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General introduction

DUCHENNE AND BECKER MUSCULAR DYSTROPHY: HISTORICAL
ASPECTS

In 1851 Edward Meryon published the first paper in which Duchenne muscular
dystrophy (DMD) was reported as a disease entity. He described eight patients from
three families with progressive muscle weakness and wasting, onset in early childhood
and death in their late teens. He believed the disease to be hereditary and to have a
predilection for males. By studying muscle tissue obtained post-mortem he observed
that muscle tissue appeared to be primarily affected while the nervous system was still
intact. He also described that the sarcolemma of the ‘elementary fibre’ was broken
down and destroyed and that muscle fibres were converted into ‘granular and fatty mat-
ter’ [1, 2]. Several years later Guillaume Benjamin Amand Duchenne further studied
patients with the same symptoms, describing progressive muscle weakness, initially
affecting the lower limbs and eventually the upper limbs as well. He also observed
a gradual increase in size of the affected muscles. He reported a gradual increase in
interstitial connective tissue of affected muscles with age in muscle biopsies, with
abundant fibrous and adipose tissue in later stages of the disease [3, 4]. In 1879, Gow-
ers described the well-known Gowers’ sign, that refers to the difficulty for patients to
rise from the floor, due to hip and knee extensor weakness, and the compensatory use
of arms to ‘climb up their body’ [5].

Several decades later, in the mid-1950s, Becker and Kiener described a ‘new X-
chromosomal muscular dystrophy’ [6]. They observed that these patients had a similar
pattern of muscle involvement as DMD patients but a much slower rate of disease pro-
gression. This disease entity came to be known as Becker muscular dystrophy (BMD).
As the disease phenotype of these patients was so similar to DMD patients, Becker
and Kiener thought it likely that DMD and BMD were linked to the same gene. This
was confirmed a few decades later, when DMD was mapped to the short arm of the
X-chromosome and DMD and BMD were shown to be allelic [7-9]. In the late 1980s
the product of the DMD gene, dystrophin, was shown to be associated with the muscle
sarcolemma and lack of dystrophin was identified to be the primary biochemical defect
in DMD patients [9-12].

CLINICAL PHENOTYPE

DMD

DMD has an incidence of 1 in 4700 male live births and prevalence of 2.5 in 100.000
[13, 14]. Patients generally present between the ages of two and four years with symp-
toms such as difficulty walking stairs, falling, a waddling gait, a tendency to walk
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Chapter 1

on tip-toe and difficulties rising from the floor [15-17]. Many patients have muscle
enlargement, most notably of the calf muscles. Approximately 50% of DMD patients
have some delay in motor milestones in terms of the age of walking and most patients
are never able to run properly [17]. Muscle weakness is progressive with age, resulting
in wheelchair dependency in patients’ early teens, loss of upper extremity function and
frequent scoliosis [15, 18]. The respiratory muscles become progressively affected and
respiratory failure is the main cause of death, although life expectancy has increased
over the last decades with the accessibility of mechanical ventilation [19-21]. With
age, cardiac muscle also becomes affected, mainly resulting in a dilated cardiomyopa-
thy [22]. Smooth muscle tissue can be involved as well, presenting as gastro-intestinal
tract and bladder problems. Some patients have a delay in intellectual milestones and
speech development and the intelligence quotient has been found to be one standard
deviation below average compared to the general population [23-25]. Patients usually
die in their mid-thirties following respiratory or cardiac failure [26].

BMD

The incidence of BMD is around 1 in 18.450 males and the prevalence 2.4 in 100.000
[13, 27]. Overall BMD patients are less severely affected than DMD patients but show
great variability in the severity of their clinical symptoms and rate of disease progres-
sion. While some patients lose mobility in their teens others experience only mildly
progressive weakness during their adult life. Initial clinical presentation is usually
in patients’ early teens, although some patients present many decades later, with the
most common presenting symptoms being cramping muscle pains, falling, problems
walking stairs and a waddling gait [28-30]. Frequently there is involvement of the
cardiac muscle, which increases with age and is the cause of death in about half of
patients [31, 32].

MUSCLE ANATOMY

The skeletal muscle is surrounded by connective tissue called the epimysium and
consists of muscle fascicles (encased with perimysium) build up from some or many
muscle fibres or myocytes sheated by the endomysium. The myocytes are covered by
the sarcolemma (inner plasma membrane) and outer basement membrane (Figure 1).
The sarcoplasm is the cytoplasm of the muscle fibre and is composed of myofibrils
and mitochondria and ribosomes. In the myofibril, protein filaments (myofilaments)
are organized in repeating units named sarcomeres. These filaments include actin (thin
filament) and myosin (thick filament), which are contracting proteins in the sarcomere.

12
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Figure 1. Skeletal muscle fibre showing dystrophin as part of the dystrophin-glycoprotein complex.

(Reprinted by permission from Macmillan Publishers LTD: Natures Reviews Molecular Cell Biology,
Copyright 2006).

PATHOPHYSIOLOGY

Mechanical factors

There are several hypotheses about the pathogenic mechanisms to the progressive mus-

cle damage in DMD and BMD patients (Figure 2). A key causative factor is thought to

be mechanical. Dystrophin is part of the multimeric dystrophin-glycoprotein complex

(DGC) containing dystrobrevins, syntrophins, sarcoglycans and dystroglycans (Fig-

ure 1). The DGC mechanically links the extracellular matrix surrounding the muscle

fibre to the sarcomere, providing structural stabilization of the muscle sarcolemma and

is also involved in cell signalling [33-36]. The DGCs are localized at the sarcolemma
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Chapter 1

in rib-like lattices named costameres which help transmit forces laterally to the basal
lamina [35]. Dystrophin deficiency disrupts the costameric lattice, which increases
susceptibility to contraction-induced injury [35, 37, 38]. In DMD patients dystrophin
is absent as a mutation in the DMD gene disrupts the translational reading frame
or introduces a premature stopcodon. In contrast, in most BMD patients mutations
(generally deletions) maintain the translational reading frame and as such a shorter
and internally deleted, partly functional, dystrophin protein can be produced [12, 39].
The difference between complete absence and partial absence of dystrophin function is
likely to affect the amount of disruption in the structural integrity of the muscle. This
could explain some of the variability between the two disease entities.

Dystrophin deficiency

Mechanical damage Sarcolemmal loss of NNOS

Increased calcium influx

/ \ Muscle ischaemia

Calpain activation Mitochondrial

damage \

Oxidative stress

» Necrosis -

l

(Chronic)
Inflammation

I

Muscle regeneration Fatty tissue Fibrosis
4 £

~~~~~~~ = Antagonizing effect

Figure 2. Diagram showing various contributing factors to muscle damage in DMD and BMD patients

Calcium related damage

Another potential mechanism contributing to (secondary) muscle damage is an in-
crease in intracellular calcium. It has been hypothesized that stretch induced muscle
damage induces increased intracellular calcium levels, however the exact underlying
mechanism is unknown [40]. Increased intracellular calcium levels decrease the ability
of the muscle to maintain physiological calcium levels and activate calcium-dependent
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General introduction

proteases like calpain, which contribute to degradation of muscle membrane proteins
and cause myonecrosis [41, 42]. Additionally, increased calpain levels may also cause
abnormal mitochondrial function, resulting in cell death [43].

Vascular factors

Neuronal nitric oxide synthase (nNOS) is a dystrophin-associated protein and inter-
acts with spectrin-like repeats 16 and 17 within the rod-terminal of dystrophin and is
recruited to the sarcolemma via a-syntrophin [44, 45]. nNOS produces nitric oxide
(NO), which is an important factor in the reduction of sympathetic vasoconstriction
in contracting muscle [46]. Dystrophin deficiency results in nNOS displacement from
the sarcolemma to the myofiber cytosol and a reduction in its enzymatic activity [44,
47, 48]. The loss of sarcolemmal nNOS renders the muscle prone to muscle ischemia
during muscle contraction following failure of ‘normal’ NO-mediated vasodilatation
[49, 50]. nNOS deficiency also results in NO-related pathology in terms of free radical
production and oxidative stress, leading to further mitochondrial damage [51-53].

Inflammatory factors

Various studies have shown that there is inflammation in muscle tissue of both DMD
and BMD patients [44, 54, 55]. However, whether the inflammatory reaction is pri-
mary or secondary and to what extent inflammation results in additional damage of the
muscle fibres still remains debated [56-60]. While some have suggested that inflam-
mation is a result of non-specific inflammatory cell recruitment to sites of muscle
fibre destruction [55, 59], others proposed that mechanisms such as a toll-like receptor
mediated reaction, a specific cellular auto-immune response or involvement of mast
cells could also contribute to the observed inflammation [55, 61-63].

Fatty infiltration and fibrosis

As a result of the ongoing muscle cell damage satellite cells become activated produc-
ing precursor cells, which differentiate into myoblasts contributing to the regenera-
tion of the injured myofibers. There is also an influx of inflammatory cells that can
phagocytose the degenerated fibres. The capacity of the satellite cells to compensate
the ongoing muscle damage progressively fails, also as consequence of the chronic
inflammation. As a result muscle fibres are increasingly replaced by adipose and con-
nective tissue (Figure 3) [64, 65]. Although there are some signs of ongoing tissue
damage in very young patients before onset of clinical weakness, the signs of muscle
damage become progressively clearer with age [54, 55, 58, 62].
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Chapter 1

Figure 3. Muscle biopsies of DMD patient showing dystrophic features including fat replacement

of muscle, fibrosis and fibre size variability (courtesy of S.G. van Duinen, Department of Pathology
LUMC).

THERAPY

Since the discovery of the DMD gene there have been many studies looking for treat-
ments for DMD patients. Corticosteroids have been shown to increase muscle strength,
delay loss of ambulation and appear to affect the progression of cardiac and respiratory
function in DMD patients [66-71]. The underlying mechanism of this effect remains
largely unknown and the side effects are considerable [72]. Other therapies include
supportive therapies such as cardiac, respiratory management and rehabilitation [73,
74]. Although no curative therapies are yet available, disease-modulating approaches
including Idebenone, which aims to protect against mitochondrial dysfunction, and
Myostatin antibodies aiming to increase muscle mass are currently being investigated.
Translarna (Ataluren) interacts with the ribosome and allows the cell to ignore prema-
ture stop codons and produce functional proteins and has recently received conditional
marketing approval and as such will become available to patients in the near future.
Also, several ongoing studies focus on restoring expression of modified dystrophin [70,
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75, 76]. These include exon skipping strategies, which use antisense oligonuceotides
and aim to ameliorate the DMD into the BMD phenotype [77-79]. Although for BMD
patients no disease modifying drugs are available, there are some, albeit less than in
DMD, clinical trials for these patients. In BMD patients Tadalafil, a Phosphordiesterase
(PDE) 5A inhibitor boosting NO, was shown to alleviate functional muscle ischaemia
and restore blood flow in BMD patients [50]. However, recently the results of another
study aiming to restore the effects of nNOS using a PDE 5 inhibitor (Sildenafil) were
published and found no positive effects muscle blood flow or muscle performance
[80]. Studies currently undertaken in BMD patients include the Follistatin gene, aim-
ing to increase muscle fibre size and strength.

MAGNETIC RESONANCE IMAGING IN DMD AND BMD

The first muscle imaging studies in DMD and BMD patients were ultrasound and
computed tomography (CT) studies in the early eighties and nineties [81-86]. The
initial magnetic resonance imaging (MRI) studies of muscles of DMD patients were
published some years later. In these MRI studies a decrease in the muscle T1 relaxation
time was described and believed to result from (progressive) fat replacement in the
muscles. The changes were found to increase with age, to correlate well with the clini-
cal staging and to be neither uniform in all muscles nor within one muscle [87, 88].
Consequently, it was suggested that MRI could be of potential value in the diagnosis
of DMD and staging of the disease. Additionally, as MRI provided multiplanar, high-
resolution images with good contrast between soft tissues without the use of ionizing
radiation it was felt that MRI could be a preferable imaging method to CT [89].

As MRI is relatively easily accessible and non-invasive it was proposed as a promising
method to assess disease progression and the efficacy of future therapeutic interventions
in DMD patients [90, 91]. In the same period several magnetic resonance spectroscopy
(MRS) studies were performed in DMD and BMD patients [92-97]. MRS can be used
to assess muscle metabolites such as intra- and extramyocellular lipids, choline and
creatine using proton (‘H) -MRS and muscle energy dynamics using phosphorus (*'P)
MRS. These studies mainly focussed on energy metabolism and the effects of exercise.
Although the results of these studies were not fully in agreement, generally there ap-
peared to be alterations in energy metabolism. These alterations included an increase
in muscle pH and abnormal recovery of some metabolites after exercise, which was
more evident in DMD than BMD patients [92-97].

The interest in imaging in DMD and BMD diminished for some years after these initial
studies. The recent development of potential therapies for DMD prompted an increasing
number of MR studies. Various MR techniques are thought eligible to identify changes
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in the muscle that can be used as markers of disease progression. One of the most
striking macroscopic changes in muscles of DMD and BMD patients is the increasing
amount of fat replacement of muscle with progression of the disease. Consequently
the main focus with regards to MRI in these patients has been on the assessment of the
distribution of fatty changes, semi-quantitative and quantitative measurement of the
fat and the relation of the remaining viable muscle with muscle function and strength
[98-109]. Additionally, some studies have focused on the presence of oedema in the
muscles and applied MRS to evaluate the lipid and energy metabolism [103, 108,
110-115].

SCOPE OF THE THESIS

At the start of this thesis there was little imaging data available on quantitative
methods that could be used as outcome parameter in dystrophinopathy patients while
several promising therapeutic approaches were being developed for these patients.
Therefore, the aim of this thesis was to evaluate several MR methods that could serve
as potential outcome parameters in the assessment of muscle pathology in DMD and
BMD patients. In chapter 2 we compare a visual, semi-quantitative, scoring method
to quantitatively score fat fractions in DMD patients and compare different models to
account for the multiple peaks in the fat spectrum using the 3-point Dixon technique.
In chapter 3 we use the 3-point Dixon technique to differentiate between contractile
and non-contractile, fatty infiltrated, muscle in combination with quantitative strength
measurements in DMD patients. In chapter 4 we explore the relation between the qual-
ity and quantity of dystrophin with the amount of fatty infiltration in the lower leg of
BMD patients. In chapter 5 we focus on the muscle T2 relaxation times as indicator of
oedema/inflammation in the muscle in DMD and BMD patients and healthy controls.
Finally, in chapter 6 we use *'P MRS in BMD patients in combination with Dixon
MRI to investigate metabolic changes in lower leg muscles of BMD patients with
non-increased and increased levels of fatty infiltration.
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Chapter 2

ABSTRACT

Purpose

To compare different lipid multi-peak spectral models to the single peak model in
Dixon based fat-water separation and to evaluate differences between visually scored
MR images and quantitatively assessed fat fractions in muscle of Duchenne muscular
dystrophy patients.

Materials and methods

T1-weighted and 3-point Dixon imaging of the upper and lower leg was performed
in thirteen Duchenne patients and six healthy controls. Three-, four- and five peak
lipid spectrum models were compared to a single peak model and to each other. T1-
weighted images were visually scored by two radiologists and quantitative fat fractions
were obtained from Dixon images.

Results

Differences between the multiple-peak spectral models were minimal. The three-peak
model was used for subsequent comparisons. Although there was high correlation
between quantitative and visual scores, visual scores were consistently higher than
quantitative values of the same muscles.

Conclusion

There are minor differences between the various lipid spectral models in terms of
quantifying fat fraction in a large number of skeletal muscles in the legs of Duchenne
patients and healthy controls. Quantitative 3-point Dixon MRI is more precise and
reliable than visual radiological methods for evaluation of fat fractions for potential
longitudinal follow-up or therapy evaluation of Duchenne patients.
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Visual and quantitative MRI in DMD

INTRODUCTION

Muscle MRI is increasingly being used in the evaluation of disease severity in neuro-
muscular diseases such as Duchenne muscular dystrophy (DMD) [98, 99, 109, 116].
DMD is a progressive muscle disease affecting young males and results in a severely
reduced life expectancy of ~30 years. Skeletal muscles of DMD patients show hy-
pertrophy, inflammation, progressive fatty infiltration and fibrosis. The level of fatty
infiltration is considered to be a useful parameter to quantify the effect of new thera-
peutic interventions, and can potentially be measured accurately using non-invasive
MRI protocols [77, 78, 117].

Chemical shift based water-fat separation methods such as the Dixon method use the
phase difference between water and fat to separate these two components. As such,
they can give a quantitative measure of the signal fraction of both water and fat. The
first goal of our study was to compare the performance of different lipid spectrum mod-
els (three-, four- and five- peaks) to the single peak model of the lipid spectrum in fatty
infiltrated muscles of DMD patients, using images acquired with a three-point Dixon
method [98, 118-121]. In its most basic form, processing of the Dixon data models the
fat signal as a single spectral peak, although the fat signal in fact contains multiple
peaks from different saturated methyl and methylene protons, as well as unsaturated
methyne groups. Previous studies have shown both in vitro and in liver, that modelling
of the fat signals as multiple peaks significantly improves the fit and performs better in
tissue with higher fat fractions [119, 122]. However, it is unknown how the multipeak
spectral model behaves in much more spatially inhomogeneous tissues such as fatty
infiltrated muscle.

There are various “semi-quantitative” visual-assessment scales available to describe
the fatty infiltration in the muscle [101, 123-126]. However, although such scales
are very quick to implement for the practicing radiologist, a recent study shows that
semi-quantitative assessment of the fat fraction in muscles of patients with diabetes
overestimates the fatty infiltration when compared to quantitative MRI methods [127].
Most patients in this previous study had relatively low levels of fatty infiltration
and it is currently not known if this overestimation is still present if the muscle fat
fraction is very high, as is often observed in DMD patients. Additionally, in patients
with increased levels of fatty infiltration in the muscles, visual assessment of the fatty
infiltration, especially in intermediate fat ranges, is likely to be less sensitive in detect-
ing small changes [102]. Therefore, these methods could be less suitable for longitu-
dinal follow up or therapy assessment. The second aim of our study was to compare
“semi-quantitative” fat fractions obtained with an accepted neurological visual scoring
method with those obtained using the quantitative MRI method outlined in the first part
of the paper [123].
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METHODS

Patients and controls

In total thirteen DMD patients (mean age 10.8 + 2.0 years; range 8-14 years) and six
healthy controls (mean age 11 + 0.9 years; range 10-12 years) participated in this
study. For the reconstruction with a different number of peaks, raw data are needed.
As they were not present for all subjects data sets of nine patients (mean age 10.6
years = 1.9; range 8-14 years) and six healthy controls (mean age 11 years + 0.9; range
10-12 years) were used for the comparison of single- versus multipeak modelling.
For the comparison of the semi-quantitative and quantitative analysis the images of
ten patients (mean age 10.3 £ 1.9 years; range 8-13 years) were analysed using the
three-peak model [122].

Patients were recruited from the Dutch dystrophinopathy database. Diagnosis of DMD
was confirmed by DNA testing or muscle biopsy showing absence of dystrophin. Pa-
tients had no history of illness other than DMD. Healthy subjects were recruited from
local schools. The local medical ethics committee approved the study and all subjects
or their legal representative gave written informed consent.

MRI

MR images were acquired on a 3T scanner (Achieva, Philips Healthcare, Best, The
Netherlands) from the left upper and lower leg using a 14-cm diameter two-element
receive coil and body coil excitation. The receive coils were positioned on the anterior
and posterior side of the leg; directly below the patella for lower leg imaging and directly
above the patella for upper leg imaging. The left leg was imaged since this allowed opti-
mal positioning of the coil in all patients, even those with some contractures, with respect
to the patient table and the coil. The scanning protocol consisted of a T1-weighted spin
echo (SE) sequence (25 five mm slices, 0.5 mm gap, repetition time (TR) 600ms, echo
time (TE) 16ms) and a 3-point gradient echo Dixon sequence of the same region of
interest (25 five mm slices identical to the T1- weighted slices, 0.5 mm gap, TR 400 ms,
first TE 4.41 ms, echo spacing 0.71 ms, flip angle 8°). The TR of 400 ms and low flip
angle of 8° were chosen to produce minimal T1 weighting. The total scanning protocol,
including positioning of the patients, was performed in 20 minutes.

Quantitative analysis

The 3-point Dixon images were reconstructed with the lipid spectrum modelled as a
single peak or multiple peaks using three different lipid spectrum models. The first
model was a three peak model with frequencies f,-[94, -318, -420] Hz and ampli-
tudes 4,-[0.08, 0.15, 0.78] and was based on the model proposed by Yu et al. [122].
The four peak model resolves the peak from the terminal CH3 group from the large
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aliphatic peak with f,-[94, -318, -418, -470] Hz and 4,-[0.08, 0.15, 0.72, 0.04], and it
was obtained by a weighted average of the signals at -300 and -325 Hz from the five
peak model. Finally, a five peak model with f,-[94, -300, -325, -418, -470] Hz and
4,-[0.08, 0.05, 0.1, 0.72, 0.04] was implemented [128]. The five peak model separates
the a-methylene protons of the COO and C=C bonds into two separate signals. To
obtain fat fractions per muscle, regions of interest (ROIs) were manually drawn using
Medical Image Processing, Analysis and Visualization software package (www.mipav.
cit.nih.gov) on co-registered T1 images on every other slice provided that the muscle
was clearly identifiable. The fat fraction was modelled as Slg/(SIgt+cSlyae), With SI
representing the signal intensity and the factor ¢ (1.41) correcting for differences in the
proton densities of water and fat, as well as the differences in the T2 values of water
(38 ms) and fat (150 ms). In order to obtain realistic proton density and T2 values,
these were measured in one healthy control. T2 values were measured by using a single
slice multi-echo experiment. The proton densities were estimated using a single slice
spin echo sequence with TR/TE 5000 ms/6 ms, and then back-calculating the signal
intensity for a virtual echo time of 0 ms using the T2 values measured previously.

Visual scoring

T1-weighted images of the left upper and lower leg of ten patients (mean age 10.3
years £ 1.9; range 8-13) were scored in consensus by two experienced musculoskeletal
radiologists. For the scoring the available slices within the entire field-of-view, which
was identical to the Dixon images, were used. A visual 4-point scale classified muscle
as: 1-normal muscle, 2-mild changes of less than 30% estimated fatty infiltration,
3-moderate changes of 30-60% estimated fatty infiltration, and 4-severe changes of
more than an estimated 60% showing an increased signal intensity [123]. The following
muscles were scored in the upper leg: rectus femoris, vastus lateralis, vastus interme-
dius, vastus medialis, short head of the biceps femoris, long head of the biceps femoris,
semitendinosus, semimembranosus, adductor longus, adductor magnus, gracilis and
sartorius, and in the lower leg: medial and lateral head of the gastrocnemius, soleus,
flexor digitorum longus, flexor hallucis longus, posterior tibialis, extensor hallucis
longus, peroneus, anterior tibialis and extensor digitorum longus.

Statistical analysis

The SPSS statistical package Version 17.0 for Windows (SPSS Inc., Chicago, IL) was
used for all analyses. A box plot was used to visualize differences between the visual
and quantitative scoring methods and a Spearman correlation was used to compare the
two methods. To evaluate differences between the different multipeak models a Bland-
Altman plot was used. Statistical significance was set at p<0.05. Values are shown as
mean + one standard deviation (SD).
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RESULTS

Single versus multipeak analysis

Figure 1 shows the comparison of the three different multipeak models to the single
peak model. In the range of 0-70% fatty infiltration the multipeak models consistently
show higher fat fractions than the single peak model. The difference between the
models is most prominent in the range of 20-50% fatty infiltration and negligible in the
very high ranges. Subtracted images of the single peak and the three peak model (Fig-
ure 2a.) show a clear difference between these two models, which is much less evident
between the three- and the five peak model (Figure 2b), showing predominantly noise.
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Figure 1. Single peak model versus three peak, four peak and five peak spectral model.
The four peak model deviates most from the single peak model. For all three models the differences are
most apparent in the mid-range of the fat fraction.

Figure 2. Subtracted images of the different spectral peak models.

The three peak minus the single peak model (a) shows a clear difference between the fat fractions of the
two models. The five peak minus the three peak model (b) shows much smaller differences and mainly
noise.
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Figure 3 shows the difference between the four and the five peak model as compared
to the three peak model. Both the four and the five peak model show very slightly
higher fat fractions than the three peak model, with the four peak model showing less
variability in the data. Nevertheless, the differences between the models were so small
that in the subsequent comparisons the three peak model was used.
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Figure 3. Bland-Altman plot showing the differences between the four and five peak model compared
to the three peak model for the average fat fraction.

The four peak model shows less variation in the values which would make the model more precise than
the five peak model.

Figure 4. Upper leg of DMD patient showing the T1 weighted image (a) and a color representation of
the fat fraction in the Dixon image (b).

27



Chapter 2

Visual scoring and quantitative analysis

In ten patients fat fractions from a total of 201 muscles were scored on the 4-point
scale. Of these, 17 (8.5%) were scored as normal, 62 (30.8%) as mildly affected, 34
(16.9%) as moderately affected and 88 (43.8%) as severely affected. The same muscles
were analysed using the data from the 3-point Dixon scans (Figure 4).

There was a significant correlation between the two scoring methods, Spearman r=0.89,
p<0.0001. Figure 5 shows how the quantitative Dixon values relate to the visual scores.
Two main differences were noted. First, the visually scored fat fractions were higher than
their quantitative equivalents, except for normal appearing muscle (Figures 5 and 6).
Second, the variation in the values of the quantitative fat fraction scores was higher with
increasing visually scored values. The variation was most evident in the visually scored
group of severely affected muscles, defined as more than 60% fatty infiltration. Quantita-
tive fat values in this group ranged from a minimum of 16% up to a maximum of 86%.
Overall, in healthy controls the mean quantitative fat fraction was 5.3 £+ 0.98% ranging
from 3 to 10%. The mean quantitative fat fraction in the patients was 29.7 £ 13.2%
ranging from 5 to 86%.
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Figure 5. Visually scored versus quantitative fat fractions.

With visually scored fat scores as 1: normal appearing muscle, 2: mildly affected muscle (<30%), 3:
moderately affected muscle (30-60%) and 4: severely affected muscle (>60%). Especially in the third
and the fourth group of the semi-quantitative values there is large variation of the quantitative values.

DISCUSSION

The first aim of our study was to evaluate the performance of the multipeak models of
the lipid spectrum in chemical shift-based water-fat separation over the entire range
of healthy to severely affected muscles. Several previous in vitro and in vivo liver
studies have shown that accounting for multiple peaks (up to six) of the lipid spectrum
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results in a more accurate measurement of the fat fraction. In this paper we have shown
that in muscle of healthy controls and DMD patients with varying disease severity
multipeak models shows consistently higher fat fractions in the range of 0-70% fatty
infiltration. Compared to the multipeak models, single peak modeling underestimates
the fat fraction in the range of these values, and this underestimation is a non-linear
function of fat fraction. Overall there were very minor differences in the estimate of
fat fraction using a three-, four- or five peak model. The difference between these
results, and those acquired in phantoms and in liver, could be that the lipid spectrum
depends significantly upon muscle fiber orientation. This results in a shift of the lipid
peaks and consequently increases the sensitivity of the model to the specific frequency
of the spectral peaks [129], whereas there is no such variation in either homogenous
phantoms or liver tissue.

Figure 6. T1 weighted image of upper leg of DMD patient comparing visually scored and quantitative
values.

The vastus lateralis visual score was 4 (severely affected) with a quantitative fat fraction of 33%. The ad-
ductor magnus (AM) visual score 4 with fat fraction 47%, sartorius (S) visual score 2 (mild changes) and
fat fraction 10% and for the semimembranosus (SM) the visual score was 4 with a fat fraction of 24%.

Accurate fat quantification in chemical shift-based water-fat separation can also be
influenced by other factors such as the difference in T1 values between fat and water
(which itself is dependent upon the fat/water fraction in a particular voxel) if the im-
ages are T1-weighted [122, 129-131]. By choosing a low flip angle and a long TR in
this study T1 effects were minimized [130]. Additionally, as mentioned above, the
lipid spectrum depends significantly upon muscle fiber orientation and this could also
affect its quantification. However, as in multi echo acquisitions with a low number of
echoes and a short range of echo times the influence of these shifts on the resulting
signal is relatively small [129].
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The second aim of our study was to compare a radiological visual scoring method of the
fat fraction with quantitative MRI values in both healthy and fatty infiltrated muscles.
The mean quantitative fat fraction in our healthy volunteers was in agreement with a
recent study [132]. In muscle of healthy controls and DMD patients with relatively low
fat fractions, the visual scores were highly correlated with the quantitatively obtained fat
fractions. However, the visual scores for the fat fractions in the muscle were generally
higher than their corresponding quantitative values. This finding implies that the visual
scoring measurements overestimate the fat fraction in affected muscles. Alizai et al.
showed a similar finding in the muscle of diabetes patients: in this study most patients
were only relatively mildly affected [127]. Our data shows large variation between the
visually scored and quantitative values, specifically in the severely affected muscles.
The large variability of the visually-scored method illustrates that these methods are
less sensitive for the recognition of subtle changes, as could be present in longitudinal
follow up of DMD patients or in therapy evaluation [133]. The overestimation and
possibly also the variation of the fat fraction with the visually scored methods could
partly be explained by the difficulty in visually differentiating between a moderate
and severely fatty infiltrated voxel, which has also been suggested by Alizai [127].
Secondly it might be difficult to consistently estimate the amount of muscle left in a
diffusely fatty infiltrated muscle as frequently observed in the DMD patients. In the
radiological literature the Goutallier classification is commonly used, (normal muscle,
fatty streaks, less fat than muscle, as much fat as muscle and more fat than muscle)
[125]. This might be easier to use in scoring fatty infiltration of muscle by the human
eye. However, the largest differences are seen in the most severely fatty infiltrated
muscles. Both the overestimation of the fat fraction and the large variability in visually
scored DMD muscle can influence the assessment of possible changes in the muscles
in longitudinal follow up of or in the evaluation of therapy effects. Therefore, in these
situations quantitative evaluation of the fat fraction seems more precise and reliable
than visual radiological methods.

There were also some limitations to our study; most importantly no validation of the
data with histology was made. A previous study has shown that values obtained with
chemical shift-based water-fat separation methods are generally in accordance with
data obtained from muscle biopsy [134]. The multipeak approach has previously been
validated with in vitro measurements and MR spectroscopy and we therefore assume
that any of our multipeak models are more representative of the actual fat fraction than
a single peak model [119, 122, 135]. Another limitation of our study could be that a
relatively low number of subjects were included. However, as a total of 201 different
muscles were scored, the number of data points used for the comparison was very high.
In conclusion our results show that visually scored assessment of the fat fraction gen-
erally correlates with quantitative values, but overestimates the fat fraction and shows
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higher variability. Quantitative MRI methods such as chemical shift-based water-fat
separation produce a more accurate estimation of the fat fraction, especially in the
more severely affected muscle. Correcting for the multiple peaks of the lipid spectrum
contributes to obtaining more precise fat fractions. These findings further stress the
importance of quantitative evaluation of the fat fraction to accurately demonstrate
changes in the muscle.
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Chapter 3

ABSTRACT

The purpose of this study was to assess leg muscle quality and give a detailed de-
scription of leg muscle involvement in Duchenne muscular dystrophy patients using
quantitative MRI and strength measurements. Fatty infiltration as well as the total
and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were
determined in 16 Duchenne patients and 11 controls (aged 8 to 15). To determine
specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, an-
terior tibialis and triceps surae) were measured and related to the amount of contractile
tissue. In patients, the quadriceps femoris showed a decreased total and contractile
cross sectional area, attributable to muscle atrophy. The total, but not the contractile,
cross sectional area of the triceps surae was increased in patients, corresponding to hy-
pertrophy. Specific strength decreased in all four muscle groups of Duchenne patients,
indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty
infiltration are two distinct pathological processes, differing between muscle groups.
Additionally, the quality of remaining muscle fibers is severely reduced in the legs of
Duchenne patients. The combination of quantitative MRI and quantitative muscle test-
ing could be a valuable outcome parameter in longitudinal studies and in the follow-up
of therapeutic effects.
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INTRODUCTION

Duchenne muscular dystrophy (DMD) is an X-linked muscle disease affecting ap-
proximately 1 in 3500 male newborns. Patients develop progressive muscle weakness
and become wheelchair-dependent around the age of twelve. They have a severely
reduced life expectancy due to cardiac and respiratory problems [136]. DMD is caused
by the absence of functional dystrophin, due to mutations in the DMD gene. This
causes inflammation, muscle fiber necrosis and replacement of fibers by connective
and fatty tissue [10, 38, 54].

Several promising therapies for DMD are currently being tested in clinical trials [77,
137-139]. Histological analysis of a muscle biopsy is an important outcome parameter
for the evaluation of therapeutic effects. However, this procedure is invasive and pro-
vides only local information on a single muscle, whereas it is known that muscles are
not affected equally and a distribution of pathological changes can occur even within
a single muscle.

Quantitative non-invasive magnetic resonance imaging (MRI) of muscle is increasingly
being used to assess disease-related parameters in DMD patients [98, 99, 103-107,
109, 111, 116, 140]. A commonly used parameter is fatty infiltration, which has been
shown to correlate with age and muscle function in the upper leg [91, 98, 101, 106,
140]. With MRI, fatty infiltration can be quantified using several approaches, including
methods based on signal intensity differences, which rely on thresholding bright fat
pixels and lower intensity water pixels, chemical shift based approaches which rely on
the difference in chemical shift between water and fat, and T2 maps which rely on the
difference in T2 relaxation time between water and fat. Signal intensity approaches can
be biased by partial volume effects (i.e. a voxel seldom solely consist of either fat or
water) resulting in an inaccurate assessment of the fat fraction and T2 based methods
can be significantly influenced by B1 inhomogeneities. In contrast, chemical shift
based fat-water separation methods such as the 3-point Dixon technique are less biased
by partial volume effects compared to thresholding approaches and are less influenced
by B0 and B1 magnetic field inhomogeneities. Additionally, fat fractions obtained by
this method have been shown to correlate well with histology and magnetic resonance
spectroscopy (MRS) [105, 134].

The functional consequences of fatty infiltration i.e. a decrease in the amount of
contractile tissue have recently been described for the quadriceps femoris, but not for
other muscle groups in the upper and lower leg [140]. However, it is known that in
DMD patients different muscles become affected at different stages of the disease and
hence some muscles remain preserved longer than others [91, 113, 141]. In the lower
leg, hypertrophy of the calf muscles has frequently been noted, but its effect on muscle
function and the relation with fatty infiltration and age has not been described in detail.
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In order to address the issues of limited volumetric coverage of only a few muscle
groups from previous publications, here we studied fatty infiltration and muscle vol-
ume in four different muscle groups in the upper and lower leg of DMD patients using
quantitative MRI with the 3-point Dixon technique [118, 142]. An additional aim of
our study was to obtain a measure for muscle quality for each of these muscle groups
by comparing the MR parameters to muscle strength. A non-invasive description of
muscle quality would be very valuable to increase our knowledge of the pathophysiol-
ogy of DMD and could be used as an outcome parameter for longitudinal follow-up
studies.

METHODS

Patients and controls

Sixteen DMD patients (mean age 11.4 + 2.2 years, range 8-14 years) and eleven healthy
male controls (mean age 10.7+ 2.1 years, range 8-15 years) participated in the study.
Patients were recruited from the Dutch dystrophinopathy database. Diagnosis had been
confirmed by DNA or muscle biopsy in all patients. Healthy subjects in the same age
range were recruited from local schools and sports clubs. Exclusion criteria were the
presence of contra-indications for the MRI and inability to lie supine for 30 minutes.
The local medical ethics committee approved the study. Written informed consent was
obtained from subjects and parents before inclusion.

MRI

MR images from the left upper and lower leg were acquired on a 3T scanner (Achieva,
Philips Healthcare, Best, The Netherlands) using one 14-cm two-element receive coil
with body coil excitation for both the upper and lower leg. The receive coil elements
were positioned on the anterior and posterior side of the leg; directly below the patella
for lower leg imaging and directly above the patella for upper leg imaging. The scan-
ning protocol consisted of a survey scan for positioning, a T1-weighted turbo spin echo
(TSE) sequence (twenty-five slices of five mm thickness, 0.5 mm gap, repetition time
(TR) 600 ms, echo time (TE) 16ms, field of view (FOV) 180x180x137 mm, voxel size
0.9x0.9 mm, TSE factor 5) and a 3-point gradient echo Dixon sequence (twenty-five
slices of five mm thickness, 0.5 mm gap, TR 400 ms, first TE 4.41 ms, echo spacing
0.76 ms, flip angle 8°, FOV 180x180x137 mm, voxel size 0.6x0.6 mm) of the upper
and lower leg. The T1 and Dixon scans were planned using the survey scan, so that the
central slice would be at the part of the lower leg with the largest diameter, and cover
a significant part of quadriceps in the upper leg. The total scanning protocol, including
positioning of the patients, could be completed in 25 minutes.
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Data analysis

The 3-point Dixon images were reconstructed with multipeak correction as proposed
by Yu et al. with frequencies f,-[94, -318, -420] Hz and amplitudes 4,-[0.08, 0.15,
0.78], to account for the multiple peaks of the fat spectrum [122, 143].

Regions of interest (ROIs) were drawn manually using Medical Image Processing,
Analysis and Visualization software package (http://mipav.cit.nih.gov) on T1-weight-
ed images in the following muscles of the upper leg: rectus femoris, vastus lateralis,
vastus intermedius, vastus medialis, short head of the biceps femoris, long head of
the biceps femoris, semitendinosus, semimembranosus, adductor longus, adductor
magnus, gracilis and sartorius. In the lower leg the muscle groups were: medial head of
the gastrocnemius, lateral head of the gastrocnemius, soleus, flexor digitorum longus,
flexor hallucis longus, posterior tibialis, extensor hallucis longus, peroneus, anterior
tibialis and extensor digitorum longus. ROIs were drawn on every other slice, provided
that the muscles were clearly identifiable in the slices.

The average fat fraction per muscle was computed using the co-registered contours
from the Tlw images on the Dixon images and calculated by averaging all pixels
assigned to that muscle. The fat fraction was modelled as Slg,/(SIgtcSTyaer), With
SI = signal intensity and the factor ¢ (1.41) correcting for differences in proton density
and T2 relaxation times between water and fat. We used T2 instead of T2* in our
correction as we used a three echo method and therefore could not reliably determine
T2* [144]. Proton density and T2 relaxation times of water and fat were measured in
the muscle and subcutaneous fat of one healthy volunteer using the assumption that
T2 values of subcutaneous fat and highly fat infiltrated muscle are similar [143, 145].
To assess total cross sectional area (CSA) in the upper leg the most proximal slice in
which the short-head of the biceps femoris could be identified was used, as described
by Akima et al. [140]. For the lower leg the total CSA was determined separately
for the anterior tibialis and the triceps surae in the slice or slices with the largest
CSA of the muscles on the axial images [100]. For the contributing muscles for knee
extension (quadriceps femoris; i.e. rectus femoris, vastus lateralis, vastus medialis,
vastus intermedius), knee flexion (hamstrings; i.e. biceps femoris long and short head,
semimembranosus, semitendinosus), ankle dorsiflexion (anterior tibialis) and ankle
plantar flexion (triceps surae; i.e. gastrocnemius medial and lateral head, soleus), the
relation between the contractile CSA and strength was assessed. Contractile CSA was
calculated from the mean fat fraction and the total cross sectional area (i.e. the cross
sectional area including fat and muscle tissue) of these muscles (contractile CSA=
total CSA x (100-mean fat percentage in entire muscle volume)/100). As a measure for
muscle quality, the specific strength i.e. peak muscle strength per mm” of contractile
tissue) was determined.
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Clinical measurements

A quantitative muscle assessment (QMA) system (wWww.gqmasystem.com) was used
to assess knee flexion, knee extension, and ankle plantar- and dorsiflexion in both
patients and controls. Maximal voluntary isometric contraction was obtained using
a fixed myometer. For knee flexion and knee extension patients were tested in sitting
position, with hip and knee at 90° flexion with the strap attached around their ankle.
Ankle plantar- and dorsiflexion were assessed in a supine position with the hip at
full extension; heel slightly raised with the calf on a cushion and strap around the
metatarsals [146]. The highest value of three consecutive measurements was used as
the maximum strength. If a measurement differed more than 10% from previous mea-
surements, it was discarded and an extra measurement was performed. Measurements

were performed after the MRI.

Statistical analysis

To assess differences between patients and controls in total CSA, contractile CSA,
peak muscle strength and specific strength (strength per mm’ of contractile tissue),
general linear models were used with Duchenne status as a fixed factor and normalized
age (i.e. age — average) as a covariate. Bonferoni-Holms correction was used to correct
for the multiple comparisons in this analysis. A student’s t-test was used to test for
differences in patients’ age, height and weight. Pearson correlation analysis was per-
formed to assess the relation between peak muscle strength (kg) and contractile CSA
(mm?®). The SPSS statistical package Version 20.0 for Windows (SPSS Inc., Chicago,
IL) was used for the analysis. The level of statistical significance was set at p<0.05.

RESULTS

Patient characteristics are shown in Table 1. All healthy controls completed the MRI
protocol, but in two DMD patients only the lower leg was scanned. One patient was
unable to lie on his back for more than 15 minutes and one patient wore braces, which
prevented accurate positioning in the scanner for upper leg scanning. There were
no significant differences in age, weight and height between patients and controls
(Table 1). Twelve patients were on corticosteroids during the study (one patient used
deflazacort, eleven used prednisone). Of the four patients not on steroids, two 13-year
old boys had been on steroids for several years up to one year prior to the study. Two
DMD boys (8 and 13 yrs) had never used corticosteroids.
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Table 1. Patient demographics.

Muscle quality in DMD

Patients Controls P value

Age (years) 114422 10.7+2.0 0.40
Height (m) 1.48+£0.1 1.54 +£0.1 0.38
Weight (kg) 48.6 £ 12.5 41.9+12.1 0.17
Corticosteroid use 12/16 0/11

Mobility

- Fully ambulant 7/16 11/11

- Wheelchair user 2/16 0/11

- Wheelchair dependent 7/16 0/11

Fatty infiltration

To evaluate the disease severity and the pattern of muscle involvement fat fractions

were calculated for all muscles. The mean fat fraction in patients in the leg muscles
was 28.8 +22.8% (range 2-86%). In controls the value was 5.3 + 1.5% (range 3-10%).
Compared to controls all patients showed increased fat fractions (i.e. higher than the

mean plus two times the SD of the control values of that muscle) in at least one muscle

of the upper leg and lower leg (Figures 1 and 2). The flexor digitorum longus and ex-

tensor hallucis longus could not be identified in all patients and/or in all slices because

of a limited field-of-view in the cranial-caudal direction.

Figure 1. T1 weighted and Dixon MR image of upper and lower leg.

T1-weighted (a,d), Dixon fat (b,e) and Dixon water (c,f) image of lower and upper leg of a eleven year

old DMD patient.
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Figure 2. Box and whisker plot of the average fat fraction per muscle in upper and lower leg of DMD
patients and healthy controls.

Fat fractions shown for all patients in all muscles of the upper leg (white) and lower leg (grey) and for
all healthy controls (black). The upper leg is more affected compared to the lower leg muscles. Values
shown as median + maximum and minimum and are ordered by the mean fat fraction ().

Total and contractile cross sectional area

The total CSA of the quadriceps femoris muscles was smaller in patients than in
healthy controls (Table 2). For the hamstrings and anterior tibialis there were no
significant differences in the total CSA between the groups. In the triceps surae the
total CSA in patients was significantly larger than in healthy controls. In controls total
CSA increased significantly with age in all muscle groups (p<0.03) (Figure 3a-d). In
patients, however, no significant correlation between total CSA with age was found.
The contractile CSA in the quadriceps femoris and hamstrings was smaller in patients
than in healthy controls (Table 2). For the other two muscle groups there were no
significant differences in contractile CSA between patients and controls. In healthy
controls contractile CSA increased significantly with age (p<0.02), but no such rela-
tion was observed in the patients.
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Table 2. Muscle characteristics in patients and controls.

Patients Controls P value
Total CSA (mm?) Quadriceps femoris 2889 +974 4203 + 1203 <0.001
Hamstrings 2071 £ 580 1753 £ 630 0.33
Anterior tibialis 475+ 115 439 + 142 0.87
Triceps surae 4671 +£ 1373 3081 £+ 960 0.016
Contractile CSA (mm?) Quadriceps femoris 1527 £ 509 3955 + 1098 <0.001
Hamstrings 1255 + 531 1669 + 591 0.02
Anterior tibialis 377+ 114 421 +£ 135 0.22
Triceps surae 3454 £ 1159 2875 + 953 0.27
Peak muscle strength (kg) Quadriceps femoris 59+3 27.0+ 10 <0.001
Hamstrings 6.8+3 194+7 <0.001
Anterior tibialis 74+4 185+7 <0.001
Triceps surae 12.0+8 25.7+8 <0.001
Specific strength (kg/mm?) Quadriceps femoris 39+1.6 6.7+ 0.8 <0.001
Hamstrings 58+2.4 11.6+1.8 <0.001
Anterior tibialis 18.7+9.2 43.4+79 <0.001
Triceps surae 3.6x2.1 9.1+1.3 <0.001

Muscle strength

Peak muscle strength was significantly lower in patients than in healthy controls for
all four muscle groups (Table 2). In controls, muscle strength increased significantly
with age in all muscle groups (p<0.001). In patients only the strength of the anterior
tibialis and the triceps surae increased with age (p=0.035 and p=0.003 respectively).
Significant positive correlations between peak muscle strength and contractile CSA
were found for all muscle groups in controls. In patients there was a significant cor-
relation in the quadriceps, hamstrings and anterior tibialis, but no significant relation
in the triceps surae (Figure 4). To assess muscle quality, we compared the specific
strength between patients and controls. In DMD patients this was significantly lower in
all muscle groups compared to controls (Table 2). In controls specific strength did not
increase with age, while in patients an increase of specific strength with age was seen
in the triceps surae (p< 0.001) and the tibialis anterior (p= 0.03).
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Total cross sectional area (mmz)
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Figure 3. Plots of total contractile area and fat percentage.

In patients no significant increase in total cross sectional area (CSA) was found with age, whereas in
controls a significant relation was found in three muscle groups (a-d). In all four muscles in patients the

Patients
Controls

fat percentage increases with age, but it starts later the lower leg compared to the upper leg (e-h).
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Figure 4. Relation between peak muscle strength and contractile cross sectional area.
Correlation between contractile cross-sectional area (CSA) and peak muscle strength in patients and
controls in four different muscle groups.

DISCUSSION

Our data show that the absence of dystrophin elicits significantly different responses in
the four main muscle groups of the leg in terms of muscle volume and fatty infiltration.
The quadriceps and triceps surae represent two ends of the spectrum, while the ham-
strings and anterior tibialis have an intermediate phenotype. In addition, the specific
strength of the muscles was significantly lower for all four muscle groups compared
with healthy controls confirming a reduction in muscle quality.

The most severely fatty infiltrated muscle in patients was the adductor magnus, fol-
lowed by the individual muscles of the quadriceps femoris and the biceps femoris
longus, which is in accordance with previous studies [106, 109, 113, 141]. Overall,
the lower leg was affected later in the disease, with the lateral and medial head of the
gastrocnemius and the peroneus being most severely affected [111].

In patients, the total CSA of the triceps surae was significantly larger compared to
healthy controls, while the contractile CSA (i.e. the area of the muscle that consists of
muscle tissue with no fat) was similar to controls. An increased total CSA was already
present in our youngest patients but did not increase further with age, suggesting early
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hypertrophy. Clinical hypertrophy of the triceps surae is well known in DMD patients
and has been reported at a very young age. Hypertrophic fibres have been observed in
muscle biopsies of DMD patients from 4 years and older [147]. In contrast, both the
total CSA and the contractile CSA of the quadriceps femoris were smaller compared
to healthy controls. The reduction in total CSA was already present in the youngest
patients and remained stable with age, suggesting relative atrophy at a young age,
which is in accordance with a previous muscle biopsy study [147]. The hamstrings
and tibialis anterior showed no significant differences in total CSA compared to
healthy controls but also showed no increase with age. The tendency towards a larger
total CSA at younger age there indicates hypertrophy in these muscle groups as well.
Taken together, our results suggest that the quadriceps femoris shows no or a mild
hypertrophic response in young patients, the triceps surae shows hypertrophy and the
hamstrings and anterior tibialis show an intermediate response.

Interestingly, the extent of the hypertrophic response does not seem to predict the
extent of the fatty infiltration. The quadriceps femoris showed no clear hypertrophy,
but did have severe fatty infiltration, which can be interpreted as a hallmark of an early
and severely dystrophic muscle. On the other hand, the hamstrings showed a mild
hypertrophic response, but also showed severe fatty infiltration [106]. In the lower
leg, the triceps surae showed the greatest degree of hypertrophy, but the amount of
fatty infiltration was similar to the tibialis anterior muscle, which only had a moderate
hypertrophic response. Thus, the onset and progression of changes in muscle volume
and fatty infiltration appear to be two distinct, independent pathological processes that
differ in rate of progression between muscle groups.

In controls, muscle strength increased with age and with the amount of contractile
tissue. The cross-sectional data from our patients showed no significant increase in
muscle strength with age in the upper legs, but there was an increase in the lower
legs. Additionally, DMD patients showed an overall reduction in the specific muscle
strength. The availability of both quantitative MRI data and quantitative muscle
strength measurements allowed us to calculate this parameter, which is an indication
of the strength per muscle fiber, excluding the fatty infiltrated part of the muscle.
The significantly lower specific strength in patients compared to controls for all four
muscle groups indicates an overall reduction in muscle quality. This could be due to
several factors, including limited capacity of the diseased muscle fibers to contract, re-
duced efficacy of force transduction to the connective tissue and tendons and increased
muscle stiffness due to increased levels of fibrosis or as a result of disorganization
and inefficient alignment of muscle fibers [148]. A similar observation has been made
both in the quadriceps muscle of DMD patients and in mdx mice [140, 149]. In these
mice isometric forces produced by soleus muscles from young mice were weaker than
in wild type mice, when force was normalized for cross-sectional area. Surprisingly,
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there appeared to be an increase in both strength and specific strength in the lower leg
muscle groups with age in patients, while this increase was absent in controls. This
could suggest that in patients, there is a selection of high quality muscle fibers, which
might also have the ability to increase their capacity to generate force.

The current study has some limitations. The percentage of fatty infiltration (Figure 3)
was relatively low in the 14 year old patients in our study compared to the other pa-
tients. This finding emphasizes that in DMD patients there is variability between how
severely patients are affected. Nevertheless, these patients also show lower specific
strength of the remaining muscle tissue compared to healthy controls, indicating that
despite the relatively high amount of contractile tissue, there is a reduction in muscle
quality in all muscle groups. Although we obtained a good match with healthy controls
regarding age and height, a limitation of our study was the absence of longitudinal
data. We compensated for this by analysing our data with age as a covariate, but true
longitudinal data where muscle MRI and strength tests are combined might prove very
fruitful in analysing the differences between dystrophic muscles [106]. We determined
contractile CSA using the largest total CSA and the mean fat fraction for each muscle
group. In DMD muscle, significant amounts of fat infiltration are present, and this
fat will likely contribute only minimally to the force of that muscle. Fatty infiltration
could be distributed inhomogenously across the muscle of DMD patients, and it is
unclear how this could affect the muscle strength. As the whole muscle contributes
to delivering force, taking into account only the fat percentage of one slice could bias
the results. Therefore, we felt that using the mean fat fraction of a number of slices
instead of the fat fraction from the slice used for determination of maximal CSA would
provide a more realistic value of the contractile abilities of the muscle. Finally, we did
not incorporate fitting of the T2* decay into our model of fat quantification, which
could have led to a slight overestimation of the fat levels in our study.

In summary, progressive fatty infiltration is seen with a decrease in total volume in
some muscles, but with muscle hypertrophy in others, which suggests that these are
two distinct pathological processes, which differ over time between muscle groups.
Quantitative MRI enabled us to calculate the fatty infiltration and thus contractile
cross-sectional area, and this showed a reduction in muscle quality in DMD patients.
This could yield valuable insight in the pathophysiology of dystrophic muscle and
form an outcome parameter in longitudinal follow-up and therapeutic trials.
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Chapter 4

ABSTRACT

Objective

Becker muscular dystrophy (BMD) is characterized by broad clinical variability. On-
going studies exploring dystrophin restoration in Duchenne muscular dystrophy ask
for better understanding of the relation between dystrophin levels and disease severity.
We studied this relation in BMD patients with varying mutations, including a large
subset with an exon 45-47 deletion.

Methods

Dystrophin was quantified by Western blot analyses in a fresh muscle biopsy of the an-
terior tibial muscle. Disease severity was assessed using quantitative muscle strength
measurements and functional disability scoring. MRI of the leg was performed in a
subgroup to detect fatty infiltration.

Results

Thirty-three BMD patients participated. No linear relation was found between dystro-
phin levels (range 3-78%) and muscle strength or age at different disease milestones,
in both the whole group and the subgroup of exon 45-47 deleted patients. However,
patients with less than 10% dystrophin all showed a severe disease course. No rela-
tion was found between disease severity and age when analysing the whole group.
By contrast, in the exon 45-47 deleted subgroup muscle strength and levels of fatty
infiltration were significantly correlated with patients’ age.

Conclusion

Our study shows that dystrophin levels appear not to be a major determinant of disease
severity in BMD, as long as it is above approximately 10%. A significant relation
between age and disease course was only found in the exon 45-47 deletion subgroup.
This suggests that at higher dystrophin levels the disease course depends more on the
mutation site, than on the amount of the dystrophin protein produced.
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INTRODUCTION

Becker and Duchenne muscular dystrophies (BMD and DMD) are caused by muta-
tions in the DMD gene encoding the dystrophin protein. Absence of dystrophin, as in
DMD patients, or reduced levels of a semi-functionial dystrophin, as in BMD patients,
leads to progressive muscle weakness due to continuous muscle fibre damage. While
DMD is characterized by a relatively uniform disease course, disease progression in
BMD is more variable [20, 150-153]. The mechanisms underlying this variability are
not fully understood. Factors believed to be involved include the regenerative capacity
of muscle tissue, inflammation as well as quantity and quality of the dystrophin protein
[154-157]. Qualitatively, dystrophin has multiple functions that depend on the pres-
ence of functional domains within the protein, most importantly the N-terminal actin-
binding and the C-terminal beta-dystroglycan-binding domains. While the connecting
‘central rod domain’ appears to be largely dispensable, the way in which remaining
spectrin-like repeats are phased likely impacts dystrophin functionality [158]. An im-
portant role for dystrophin quantity has been suggested by previous reports, although
there is still uncertainty about the nature of this relationship as both linear relations and
a threshold effect have been suggested [150, 153-155, 159-164]. The interest in this
possible relation increased with the development of the exon skipping technology in
DMD [165, 166]. Clinical trials testing systemic delivery of antisense oligonucleotides
(AONs) targeting exon 51 have shown restoration of dystrophin levels of up to 18%
[77, 79].

In the present study we investigate the relation between dystrophin levels quantified
from a freshly obtained muscle biopsy and disease severity in 33 BMD patients, in-
cluding 13 patients with an exon 45-47 deletion.

MATERIAL AND METHODS

Patients

Adult BMD patients registered in the Dutch Dystrophinopathy Database were eligible
to participate when complying with the following inclusion criteria: (1) in frame
mutation in the DMD gene OR (2) any other mutation in the DMD gene AND a mild
disease course, defined by age at wheelchair dependence after the age of 16 OR (3)
no known mutation in the DMD gene AND reduced dystrophin staining in muscle
biopsy. Patients using mechanical ventilation were excluded. During a one-day visit
quantitative muscle testing of several muscle groups in upper and lower extremity and
(optionally) a muscle biopsy of the anterior tibialis (TA) muscle was obtained from the
study participants. The TA was chosen because it usually contains an adequate amount
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of muscle tissue for dystrophin analysis in BMD patients with a wide range of disease
severity, and since this muscle has also been used in several DMD exon skip trials [77,
78]. Additionally, a quantitative MRI of the lower leg was obtained from the subgroup
of participants with an exon 45 to 47 deletion who did not have a pacemaker or ICD,
or severe contractures.

The local medical ethics committee approved the study and written informed consent
was obtained from all subjects.

Strength measurements

Quantitative muscle testing (QMT) was used to assess the maximal voluntary isomet-
ric contraction (MVIC). Measurements of the following muscle groups were obtained:
elbow flexion and extension, handgrip and knee and hip flexion and extension. Ankle
dorsiflexion was not included, as measurement of this muscle group has been shown
to be unreliable [146]. Measurements were performed as described by Hogrel et al.
[146]. Wheelchair dependent participants unable to make the transfer to the research
bench were examined in their wheelchair. The mean of the bilaterally-tested muscle
groups was calculated. To minimize the possible confounding effect of age and weight
on the analyses, a z-score for muscle strength of the individual muscle groups was also
calculated, taking these factors into account [146]. QMT was also performed in twenty
male age-matched healthy volunteers.

Disease milestones

Disease milestones were used to compare disease severity between BMD patients, and
thus to partially correct for the wide range of ages. A structured natural history was
obtained from the 89 BMD patients with a genetically confirmed in-frame deletion in
the Dutch Dystrophinopathy Database, including our participants. The data were used
to determine the median ages as well as the 33™ and 66" percentile at which the follow-
ing disease milestones were reached: first motor symptoms, difficulty walking stairs,
use of walking aids (braces, cane, walker or wheelchair) and wheelchair dependence.

Western blot analysis

The muscle biopsy from the TA was processed as previously described by Van Deu-
tekom et al. [78]. Protein lysates were generated from muscle biopsies and Western
blotting were performed according to previously described methods [78]. Monoclonal
NCL-DYSI (dilution 1:100, Novacastra, UK) or polyclonal ab15277 (dilution 1: 200
Abcam, UK) were used to detect dystrophin. Rabbit polyclonal antibody to sarcomeric
alpha-actinin (ACTN2) ab72592 (dilution 1: 500 Abcam, UK) was used as a loading
control. Blots were visualized and quantified with the Odyssey system and software
(Li-Cor, USA) as described previously [78]. Samples obtained from the TA and medial
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and vastus lateralis muscles of five healthy males were used as reference samples. For
each patient sample at least 2 technical replicates were performed.

Immunohistochemistry

Sections of 10 um were cut from the TA biopsies using a Shandon Cryotome (Thermo
Fisher Scientific Co., Pittsburgh, PA, USA). Sections were fixed for 1 min with ice-cold
acetone. Goat polyclonal dystrophin diluted 1:50 (SC-7461, Santa Cruz Biotechnology,
USA) was used to detect dystrophin. Alexa-fluor 488 donkey-anti goat IgG (A11055,
Invitrogen, the Netherlands) diluted 1:1000 was used as a secondary antibody. Slides
were analysed using a fluorescence microscope (DM RA2; Leica Microsystems Wet-
zlar, Germany), and digital images were taken using a CCD camera (CTR MIC; Leica
Microsystems).

Muscle MRI

In BMD patients with an exon 45-47 deletion MR Images were acquired on a 3T scan-
ner (Achieva, Philips Healthcare, Best, The Netherlands) from the left lower leg using
a 14-cm diameter two-element receive coil and body coil excitation. The scanning
protocol consisted of a T1-weighted sequence (25 five mm slices, 0.5 mm gap, repeti-
tion time (TR) 600 ms, echo time (TE) 16 ms) and a 3-point Dixon sequence (25 five
mm slices, 0.5 mm gap, TR 400 ms, first TE 4.41, echo spacing 0.76 ms, flip angle 8°)
with multipeak analysis [122]. The mean fat fraction per muscle was calculated from
regions of interest (ROIs) using Medical Image Processing, Analysis and Visualization
(MIPAV) software. The medial and lateral head of the gastrocnemius, soleus, flexor
digitorum longus, flexor hallucis longus, posterior tibialis, extensor hallucis longus,
peroneus, tibialis anterior and extensor digitorum longus were analysed.

Statistics

Pearson’s correlation test was used to analyse the relation between dystrophin expres-
sion, MVIC score and the mean fat fraction of the muscles. Dystrophin expression
levels for the groups based on disease milestones were compared using an independent-
samples Student’s t-test. Differences between participants and non-participants as well
as differences in disease milestones were analysed by Kaplan-Meier survival analysis,
using the Log Rank test. SPSS version 16 for Windows (SPSS Inc., Chicago IL) was
used. The level of significance was set at p<0.05. Values are shown as mean &+ SD.
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RESULTS

Patients

We approached 60 adult Becker patients to participate in the study of whom 33
consented to participate (Table 1). Reasons not to participate included the physical
burden, inability to attend due to work and travel distance to the Leiden University
Medical Center. Participants did not differ significantly from non-participants in terms
of age or age at reaching disease milestones (Table 2). Mean age of participants was
40 years (= 13, range 19-66 years) versus 44 years (£ 13, range 19-65 years) in the

non-participating patients.

Table 1. Included BMD participants

DMD phenotype Intermediate BMD phenotype
(loss of ambulation phenotype (loss of (loss of ambulation
<12 years) ambulation >16 years)

13-16 years)

In frame deletion 1 - 29

Out of frame deletion or point
mutation

- - 2

Unknown mutation, reduced
dystrophin staining

The study population represented a wide clinical variety (Supplementary Table 1),
ranging from a patient of 26 years who only noticed mild impairment while walking
upstairs carrying heavy tools to a patient with a DMD-like phenotype (wheelchair-
dependence at the age of 10), but with an in frame deletion in the DMD gene and
dystrophin expression as assessed by Western blot (see below).

Table 2. Characteristics of participating and non-participating BMD patients.

Study participants Non participants p-value
n=33 n=27
Events Estimated mean Events Estimated mean
Age 40 (£ 13) 44 (£ 13) 0.27
First symptoms 31 12 (£1.6) 26 11 (£2.1) 0-41
Walking stairs 26 30 (£3.0) 25 24 (£2.7) 0.16
Walking aid 19 41 (£3.6) 20 36 (£3.4) 0.49
Wheelchair dependence 8 54 (£3.2) 11 49 (+3.4) 0.33
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Dystrophin quantification

Fresh muscle biopsies were obtained from 27 patients. Six patients refused a biopsy be-
cause of previous negative experiences. Dystrophin expression as assessed by Western
blot (Figure 1 and Supplementary Figure 1) ranged from 4% to 71% of normal human
skeletal muscle as detected by the rod-domain antibody (NCL-DYSI) and from 3%
to 78% using the C-terminus antibody (AB15277). The mutation of one patient (exon
29;¢.3940C>T,p.Arg1314X) resulted in the deletion of exon 29 on RNA transcript
level, which encodes the epitope of the rod-domain antibody and was therefore only
recognized by the C-terminus antibody. As there was a good correlation between the
dystrophin levels detected by the two antibodies (R 0-87; p<0-001) further analyses
were performed using the C-terminus antibody. Using immune fluorescence analysis
we observed homogeneous staining for most patients (16/22), generally at lower inten-
sity than the normal control. For a few patients we observed both dystrophin positive
and negative fibres (5/22), while for one patient the biopsy was so fibrotic we did
not observe any dystrophin staining (see Supplementary Figure 2 for representative
examples).

Strength measurements

QMA testing of elbow flexion and extension, handgrip and hip flexion and extension
was performed in all patients. Due to inability to transfer to the research bench testing
of knee flexion and extension was not possible in one and four patients respectively.
A significant correlation existed between the MVIC-scores of all seven individually
tested muscles. The mean MVIC-sum of the five muscle groups tested in all patients
was 99 kg (+ 59 kg, 15-186 kg). There was no significant relation between the MVIC-
sum score and the age of patients at the time of QMA-testing (R -0.15; p=0.41) (Fig-
ure 2a). However, when analysing our subgroup of thirteen patients with an exon 45-47

Patient 10 Patient 9 Patient 8 Healthy control Qty (pg)
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Figure 1. Example of Western blot analysis on total protein extracts from three BMD patients and one
healthy control.

The rod-domain antibody (NCL-DYS1), C-terminus antibody (pABdys) and loading control (a-actinin)
are shown. As anticipated from the deletions, the proteins in the BMD patients are slightly smaller than
those in the healthy control. In the BMD group both patients with uniform and mosaic dystrophin ex-
pression were found by immunofluorescent staining.
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deletion a significant relation between MVIC-sum score and age was found (R -0.74;
p=0.004). The mean MVIC-sum score of age-matched healthy male volunteers (mean
age 42 + 13 years, range 20-62 years) was 182 kg (+ 23 kg, 142-220 kg), and showed
no significant relation within this age range (R -0-41; p=0-07).
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Figure 2. Correlation between age (a. and c.) or dystrophin expression for the C-terminus antibody (b.
and d.) with the MVIC-score and the mean fat fraction of the lower leg on MRI.

Data of the subgroup with an exon 45-47 deletion are represented in closed dots, all other mutations in
open circles. There is an evident relation for both the MVIC-score (a.) and the mean fat fraction (c.) with
age of the patients in the deletion 45-47 subgroup (R -0.74; p 0.004 and R 0.92; p <0.001 respectively).
No relation is found between dystrophin expression and MVIC-score (b.) or mean fat fraction on MRI

(d).

No relation was found between dystrophin expression and disease severity, as measured
by MVIC-sum score in the whole group (R 0.30; p=0.13) or the exon 45-47 deleted
subset (R -0.10; p=0.98) (Figure 2b). This relation was also absent when analysing
all muscle groups individually. To decrease the possible confounding effect of age
related differences in muscle strength, the analysis was subsequently performed in
three subgroups: patients aged 18-30 (n=8), 31-45 (n=8) and 46 and older (n=11). No
significant correlation between dystrophin levels and MVIC-sum score was present in
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any of these groups (R 0.40; p=0.33, R -0.30; p=0.47 and R 0.46; p=0.16 respectively).
Analyses correcting for both age and weight were added using the z-scores calculated
using data from Hogrel, showing again no correlation between dystrophin levels and
muscle strength for the whole group (R 0.23; p=0.25) as well as the exon 45-47 sub-
group (R -0.71; p=0.83) [146].

Disease milestones

The median age of the disease milestones in 89 BMD patients (aged 3-66 years) was
6 years for ‘first motor symptoms’, 20 years for ‘difficulties walking stairs’, 28 years
for use of a walking aid and 33 years for wheelchair dependency. For each milestone
we grouped our patients with known dystrophin levels based on whether that milestone
presented before or after the median age of that milestone (Figure 3a). No significant
differences were found between dystrophin levels of the two groups for ‘first motor
symptoms’ (p=0.39), ‘difficulties walking stairs’ (p=0.91) and ‘use of a walking aid’
(p=0.25). As too few patients were wheelchair dependant, statistical analysis was not
possible for this milestone. When this same analysis was repeated using three instead
of two groups, with cut-off points based on the 33" and 66" percentile of age at reach-
ing a certain disease milestones, no significant difference in dystrophin levels was
present either (Figure 3b).

When analysing the exon 45-47 deletion subgroup the dystrophin levels were not
significantly different for two disease milestones (p=0.94 and p=0.40 for first motor
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Figure 3. Distribution of dystrophin levels between patients reaching a disease milestone.

A. before or after the median age of that milestone and B. before the 33™ percentile, between the 33™
and 66" and after the 66™ percentile of 89 BMD patients for first motor symptoms, difficulty walk-
ing stairs and use of a walking aid. The horizontal lines mark the average dystrophin level within the
groups. Data for the patients with an exon 45-47 deletion are presented in black dots, data for all other
patients in open circles. Note that grouping of a specific patient can be different for different milestones.
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symptoms and difficulties walking stairs, respectively). Too few patients had reached
the other milestones to include these items in the analysis.

Muscle MRI

An MRI scan was obtained from nine patients with an exon 45-47 deletion. The lower
leg showed a distinct pattern of muscle involvement, with the medial head of the
gastrocnemius muscle being most severely affected, followed by the lateral head of
the gastrocnemius and the peroneus muscle (Figure 4). The TA was relatively spared in
all patients, but still showed a significant increase of the fat fraction with age (R 0-94;
p<0.001). There was no correlation between dystrophin levels and fatty infiltration
on MRI (R -0-03; p=0-95) (Figure 2d). There was however a significant correlation
between patients’ age and mean fat fraction of the lower leg muscles (R 0-92; p<0-001)
(Figure 2c).

Figure 4. Transversal image of lower leg of BMD patients with an exon 45-47 deletion.

There is an evident increase in the mean fat fraction with age. The changes are most evident for the
medial head of the gastrocnemius muscle and in later stages also for the lateral head.
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DISCUSSION

We studied a group of BMD patients with a large diversity in disease severity, as well
as a wide range of different forms of dystrophin, with 18 different mutations, and as-
sessed dystrophin levels from freshly acquired muscle biopsies, with dystrophin levels
ranging from 3 to 78%. In this group of BMD patients there was no linear relation
between dystrophin levels and disease severity, defined by quantitatively measured
muscle strength, fatty infiltration on MRI or by clinical milestones.

The relation between the variable disease severity observed in BMD patients and dys-
trophin levels has been of increasing interest with the development of exon skipping
therapy for DMD patients. Although a small amount of dystrophin in muscle is better
than none, it remains unclear what the relation between dystrophin levels and disease
severity entails. Some previous studies found indications that higher dystrophin levels
are associated with a milder disease course [150, 153, 154, 159, 161, 163]. Others
reported a threshold effect [160, 162, 164]. However, these studies pooled data from
patients with different mutations. Becker patients with in-frame deletions on the 5’-
end of the DMD gene generally have a more severe disease course, including an earlier
age of cardiac involvement [159, 160, 167, 168]. Therefore, it is likely that the pooling
of different mutations has influenced these results.

A recent study by Anthony et al. focused on a more selected group of patients with a
mutation bordering exon 51 or exon 53 and patients with an exon 45-55 deletion, there-
fore limiting the effect of the location of the mutation on disease progression to some
extent [154]. Their results suggested that higher dystrophin levels were associated with
a less severe disease course. However, their analysis was performed in asymptomatic
and mild patients with relatively high dystrophin levels (all above 50%). Therefore, the
results cannot be extrapolated to the entire BMD disease spectrum. In our subgroup of
13 patients with an exon 45-47 deletion no relation between dystrophin levels (varying
from 13-76%) and disease severity was found. In contrast, in this subgroup there was
an evident relation between disease severity and age of the patients. These findings are
supported by the MRI data, showing a progressive increase in fatty infiltration with
age. We believe this finding illustrates that the study of subsets of BMD patients with
the same mutations can identify relations otherwise obscured.

Although we found no relation between dystrophin levels and disease severity, our
four patients with dystrophin levels below 10% showed low MVIC-sum scores and
early onset of symptoms (Figure 3 and Supplementary Table 1). This finding implies
a threshold effect, which is conform several previous clinical studies suggesting that
dystrophin levels below 10% are indicative of a more severe disease course [160, 162,
164]. This could suggest that a relatively small amount of dystrophin is sufficient to
result in a disease course that is milder than DMD, but relatively more severe than
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‘typical BMD’. This is also in accordance with previous reports of several mouse
models, showing threshold levels between 15-20%, and with a recent study in mice
showing that in a dystrophin and utrophin negative background, very low levels of
dystrophin (up to 5%) improved survival, but not histology, levels between 5 and 15%
further improved survival and fibrosis and levels of over 15% normalized survival and
further improved fibrosis [169-172]. The clinical disease course in patients with an
exon 45-47 deletion was quite uniform, but still there was variability, suggesting a role
for additional factors such as differences in regenerative capacity, genetic modifiers or
inflammation.

Exons 45-47 encode the last half of spectrin-like repeat 17 as well as repeat 18 of the
dystrophin protein. It is known that repeat 16 and 17 (encoded by exon 42-45) are
involved in nNOS-binding [173, 174]. Anthony et al. and Beggs et al. both have shown
a relationship between (properly located) nNOS levels and disease severity [154, 160].
Possibly, differences in nNOS expression could be one of the factors involved in the
disease variability of the exon 45-47 deleted group.

As dystrophin plays an important role in muscle fiber membrane stability any change
in protein structure could lead to a decreased functioning. The findings that in-frame
mutations at the 5’-end of the DMD gene lead to a more severe BMD or a DMD
phenotype suggest that this domain is less dispensable for protein function. In contrast
the central rod domain that connects the N-terminal actin-binding and C-terminal beta-
dystroglycan binding domains allows more flexibility, as underlined by the finding
that a deletion of >60% of the rod domain (deletion exon 17-48) resulted in a very
mild BMD phenotype [175]. Structural changes of the dystrophin protein, caused by a
specific mutation, will impair dystrophin function to an extent, characteristic for that
mutation.

Our study suggests a direct effect of the exact mutation on the clinical phenotype
of BMD patients. This finding has important implications for future BMD studies,
where it will be essential to account for different mutations when looking at other
possible contributing factors to disease severity. The possible disease modifying effect
of dystrophin quality also has implications for exon skipping trials. As this therapy
aims to change a DMD phenotype into a BMD phenotype, knowledge of the specific
BMD phenotypes is important, as for some mutations ameliorating of the phenotype
may be more beneficial than for others.

The suggestion of a threshold effect in this study could benefit therapeutic studies
aiming to restore dystrophin in DMD patients. Clinical trials testing systemic delivery
of antisense oligonucleotides targeting exon 51 have shown dystrophin levels of up
to 18% [77, 79]. If relatively low levels of dystrophin are sufficient to result in a
relatively mild BMD phenotype, it may be expected that patients may improve with
these therapies.
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There are several limitations to our study. Firstly, several other studies used muscle
biopsies from the quadriceps muscle, while we chose to biopsy the anterior tibialis
muscle, as it contains viable muscle tissue over wider clinical severity. Variation in
dystrophin expression between muscles cannot be ruled out, but there are no indica-
tions that this could limit the interpretation. A previous immunohistochemical study
reported no significant variation in dystrophin levels between various muscles in DMD
patients, nor between biceps brachialis and vastus lateralis muscles in a group of BMD
patients [159, 176]. Additionally, no significant variation in dystrophin expression was
found in different skeletal muscles in mice [177]. Although our study is the largest study
in BMD patients comparing disease course and dystrophin levels using fresh biopsies,
our study could be underpowered to detect a possible relation between dystrophin
levels and disease severity. Larger subgroups of BMD patients with the same mutation
would be necessary to study such a relation, which, due to the rareness of BMD, will
be challenging. However, in our subgroup of patients with an exon 45-47 deletion
we did find a relation with age, but not with dystrophin. Thirdly, although there is no
significant difference in disease course between participants and non-participants, a
small trend favouring the participation of milder patients appears to be present. This
is probably caused by the greater burden on severely affected patients to participate.
In summary, our study shows that there is no linear correlation between dystrophin
levels and disease severity in BMD patients and that disease progression is uniform in
a subgroup of BMD patients with an exon 45-47 deletion, as demonstrated by the de-
crease of muscle strength as well as increase of fatty infiltration of muscle. In contrast
to the whole BMD group, these phenomena increase with age at a constant pace in the
exon 45-47 deletion group, indicating that the mutation is likely an important factor in
determining disease severity. Furthermore, there are indications for a threshold rather
than a dose-effect relation and the fact that this threshold could likely be around 10%
of normal levels (at least for the exon 45-47 deletion) has important implications for
therapeutic approaches aiming at dystrophin restoration.
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Supplementary Table 1: Overview of data and clinical characteristics of study participants (* brothers).

Patient  Mutation Age at  Biopsy MRI QMA sum Dystro- Disease Milestones
examina- score phin (years)
tion (kg) (%) First Walking Walking Wheelchair
(years) Symptoms  Stairs Aid Dependence
1 del 45-47 47 Yes No 117 23 6 38 43 -
2 del 45-47 51 Yes No 94 30 5 18 51 -
3 del 45-47 26 Yes Yes 179 13 21 - - -
4 del 45-47 63 Yes  Yes 54 19 25 30 35 60
5 del 45-47 47 Yes No 54 21 17 19 25 37
6 del 45-47 39 Yes  Yes 80 56 5 20 38 -
7' del 45-47 37 Yes  Yes 113 76 16 20 30 -
8 del 45-47 20 Yes No 165 37 6 - - -
9 del 45-47 29 Yes  Yes 73 66 12 20 - -
10 del 45-47 39 Yes  Yes 125 74 21 35 - -
1 del 45-47 33 Yes  Yes 140 29 25 28 - -
12 del 45-47 43 No Yes 64 NA 6 35 35 -
13 del 45-47 31 Yes  Yes 129 62 2 - - -
14 del 03-04 31 Yes No 88 35 6 25 25 -
15 del 03-05 33 Yes No 102 32 18 25 - -
16 del 03-07 57 Yes No 15 10 4 12 40 45
17 del 05 19 Yes No 40 4 2 4 4 10
18 del 10-22 47 Yes No 82 38 6 20 37 -
19 del 10-30 30 No No 52 NA 4 4 20 -
20 dup 14-42 66 Yes No 65 23 18 60 65 -
21 Exon 19: 29 Yes No 55 3 2 4 9 25
¢.2380+3A>C
22 Exon 26: 30 Yes No 121 15 6 25 - -
c.3515G>A;
p-Trp1172X
23 Exon 29: 38 Yes No 159 14 - - - -
¢.3940C>T;p.
Argl314X

24 del 45-55 51 Yes No 185 40 6 - - -
25 del 45-49 32 No No 24 NA 8 18 20 27
26 del 48-49 42 No No 186 NA 11 - - -
27 del 30-44 24 Yes No 61 7 12 21 - -
28 del 45-48 49 No No 60 NA 12 30 25 -
29 del 45-48 48 Yes No 113 43 15 30 35 49
30 del 45-48 51 Yes No 36 59 4 13 25 39
31 del 48-49 25 Yes No 161 78 - - - -
32 Unknown 56 Yes No 156 56 18 50 - -
33 del 45-55 63 No No 124 NA 6 43 63 -

(NA: data not available, hyphen in section: patient has not reached the specific milestone).
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Supplementary Figure 1. Average dystrophin levels assessed by Western blot for BMD patients.

Protein was isolated from muscle biopsies and dystrophin levels were quantified by quantitative West-
ern blotting using the Odyssey system setting dystrophin levels observed in healthy muscles to 100%
and using alpha-actinin to correct for equal loading. Each sample was measured at least two times with

monoclonal (DY S1) and polyclonal (pABdys) antibody. Average dystrophin levels are shown. Error bars
show standard deviation.
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Healthy control A Negative control (- first antibody)

Supplementary Figure 2. Immunofluorescent staining for dystrophin.

Dystrophin staining is continuous and bright for the healthy control (top left panel). Representative
images of cross sections from BMD patiens are shown, showing either continuous staining at a lesser
intensity (middle panels) or a mosaic pattern (bottom panels).
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ABSTRACT

Introduction

Exon-skipping drugs in Duchenne muscular dystrophy (DMD) aim to restore truncated
dystrophin expression, which is present in the milder Becker muscular dystrophy
(BMD). MRI skeletal muscle T2 relaxation times as a representation of oedema/
inflammation could be quantitative outcome parameter for such trials.

Methods

We studied T2 relaxation times, adjusted for muscle fat fraction using Dixon MRI, in
lower leg muscles of DMD and BMD patients and healthy controls.

Results

T2 relaxation times correlated significantly with fat fractions in patients only (p<0.001).
After adjusting for muscle fat, T2 relaxation times were significantly increased in 6
muscles of DMD patients (p<0.01), except for the extensor digitorum longus. In BMD,
T2 relaxation times were unchanged.

Discussion

T2 relaxation times could be a useful outcome parameter in exon-skipping trials in
DMD but are influenced by fat despite fat suppression. This should be accounted for
when using quantitative T2 mapping to investigate oedema/inflammation.
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INTRODUCTION

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are
X-linked muscle diseases caused by a mutation in the dystrophin encoding DMD
gene [10]. As a result there is generally no functional dystrophin in DMD patients and
shortened, partially functional dystrophin in BMD patients. Initially muscle fibers un-
dergo processes of degeneration and regeneration accompanied by inflammation in the
muscle. As the regenerating capacity of the muscle progressively disappears, muscle
fibers are increasingly replaced by adipose and fibrotic tissue [38, 54, 113]. However,
the exact pathophysiological process underlying the progressive muscle damage is not
understood fully [65, 178]. Clinically, both DMD and BMD patients have progressive
muscle weakness, predominantly in proximal limbs in early stages of the disease, with
more generalized weakness later on. DMD patients become wheelchair-bound in their
early teens and die prematurely due to cardiac or respiratory failure, whereas BMD
patients have a more variable and usually less severe disease course [136].

Although there is no curative therapy available for DMD, several clinical trials aim to
restore expression of truncated dystrophin using antisense oligonucleotide-mediated
exon skipping [77, 78, 117]. This would potentially change the DMD patients into a
milder phenotype similar to BMD patients. As a result, there is interest in objective and
reliable tools to assess outcome measures for patients of different ages and at different
disease stages. Quantitative magnetic resonance imaging (MRI) could be such a tool,
as it is non-invasive, has good spatial resolution over a large imaging plane, can be ap-
plied repetitively, and has shown promise in monitoring disease progression in DMD
[103-106, 108, 113, 114, 179, 180]. Inflammation is present in both DMD and to a
lesser extent in BMD from early disease stages when muscle damage is less extensive
and is considered potentially reversible in contrast with fatty infiltration [17, 181]. As
such, assessment of inflammation could be a valuable outcome parameter, especially
as therapies would preferably start in young patients who have minimal irreversible
structural changes [108].

In MRI, the proton transverse relaxation time (T2) depends on the presence of oedema/
inflammation as well as the level of fatty infiltration in muscle. T2 relaxation times
in inflamed muscle are longer than relaxation times of normal muscle tissue and the
T2 relaxation times in muscles with fatty infiltration are even longer [90, 103, 182].
Therefore, especially in fat infiltrated muscle, it is essential that the fat is taken into
account in the analysis, as otherwise it is unknown to what extent longer T2 relaxation
times are a result of increased fat fractions or due to oedema/inflammation [183].
Several studies have quantitatively measured the T2 relaxation times in DMD patients
and found it to be increased [90, 109, 114]. However, without fat suppression it is
unknown to what extent the observed longer T2 relaxation times result from increased
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fat fractions or oedema/inflammation [183]. Two recent studies sought to circumvent
this problem by applying fat suppression in quantitative T2 images in a subset of their
DMD patients [103, 108]. Unfortunately, fat suppression does not always suppress the
entire fat signal present in skeletal muscle, and hence the results could still have been
influenced by increased fat fractions [183]. Similar MRI studies assessing oedema/in-
flammation have not been done in BMD patients. To evaluate if the T2 relaxation time
could be a possible outcome parameter in clinical trials, a better understanding of how
changes in muscle of DMD patients relate to BMD patients is needed. Therefore, the
aim of our study was to compare T2 relaxation times in lower leg muscles of DMD and
BMD patients and healthy controls, while taking the increased fat levels into account.

METHODS

Subjects

DMD and BMD patients were recruited from the Dutch dystrophinopathy database.
The diagnosis of DMD or BMD had been confirmed by genetic testing for mutations
in the DMD gene or from a muscle biopsy. Healthy age-matched controls were re-
cruited from local schools and from the Leiden University Medical Center Radiology
database for healthy controls. The local medical ethics committee approved the study,
and informed consent was obtained from all subjects. For participants under age 18,
informed consent was obtained from both the subjects and their parents.

MRI

MR images were acquired on a 3T Philips Achieva Scanner (Philips Healthcare, Best,
The Netherlands) from the left lower leg using a 14-cm 2-element receive coil with
body coil excitation. The receive coil was positioned directly distal to the patella on
the anterior and posterior sides of the leg. The scanning protocol consisted of a T1-
weighted turbo spin echo (TSE) sequence [25 slices, 5 mm thickness, 0.5 mm gap,
repetition time (TR) 600 ms, initial echo time (TE) 16ms, TSE factor 5], a 3-point
gradient echo Dixon sequence (25 slices, 5 mm thickness, 0.5 mm gap, TR 400 ms,
TE 4.41 ms, echo spacing 0.71 ms, flip angle 8°) and a multi-echo sequence with fat
suppression for quantitative T2 mapping [5 slices, 5 mm thickness, 22.5 mm gap, TR
2500 ms, 7 echo times (13, 26, 39, 52, 65, 78 and 91 ms), flip angle 90°, spectral pre-
saturation with inversion recovery (SPAIR) fat suppression] using a mono-exponential
fit and maximum likelihood estimation [118, 122]. The total scanning protocol, includ-
ing positioning of the patients, could be completed in 20 minutes.
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Data analysis

T2 values were calculated using a maximum likelihood estimation algorithm supplied
by the scanner manufacturer. Regions of interest were drawn using Medical Image Pro-
cessing, Analysis and Visualization software (www.mipav.cit.nih.gov) on the second,
third, and fourth slices of the shortest echo image and superimposed on the calculated
T2 maps to obtain the mean T2 values of the following muscles: medial and lateral
head of gastrocnemius muscle (GCM and GCL), soleus (SOL), posterior tibialis (TP),

Figure 1. Axial image of lower leg showing the first echo time of the quantitative T2 image of a 12 year-
old DMD patient (a), a 63 year-old BMD patient, and (c) a Dixon water image of the DMD patient (b),
and the BMD patient (d).

The Dixon image clearly shows diffuse fatty infiltration in virtually all muscles in the DMD patient,
whereas in the BMD patient the medial gastrocnemius is most severely affected while the other muscles
are still relatively spared.

Muscles shown are medial gastrocnemic muscle (GCM), lateral gastrocnemic muscle (GCL), soleus
muscle (SOL) posterior tibialis muscle (TP), anterior tibialis muscle (TA), extensor digitorum longus
muscle (EDL) and fibularis muscle (FIB).

69



Chapter 5

fibularis (FIB), anterior tibialis (TA), and extensor digitorum longus (EDL) (Figure 1).
Dixon images were co-registered to T1 images, on which regions of interest in every
other slice were drawn for the previously mentioned muscles. The middle 11 slices
were used to cover the same FOV from which the T2 relaxation times were calculated.
Fat and water images were generated using multipeak fitting, and fat fractions were
calculated as described previously [143].

Statistical analysis

One-way between-groups analysis of covariance (ANCOVA) was conducted to com-
pare the T2 values in patients and controls. Disease status was used as fixed factor, and
fat percentage and age were used as covariates. By including the muscle fat fraction
as a covariate the T2 relaxation times adjusted for fat fractions could be calculated
and were subsequently incorporated in the analysis. A Bonferroni-Holm model was
used to correct for multiple comparisons. A Pearson correlation was performed to test
the relationship between fatty infiltration and T2 relaxation time in DMD and BMD
patients and in healthy controls. SPSS statistical package Version 20.0 for Windows
(SPSS Inc., Chicago, IL) was used for the analysis. The level of significance was set
at p<0.05.

RESULTS

Patient characteristics

Nineteen DMD patients (age 10.5+2.7, range 6-14 years), 11 healthy boys (age
10.7£2.1, range 8-15 years), 7 BMD patients (age 39.6+11.7, range 26-63 years), and
8 healthy male adults (age 34.44+12.6, range 24-62 years) participated in the study,
and all completed the protocol. Of the DMD patients, 10 were fully ambulant, 2 used
a wheelchair intermittently, and 7 were completely wheelchair dependent. All but 3
DMD patients used corticosteroids: an 8-year old boy who was still completely mo-
bile and had never used steroids and 2 13-year old boys who were both wheelchair
dependent and had been on steroids for approximately 5 years, but had stopped 1 and
2 years, respectively, prior to this study. Of the BMD group, 2 men (aged 26 and 38)
experienced no problems or weakness in their daily activities. Three patients (aged
63, 39, and 31) reported muscle weakness when carrying out daily activities such as
climbing stairs, but none required a walking aid. Two patients (aged 37 and 43) were
completely wheelchair-dependent. All BMD patients experienced occasional muscle
cramps.
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Fatty infiltration

To adjust for potential effects of fatty infiltration on the T2 values, the fat fractions for
the analysed muscles were calculated using Dixon MRI. The mean fat fraction of all
analysed muscles was 20.7+7.0% for DMD patients, 5.6+0.9% for paediatric controls,
15.3+£11.8% for BMD patients, and 4.4+0.5% for adult controls. Of the analysed
muscles, the GCL had the highest mean fat fraction in DMD patients (28.4%), and the
TP had the lowest (8.2%). In the BMD patients, the GCM had the highest mean fat
fraction (31.8%), and the TA had the lowest (2.2%).

T2 relaxation times

There was a significant correlation between unadjusted T2 values and fatty infiltra-
tion in the DMD and BMD patients (R=0.70, p<0.001), but not for healthy controls
(R=1.13, p=0.15) (Figure 2). Uncorrected average T2 relaxation times in DMD pa-
tients were 43+2.4 ms, 42+4.2 ms in BMD patients, 36+1.4 ms in paediatric controls,
and 38+1.8 ms in adult controls. After adjusting for the fat percentage the average T2
relaxation times were 42.2+2.2 ms in DMD patients, 39.1+3.3 ms in BMD patients,
37.3+1.4 ms in paediatric controls, and 39.8+2.6 ms in adult controls. The adjusted T2
relaxation times were significantly higher in DMD patients compared to controls for
the GCM, GCL, SOL, and TP (all p<0.001), TA (p=0.005) and FIB (p=0.002), but not
for the EDL (p=0.96) (Figure 3). There were no significant differences between BMD
patients and controls after adjusting for the fatty infiltration in any of the investigated
muscles (Figure 3).
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Figure 2. Correlation between fatty infiltration and fat suppressed T2 values in DMD patients (open
circles) and BMD patients (grey dots).

Although fat suppression was applied, there remains a significant influence of the fatty infiltration on the
T2 values, increasingly towards the higher fat fractions.
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Figure 3. Mean adjusted T2 relaxation times =SD of DMD patients (black) versus controls (dark grey)
(a) and BMD patients (checked) versus controls (light grey) (b) of the investigated muscles [medial and
lateral heads of gastrocnemius (GCM, GCL), soleus (SOL), anterior tibialis (TA), extensor digitorum
longus (EDL), fibularis (FIB) and posterior tibialis (TP)). Muscles with significantly different T2 values
are shown with an asterisk (*).

DISCUSSION

In this study we show that in DMD patients the T2 relaxation times, with adjustment
for the increased fat percentage, are significantly increased compared to healthy boys in
all analysed muscles except the extensor digitorum longus. In contrast, BMD patients
did not show significant increases in adjusted T2 values compared to healthy controls.
This suggests that the T2 relaxation time could be a useful outcome parameter in DMD
trials that aim to restore truncated dystrophin expression, which is typically expressed
in BMD patients.

Increased T2 relaxation times in skeletal muscle can originate from a number of
factors, including inflammation, necrosis, or moderate-severe exercise [183]. The
T2 relaxation time has also been shown to increase with age [184]. In muscle tis-
sue of DMD and BMD patients mononuclear cell infiltrates predominantly consist of
T-lymphocytes and macrophages [54-56, 181, 185]. Several mechanisms have been
hypothesized to contribute to the inflammation. It has been suggested that inflamma-
tion is a non-specific event, which could be triggered by surrounding necrotic muscle
fibers [55, 59]. Activation of an immune response via toll-like receptors triggered by
myofiber damage before more structural changes are present is believed to be another
explanation [55, 62]. A specific cellular autoimmune response to an unknown antigen
has also been suggested [61]. The various components involved in the inflammatory
response are thought to contribute directly to some of the muscle damage [56, 62, 63,
185, 186]. In addition to the potential effects of inflammation, a recent sodium MR
study demonstrated oedema-like changes in muscle of DMD patients and suggested
that increased intracellular sodium might also play a direct role in the pathogenesis of
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progressive muscle degeneration[187]. These mechanisms could all contribute to an
increase in the T2 relaxation time, as observed in our DMD patients

In contrast to DMD patients, there are no specific anatomical pathology studies
describing to what extent inflammatory processes contribute to muscle degeneration
in BMD patients. As BMD patients have some, albeit not full-length, dystrophin it
could be that the mechanism(s) causing inflammation are less prominent compared to
DMD patients. This is supported by the observation that inflammation is less in muscle
biopsies of BMD patients than in DMD patients [17, 181]. This could explain why no
significant increase in adjusted T2 relaxation time was seen in our BMD patients.
While several studies have quantitatively measured the T2 relaxation times in DMD
patients and found it to be increased [90, 109, 114], only two recent studies described
increased T2 relaxation times in lower leg muscles of DMD patients using fat suppres-
sion[103, 108]. Our results show that even though fat is suppressed using SPAIR, the
T2 values and level of fatty infiltration were correlated in many of the investigated
muscles. Therefore, an influence of the lipid signal on the T2 values in previous studies
cannot be ruled out. Recently, it was shown that suppressing fat with just SPAIR aimed
at the aliphatic fat region around 2.6 parts per million is not sufficient to eliminate the
entire fat signal[188]. This could be solved by using additional methods to suppress
the olefinic fat signal [188, 189]. Alternatively, applying proton MR spectroscopy
and separately assessing the T2 relaxation time of water and fat can circumvent this
problem. However, this will only yield results over a small volume of interest and is
too time consuming to perform for a large number of muscles. Thirdly, a chemical shift
method can be employed in which water and fat images are obtained at multiple echo
times, but unfortunately this sequence is not currently available on all commercial MR
scanners [190]. Finally, water and fat can be separated in post-processing, as proposed
by several authors [145, 183, 191-193], or by adjusting for the fat by statistical analy-
sis, as we have done here.

Several previous studies have suggested the use of the fatty infiltration in DMD pa-
tients as a measure of disease progression and potential outcome parameter [103, 104,
106, 194]. In the dystrophic process, oedema/inflammation is thought to occur prior to
fatty infiltration and could therefore be used as an earlier marker of therapy effective-
ness compared to changes in levels of fatty infiltration. In addition, it is questionable
if severely fatty infiltrated muscles can still be rescued, and as such fatty infiltration in
these patients might be irreversible. Alternatively oedema/inflammation is potentially
more likely to be reversible and could therefore be of value as an outcome parameter
in assessment of future therapies, especially in early disease stages when effect of the
lipid signal on the T2 relaxation times is minimal.

Recently it has been suggested that T2 relaxation times in DMD patients are reduced as
a function of age [115, 195, 196]. However there remains some discussion as to these
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findings, since some authors report a decrease and others report an increase [103, 108].
The cause for this potential decrease is still uncertain and could be due to technical
reasons or pathophysiology, i.e. a decrease in oedema or an increase in fibrosis. So far
the available data imply that if the T2 relaxation times decrease, they do not normalize
to the levels of healthy controls, and they have only been described for older DMD
patients. Therefore, even if such an effect were to be present, the T2 relaxation time
remains a potential valuable parameter in the follow-up of younger patients.

This study has some limitations; firstly, the group of BMD patients participating in the
study was relatively small. However, as we obtained data from several muscles ranging
from patients with very few clinical symptoms to wheelchair-dependent patients we
felt that our findings are likely to be representative of the whole spectrum of the dis-
ease. Secondly, 3 of our DMD patients did not use corticosteroids. Although a previous
study showed no significant effect on the T2 relaxation time in DMD patients before
and after steroid treatment, a recent report suggested that corticosteroids do in fact
result in a decrease of the T2 relaxation time [114, 197]. However, a reduction of the
T2 relaxation time as an effect of steroids would decrease possible differences between
patients and controls. As the number of steroid-free patients in our cohort was very
small, it is unlikely that the patients not on steroids represented the sole contribution to
the significant difference between patients and controls. Thirdly, a TR of 2500ms was
used to avoid very long acquisition times, which result in partial saturation effects due
to the long T1 of water. Finally, we only assessed the lower leg in our study, as the B1
field in this region is much more homogeneous compared to the upper leg. However,
the upper legs are known to be involved earlier in both DMD and BMD patients. For
future studies it would be valuable to compare proximal muscles in either the leg or
arm of both DMD and BMD patients.

In conclusion, we show that skeletal muscle T2 relaxation times are significantly in-
creased in DMD patients, which is indicative of the presence of inflammation/oedema.
We also show no such increase is present in the generally less severely affected BMD
patients. Therefore we believe that quantitative T2 mapping, while taking the lipid
signal into account can be a useful method for evaluation of oedema/inflammation
of DMD patients and could be an outcome parameter in treatment trials aiming to
ameliorate DMD to a BMD phenotype.
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ABSTRACT

Becker muscular dystrophy is characterized by progressive muscle weakness. Muscles
show structural changes (fatty infiltration, fibrosis) and metabolic changes, both of
which can be assessed using MRI and MRS. It is unknown at what stage of the disease
process metabolic changes arise and how this might vary for different metabolites. In
this study we assessed metabolic changes in skeletal muscles of Becker patients, both
with and without fatty infiltration, quantified via Dixon MRI and *'P MRS. MRI and
*'P MRS scans were obtained from twenty-five Becker patients and fourteen healthy
controls using a 7T MR scanner. Five lower leg muscles were individually assessed for
fat and muscle metabolite levels. In the peroneus, soleus and anterior tibialis muscles
with non-increased fat levels PDE/ATP ratios were higher (p<0.02) compared to
controls, whereas in all muscles with increased fat levels PDE/ATP ratios were higher
compared to healthy controls (p<0.05). The Pi/ATP ratio in the peroneus muscles was
higher in muscles with increased fat fractions (p=0.005) and the PCr/ATP ratio was
lower in the anterior tibialis muscles with increased fat fractions (p=0.005). There were
no other significant changes in metabolites, but an increase in tissue pH was found in
all muscles of the total group of BMD patients in comparison with healthy controls
(p<0.05). These findings suggest that >'P MRS can be used to detect early changes in
individual muscles of Becker muscular dystrophy patients, which are present before
the onset of fatty infiltration.
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INTRODUCTION

Becker muscular dystrophy (BMD) is an X-linked disease caused by mutations in the
DMD gene, which codes for the dystrophin protein, an important factor for muscle
membrane stability [10]. In BMD patients the dystrophin protein is only partially
functional, resulting in continuous muscle fiber damage. There is inflammation and
oedema in the muscle and eventually the muscle cells’ regenerative capacity becomes
exhausted and muscle tissue is replaced by adipose and fibrotic tissue [38, 54]. The
main feature of the disease is progressive muscle weakness with a limb-girdle distribu-
tion, but symptoms can be highly variable in age of onset, severity of symptoms and
rate of progression [159, 160]. The underlying mechanisms causing the variability are
not fully understood and are thought to include factors like the regenerative capacity
of the muscle, quantity of the remaining dystrophin protein and the specific mutation
[154-157, 198].

Skeletal muscles of BMD patients show a distinct pattern of fatty infiltration, which
can be assessed with magnetic resonance imaging (MRI) [199]. With the progression
of the disease the amount of adipose tissue in the muscle increases, and muscles of
clinically asymptomatic patients can already show fatty infiltration in some muscles,
while others still appear to be normal [199]. In addition to these structural changes in
the muscle, several phosphorus MR spectroscopy (*'P-MRS) studies have reported
changes in BMD patients suggestive of an altered energy metabolism [92, 95, 200,
201]. However, the results of these studies have been inconsistent; both unchanged and
decreased phosphocreatine (PCr) to adenosine triphosphate (ATP) ratios, increased,
unchanged and decreased inorganic phosphate (P1)/ATP ratios and an unchanged and
increased intracellular pH and possibly increased phosphodiesters (PDE)/ATP ratios
have been reported [92, 94, 95, 200, 201]. Mitochondrial function is believed to be
normal in these patients and it has been suggested that there is reduced glycolytic ac-
tivity in the skeletal muscles [95, 200]. While structural changes like fatty infiltration
and fibrosis are predominantly present in muscles that are in a more advanced stage of
the dystrophic process, metabolic changes are thought to occur earlier [202]. However,
it is unknown if and how metabolic changes contribute to the muscle degeneration
and to what extend these changes are present before the occurrence of fatty infiltra-
tion. Previous studies in BMD patients have focused on the more severely affected
gastrocnemic muscles using surface coil localization only, without the combination
of imaging data and patients with variable disease severity. Therefore it is unknown if
the reported changes in phosphorous metabolism in BMD patients are already present
in muscles without fatty infiltration, i.e. a less advanced stage of the disease before
signs of the dystrophic process are visible with MRI. Since metabolic processes are
more likely to be reversible than structural changes like fatty infiltration they could
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be valuable as an early marker to evaluate disease progression and possibly effects of
future therapeutic interventions [110, 203-205].

In this study, we used high magnetic field quantitative MRI and MRS in BMD patients
and healthy controls to assess phosphorous metabolism in five individual lower leg
muscles, and correlated the findings to the level of fatty infiltration obtained from the
same muscles to assess if metabolic changes vary in different stages of the dystrophic
process.

MATERIALS AND METHODS

Subjects

All patients were recruited from the Dutch Dystrophinopathy Database. Controls
were recruited from the Leiden University Medical Center Radiology database for
healthy controls. The diagnosis BMD was confirmed by a mutation in the DMD gene
or reduced dystrophin expression in a muscle biopsy. BMD patients were classified
into four groups according to their clinical functioning: no motor symptoms, mildly
affected (patients with difficulty walking and/or difficulty climbing stairs, but not us-
ing a walking aid), moderately affected (patients using a walking aid: stick, frame or
intermittent wheelchair use), and severely affected patients (completely wheelchair
dependent).

The local medical ethics committee approved the study and all study participants gave
written informed consent.

MR examination

Data were acquired on a 7T Philips Achieva MRI (Philips Healthcare, The Nether-
lands). A custom-built volume birdcage coil (diameter 17.5 cm, length 12 cm) tuned
for both proton (‘H) imaging (higher order mode) and phosphorous (*'P) spectroscopy
(homogeneous quadrature mode) was positioned around the left lower leg directly
distal of the patella [206]. Patients were positioned in supine position, feet first, in the
scanner. The imaging protocol consisted of an anatomical gradient echo sequence (15
slices; slice thickness 7mm); interslice gap 0.5 mm; repetition time (TR) 10 ms; echo
time (TE) 3.0 ms; flip angle (FA) 30°; FOV 180x200 mm) a three-point gradient echo
Dixon sequence (12 slices; slice thickness 10 mm; interslice gap 0.5 mm; TR/TE/ATE
300/2.4/0.33 ms; FA 30°; FOV 180x204 mm) and a BO map (14 slices; slice thickness
8 mm, no slice gap; TR/TE 30/3.11ms; FA 20°; FOV 160x180 mm). A 2D phosphorous
MRS chemical shift imaging (CSI) dataset was acquired based on the T1-weighted
images (FOV 160x200 mm; matrix size 8 x 10; TR 2000 ms; samples 2048; voxel
size 20x20 mm; FA 45°; Hamming weighted acquisition with 14 signal averages at

80



Increased PDE can be detected prior to fatty infiltration in BMD

the central k-lines, voxel size after hamming weighing 3.42x3.42 x12 c¢cm’). Second
order shimming was performed using an image based shimming routine [207]. As the
diameter of the lower leg and the boundaries between the different muscle groups
change along the length of the leg, the 2D-CSI sequence was planned in such a way
that within the volume of the coil a specific voxel was located within one individual
lower leg muscle (Figure 1). The total scan duration was approximately 50 minutes.
For quality control of the 7T Dixon data the 7T values were compared to Dixon MRI
data acquired from the same patients on a 3T Philips Achieva scanner in a subgroup of
9 patients previously described by Van den Bergen et al. [198]. Data of these patients
was obtained on the same day, from the same leg using a 14-cm diameter two-element
coil with body coil excitation position directly distal of the patella.

Slice 14

Figure 1. Example of the planning of the *'P 2D-CSI dataset superimposed on an axial T1 weighted
image.

The spectroscopy grid was positioned so that specific voxel was located within one individual lower leg
muscle over the entire length of the coil: in the first (a.), middle (b.) and last slice (c.) of the T1-weighted
image the voxel in the tibialis anterior muscle as well as the voxel in the soleus muscle lies within the
same muscle over the length of the coil.

Data analysis

*'P Data sets were visualized using the 3D Chemical Shift Imaging package (3DiCSI)
and spectra were identified in the tibialis anterior (TA), peronei (PER), soleus (SOL),
lateral head of the gastrocnemius (GCL) and medial head of the gastrocnemius (GCM)
muscles using a grid overlay on the T1-weighted image (Figure 2). Voxels were care-
fully positioned to avoid overlap with adjoining muscles.

The free induction decays were exported and fitted using AMARES in jJMRUI software
package (version 4, http://sermn02.uab.es/mrui). In some patients high amounts of
fatty infiltration within the muscle resulted in a low signal-to-noise in the phosphorous
spectra due to the very low amount of muscle tissue in the voxel. Consequently only
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Figure 2. Grid overlay on an axial Dixon water-image of the lower leg of a BMD patient.

Spectra were analysed in the anterior tibialis, peroneus, soleus and medial and lateral head of the gas-
trocnemic muscle for which the ROIs are drawn on the image. Voxels of the CSI-grid were carefully
positioned to avoid overlap with adjoining muscles. Note that the coil used for this image is a single
tuned birdcage coil, with the primary homogeneous mode being at the phosphorus frequency and a
higher mode at the proton frequency, resulting in a loss of sensitivity in the center of the coil for proton,
but not for phosphorous.

the muscles with an acceptable quality spectrum (i.e. SNR greater than 10 for the PCr
peak in combination with the ability to identify all other metabolite signals and with
percentage Cramér-Rao Lower Bound (CRLB) values for all fitted metabolites below
20%) were included in the analysis. Signals of Pi, PDE, PCr and y-, a- and B-ATP
were fitted with Gaussian line shapes (Figure 3). For the PDE and B-ATP peak prior
knowledge on the line width was used. The line width for PDE was set at 1.3* the line
width of PCr and the B-ATP line width was set at 1.6* the line width of a-ATP, this
prior knowledge was based on the mean line widths of 10 patients with high SNR.
Metabolite ratios were obtained from Pi, PDE and PCr relative to the y- ATP signal
and corrected for 'H relaxation effects measured in human calf muscle at 7T assum-
ing the same relaxation parameters for all muscles [208]. Intracellular tissue pH was
calculated from the shift in resonance position (S) of the Pi peak compared to PCr:
pH=6.75 + log ((3.27-S)/(S-5.69)) [209].

Quantitative fat fractions of the muscles were calculated from the Dixon MR images
using Medical Image Processing, Analysis and Visualization (MIPAV) software (http://
mipav.cit.nih.gov). Regions of interest (ROIs) were drawn on all slices, on the same
muscles as used for the spectroscopy analysis. Fat fractions were calculated as signal
intensity (SI) fat/ (SI fat+ SI water))*100. 3T values were corrected for relaxation
effects as described before [143]. For the comparison of 3T and 7T data, fat fractions
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obtained from the TA, PER, SOL, GCL and GCM muscles from a similar number of
slices from both scanners were compared on a muscle-by-muscle basis.

All individual muscles of the Becker patients were classified into two groups according
to the level of fatty infiltration compared to healthy controls; BMD with non-increased
fat levels (NIFL)), and BMD with increased levels of fatty infiltration (IFL). Cut-
off values were calculated for the five individual lower leg muscles using mean+2
standard deviations (SD) of the fat fraction of the corresponding lower leg muscle of
healthy controls.

A . A
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Figure 3. Representative phosphorous 7T spectra of the peroneus muscle in a healthy control, BMD
patient with non-increased fat fractions (BMD NIFL) and BMD patient with increased fat fractions
(BMD IFL).

Spectra are scaled to the ATP levels. The signal to noise ratio of the 31P signal clearly decreases in the
BMD patient with increased fat levels. Peak assignments Pi = inorganic phosphate, PDE = phosphodies-
ter, PCr = phosphocreatine, -, a- and B-ATP = three resonances of adenosine triphosphate.

Statistics

For the comparison of the metabolite ratios Pi/ATP, PCt/ATP, PDE/ATP, Pi/PCr and pH
between the groups for the five lower leg muscles two general linear models were used,
one for the comparison of healthy controls with the whole group of BMD patients and
one for the comparison of healthy controls with the NIFL BMD and IFL BMD groups.
Age was entered as a covariate and disease as a fixed factor. A Fischer LSD model was
used to correct for multiple comparisons. Pearson correlation was used for the com-
parison of the Dixon scan data acquired at 3T and 7T to explore the relation between
fat fractions and the PDE/ATP ratio in both healthy controls and BMD patients. The
level of significance was set at P<(.05. Statistical analysis was performed using SPSS
version 20 for Windows (SPSS Inc., Chicago).
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RESULTS

Patient characteristics

Twenty-five male BMD patients (age 39.6 + 13 years, range 20-66, BMI 25.04 + 3.65,
range 20-33) and fourteen age-matched healthy male controls (age 35.7 £+ 15 years,
range 22-65, BMI 22.64 + 3.37 range: 20-32.4) participated in the study. All subjects
completed the scanning protocol. Of the 25 BMD patients five patients had no motor
symptoms, eleven were mildly affected, seven moderately affected and two severely
affected (Table 1). Four of the patients with no motor symptoms showed normal fat
levels on Dixon MRI and one patient with no motor symptoms showed a slightly
increased fat fraction in the GCM and GCL. The GCM and GCL showed increased
fat levels in all moderately affected patients and fat fractions were increased in all
investigated muscles of severely affected patients (Table 1).

Fatty infiltration

The mean fat level in healthy controls was 2.9 + 1.1% and in patients 16.0 + 18.6%.
Overall the GCM showed the highest mean fat fractions and the SOL the lowest. Mus-
cles with fat fractions lower than the mean fat fraction plus 2 SD in the corresponding
muscle of healthy controls were defined as muscles with no significant increase in
fatty infiltration and classified in the non-increased fat levels (NIFL) group. The other
muscles were classified in the group with increased levels of fatty infiltration (IFL), as
compared to healthy controls (Table 1). The fat fractions calculated from five muscles
of nine BMD patients acquired at 3T and 7T showed a high correlation (R=0.97).

3P data

All metabolite ratios of the healthy controls and BMD patients are shown in Table 2.
For the analysed muscles the NIFL/IFL subgroups were divided as follows; GCL NIFL
n=5/IFL n=13 (cut-off fat fraction 3.4%), GCM NIFL n=5/IFL n=9 (cut-off 4.5%),
PER NIFL n=10/IFL n=15 (cut-off 6.8%), SOL NIFL n=10/IFL n=15 (cut-off 4.9%),
TA NIFL n=18/IFL n=7 (cut-off 8.1%). Due to the high number of patients with in-
creased fat levels in the GCL and GCM muscles, the number of included spectra in the
NIFL was lower compared to the other muscles. In addition, for the GCM muscle 11
spectra and seven spectra for the GCL muscle did not meet our quality control criteria
and therefore were not included in the analysis. In healthy controls all the acquired
spectra were included in the analysis.

For the whole group of BMD patients PDE/ATP ratios were significantly increased
compared to healthy controls in all five lower leg muscles. In the NIFL BMD group
PDE/ATP ratios were significantly increased compared to healthy controls in the PER,
SOL and TA muscles, except for a trend in the GCL (p=0.071) and no significant change
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Table 1. Patient parameters.

Patient  Age Mutation Age of first Disability Non-increased fat levels
(years) symptoms muscles

1 56 Unknown* 35 Mild PER, TA

2 48 Del45-48 14 Moderate None

3 49 Del45-48 10 Moderate None

4 29 Exon 19 Severe None

€.2380+3A>C ** 4

5 51 Del45-55 6 Mild PER, SOL, TA

6 63 Del45-55 40 Mild TA

7 30 pl172X 4 Mild TA

8 26 Del45-47 9 No motor symptoms GCL, GCM, PER, SOL, TA

9 38 Exon 29 No motor symptoms GCL, GCM, PER, SOL, TA

p-Argl31>X *** None

10 24 Del30-44 12 Mild TA

11 63 Del45-47 10 Severe None

12 33 Del03-05 None Mild TA

13 66 Dup14-42 6 Moderate None

14 39 Del45-47 6 Mild None

15 37 Del45-47 3 Moderate SOL, TA

16 20 Del45-47 None No motor symptoms GCL, GCM, PER, SOL, TA

17 29 Del45-47 12 Mild PER, TA

18 39 Del45-47 15 Mild TA

19 31 Del03-04 18 Moderate PER, SOL, TA

20 25 Del48-49 Floppy infant No motor symptoms GCL, GCM, PER, SOL, TA

21 37 Del03-04 3 Moderate TA

22 33 Del45-47 3 Mild GCL, SOL, TA

23 42 Del48-49 6 No motor symptoms PER, SOL, TA

24 43 Del45-47 4 Moderate None

25 31 Del45-47 2 Mild GCL, GCM, PER, SOL, TA

Disability is scored as no motor symptoms, mild (difficulty walking without the use of walking aid),
moderate (use of walking aid) or severe (wheelchair dependent). The muscles with non-increased fat
fractions as compared to healthy controls are shown for each patient (medial and lateral head of gastroc-
nemic muscle (GCL and GCM), soleus (SOL), peroneus (PER) and anterior tibialis (TA)).(*No mutation
could be found, patient had been found to have 62% dystrophin. **As a result of this mutation a large
part of exon 19 is skipped. ***As a result of this mutation exon 29 is skipped)

in the GCM (p=0.404) (Figure 4). The IFL BMD subgroup showed significantly in-
creased PDE/ATP ratios compared to healthy controls in all lower leg muscles. Values
of Pi/ATP, Pi/PCr and PCr/ATP showed no significant differences between the whole
group of BMD patients and healthy controls, except for an increase in the Pi/ATP ratio
in the PER muscle of BMD patients.

85



Chapter 6

Controls BMD total BMD NIFL BMD IFL
GCL n=14 n=18 n=5 n=13
Pi/ATP 0.34+0.02 0.40+0.02 0.37+0.04 0.41£0.03
Pi/PCR 0.10£0.01 0.10+0.01 0.09+0.016 0.11+0.01
PDE/ATP 0.19+0.03 0.3440.03* (p=0.001) 0.288+0.051 0.36+0.03* (p=0.001)
PCr/ATP 3.59+0.12 3.54+0.11 3.842+0.204 3.4+0.13
pH 7.02+0.01 7.05+£0.01*(p=0.017) 7.05+0.014 7.06£0.01*(p=0.017)
GCM n=14 n=14 n=5 n=9
Pi/ATP 0.38+0.03 0.44+0.03 0.42+0.04 0.45+0.03
Pi/PCR 0.10£0.05 0.18+0.05 0.11+0.08 0.22+0.06
PDE/ATP 0.25+0.04 0.34+0.04*(p=0.046) 0.27+0.06 0.38+0.05*(p=0.036)
PCr/ATP 3.82+0.16 3.77+0.16 3.81+0.27 3.76+0.20
pH 7.02+0.01 7.05+0.01*(p=0.025) 7.04+0.01 7.05+£0.01*(p=0.033)
PER n=14 n=25 n=10 n=15
Pi/ATP 0.32+0.03 0.40+0.02*(p=0.016) 0.36+0.03 0.43=0.03*(p=0.005)
Pi/PCR 0.09+0.01 0.11+0.006 0.11+0.01 0.12+0.01*(p=0.035)
PDE/ATP 0.16+0.03 0.33+0.02*(p<0.001) 0.30+0.032*(p=0.003) 0.35+0.03*(p<0.001)
PCr/ATP 3.48+0.1 3.61+0.07 3.53+0.11 3.66+0.09
pH 7.01+0.01 7.02+0.01*(p=0.047) 7.02+0.01 7.02+0.01
SOL n=14 n=25 n=10 n=15
Pi/ATP 0.38+0.02 0.40+0.02 0.40+0.03 0.40+£0.024
Pi/PCR 0.11+0.01 0.12+0.01 0.13£0.011 0.11+0.01
PDE/ATP 0.21+0.03 0.34+0.02*(p=0.003) 0.33+£0.04*(p=0.017) 0.34£0.03*(p=0.0006)
PCr/ATP 3.57+0.11 3.65+0.08 3.52+0.13 3.73+£0.10
pH 7.02+0.01 7.04+0.004*(p=0.006) 7.04+0.01 7.04+0.01*(p=0.006)
TA n=14 n=25 n=18 n=7
Pi/ATP 0.35+0.03 0.37+0.02 0.40+0.02 0.29+0.036
Pi/PCR 0.10+0.01 0.10+0.01 0.11+0.01 0.09+0.01
PDE/ATP 0.17+0.04 0.30+0.03*(p=0.01) 0.30+0.03*(p=0.019) 0.30+0.05* (p=0.05)
PCr/ATP 3.66+0.12 3.5340.1 3.71£0.102 3.06£0.16(p=0.005)
pH 7.00+0.01 7.02+0.01*(p=0.039) 7.01£0.01 7.02+0.01

Table 2. Mean values £SD for the different metabolites in healthy controls, the overall BMD group,
BMD patients with non-increased fat levels (NIFL) and BMD patients with increased fat levels
(IFL). Significant differences between patients and controls are marked with an asterisk (*) and for
these p values are shown. (Pi = inorganic phosphate, PDE = phosphodiester, PCr = phosphocreatine,
ATP=adenosine triphosphate. GCL/GCM= lateral and medial head gastrocnemius, PER= peroneus,

SOL=soleus, TA=anterior tibialis).
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Figure 4. Mean phosphodiester (PDE) in medial and lateral gastrocnemic muscle (GCL and GCM),
peroneus (PER), soleus and anterior tibialis (TA) in healthy controls (black), BMD patients with non-
increased fat levels (NIFL) (white) and BMD patients with increased fat levels (IFL) (grey).

Ratios significantly higher in BMD NIFL compared to controls are shown with an asterix (*) and signifi-
cantly higher in BMD IFL compared to control with a square (¢). P values are as follows: for the NIFL
BMD group (GCL p=0.071, GCM p= 0.404, PER p= 0.003, SOL p=0.017 and TA p=0.019) and in the
IFL BMD group (GCL p=0.001, GCM p=0.036, PER p<0.001, SOL p=0.006 and TA p=0.05).

In the NIFL BMD group no significant differences were found for any of these me-
tabolites (Table 2). Therefore, the increase in Pi/ATP ratio in the PER of the overall
BMD group is due to the IFL BMD group in which significant increases in the Pi/
ATP (p=0.005) and Pi/PCr (p=0.035) were found for the PER. There was a significant
increase in tissue pH in the GCM, GCL and SOL muscle in the IFL group, as well as in
all muscles of the whole BMD group. Additionally there was a significant correlation
between the fat fraction and PDE/ATP ratio in the BMD patients (R=0.20, p=0.04), but
not in healthy controls (R=-0.02, p=0.9) (Figure 5).
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Figure 5. Correlation between PDE/ATP ratios and fatty infiltration in BMD patients (grey dots) and
healthy controls (black dots).

For BMD patients there is a low, but significant correlation (R=0.20, p=0.04), however in the higher fat
fractions PDE/ATP ratios show great variability.
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DISCUSSION

In this study we used a combination of quantitative proton MRI and localized *'P MR
spectroscopy to evaluate high-energy phosphate levels in five lower leg muscles of
BMD patients. In BMD patients the SOL, PER and TA with non-increased fat fractions
and all muscles with increased fat fractions showed increased PDE/ATP ratios. This
suggests that >'P MRS can be used to detect changes muscles of BMD patients before
the onset of potentially irreversible changes like fatty infiltration.

The PDE signal in the MR spectrum is derived from glycerol 3-phosphocholine (GPC)
and glycerol 3-phosphoethanolamine (GPE) which are thought to be membrane phos-
pholipids breakdown products [210, 211]. Slow-twitch, oxidative type 1 fibers have
been shown to have higher PDE/ATP ratios and PDE has also been shown to increase
with age [212, 213]. In addition, GPCs have been suggested to have some regulatory
effects [214-217]. In muscular dystrophies increased PDE/ATP ratios have been found
in Golden Retriever muscular dystrophy (GRMD) dogs, in Duchenne muscular dystro-
phy (DMD) patients, and in moderately affected BMD patients [95, 96, 112, 201, 218].
Our results are in agreement with these studies, although we did not find an increase in
PDE/ATP ratio in the GCM and a trend in the GCL muscle. However, as we only had
five data points in the NIFL group in these muscles, this could have resulted from a
failure to reach statistical significance for these muscles. On the other hand, the SOL,
PER and TA have a higher percentage of type 1 muscle fibers, and it could be that they
are in some way affected differently by the ongoing membrane damage [210, 219]. As
dysfunctional or absent dystrophin results in muscle membrane instability the elevated
PDE/ATP ratios may also directly reflect membrane damage [220]. This is supported
by the fact that in facioscapular muscular dystrophy (FSHD), a muscular dystrophy
with no primary membrane damage, increased PDE/ATP ratios were only found in
patients with increased fat levels [221]. However, the finding that in DMD patients
fast, glycolytic type 2 fibres are preferentially affected could give some support the
theory of a more regulatory role of PDE [112, 214, 217].

In previous studies where *'P MRS was applied in BMD patients only the (posterior)
calf muscles of mild to moderately affected patients were scanned, without direct
comparison with imaging data. As a result, no data were available on muscles without
fatty infiltration and it was not clear if changes in phosphorous signals were already
present before the onset of fatty infiltration. This is important, as PDE/ATP ratios have
been shown to be adaptable in some conditions, whereas substitution of adipose tissue
by muscle fibers has to our knowledge never been reported [110, 203-205, 222]. As it
is likely that increased PDE/ATP ratios are to some extend related to muscle membrane
damage, they could potentially be a marker for therapy efficacy if therapies preventing
the membrane damage become available.
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The GCM, GCL and SOL with IFL showed a more alkaline pH than controls, which is
in accordance with results of mild to moderately affected BMD patients from previous
studies [92, 200, 201]. When evaluating the whole BMD group an increased pH was
found for all investigated muscles. The cause for the increased pH, although frequently
observed in BMD and DMD patients, is unclear. Possibly factors related to mitogen-
esis or an altered sarcolemmal proton efflux mechanisms ion transport are involved
[95, 223].

We found no consistent changes in Pi/ATP or PCt/ATP ratios in the investigated mus-
cles. The fact that we did not find an increased Pi/ATP ratio and decreased PCr/ATP
ratio in gastrocnemic muscles as reported in some previous studies could be related to
the fact that we had to discard some of the spectra of severely affected patients, as they
were of insufficient quality to analyse [92, 224]. This may have somewhat biased our
results with regards to these muscles.

Our study has some limitations, as mentioned above we had to discard some of the
spectra of the gastrocnemic muscles of BMD patients as they were of insufficient qual-
ity to be used for the analysis. This could have resulted in a bias with regards to the
findings in the more severely fatty infiltrated gastrocnemic muscles and possibly be
an explanation why no significant abnormalities were found in Pi/ATP and PCr/ATP
ratios in these muscles. Secondly the NIFL groups for the gastrocnemic muscles were
relatively small compared to the control group. As these muscles are the most severely
affected in the lower leg of BMD patients this is not unexpected, however, it might
have influenced the findings in terms of PDE levels and possibly the other metabolites
in these muscles. Thirdly, the use of a 2D-CSI sequence instead of 3D could potentially
result in a voxel spanning different muscles along the length of the leg. To circumvent
this problem the 2D-CSI spectroscopy grid was carefully planned so that one voxel of
each of the analysed muscles was located within the specific muscle, as demonstrated
in Figure 1. If it was not possible to allocate the voxel solely to a specific muscle, due
to the muscle being too small, the voxel was positioned in such a way that either air or
bone (tissue from which no phosphor signal could be obtained) was included. Finally,
the 7T fat fractions were not corrected for relaxation effects, which could have affected
the exact fat percentage. However, as fat percentages were calculated using the exact
same procedure for patients and age-matched controls, values of healthy controls were
used for a muscle specific cut-off value and 3T and 7T values showed a high correla-
tion, this is not likely to have significantly influenced our results.

In conclusion, our results show that MR spectroscopy can detect increased PDE/ATP
ratios in lower leg muscles of BMD patients prior to fatty infiltration. Therefore, PDE/
ATP ratios could be a useful parameter in the follow-up of muscle membrane damage
in early stages of the disease, before more structural changes become apparent.
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CONCLUSION AND GENERAL DISCUSSION

In the last decade the interest in MRI and MRS studies in DMD patients, and to a
lesser extent in BMD patients, has increased substantially. The ability to quantitatively
assess various aspects of the affected muscle makes MRI and MRS potentially use-
ful tools in the assessment of disease severity and progression. The development of
future therapies for DMD patients has made such tools of increasing importance. So
far the focus of many studies has been on the pattern in which the muscles are affected,
the quantification of the fatty infiltration in the muscle and its relation with muscle
strength and function and the relation with age [98, 101, 102, 104-106, 109, 140, 225].
Additionally some studies have described techniques to evaluate oedema in muscle
and others applied proton and phosphorous MRS to study muscle metabolites [103,
108, 111-115, 225]. As DMD and BMD are the most common muscle diseases with
a limb-girdle pattern of weakness, and genetic testing is readily available, MRI and
MRS are generally not necessary to reach a diagnosis. However, MR techniques could
contribute to the evaluation of disease progression and future therapies.

In terms of disease progression, a striking feature in dystrophinopathy patients is the
progressive decline of muscle function and muscle tissue. The muscles show increas-
ing amounts of fatty infiltration, although not all muscles become affected at the
same moment or at the same rate. Our studies, and those of others, have shown that
MRI can be used to quantify the fatty infiltration in multiple muscles and that these
values are compatible with clinical features. We have shown that quantification of the
fatty infiltration is more sensitive to subtle changes and shows less variability than
semi-quantitative, visual scoring methods. Additionally we have shown that in DMD
patients and in a homogeneous group of BMD patients, fatty infiltration increases with
age and correlates with muscle function. A drawback of the use of fatty infiltration as
outcome parameter is that fat is often regarded as an ‘end-point’ of the disease process
and has so far not been shown to be reversible. Additionally, therapies currently under
development aim to slow disease progression, rather than reverse pathology. Therefore
evaluating the rate at which muscles become fat infiltrated could be a useful outcome
parameter. If strength of muscle tissue were to improve, even with unchanged amounts
of fatty infiltrated muscle, parameters such as the specific strength, described in chapter
2 would be useful to evaluate such effects.

As outcome parameter the muscle T2 relaxation time as indicator of oedema/inflam-
mation in the muscle is more likely to be reversible in DMD patients than parameters
such as the fatty infiltration [226]. In this thesis we described that the muscle T2
relaxation times in DMD patients were increased, while no such increase was found in
BMD patients. This suggests that increased muscle T2 relaxation times as indicator of
inflammation/oedema are associated with the severity of the muscle damage. If so, the
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T2 relaxation time could be a valuable outcome parameter. Unfortunately, increased
levels of fatty infiltration complicate consistent measurement of T2 relaxation times in
dystrophic muscle, as the T2 relaxation time of lipids is much longer than the skeletal
muscle water T2 relaxation time. A possible method to overcome this problem is by us-
ing fat suppression. However, complete fat saturation is technically very complicated
to achieve [227]. Separate assessment of the water and lipid signal would be another
method to overcome this problem. This remains technically challenging in the whole
muscle, but the recently described tri-exponential model, which can be used to asses
both the T2 relaxation time independent of the fatty infiltration and to quantify the
fat fraction is a promising alternative [183, 228]. As previous studies have suggested
changes of the muscle energy metabolism we studied the phosphorous metabolism in
muscles of BMD patients. We established that in BMD patients there was an increase
in PDE/ATP ratio, before an increase in fat levels became apparent. As such the PDE/
ATP ratio could also be a useful parameter to assess muscle damage in early stages of
the disease in BMD patients, but possibly also in DMD patients.

Other, so far not yet implemented in DMD or BMD patients, MR techniques could
potentially also be of value as outcome parameters. Such techniques include diffusion
tensor imaging for the assessment of the muscle fibre architecture and arterial-spin
labelling for the evaluation of the tissue perfusion [229].

So far little is known of the value of the discussed methods in terms of therapy as-
sessment, since it is uncertain to what extent there will be changes in the muscle with
appropriate therapy and how this will vary between differently affected muscles. Nev-
ertheless, as MR techniques can be used to assess different properties of the muscle it
is likely that MRI and MRS can contribute in the evaluation of disease progression.
Currently clinical trials use outcome measures such as the 6-minute walking test as
outcome parameter. Although the relation between muscle strength and muscle tissue
obtained with MRI has been shown to be significantly lower in DMD patients only one
study so far has shown a relation between the mean fat fraction and ambulation in these
patients [230]. However, it is likely that functional benefits of therapeutic approaches
take longer to become apparent than subtle changes such as a decreased inflamma-
tory response or increase in strength of the muscle tissue. Therefore finding a method
which can be used to quantify both the fatty infiltration and muscle T2 relaxation
time while accounting for the fat, especially when combined with the quantitative
strength measurements, could provide a detailed overview of ongoing damage and
muscle regeneration in the various stages of follow-up and as such could be a promis-
ing outcome parameter.
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SUMMARY

Muscle MRI and MRS are increasingly being implemented as diagnostic tool, param-
eter of disease severity and in the follow-up of neuromuscular disorders. Over the
years several MR techniques have become available that could be of use in the assess-
ment of various characteristic parameters such as increased levels of fatty infiltration)
of these disorders Muscles of both DMD and BMD patients show signs of oedema,
fatty infiltration and fibrosis and possibly an altered muscle energy metabolism. The
aim of this thesis was to evaluate several MR methods that could serve as potential out-
come parameters in the assessment of muscle pathology in DMD and BMD patients.
In Chapter 2 we compared the visually scored (semi-quantitative) amount of fatty
infiltration with quantitative values obtained using 3-point Dixon MRI, a chemical
shift-based water-fat separation method. We showed that in muscle with low fat frac-
tions visually scored values correlated well with their quantitative equivalents, but
overall overestimated the amount of fatty infiltration. The quantitatively obtained fat
fractions also showed less variability, especially in the more severely affected muscles
and as such are more sensitive to subtle changes. Additionally we demonstrated that
implementation of a multipeak model to account for the multiple peaks of the lipid
spectrum in the 3-point Dixon method provided an even more accurate measurement
of the fat fraction. We used the 3-point Dixon technique to evaluate the non-contractile
and contractile (muscle without fatty infiltration) cross-sectional area in two upper
and two lower leg muscle groups of DMD patients in Chapter 3 and combined these
values with quantitative strength measurements. We demonstrated that the process of
muscle hypertrophy and increasing levels of fatty infiltration appear to be two distinct
processes, as the rate of progression differed between the investigated muscle groups.
Additionally, we showed that a combination of quantitative MRI and strength mea-
surements could give an indication of muscle quality. As such, we demonstrated that
the muscle strength in relation to the amount of contractile tissue is severely reduced
in DMD patients. Thus, DMD patients need more muscle tissue to generate the same
force. In Chapter 4 we applied the 3-point Dixon technique amongst other methods
to explore the relation between dystrophin levels and fatty infiltration in the lower leg
muscles (as indicator of disease severity) of a group of BMD patients. No such relation
could be found, but there was a clear correlation between levels of fatty infiltration
and age in a subgroup of patients with an exon 45-47 mutation. This indicated that the
location of the mutation, and not the amount of dystrophin, is a major determinant of
disease severity in these BMD patients. In Chapter 5 we measured the T2 relaxation
times of muscle as marker of oedema/inflammation in DMD and BMD patients com-
pared to healthy controls, after adjustment for the fatty infiltration obtained with Dixon
MRI. We showed that the T2 relaxation times were increased in DMD patients, but not
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Chapter 8

in BMD patients and as such could be useful as outcome parameter in trials aiming
to ameliorate the DMD to a BMD phenotype. In addition to MRI, MRS methods like
phosphorous MRS can be used to investigate energy metabolism in the muscle. In
Chapter 6 we used a combination of *'P MRS and Dixon MRI at high magnetic field to
show that PDE/ATP ratios were increased in lower leg muscles of BMD patients prior
to the onset of fatty infiltration. The other metabolites showed no consistent changes
in the investigated muscles, although there was an increase in tissue pH in the more
severely affected muscles, with increased fat levels. These findings suggest that *'P
MRS can be valuable to detect changes in early stages of the disease process.
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Summary

NEDERLANDSE SAMENVATTING

Spier MRI en MRS worden in toenemende mate geimplementeerd in de diagnostiek,
als parameter van ziekte ernst en in het vervolgen van neuromusculaire ziekten. De
afgelopen jaren zijn verschillende MR technieken beschikbaar gekomen welke zouden
kunnen worden gebruikt in de evaluatie van verschillende karakteristicke parameters
van de verschillende neuromusculaire ziekten zoals een toename van de vervetting
in de skelet spieren. Zowel in DMD als in BMD worden er tekenen van oedeem,
vervetting, fibrose en mogelijk veranderingen in het energie metabolisme in de spieren
van patiénten geobserveerd. Het doel van dit onderzoek was om verschillende MR
technieken te evalueren die mogelijk als uitkomstmaat gebruikt kunnen worden in de
evaluatie van spieren van DMD en BMD patiénten. In hoofdstuk 2 hebben we een
visueel gescoorde (semikwantitatieve) schaal gebruikt om de vervetting in spieren van
DMD patiénten te scoren en de vet waarden verkregen met deze schaal vergeleken
met een kwantitatieve 3-punts Dixon MRI techniek. We hebben aangetoond dat in
spieren met weinig vervetting de visuele score goed overeenkwam met de kwantitatief
verkregen waarde. Echter, in het algemeen werd met de visuele scoringsmethode de
vetfractie overschat in vergelijking met de kwantitatief gescoorde vetfracties. Tevens
waren de kwantitatieve waarden minder variabel, voornamelijk in de meer ernstig
aangedane spieren, en meer sensitief voor subtiele veranderingen. Aanvullend hebben
we aangetoond dat met implementatie van een multipeak model, om te corrigeren voor
de verschillende pieken van het vetsignaal bij het gebruiken van de 3-punts Dixon
techniek, het vetsignaal meer nauwkeurig kon worden bepaald. In hoofdstuk 3 hebben
we de 3-punts Dixon techniek gebruikt om het contractiele (niet vervette spier) en
niet-contractiele cross-sectionele oppervlakte van de spier te berekenen in 2 spiergroe-
pen in zowel het boven- als onderbeen. Deze waarden hebben we gecombineerd met
de kracht per spiergroep die kwantitatief is gemeten. Hierbij hebben we aangetoond
dat het proces van spierhypertrofie en toename van vervetting in de spier 2 verschil-
lende processen zijn, aangezien de snelheid waarmee de veranderingen optreden in de
spiergroepen per proces verschillend zijn. Aanvullend hebben we aangetoond dat een
combinatie van kwantitatieve MRI en krachtmetingen een indicatie kan geven van de
spierkwaliteit. Door deze twee technieken te combineren konden we demonstreren
dat de kracht die gerelateerd is aan de hoeveelheid contractiel weefsel per spiergroep
ernstig is afgenomen in DMD patiénten, en dat deze patiénten meer spierweefsel
nodig hebben om dezelfde hoeveelheid kracht te leveren. In hoofdstuk 4 hebben we
de 3-punts Dixon techniek in combinatie met andere methoden gebruikt om de relatie
tussen dystrofine en vervetting in spieren in het onderbeen (als maat van de ernst van
de ziekte) te bepalen in BMD patiénten. We konden geen relatie aantonen tussen de
vervetting in de spieren en de hoeveelheid dystrofine maar er was wel een significante
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relatie tussen de leeftijd van pati€nten met dezelfde mutatie (exon 45-47 mutatie) en
de hoeveelheid vervetting. Deze bevinding is een indicator dat de plek van de mutatie,
en niet zozeer de hoeveelheid dystrofine, een belangrijke determinant is van de ernst
van de ziekte van patiénten met de ziekte van Becker. In hoofdstuk 5 hebben we de
T2 relaxatie tijd, als parameter voor ontsteking in de spier, in DMD en BMD patiénten
gemeten en vergleken met gezonde controles, nadat de waarden zijn ‘gecorrigeerd’
voor de vervetting in de spieren, welke de T2 waarden beinvloed. We hebben in dit
hoofdstuk aangetoond dat de T2 relaxatie tijd in spieren van DMD patiénten is ver-
hoogd, maar dat dit niet zo is in de spieren van BMD patiénten. Dit zou erop kunnen
wijzen dat de T2 relaxatie tijd als uitkomstmaat gebruikt zou kunnen worden in trials
waar het doel 1s het DMD fenotype te veranderen in het BMD fenotype. In aanvulling
op de verschillende MRI methoden die gebruikt zijn kan MR spectroscopie (MRS)
worden gebruikt om het energie metabolisme in de spier te onderzoeken. In hoofdstuk
6 hebben we een combinatie van fosfor (*'P) MRS en Dixon MRI gebruikt op hoge
veldsterkte en aangetoond dat PDE/ATP ratio’s verhoogd zijn in onderbeen spieren van
BMD patiénten en dat deze verandering al aanwezig is voordat er vervetting optreedt
in de spieren. Voor de andere onderzochte metabolieten konden geen consistente ver-
anderingen worden gevonden in de spieren die onderzocht zijn. In spieren met ernstige
vervetting werd wel een verhoging van de pH in de spier gevonden. Deze bevindingen
suggereren dat >'P MRS een waardevolle aanvulling kan zijn om veranderingen vroeg
in het ziekte proces van pati€nten op te sporen.
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LIST OF ABBREVIATIONS

ANCOVA Analysis of covariance

ATP Adenosine triphosphate

BMD Becker muscular dystrophy
CRLB Cramér-Rao Lower Bound

CSA Cross sectional area

CT Computed tomography

DGC Dystrophin-glycoprotein complex
DMD Duchenne muscular dystrophy
EDL Extensor digitorum longus muscle
FIB Fibularis muscle

FOV Field of view

GCL Lateral gastrocnemius muscle
GCM Medial gastrocnemius muscle
GPC Glycerol 3-phosphocholine

GPE Glycerol 3-phosphoethanolamine
IFL Increased fat levels

MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MVIC Maximal voluntary isometric contraction
NIFL Non-increased fat levels

nNOS Neuronal nitric oxide synthase
NO Nitric oxide

TA Anterior tibialis muscle

TE Echo time

TP Posterior tibialis muscle

TSE Turbo spin-echo

TR Repetition time

PCr Phosphocreatine

PDE Phosphodiesterase

PER Peroneus muscle

Pi Inorganic phosphate

S Sartorius muscle

SD Standard deviation

SE Spin echo

SOL Soleus muscle

SPAIR Spectral pre-saturation with inversion recovery
ROI Region of interest

QMA Quantitative muscle assessment
QMT Quantitative muscle testing

List of abbreviations
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