖 takes a horizontal orientation. 

The segment “E" determines how machines are assigned to cells. It consists of 𝑖 =

1, 2, … , 𝑁 genes where gene i determines the cell number of machine 𝑖 . Machine 𝑖 is 

assigned to cell 1 if gene 𝑖 takes a value between [0, 1
𝑁𝑐𝑒𝑙𝑙

⁄ ], where 𝑁𝑐𝑒𝑙𝑙 is the number of 

cells that has already been obtained in segment “A". In a similar manner, machine 𝑖 is 

assigned to cell 2 if its corresponding gene 𝑖 take a value between (1
𝑁𝑐𝑒𝑙𝑙

⁄ , 2
𝑁𝑐𝑒𝑙𝑙

⁄ ], and 

so forth. For example, in Figure 4.5, the value of gene 𝑖 = 1 is 0.97 and given segment “A” 
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it is known that three cells are generated (𝑁𝑐𝑒𝑙𝑙 = 3). As 0.97 is between (2
3⁄ , 3

3⁄ ], 

machine 1 is assigned to cell 3. 

Segments “F" and “G” are responsible to determine the positions of the P/D points. Since 

the positions of the P/D points can change from one period to the other, these segments 

make 𝑇 × 𝑁𝑐𝑒𝑙𝑙 matrices where T is the number of periods and 𝑁𝑐𝑒𝑙𝑙 is the number of 

created cells. 

Segment “F" specify which side of the cell is selected for locating the P/D point in each 

period. The values in the range [0, 0.25], (0.25, 0. 5], (0.5, 0.75] or (0.75, 1] indicate that 

the P/D point is located on the left, upper, right, or bottom side of the cell, respectively. 

For instance, in Figure 4.5, the corresponding gene for cell 1 in period 1 is 0.80. As this 

value is in the range (0.75, 1], the P/D point of cell 1 in period 1 is located on its bottom 

side. Through segment “G” the exact position of P/D point on the selected side of the cell 

is determined. Each side is graded from zero to one from the left corner to the right or from 

the bottom corner to the top. In this way, for instance, the value 0.5 indicates that the P/D 

point is located in the middle of the side. 

4.5.2.2. Binary Tournament Selection 

In the binary tournament selection, a pair of chromosomes are chosen at random from the 

population and are compared in terms of their rank, the value of the crowding distance 

(rounded to two decimal places), and variance of crowding distance. If they belong to 

different fronts, the one which is in a lower rank is preferred. If both belong to the same 

non-dominated front, the solution that has a higher value of DCD is selected. If the value 

of DCD is the same for both, then the one that has the lower value of 𝑉𝐶𝐷 is deemed better. 

4.5.2.3. Crossover Operator 

The crossover operator generates two new chromosomes (offspring) with new 

characteristics being inherited from the two chromosomes of the initial population (their 

parents). There are different types of crossover (single-point, double-point, arithmetic, and 

uniform) that can be used in the MNSGA-II algorithm. In this study, two different 

crossover operators are used with equal probability. 
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The first crossover is an arithmetic crossover for all the fields of the chromosome. Using 

this crossover operator, two parent chromosomes are selected by the binary tournament 

selection strategy and are linearly combined to generate two new offspring. For instance, 

using Equations (4.72) and (4.73) the arithmetic crossover is applied on the x-coordinate 

(�̂�) of the machines of two parents to obtain the x-coordinate (�̂�) of the machines of 

offspring, where r is a random number between zero and one. 

�̂�𝑛𝑒𝑤1 = 𝑟�̂�𝑝𝑎𝑟𝑒𝑛𝑡1 + (1 − 𝑟)�̂�𝑝𝑎𝑟𝑒𝑛𝑡2         (4.72) 

�̂�𝑛𝑒𝑤2 = (1 − 𝑟)�̂�𝑝𝑎𝑟𝑒𝑛𝑡1 + 𝑟�̂�𝑝𝑎𝑟𝑒𝑛𝑡2         (4.73) 

A single-point crossover is applied to x and y-coordinates (�̂�,�̂�), orientation, and the cell 

number of machines and an arithmetic crossover for 𝛼, and the location of the P/D points. 

4.5.2.4. Mutation Operator 

The mutation is used to maintain diversity in individuals of the population and to prevent 

premature convergence of the algorithm. To generate a new chromosome (offspring) from 

a parent chromosome in the proposed MNSGA-II, two numbers are selected randomly 

between 1 to N. Then the elements of the parent vector that are between these two numbers 

are reversed. The mutation is applied only to the x and y-coordinates of machines (�̂�,�̂�), 

the orientation of machines, and the cell number of machines that correspond to the 

segments B, C, D and E of the chromosome, respectively. 

4.5.2.5. Improvement Algorithm 

The improvement algorithm is applied to the Pareto front chromosomes. It implements a 

set of minor changes in the position of machines and makes them closer to each other to 

create a more coherent layout. These minor changes do not affect the CF and hence, the 

second objective remains unchanged. However, these changes lead to a decrease in MHC. 

In the first step of the improvement algorithm, the machines are randomly selected one at 

a time. In the second step, the position of the selected machine is slightly changed by 

moving it in four main directions. After each of the four displacements is applied, the MHC 

is calculated and the one that leads the best MHC is executed. Next, the orientation of the 

machine is changed and in a similar manner, the best orientation for each machine is 

selected. After improving the position and orientation of machines, the cells are selected 



115 

 

randomly one at a time and the position of the P/D point of the cell is slightly changed in 

both directions alongside the side it is located; then, the change that leads to the best MHC 

is applied. 

 

4.6. Computational Results 

In this section, a set of computational experiments is conducted to evaluate the 

effectiveness of the proposed method. To this aim, in Section 4.6.1, a set of data from 

literature is taken into account. Section 4.6.2. describes how the parameters of the 

algorithms are tuned. Metrics to evaluate the algorithms are enumerated in Section 4.6.3. 

In Section 4.6.4, the efficiency of the proposed MNSGA-II is evaluated. As there is no 

appropriate benchmark available to validate the performance of the proposed MNSGA-II, 

two other popular metaheuristic algorithms, namely non-dominated ranking genetic 

algorithm (NRGA) and multi-objective particle swarm optimization algorithm (MOPSO), 

are used. These algorithms are used because they are known as efficient population-based 

algorithms for multi-objective optimization problems. The solution structure and function 

evaluation procedure in both algorithms are akin to the ones in the proposed MNSGA-II. 

The details of the implemented NRGA are available in Mousavi et al. [38], and details of 

MOPSO are in Nemati-Lafmejani et al. [39]. It is noteworthy to note that the parameter 

tuning was done using Design Expert 7 and the algorithms were coded using MATLAB 

software (release 2018a) and executed on a computer with core (TM) i5-CPU 2.40 GHz, 

RAM 4.00 GB. 

4.6.1. Data Set 

This section provides the details of the data sets used to test the proposed approach for 

solving the SRCMS. The data sets which are taken from the literature include the 

dimensions of the machines, the demand, and the sequence of the operations of the 

products. Since these data sets were produced for single period problems and demands for 

other periods are not available, the demand is randomly generated using the uniform 

distribution (see Table 4.3-4.7). Other missing data such as the length and width of the 

shop floor and the inter- and intra-cellular MHC are made available in Table 4.2. As shown 
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in Table 4.2, there are ten different problem sizes according to the number of machines 

(𝑀), periods (𝑇) and products (𝑃). For each size, three test problems are generated by 

changing the length and width of the shop floor and inter- and intra-cellular MHC. The 

shop floor (i.e., its length and width) is constructed in a way such that the total area of the 

machines constitutes 85% of the area of the shop floor. For all test problems, a clearance 

distance of one meter is considered between machines and three meters between cells. 
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Table 4.2. The input data for test problems 

Problem   Parameters added to each problem 

No Source 
Size 

(𝑀 × 𝑇 × 𝑃) 

 

Demand 

 Shop floor (m)  Cost(unit per meter) 

  Length Width  
Inter-

cellular 

Intra-

cellular 

1 Souilah [40] 8×3×17  [Table 4.3]  101 60  20 32 

2 8×3×17  [Table 4.3]  100 77  11 16 

3  8×3×17  [Table 4.3]  111 77  20 29 

           

4  8×6×17  [Table 4.3]  112 84  10 20 

5  8×6×17  [Table 4.3]  87 96  19 30 

6  8×6×17  [Table 4.3]  71 77  9 15 

           

7 Mohammadi and 

Forghani [4] 
8×3×20  [Table 4.4]  28 22  5 10 

8 8×3×20  [Table 4.4]  22 24  10 15 

9  8×3×20  [Table 4.4]  22 20  12 20 

           

10  8×6×20  [Table 4.4]  24 16  12 15 

11  8×6×20  [Table 4.4]  20 24  17 25 

12  8×6×20  [Table 4.4]  23 20  19 28 

           

13 Feng et al. [41] 12×3×15  [Table 4.5]  28 29  5 12 

14 12×3×15  [Table 4.5]  24 27  8 16 

15  12×3×15  [Table 4.5]  28 32  5 10 

           

16  12×6×15  [Table 4.5]  25 32  14 25 

17  12×6×15  [Table 4.5]  25 24  11 20 

18  12×6×15  [Table 4.5]  39 27  10 15 

           

19 Allahyari and 

Azab [28] 
16×3×7  [Table 4.6]  97 131  15 20 

20 16×3×7  [Table 4.6]  81 159  17 25 

21  16×3×7  [Table 4.6]  68 71  10 18 

           

22  16×6×7  [Table 4.6]  75 95  20 28 

23  16×6×7  [Table 4.6]  61 63  21 35 

24  16×6×7  [Table 4.6]  77 108  18 30 

           

25 Mohammadi and 

Forghani [4] 
25×3×40  [Table 4.7]  96 207  25 40 

26 25×3×40  [Table 4.7]  82 58  18 35 

27  25×3×40  [Table 4.7]  45 72  8 15 

           

28  25×6×40  [Table 4.7]  56 53  10 15 

29  25×6×40  [Table 4.7]  95 412  19 25 

30  25×6×40  [Table 4.7]  104 98  20 30 
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Table 4.3. Product demand for problems with 17 products [40] 

Product 
 Period  

Product 
 Period 

 1 2 3 4 5 6   1 2 3 4 5 6 

1  5 11 12 7 10 6  10  18 24 23 16 20 17 

2  11 15 13 5 13 7  11  18 12 10 14 15 14 

3  17 17 16 21 22 19  12  12 11 11 11 6 7 

4  45 36 35 43 52 34  13  1 2 2 1 2 1 

5  6 12 5 12 11 5  14  10 7 3 5 11 12 

6  10 4 10 9 10 2  15  5 2 5 7 9 8 

7  24 26 40 28 38 40  16  57 50 43 51 54 56 

8  93 101 93 93 85 105  17  7 7 2 7 7 2 

9  8 8 12 13 10 6          

 

 

Table 4.4. Product demand for problems with 20 products [4] 

Product 
 Period  

Product 
 Period 

 1 2 3 4 5 6   1 2 3 4 5 6 

1  83 82 95 85 89 125  11  92 93 96 92 76 122 

2  112 96 105 82 72 127  12  90 122 93 121 126 85 

3  94 91 93 84 92 100  13  103 72 83 105 88 118 

4  105 89 129 122 124 106  14  106 90 83 88 121 115 

5  73 85 122 78 91 112  15  118 110 105 76 103 73 

6  106 110 123 84 122 118  16  77 129 130 90 78 125 

7  117 71 111 73 76 98  17  74 71 97 112 91 118 

8  92 117 89 91 128 118  18  121 121 105 110 128 108 

9  79 117 87 103 124 78  19  73 99 89 110 97 106 

10  87 76 88 114 85 111  20  101 103 121 79 71 115 

 

 

Table 4.5. Product demand for problems with 15 products [41] 

Product 
 Period  

Product 
 Period 

 1 2 3 4 5 6   1 2 3 4 5 6 

1  47 33 31 37 34 40  9  40 32 43 38 26 29 

2  37 43 35 54 51 43  10  48 44 34 40 33 39 

3  49 33 47 47 35 45  11  45 54 50 58 55 54 

4  27 25 27 31 30 35  12  26 35 27 21 28 30 

5  29 28 40 28 33 27  13  43 39 42 41 42 40 

6  29 26 45 31 27 43  14  27 43 27 35 28 34 

7  29 32 28 42 37 39  15  30 39 32 28 33 20 

8  40 30 26 25 27 35          
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Table 4.6. Product demand for problems with 7 products [28] 

Product 
 Period 

 1 2 3 4 5 6 

1  189 199 236 189 199 236 

2  377 386 406 377 386 406 

3  466 518 544 466 518 544 

4  256 252 221 256 252 221 

5  230 240 151 230 240 151 

6  176 153 194 176 153 194 

7  225 221 202 225 221 202 

 

Table 4.7. Product demand for problems with 40 products [4] 

Product 
 Period  

Product 
 Period 

 1 2 3 4 5 6   1 2 3 4 5 6 

1  155 147 176 156 161 133  21  75 88 90 94 99 114 

2  160 176 206 205 183 152  22  100 86 79 89 75 60 

3  135 117 135 111 117 116  23  140 151 145 139 126 132 

4  150 127 150 179 204 177  24  62 57 58 67 79 93 

5  210 236 212 246 282 300  25  85 102 96 77 82 96 

6  230 229 190 215 255 263  26  185 202 183 163 152 150 

7  85 72 75 63 65 66  27  55 52 56 58 69 65 

8  90 100 97 115 98 111  28  130 115 125 147 138 153 

9  95 107 110 108 115 117  29  125 113 131 106 114 97 

10  86 99 109 102 102 114  30  135 149 130 134 113 106 

11  55 56 66 70 60 71  31  65 55 49 49 42 41 

12  120 102 118 107 86 72  32  90 104 94 102 100 108 

13  142 138 139 156 169 164  33  100 109 88 101 116 117 

14  140 158 132 143 148 172  34  90 95 92 91 80 79 

15  100 110 115 116 99 96  35  120 138 165 191 178 174 

16  65 62 58 65 69 77  36  130 133 153 143 126 106 

17  85 86 78 69 82 87  37  145 138 163 140 131 131 

18  125 148 161 137 129 118  38  250 276 287 282 282 243 

19  102 93 81 65 61 69  39  60 70 56 55 63 71 

20  105 126 127 140 134 142  40  90 96 113 106 90 104 

 

4.6.2. Evaluation Metrics of the Metaheuristic Algorithms  

In general, the performance criteria for a multi-objective optimization algorithm determine 

the Intensification (i.e., how close Pareto solutions are to the ideal Pareto solution) and 

Diversification (i.e., how wide and uniform the solutions are distributed along the Pareto 

front) of the search. In order to measure the above performance criteria, a variety of metrics 

have been proposed. The pros and cons of the various performance metrics have been 
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discussed by Zitzler et al. [42]. Four metrics are used in this study: i) spacing, ii) mean 

ideal distance, iii) max spread, and iv) computational time. 

4.6.2.1.  Spacing (SP) 

The performance metric spacing (SP) that was first introduced by Schott [43] calculates 

the standard deviation of the rectilinear distances between each individual in the Pareto-

optimal set and its closest neighbor (Equations (4.70)-(4.72)). 

𝑆𝑃(𝑆) = √
1

|𝑆|−1
∑ (𝑑𝑖 − �̅�)2|𝑆|

𝑖=1           (4.70)  

𝑑𝑖 = min
𝑠𝑗∈𝑆 

𝑠𝑗≠𝑠𝑖

∑  |𝑓𝑖
𝑚 − 𝑓𝑗

𝑚|
𝑁𝑜𝑏𝑗

𝑚=1            (4.71) 

�̅� =
∑ 𝑑𝑖

|𝑆|
𝑖=1

|𝑆|
            (4.72) 

where 𝑆 is the set of Pareto-optimal solutions. 

 

Figure 4.6. The drawback of the original SP metric 

 

As can be seen in Figure 4.6 (a), the rectilinear distances between each individual and its 

closest neighbor are the same for all individuals. Hence, the SP metric is zero although the 

solutions are not spread on the Pareto-optimal front uniformly. On the other hand, Figure 

4.6 (b) depicts better solutions in terms of uniformity but as the distance of the closest 

neighbors for D and E are less than the other individuals, the SP metric is greater than zero.  
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To overcome this issue, a modified SP metric (MSP) is presented in this section to check 

how evenly the solutions are spread over the Pareto front. In the modified formulation, 

instead of calculating the shortest distance, the Euclidean distance of each individual with 

its successive neighbor is calculated. This method works well when there are only two 

objectives; it is not possible to define neighboring solutions if there are more than two 

objectives. 

To calculate the MSP, first, the solutions should be sorted with respect to one of the 

objectives and then the Euclidian distance between each individual and the one that is next 

to it in the sorted order is calculated. Second, the standard deviation of such distances, the 

MSP, is calculated as outlined in Equations (4.73)-(4.75). 

𝑀𝑆𝑃(𝑆) = √
1

|𝑆|−1
∑ (𝐷𝑖,𝑖+1 − �̅�)2|𝑆|

𝑖=1          (4.73) 

𝐷𝑖,𝑖+1 = √(
|𝑓𝑖+1

1 −𝑓𝑖
1|

𝑓𝑚𝑎𝑥
1 −𝑓𝑚𝑖𝑛

1 )2 + (
|𝑓𝑖+1

2 −𝑓𝑖
2|

𝑓𝑚𝑎𝑥
2 −𝑓𝑚𝑖𝑛

2 )2         (4.74) 

 

�̅� =
∑ 𝐷𝑖,𝑖+1

|𝑆|−1
𝑖=1

|𝑆|−1
            (4.75) 

 

4.6.2.2. Mean Ideal Distance (MID) 

The MID determines the average of distances of Pareto solutions from an ideal point (the 

maximum objective function value in a maximizing function or the minimum objective 

function value in a minimizing function). The MID index is calculated by Equation (4.76): 

𝑀𝐼𝐷 =  
∑ √(𝑓1

𝑖𝑑𝑒𝑎𝑙−𝑓1
𝑖)2+(𝑓2

𝑖𝑑𝑒𝑎𝑙−𝑓2
𝑖)2|𝑆|

𝑖=1

|𝑆|
           (4.76) 

where 𝑓1
𝑖𝑑𝑒𝑎𝑙 and 𝑓2

𝑖𝑑𝑒𝑎𝑙 are the values of the first and the second objective functions of the 

ideal point and 𝑓1
𝑖 and 𝑓2

𝑖 are the values of the first and second objectives functions of 

solution 𝑖, respectively. According to the definition of MID, the smaller the MID the better 

the quality of obtained solutions. Since the objectives of the proposed SRCMS problem are 

to be minimized, the values of 𝑓1
𝑖𝑑𝑒𝑎𝑙 and 𝑓2

𝑖𝑑𝑒𝑎𝑙 are zero. 
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4.6.2.3. Max Spread (MS) 

The MS reports the spread of the Pareto solutions set and is measured by Equation (4.77). 

The algorithm with the higher value of MS has a better performance. 

𝑀𝑆 =  √(𝑓1
𝑚𝑎𝑥 − 𝑓1

𝑚𝑖𝑛)2 + (𝑓2
𝑚𝑎𝑥 − 𝑓2

𝑚𝑖𝑛)2        (4.77) 

 

4.6.2.4. Computational Time (CPU time) 

The computational time (CPU time) represents the required computational time to run an 

algorithm. 

 

4.6.3. Calibration of Parameters 

It is common knowledge that in order for a metaheuristic to achieve its potential, 

parameters need to be finely tuned using experimental design. To ensure a fair comparison, 

all of the parameters of the developed algorithms are tuned via the response surface method 

(RSM). To this aim, the parameters of the algorithms and their levels are determined based 

on preliminary experiments. These parameter levels are shown in Table 4.8. Then, 2k 

experiments are designed and implemented. Finally, regression analysis is applied to 

provide the functional relationship between the algorithms parameters and the response 

variable. For more information on our implemented experiments, see the article by Najafi 

et al. [44]. We consider the multi-objective coefficient of variation (MOCV) metric as a 

response variable of each experiment. MOCV, presented by [45], can support algorithm 

intensification through the inclusion of an MID metric and algorithm diversification 

through MS metric (Equation 4.78). The lower value of MOCV is desirable. 

 

𝑀𝑂𝐶𝑉 =  
𝑀𝐼𝐷

𝑀𝑆
             (4.78) 
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Table 4.8. The parameters of the algorithms and their optimum values 

Algorithm Parameter Description Low level (-1) High level (+1) Optimum 

MNSGA-II  

𝑁𝑝𝑜𝑝 Initial pop size 100 300 291 

𝑝𝑐 Percent of crossover 0.75 0.85 0.77 

𝑝𝑚 Percent of mutation 0.03 0.08 0.03 

𝑀𝑎𝑥𝐼𝑡 Number of iteration 50 150 124 

NRGA 

𝑁𝑝𝑜𝑝 Initial pop size 100 300 300 

𝑝𝑐 Percent of crossover 0.75 0.85 0.84 

𝑝𝑚 Percent of mutation 0.03 0.08 0.07 

𝑀𝑎𝑥𝐼𝑡 Number of iteration 50 150 123 

MOPSO 

𝑁𝑝𝑜𝑝 Initial pop size 200 400 262 

𝐶1 Cognitive acceleration coefficient 1 2 1 

𝐶2 Social acceleration coefficient 1 2 2 

𝑊 Inertia weight 0.5 0.99 0.77 

𝑁𝑟𝑒𝑝 Number of repositories 100 200 102 

𝑁𝑔𝑟𝑖𝑑 Number of adaptive grid 4 10 6 

𝑀𝑎𝑥𝐼𝑡 Number of iteration 300 500 498 

 

After implementing the experiments, the quadratic equations are developed using a 

stepwise regression method (𝑎𝑙𝑝ℎ𝑎 = 0.1) to show the relationship between the 

parameters of the algorithm and MOCV. 

𝑀𝑂𝐶𝑉𝑁𝑆𝐺𝐴−𝐼𝐼  = 23.38782 − 4.89478𝐸 − 003 × 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 0.21881

× 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 − 17.50400 × 𝑃𝑐 + 33.75406 × 𝑃𝑚 + 0.13577

× 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 × 𝑃𝑐 + 0.12243 × 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 × 𝑃𝑚 + 3.98433𝐸

− 004 × 𝑃𝑜𝑝𝑠𝑖𝑧𝑒^2 

   (4.79) 

𝑀𝑂𝐶𝑉𝑁𝑅𝐺𝐴 = 11.36890 + 1.89622𝐸 − 003 × 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 − 0.055968

× 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 1.28201 ×  𝑃𝑐 − 30.52260 × 𝑃𝑚 − 4.04264𝐸

− 003 × 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 × 𝑃𝑐 + 2.25214𝐸 − 004 × 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛^2

+ 112.05599 × 𝑃𝑚^2 

   (4.80) 
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𝑀𝑂𝐶𝑉𝑀𝑂𝑃𝑆𝑂 =  40.38886 − 0.076039 ×  𝑃𝑜𝑝𝑠𝑖𝑧𝑒 − 1.42919 × 𝐶1

− 20.56748 × 𝐶2 + 4.34297 × 𝑊 − 0.017938 × 𝑁𝑟𝑒𝑝

− 0.73296 × 𝑁𝑔𝑟𝑖𝑑 − 5.42501𝐸 − 003 × 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

+ 1.01410 × 𝐶1 × 𝐶2 + 0.023116 × 𝐶2 × 𝑁𝑟𝑒𝑝 + 0.47581 

× 𝐶2 × 𝑁𝑔𝑟𝑖𝑑 − 0.020118 × 𝑊 × 𝑁𝑟𝑒𝑝 + 1.23867𝐸 − 004

× 𝑃𝑜𝑝𝑠𝑖𝑧𝑒^2 + 3.02861 × 𝐶2^2 

   (4.81) 

According to the analysis of variance, shown in Tables 4.9-4.11, it can be said that the 

regression functions can properly estimate the response variable. By optimizing the 

Equations (4.79)-(4.81), the optimum values for each algorithm are obtained. The optimum 

value for each factor of the metaheuristics is highlighted in Table 4.8. 

Table 4.9. ANOVA results of the regression model 

 

 

  Source Sum of squares 
Degrees of 

freedom 
Mean square F-Test P-value 

MNSGA-II 

 Regression 63.608 7 9.086 22.021 < 0.0001 

 Residual error 9.077 22 0.412   

 Total 72.685 29    

  𝑅2= 87.51%       ,  𝑅2(𝑎𝑑𝑗) = 83.54%     ,  𝑅2(𝑝𝑟𝑒𝑑)=70.93% 

        

NRGA 

 Regression 12.349 7 1.764 21.498 < 0.0001 

 Residual error 1.805 22 0.082   

 Total 14.154 29    

  𝑅2=0.8725%      ,  𝑅2(𝑎𝑑𝑗) = 83.19%     ,  𝑅2(𝑝𝑟𝑒𝑑)=70.54% 

        

MOPSO 

 Regression 157.371 13 12.105 20.636 < 0.0001 

 Residual error 21.117 36 0.5865   

 Total 178.488 49    

  𝑅2=88.17%      ,  𝑅2(𝑎𝑑𝑗) = 83.90%     ,  𝑅2(𝑝𝑟𝑒𝑑)=76.84% 
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4.6.4. Evaluating the Proposed Metaheuristic 

In this section, the MNSGA-II is compared with two other popular algorithms, namely, 

MOPSO and NRGA. Table 4.10 shows the values of the four performance measures; the 

best values are boldfaced. From the results exhibited in Table 4.10, it is obvious that 

MNSGA-II surpasses the other algorithms in regard to the SP metric almost in all 

experimental problems, especially for large-sized instances. On the other hand, NRGA 

generally performed better than MOPSO in SP. As for the MS metric, MNSGA-II and 

MOPSO have better performance than NRGA. In terms of MID, MNSGA-II and NRGA 

carry out better than MOPSO. Finally, MOPSO performs far better than the two other 

algorithms in terms of computational time. 
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Table 4.10. Results of the algorithms for all the test problems 

 MNSGA-II  NRGA  MOPSO 

 MS SM MID Time (s) 
 

MS SM MID Time (s) 
 

MS SM MID Time (s) 

1 1024147 0.165 1544768 688 
 

1052484 0.179 1756184 683 
 

665382 0.335 1668132 484 

2 821959 0.137 980928 714 
 

321561 0.142 956398 598 
 

172958 0.240 1094890 460 

3 2038273 0.191 1670227 772 
 

712526 0.179 1755753 739 
 

427367 0.375 2013282 469 

4 1655830 0.131 2104390 922 
 

1369679 0.193 2219112 1048 
 

3484697 0.225 2725490 588 

5 2467344 0.153 3599694 850 
 

1984163 0.132 3537936 1034 
 

4152602 0.344 3978479 612 

6 2100129 0.093 1743029 1007 
 

1234466 0.206 1678296 1151 
 

412526 0.166 2001310 685 

7 424302 0.112 921410 772 
 

327864 0.141 879007 728 
 

662238 0.322 901350 483 

8 1141433 0.157 1583483 727 
 

549421 0.162 1557200 727 
 

256801 0.265 1989792 482 

9 727231 0.169 2077145 771 
 

698730 0.235 1987927 751 
 

242233 0.248 2249046 555 

10 3022966 0.085 3797670 974 
 

2280413 0.116 4035371 1095 
 

1360985 0.140 4664961 763 

11 1343311 0.171 4954910 854 
 

4208639 0.151 5381018 979 
 

5848025 0.346 6165932 790 

12 2499547 0.206 6090287 816 
 

2100684 0.200 6137290 942 
 

1901971 0.235 7565420 717 

13 285543 0.168 457761 1501 
 

166259 0.222 473655 1482 
 

353928 0.280 692734 1077 

14 452282 0.083 718725 3029 
 

443045 0.094 740415 3378 
 

386735 0.239 905171 1054 

15 262085 0.102 462506 4472 
 

245548 0.125 485505 5467 
 

158308 0.177 575936 1239 

16 877735 0.076 2668660 6209 
 

1322725 0.102 2524441 8220 
 

1423896 0.181 3668959 1506 

17 1258626 0.092 2104559 8561 
 

796235 0.121 1926970 11338 
 

3044395 0.230 2399439 2343 

18 1069712 0.063 1685588 10897 
 

559692 0.090 1713831 14153 
 

240679 0.091 1887924 1419 

19 26540934 0.115 15737103 2290 
 

7570759 0.155 17005403 2912 
 

6478592 0.224 29941893 1614 

20 10979148 0.132 19014829 2209 
 

7475829 0.168 18564290 4326 
 

18674301 0.237 28814720 1303 

21 9081027 0.146 11499361 2515 
 

3415467 0.180 10930829 5992 
 

4535023 0.192 14316496 1712 

22 13404009 0.148 51103053 3168 
 

18874596 0.214 50576704 7045 
 

17858019 0.176 60146703 2725 

23 20227118 0.104 50117513 3730 
 

49249536 0.132 51550925 9850 
 

16231462 0.120 65588122 3135 

24 75479777 0.139 45314096 4552 
 

21925751 0.177 46463213 10289 
 

19388846 0.282 60013970 2434 

25 25354580 0.124 26455610 6764 
 

25057011 0.198 32673518 8304 
 

32508482 0.293 35958566 4767 

26 14838519 0.158 17264486 6557 
 

8229776 0.209 18002576 7840 
 

46532095 0.314 35242996 4128 

27 4936999 0.117 7956421 6456 
 

4852961 0.155 7706014 7644 
 

15249143 0.204 13758519 4326 

28 11019840 0.094 17702025 11494 
 

10658531 0.129 18779445 16152 
 

6803162 0.228 22348198 7855 

29 25465204 0.095 33654478 12181 
 

42115457 0.119 37156843 17070 
 

9515728 0.173 45175378 7951 

30 22736354 0.106 44606554 13905 
 

113252841 0.139 54967862 18729 
 

203869049 0.321 80821170 9718 

 

In order to determine if the various algorithms perform significantly different, a single 

factor ANOVA is conducted. In order to perform the ANOVA test, the results of Table 10 

are initially normalized by the relative percentage deviation (RPD) as formulated in 

Equation (4.82). 
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𝑅𝑃𝐷𝑖𝑗 =
|𝐴𝑙𝑔𝑠𝑜𝑙(𝑖𝑗)−𝐵𝑒𝑠𝑡𝑠𝑜𝑙(𝑖)|

𝐵𝑒𝑠𝑡𝑠𝑜𝑙(𝑖)
× 100   𝑖 = 1, … , 𝑛      (4.82) 

where, 𝑅𝑃𝐷𝑖𝑗 is the RPD of algorithm 𝑗 in problem 𝑖, 𝐴𝑙𝑔𝑠𝑜𝑙 is the metric’s value algorithm 

𝑗 in problem 𝑖, 𝐵𝑒𝑠𝑡𝑠𝑜𝑙(𝑖) is the best value of the metric among all algorithms, and 𝑛 is the 

number of problems. The obtained ANOVA results are shown in Table 11. A P-value less 

than 0.05 indicates the rejection of the Null hypothesis (equality of the algorithms). This 

means that there is a significant difference between algorithms.  

Table 4.11. ANOVA results for all performance metrics 

 

According to Table 11, it is clear that the algorithms have significant differences in terms 

of all performance metrics except for the MS metric.  For a deeper investigation of the 

algorithms, Tukey test is utilized.  The 95% Tukey simultaneous confidence intervals are 

calculated and are shown in Figure 4.7. According to Figure 4.7, it can be concluded that 

in terms of the MS metric all of the algorithms are performing similarly. However, 

MNSGA-II is relatively better than two other algorithms. Regarding the SP metric, it can 

be statistically concluded that MNSGA-II has the highest quality among all the algorithms. 

  Source Sum of Squares 
Degrees of 

freedom 
Mean Square F-Test P-Value 

Max 

Spread 

 Algorithm 2692.2 2 1346.11 1.47 0.2355 

 Error 79644.7 87 915.46   

 Total 82336.9 89    

        

Spacing 

 Algorithm 139097.6 2 69548.8 65.85 3.85E-18 

 Error 91885.3 87 1056.2   

 Total 230982.9 89    

        

Mean 

Ideal 

Distance 

 Algorithm 19422.7 2 9711.36 43.92 6.51E-14 

 Error 19236.2 87 221.11   

 Total 38658.9 89    

        

CPU Time 

 Algorithm 375437.4 2 187718.7 11.12 5.03E-05 

 Error 1469313 87 16888.6   

 Total 1844750 89    
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The main reason for this occurrence is the modified crowding distance applied in the 

MNSGA-II, which made it capable of obtaining a well-distributed Pareto front. Based on 

the MID metric, the efficiency of the MNSGA-II and NRGA is at the same level. MOPSO 

performs too week with regard to this metric. Finally, in terms of CPU time, the MOPSO 

algorithm is dramatically better than the two other algorithms. Meanwhile, MNSGA-II and 

NRGA are statistically at the same level.  

 

 

Figure 4.7. Tukey simultaneous confidence intervals of the algorithms. 

 

Besides, problems 19 and 25 are selected as two large-sized problems that the convergence 

graphs of the algorithms for these problems are shown in Figs. 8 and 9, respectively. These 
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graphs are plotted by calculating the average objective function values of the Pareto-front 

solutions in each iteration. Examining Figure 4.8, it is seen MNSGA-II and NRGA 

converge during the first 300 iterations to a near-to-optimal solution. By contrast, MOPSO 

requires around 500 iterations to converge. Since the convergence curve for MNSGA-II is 

lower than those of the other algorithms, it has a stronger ability to search than the other 

methods. 

 

 

Figure 4.8. Convergence graph of the algorithms for problem 19 
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Figure 4.9. Convergence graph of the algorithms for problem 25 

 

4.7. Conclusions 

In this chapter, a semi-robust approach is presented for the integrated CF and CL (inter- 

and intra-cellular) problems in a CMS in a dynamic environment. Higher management in 

the industry usually looks for robust layouts in order to avoid any interruption in production 

or rearrangement of facilities. The advantage of the proposed SRCMS is that although it is 

robust and the location and orientation of machines are fixed for all the periods, it still 

adapts to changes in the demand from a period to the next by accommodating the locations 

of the P/D points of the cells. 

The problem is formulated as a multi-objective MINLP model and is solved using a 

modified NSGA-II. An improved modified non-dominated sorting strategy is employed in 
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the proposed MNSGA-II that results in a better uniformity in the obtained solutions of the 

Pareto–optimal front. The performance of the proposed MNSGA-II is compared, in terms 

of the multi-objective optimization criteria, against the two other well-known multi-

objective optimization algorithms, MOPSO and NRGA. Given the obtained results, it can 

be concluded that the proposed MNSGA-II has better performance as far as the SP metric 

is concerned, which is attributed to the employed modified crowding distance used. Also, 

the improved sorting algorithm results in a better performance in terms of the MS and MID 

metrics. 

For future work, the demand in each period can be considered to be stochastic. In this 

chapter, it is assumed that the pick-up and drop-off points of a cell both are at the same 

place the optimum location of which is determined by the model. Distinct pick-up and 

drop-off points for each cell can be considered for future work. Moreover, the material 

handling system can also be addressed in an integrated manner with the CF and CL 

problems when designing an SRCMS. Future research might also investigate a robust 

layout for flexible manufacturing systems in a dynamic environment that can be adapted 

to the changes of product mix and demand from one period to the next by changing the 

process routing of the products. 
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CHAPTER 5 

CONCLUSIONS 

5.1. Concluding Remarks 

In this dissertation, the FLP in manufacturing systems is studied. A constructive math-

heuristic algorithm is developed to solve a UA-FLP. The layout generated using the 

proposed algorithm can be used as an initial layout for metaheuristic algorithms which 

results in feasible solutions even when the required vs available areas/aspect-ratio is tight.  

As in today’s competitive world, the product’s life cycles are shorter, and their demand is 

changing more frequently, this research mainly focuses on considering this dynamicity and 

its impact on FLP. One of the most common approaches in solving FLP in a dynamic 

environment is the DFLP, which has been the subject of much research.  In this dissertation, 

the DFLP for RMS is studied and solved using the DP approach which is one of the well-

known solution approaches used in the literature. Even though enumerating all the possible 

layouts of each period of DFLP will result in an optimal solution, only small-sized 

problems can be solved in polynomial time. Hence, a solution algorithm that can obtain a 

subset of layouts as the state-space of DP that results in a near-optimal solution for larger 

problems is very challenging. To this aim, a heuristic algorithm is proposed in this 

dissertation that obtains the most promising layouts of each period and a hybrid 

metaheuristic algorithm to select the best subset amongst them as the state-space of DP. 

Computational results demonstrate the outperformance of the proposed approach against 

many DP benchmark instances in the literature.  

The proposed DP is for solving discrete DFLP with equal-area machines. To expand the 

problem under study and to be more realistic, the unequal-area cellular FLP in a dynamic 

environment is investigated. This approach suits a cellular FMS or a conventional machine 

tool job shop. The presented approach is able to obtain the optimum number of cells, 

assignment of machines to different cells, the locations of machines inside each cell, and 

the locations of cells on the shop floor. A nonlinear mixed-integer mathematical model is 

developed that is solved using a multi-objective metaheuristic algorithm. The obtained 

solution is semi-robust against the changes of product mix and demands such that only a 
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single robust layout is used for all the periods and the locations of the cells and machines 

are not changing from a period to the next, yet the locations of the P/D points of the cells 

are changing. Because of this change, even though the machines are not physically 

relocated, the distance of each machine to its cell’s P/D point and the distance between 

cells will vary from a period to the next. This is in line with the minimization of the material 

handling cost of the selected robust layout with respect to the changes of demand. The 

developed model and solution algorithm are validated using cellular manufacturing test 

problems that are the benchmark in the literature. 

 

5.2. Future Work 

Simulation techniques can be used as an integrated part of the solution approach. By using 

simulation, the dynamic and stochastic phenomena of the manufacturing systems are 

handled. Moreover, simulation can address the behavior of the material handling system in 

an integrated manner with the layout problems. 

The hybrid metaheuristic-dynamic programming approach presented in Chapter 3 is tested 

for dynamic facility layout problems. However, this framework can also be applied to other 

combinatorial optimization problems. Therefore, testing the applicability of the proposed 

method for other optimization problems is suggested as future research. 

Regarding the presented mathematical model in Chapter 4, although the assumptions are 

reasonable, relaxing them can be a good direction for future research. For instance, it is 

assumed that parameters related to the material flow between machines are deterministic. 

Extensions of the model can consider these parameters to be stochastic to make the model 

more realistic. Another possible extension can be developing the models that can 

simultaneously optimize the layout decisions and other important manufacturing systems 

decisions such as scheduling, reliability, inventory control, etc. 

The proposed multi-objective model in Chapter 4 is developed to minimize the total 

material handling cost and dissimilarity of machines. A more realistic representation of the 

manufacturing system can be provided by considering performance criteria such as work-

in-process, machine utilization, and transportation time. 
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