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MALARIA, THE PARASITE AND DISEASE
Malaria is a life-threatening disease caused by Plasmodium parasites that are transmitted 

from person to person by the bites of infected Anopheles mosquitoes. There are five 

Plasmodium species that can cause malaria in humans; P. falciparum, P. vivax, P. malariae, 

P. ovale and P. knowlesi [1] and two of these species, P. falciparum and P. vivax, are 

responsible for most cases of human mortality and morbidity [2]. The World Health 

Organization (WHO) report that in 2016, there were an estimated 216 million cases of 

malaria in 91 countries, an increase of 5 million cases from 2015. Malaria deaths reached 

445,000 in 2016, with a comparable number of deaths for 2015 (446,000). The WHO 

African Region carries a disproportionately high share of the global malaria burden. In 

2016, the region was accounted for 90% of malaria cases and 91% of malaria deaths [3].

The P. falciparum life-cycle
The malaria parasite is transmitted to a vertebrate host when an infected female Anopheles 

mosquito takes a blood meal and simultaneously injects sporozoites into the skin. The life-

cycle of the human malaria parasite P. falciparum is shown in Figure 1. Sporozoites migrate 

out of the skin, by locating and traversing a blood vessel whereupon they enter the blood 

stream. Sporozoites are carried to the liver where they actively invade hepatocytes; 

here, depending on the Plasmodium species, they grow and divide over 2-16 days and 

produce tens of thousands of merozoites per liver cell [4]. Merozoites exit the liver and 

enter the blood stream where they invade and multiply inside the red blood cells which 

eventually break open, allowing the parasites to infect additional red blood cells. Blood 

stage parasites continue their cycle of invading red blood cells, asexual replication, and 

then releasing newly formed merozoites repeatedly. This invasion-replication-release-

reinvasion cycle of blood stages can cause an exponential increase in infected red blood 

cells and it is the host response to parasite molecules in combination with interactions 

of infected erythrocytes with host tissue that give rise to the pathological symptoms of 

malaria. During each cycle, a small subset of asexual blood stage parasites divert from 

asexual replication and instead differentiate into male or female sexual forms, known as 

gametocytes. In the case of the human malaria parasite P. falciparum, these intracellular 

gametocytes mature and progress through stages I–V over the course of eight to ten days 

(gametocytogenesis). If taken up by a mosquito in a blood meal, the mature gametocytes 

are capable of propagating an infection in mosquitoes. Inside the mosquito midgut, male 

and female gametocytes mature into gametes (gametogenesis), with the male gametocyte 

rapidly dividing to form eight flagellated microgametes (exflagellation) and the female 

gametocyte emerges from the red blood cell and develops into a single macrogamete. 

Fertilization of a macrogamete by a microgamete results in the development of a zygote, 

which undergoes meiosis and matures into an invasive ookinete that can penetrate 

the mosquito gut wall. The ookinete forms an oocyst within which the parasite asexually 

replicates, creating several thousand sporozoites (sporogony). Upon oocyst rupture, 
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these sporozoites travel to the salivary glands, where they can be transmitted back to 

the vertebrate host during a blood meal. 

MALARIA, THE HEALTH PROBLEM 
Nearly half of the world’s population are at risk of malaria. Most malaria cases and 

deaths occur in sub-Saharan Africa [5]. However, regions of South-East Asia, Eastern 

Mediterranean, Western Pacific, and the Americas are also at risk. In 2016, 91 countries 

had ongoing malaria transmission. Some population groups are at a considerably higher 

risk of contracting malaria and developing severe diseases than others. These include 

infants, children under 5 years of age, pregnant women and patients with HIV/AIDS, as 

Figure 1. The life-cycle of the human malaria parasite P. falciparum. P. falciparum replication and 
maturation in humans (in red) and mosquitoes (in grey). This image was taken from Nilsson, S.K., et 
al. (2015).
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well as non-immune migrants, mobile populations and travelers [3]. Many prevention and 

control measures, such as the use of insecticide-treated mosquito nets, indoor spraying 

with insecticides and implementation of drug treatment programs limit both the incidence 

and spread of the infection, as well as limiting the severity of the disease. In addition, 

recent measures to improve early diagnosis and treatment of malaria has reduced disease 

and prevented deaths [6-8], and has also resulted in reducing malaria transmission. While 

these measures have contributed to a global decline in malaria, they are all under threat 

from the acquisition of development of resistance, either by Plasmodium parasites to 

antimalarial drugs or by mosquitoes to insecticides. In recent years, mosquito resistance 

to pyrethroids has emerged in many countries [9, 10] and resistance has been developed 

by the parasites against antimalarial drugs, specifically resistance against artemisinin 

which has been detected in a number of countries in South-East Asia [11, 12]. P. 

falciparum is responsible for the most severe disease and accounts for the most numbers 

of deaths and has, therefore, been the target of most antimalarial drugs and vaccine  

development efforts.

Malaria causes significant economic losses in high-burden countries. UNICEF has 

estimated that malaria costs Africa more than $12 billion annually in lost Gross Domestic 

Product (GDP), and a reduction in economic growth by more than 1% a year [13]. Malaria-

endemic countries are among the world’s most impoverished and a family can spend 

an average of over one quarter of its income on malaria treatment, as well as paying 

prevention costs and suffering loss of income [14, 15]. Despite the recent reduction in 

deaths and mortality due to malaria, it is widely believed that the most cost-effective 

means to prevent disease , and indeed disease elimination or eradication, is the mass 

administration of vaccines [16, 17]. 

MALARIA, VACCINE DEVELOPMENT
Despite major efforts over the past 70 years to develop a vaccine, there is currently no 

licensed malaria vaccine available. The most advanced malaria vaccine is the sub-unit 

vaccine RTS,S that is based on the immunodominant sporozoite surface antigen, 

circumsporozoite protein (CSP), fused to hepatitis B virus surface antigen [18]. This 

sub-unit vaccine was formulated with the potent liposomal  adjuvant  system AS01 from 

GlaxoSmithKline to target the sporozoite/liver stage of P. falciparum and has advanced to 

Phase IV clinical trials [19]. However in field studies, the efficacy of RTS,S against clinical 

malaria has been modest; between 30% and 40% in children between the ages of 5 and 

17 months [20], and vaccine efficacy rapidly declined over time [21]. Nonetheless, in 

2016 the WHO announced that the RTS,S vaccine would be rolled out in pilot projects 

in selected areas in 3 countries in sub-Saharan Africa: Ghana, Kenya and Malawi [19]. 

The limited success achieved in inducing sterile and long-lasting protective immunity 

against malaria using sub-unit vaccines has led to renewed interest in whole organism 

vaccination strategies [22]. 
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Whole sporozoite (wsp) vaccine approaches 
Despite three decades of testing different (recombinant) sub‐unit vaccines both in 

the clinic and the field, only modest protection against malaria infection has been achieved 

[21-24] and this has renewed an interest in whole parasite-based vaccine approaches 

[25, 26]. Sporozoite-based vaccination strategies aim at preventing the parasite’s life-

cycle progression from hepatic stages to the symptomatic blood stages of infection 

while eliciting potent pre-erythrocytic immune responses. Such whole sporozoite malaria 

(wsp) vaccination strategies are unique in their potential to induce sterile protection 

against a new infection and have led to the development of various vaccine candidates, 

currently undergoing preclinical and clinical development. It was the discovery of the pre-

erythrocytic stages of Plasmodium [7], followed by the establishment of a mouse model 

of malaria [8], that enabled the laboratory production of all stages of the parasite’s 

life-cycle [9], which eventually led to the landmark demonstration that live sporozoites 

attenuated by X-irradiation (RAS) could be used to elicit sterile protection against a new 

infection [10, 11]. This discovery was soon expanded to humans with the demonstration 

that volunteers could be protected against homologous and heterologous strains of P. 

falciparum parasites by immunization of live, attenuated sporozoites [12–14]. The success 

of these studies in both animal malaria models and humans resulted in a large number 

of subsequent studies that were aimed at optimizing sporozoite-based immunization 

and to characterize the immune responses elicited by these strategies [15–20]. However, 

the production and administration of live sporozoites attenuated by irradiation (Irr-Spz) 

was considered to be a major obstacle to the development of sporozoite vaccines at 

the end of the 20th century and efforts focused more on the characterization of sub-unit 

vaccine that targeted different points of the parasite life-cycle. However, as the reduced 

efficacy of sub-unit vaccines became increasingly evident, at the beginning of the new 

century, a renewed call for the development of sporozoite-based immunization strategies 

took place. In the early part of this century malaria research entered the genomic era, with 

genome sequences of various Plasmodium parasite species becoming available, as well 

as transcriptomic and proteomic datasets from different parasite developmental stages 

[42–48]. This information was used to identify genes that play essential roles in distinct 

points of the parasite’s life-cycle, and these were targeted for deletion using increasingly 

sophisticated methodologies for stable transfection of Plasmodium parasites [49–55]. 

This in turn, resulted in the generation of genetically attenuated parasites (GAPs), whose 

liver-stage development is arrested by deletion of specific gene(s). Studies in rodents 

demonstrated that GAPs, like irradiated sporozoites, were able to elicit a strong immune 

protection [56–58]. Informed by GAP studies performed in rodent models, the first P. 

falciparum GAPs were developed, with some now entering into clinical development as 

human vaccine candidates [59, 60]. 
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Improving wsp vaccine approaches: the aim of the studies described in 
this thesis
A number of studies have shown that Irr-Spz can generate strong protective immunity in 

humans [27-29]. However, in order to achieve sterile immunity, multiple immunizations 

with high numbers of attenuated sporozoites are required [27, 30]. These high numbers of 

sporozoites has cost-of-goods implications and increases the burden on the complicated 

sporozoite production procedure, which can result in limitations in the practical mass 

administration of such vaccines in malaria-endemic countries.

The major challenge for sporozoite-based vaccines is to produce a highly immunogenic 

live-attenuated vaccine, which requires the fewest attenuated sporozoites per dose and 

the fewest doses in order to induce sustained sterile protection against malaria in the field. 

In rodent models of malaria it has been shown that immunization with sporozoites of 

GAPs can induce similar, or even better, levels of protective immunity compared to Irr-Spz 

[31-34]. Genetic attenuation of sporozoites has been achieved through the deletion of 

one or more genes that play a critical role during liver stage development, resulting in 

complete arrest of parasite growth in the liver, thereby preventing a blood stage infection 

after immunization with GAP sporozoites. An advantage of GAP compared to Irr-Spz 

vaccination, is that GAP sporozoites are genetically homogenous with defined genetic 

identity and attenuation phenotype, and GAPs can be further modified to induce optimal 

protective immunity.

GAPs have additional advantages over Irr-spz, in particular in manufacturing. GAP 

sporozoites do not need to be irradiated before they are vialed and their production poses 

little risk to the individuals who produce the vaccine as, GAP sporozoites are unable to 

establish a pathogenic blood stage infection [32-34]. 

GAP studies performed in rodent malaria models have been critical for the creation 

of several P. falciparum GAP vaccines, which are undergoing clinical evaluation [35-39]. 

Studies in rodents have also been used to identify the immunological basis of GAP-induced 

immune responses and to improve GAP immunogenicity [33, 34, 37]. While the precise 

mechanisms of protection mediated by immunization with attenuated sporozoites remain 

unknown, T cells appear to be critical for protection and in particular CD8+ T cells are 

thought to play a major role in eliminating infected hepatocytes. Early rodent studies 

using Irr-Spz have demonstrated a vital role for CD8+ T cells [40, 41]. Recent mechanistic 

investigations into protective immune responses induced by immunization with attenuated 

sporozoites have demonstrated diverse and robust immune responses that encompasses 

both CD8+ and CD4+ T cells, as well as a significant contribution from antibodies [42, 

43]. Nonetheless, CD8+ T cells are considered to be the main effector cells in eliciting 

protection after sporozoites immunization [44].

In this thesis we describe a set of studies performed in rodent models of malaria to 

improve malaria vaccines, in particular GAP vaccines. We attempted to increase GAP 

immunogenicity by: (i) adding adjuvants during GAP immunization; (ii) introducing genes 
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encoding putative immunomodulatory proteins in the GAP genome to create ‘self-

adjuvanting’ parasites; (iii) generating GAPs that arrest late into liver-stage development 

(LA-GAP) to increase antigen load and diversity during immunization; and (iv) exploring 

possibilities to genetically modify parasite to express vaccine antigens from different life-

cycle stages, in order to test the ability of parasites to induce immune responses against 

multiple life-cycle stages and to inform the creation of a ‘multi-stage’ GAP vaccine.

Outlined below is the rationale for choosing the different adjuvants, putative 

immunomodulatory proteins, the different approaches to generate LA-GAPs and parasites 

engineered to express additional vaccine candidate antigens. We have used well 

established rodent malaria models [31, 45, 46] in combination with standard and adapted 

protocols for immunization [46, 47] in order to evaluation of protective immune responses 

induced by the different GAPs and immunization approaches.

Transgenic parasites and malaria vaccine research (Chapter 2)
Chapter 2 reviews the use of transgenic malaria parasites in vaccine research. Genetic 

modification of rodent and human malaria parasites have been critical for generation of 

GAPs that arrest in the liver and transgenic rodent malaria parasites have been extensively 

used for testing the safety and immunogenicity of GAPs [33, 34, 37]. Many gene-deletion 

rodent parasites have been tested in mice to examine growth and arrest in the liver and 

for their capacity to induce potent protective immune responses. Many GAPs have been 

created in transgenic reporter lines that express fluorescent and/or luminescent proteins, 

which permits an in vivo, real-time, evaluation of both their arrest characteristics and 

protective efficacy. In order to generate completely safe GAP vaccines, GAPs must be 

generated that completely arrests in the liver. Consequently, multiple gene deletions in 

the same GAP are considered necessary, each governing independent, but essential, 

processes during liver-stage development. Therefore, in order to generate and test 

a P. falciparum GAP in human test subjects, large-scale screening of single and multiple 

gene-deletion mutants in rodents is necessary to identify suitable genes for deletion in P. 

falciparum.

In this thesis we use a variety of well-established and genetic modification technologies 

to create a variety of (transgenic) rodent malaria parasite mutants. Specifically, we have 

generated transgenic ‘self-adjuvanted’ GAPs (Chapter 4), gene-deletion late-arresting 

GAPs (Chapter 5) and transgenic parasites expressing additional Plasmodium vaccine 

antigens (Chapter 6). In studies where we examined if exogenous adjuvants could improve 

GAP immunogenicity (Chapter 3) as well as in the studies in Chapters 4 & 5, we made 

use of transgenic parasites that express luminescent and fluorescent reporter proteins to 

quantify parasite development in vivo. 
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Improving GAP immunization by the addition of immunostimulatory 
molecules (Chapter 3)
Protection against a malaria infection can be achieved by immunization with live-

attenuated Plasmodium sporozoites. While the precise mechanisms of protection remain 

unknown, T cell responses are thought to be critical in the elimination of infected liver 

cells. Only a limited number of studies have been performed on the effect of adjuvants 

on protective immunity induced by whole sporozoite immunization. In particular, the use 

of the glycolipid α-galactosylceramide (α-GalCer) [48] and its analog 7DW8-5 have been 

analyzed [49]. Co-administration of these molecules with sporozoites resulted in enhanced 

recruitment and activation/maturation of dendritic cells in lymph nodes draining the site 

of vaccine administration and thereby enhancing parasite-specific T cell immunogenicity. 

Recently, cancer immunotherapies have employed antibodies that target proteins on 

the surface of T cells, as treatment with these antibodies have been shown to restore, 

expand and enhance the function of tumour-reactive T cells. The antagonistic antibodies 

targeting CTLA-4 and PD-1 have been used to block inhibitory signals to T cells [50, 

51], while agonistic antibodies targeting CD27, OX40 and 4-1BB on CD4+ and CD8+ T 

cells have been used to increase costimulatory signals [52-54]. These immunostimulatory 

antibodies have been shown to improve the control of tumors and this was associated 

with an increase in tumor-specific T cell function [55]. In Chapter 3, we describe studies 

that examine if agonistic OX40 monoclonal antibody (OX40 mAb) treatment improved 

protective immunity in mice, induced by immunization with a late-arresting GAP. We 

immunized BALB/c mice using sporozoites of a P. yoelii GAP, an established rodent model 

to evaluate GAP vaccination [31]. In addition, we describe the development of a GAP 

immunization protocol in BALB/c mice that permits a rapid screening and evaluation of 

different approaches to enhance GAP protective immunity in BALB/c mice.

Improving GAP immunogenicity by creating ‘self-adjuvanting’ parasites 
that also express putative immunomodulatory molecules (Chapter 4)
As described in Chapter 3, GAP immunization in combination with exogenous adjuvants 

provides useful information about mechanisms underlying protective immunity. However, 

the use of such adjuvants in populations where malaria is endemic may be difficult due 

to cost-of-goods, applicability or side-effects. Further, induction of protective immune 

responses by GAP immunization is dependent on sporozoites migrating to the liver and 

invading hepatocytes. The administration of adjuvants at the site of GAP injection will 

result in systemic distribution of the adjuvant which will therefore be considerably diluted 

at the sites where parasite antigens are taken up by antigen presenting cells (APCs), i.e. 

the liver, spleen or proximal lymph nodes [56]. In order to maximize the adjuvant effect, 

i.e. the increase of antigen uptake by APCs and providing stimulatory signals to enhance 

APC function, it is important to maximize the adjuvant effect at the point of antigen uptake 

and processing [56, 57].
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Due to the limitations of co-injecting adjuvants with attenuated sporozoites, we 

explored in Chapter 4 the possibility of creating GAPs that express immunomodulatory 

proteins in sporozoites and liver stages, so-called adjuvant GAPs [58-61]. Self-adjuvanting 

vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in 

the same molecule, have been developed for sub-unit vaccines targeting cancer cells, 

viruses [62, 63], nematodes [64] and bacteria [65, 66], for example by conjugation of 

lipopeptide-based Toll-like receptor (TLR) agonists to the target protein [61]. In vaccine 

development against malaria, the vaccine candidate antigen CSP has been fused to 

bacterial flagellin [67], a protein which is a potent TLR5 agonist [68]. However, to the best of 

our knowledge, no sporozoite-based vaccine has been reported that expresses additional 

immunomodulatory/adjuvant molecules [33, 37].

We selected four TLR agonists that can increase adaptive immune responses and have 

the ability to improve cross-presentation of antigens as has been demonstrated in other 

animal and/or human studies. The selected adjuvant proteins are: (i) nontoxic cholera toxin 

B sub-unit from Vibrio cholerae (CTB) [69, 70]; (ii) heat shock protein Gp96 of mice (Gp96) 

[71-73]; (iii) heat shock protein X from Mycobacterium tuberculosis (HspX) [74, 75]; and 

(iv) the TLR5 binding region of Salmonella typhimurium flagellin (amino acids 89–96; FliC) 

[68, 76, 77].

To facilitate the generation of multiple ‘self-adjuvanting’ lines in P. yoelii LA-GAP, we 

generated a GIMO locus in the P. yoelii fabb/f gene locus, thereby creating a novel P. 

yoelii GIMO GAP mother line. This line was used for the rapid introduction of the adjuvant 

fusion-transgenes into the P. yoelii genome without retention of a drug selectable marker 

(SM). The genes encoding the ‘adjuvant’ proteins were fused to a Plasmodium gene 

expressed in liver stages, uis4 (PY17X_0502200). UIS4 is located at the parasitophorous 

vacuole membrane (PVM) in infected hepatocytes [78]. We fused the adjuvant proteins 

to a PVM protein as it has been shown that ovalbumin (OVA) fused to proteins located in 

the PV/PVM induce stronger T cell responses than ovalbumin expressed in the cytoplasm 

of transgenic parasites [79, 80]. The fusion genes were introduced by GIMO transfection 

[81, 82] into the novel GIMO GAP mother line. The four adjuvant GAP were analyzed for 

protective immunity using the P. yoelii-BALB/c screening model for assessing protective 

immunity after GAP immunization [45]. This model is described in Chapter 3, where we 

describe analyses on protective immunity induced by immunization of GAP in combination 

with the exogenous adjuvant OX40. 

The generation and characterization of novel late-arresting GAPs (LA-
GAPs) (Chapter 5) 
It has been shown that immunization of mice with GAP that arrest late during liver stage 

development can induce higher levels of protective immunity compared to immunization 

with GAP that arrest early after invasion of hepatocytes. Specifically, it has been shown 

that late-arresting GAP (LA-GAP) induce greater numbers of a broader range of CD8+ 

T cells, which results in increased protection against a malaria infection compared to 
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immunization with early-arresting GAPs [31], most probably due to a greater number and 

repertoire of antigens expressed by LA-GAP. This may also explain the high degree of 

protection observed when humans are immunized by fully infectious sporozoites under 

chemoprophylactic treatment with chloroquine [83, 84]. In this immunization approach, 

liver stage development progresses normally but the merozoites that are released 

from the liver and infect erythrocytes are killed by chloroquine. This whole sporozoite 

vaccination approach induces sterile protection against parasite challenge, but requires 

approximately 60-fold- fewer cumulative sporozoites than immunization with Irr-Spz that 

arrest early during liver stage development [85].

A prerequisite for a GAP vaccine for human use is that the GAP sporozoites are unable 

to establish a potentially pathogenic blood stage infection and therefore parasites must 

completely arrest during development in the liver. Consequently, multiple gene deletions 

in the same GAP are considered necessary, each governing independent but essential 

processes during liver-stage development. Currently, three P. falciparum GAPs have been 

developed for clinical evaluation and all are early-arresting GAPs, that arrest development 

soon after hepatocyte invasion. In these GAPs either two or three genes have been 

deleted, which encode proteins that play a vital role in early liver stage development. 

Three of the selected proteins, P52, P36 and B9, are all members of the so-called 6-Cys 

gene family and all participate in the formation/maintenance of the parasitophorous 

vacuole (PV) inside the infected hepatocyte [86, 87]. The fourth protein, SLARP/SAP1, 

is involved in regulation of parasite gene expression [88, 89]. In contrast to the creation 

of early arresting-GAPs, the generation of safe LA-GAPs have been challenging. Several 

genes have been identified that encode proteins that play an important role during late 

liver stage development but deletion of those genes did not result in complete growth 

arrest in rodent models of malaria. Examples include multiple proteins involved in type 

II fatty acid synthesis pathways (FAS II, i.e. Fab proteins) [90, 91], a transcription factor 

with AP2 domain(s) (AP2-L) [92], biotin-protein ligase 1 (HCS1) [93] and proteins involved 

in formation and egress of merozoites from liver schizonts, i.e. liver merozoite formation 

protein (PALM) [94], putative liver stage protein 1 (LISP1) [95, 96], sequestrin or liver-specific 

protein 2 (LISP2) [86] and ZIP domain-containing protein (ZIPCO) [97]. Only the deletion of 

the genes encoding FabB/F [90] and MEI2-like RNA-binding protein (PlasMei2) [98] have 

been reported to result in complete growth arrest in the rodent parasite P. yoelii. However, 

studies in P. falciparum have shown that parasites lacking FabB/F expression are unable to 

complete mosquito stage development [99]. 

In order to create an LA-GAP that completely arrests late into liver stage development 

and cannot establish a blood infection, we describe in Chapter 5 studies where we create 

double gene deletion mutants using combinations of different genes that have a role 

in late liver stage development and could synergize to create fully arrested GAPs. We 

describe attenuation evaluation studies as well as immunogenicity testing of LA-GAPs to 

identify the ones with the best profile to advance into P. falciparum studies.
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Generation of transgenic parasites expressing antigens from other life-
cycle stages (Chapter 6)
The creation of GAPs expressing vaccine antigens from either different parasite life-

cycle stages or strains could improve GAP vaccine potency by providing stage and strain 

transcending immunity, respectively. In order to establish if transgenic parasites can 

express additional proteins and if these antigens are able to provoke immune responses, 

we examined if P. berghei parasite could be used to express the P. falciparum transmission 

blocking vaccine candidate antigen, Pfs48/45. We expressed Pfs48/45 in P. berghei blood 

stages, as they are easier to produce than sporozoites, and next we examined if these 

blood stage parasites could be used to provoke antibody responses against Pfs48/45. 

Efficient and conformationally-accurate expression of Plasmodium proteins in 

heterologous systems, such as yeast or bacteria, is frequently problematic resulting in 

misfolded or incorrectly modified proteins, which are often poorly expressed [100, 101]. 

This hampers the screening of Plasmodium antigens in immunization studies for their 

suitability as vaccine candidate antigens. Preclinical evaluation of Plasmodium antigens 

often involves immunizing rodents with recombinant Plasmodium proteins followed by an 

examination of induced immune responses, either in vivo using rodent models of malaria 

or in vitro by performing functional assays with human malaria parasites incubated with 

immune sera [46]. Transgenic rodent malaria parasites (RMP) expressing human malaria 

parasite (HMP) antigens are increasingly used to evaluate and rank the order of candidate 

malaria vaccines before investing in scalable manufacture to support advancement to 

clinical testing [46]. 

We reasoned that the use of transgenic RMP expressing HMP proteins for production 

of HMP proteins would circumvent the above-mentioned problems associated with 

expression in heterologous expression systems including peculiarities of post-translational 

modifications and Plasmodium-specific domains involved in protein trafficking and cellular 

location. As a proof of concept we explored in Chapter 6 the possibility of expressing an 

antigen, Pfs48/45 of gametocytes of the human malaria parasite P. falciparum in blood 

stages of the rodent parasite P. berghei. Expression of Pfs48/45 for transmission blocking 

immunization studies has been problematic in most commonly used expression systems, 

mainly due to incorrect or insufficient protein folding, which is dependent on the correct 

formation of disulfide bridges in this cysteine-rich protein [102, 103]. 

The creation of transgenic parasites that express antigens from multiple life-cycles that 

can induce potent immune responses is also of interest to the development of whole 

organism vaccines [32]. GAPs could be further modified to induce immune responses 

against multiple life-cycle stages by expression in GAPs blood- or transmission-stage 

antigens to produce a multi-stage GAP vaccine. In Chapter 6 we describe studies 

analyzing expression of Pfs48/45 in P. berghei blood stages and the immunogenicity of 

P. berghei expressed Pfs48/45 by performing assays to measure transmission-reducing 

activity of sera/IgG of mice immunized with lysates of blood stage parasite that express 

the introduced antigen.
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In Chapter 7 the results of the studies described in Chapters 2-6 are summarized 

and discussed, including a discussion on the composition of the ‘next generation’ GAP 

vaccine and challenges of creating a GAP vaccine that needs to induce strong, sustained 

protective immune responses against malaria parasites in the field.



G
eneral intro

d
uctio

n

22

1
REFERENCES
1.	 Cowman, A.F., et al., Malaria: Biology and 

Disease. Cell, 2016. 167(3): p. 610-624.

2.	 Zuck, M., et al., The Promise of Systems 
Biology Approaches for Revealing Host 
Pathogen Interactions in Malaria. Front 
Microbiol, 2017. 8: p. 2183.

3.	 WHO. WHO Malaria Report 2017. 2017; 
Available from: http://www.who.int/
malar ia/publ icat ions/wor ld-malar ia -
report-2017/report/en/.

4.	 Nilsson, S.K., et al., Targeting Human 
Transmission Biology for Malaria Elimination. 
Plos Pathogens, 2015. 11(6).

5.	 Cibulskis, R.E., et al., Malaria: Global 
progress 2000 - 2015 and future challenges. 
Infect Dis Poverty, 2016. 5(1): p. 61.

6.	 Bhatt, S., et al., The effect of malaria control on 
Plasmodium falciparum in Africa between 2000 
and 2015. Nature, 2015. 526(7572): p. 207-+.

7.	 White, N.J., et al., Malaria.  
Lancet, 2014. 383(9918): p. 723-35.

8.	 Birkett, A.J., Status of vaccine research 
and development of vaccines for malaria. 
Vaccine, 2016. 34(26): p. 2915-2920.

9.	 Trape, J.F., et al., Malaria morbidity and 
pyrethroid resistance after the introduction of 
insecticide-treated bednets and artemisinin-
based combination therapies: a longitudinal 
study. Lancet Infect Dis, 2011. 11(12): p. 925-32.

10.	 Ranson, H. and N. Lissenden, Insecticide 
Resistance in African Anopheles Mosquitoes: 
A Worsening Situation that Needs Urgent 
Action to Maintain Malaria Control. Trends 
Parasitol, 2016. 32(3): p. 187-196.

11.	 Woodrow, C.J. and N.J. White, The clinical 
impact of artemisinin resistance in Southeast 
Asia and the potential for future spread. 
FEMS Microbiol Rev, 2017. 41(1): p. 34-48.

12.	 Blasco, B., D. Leroy, and D.A. 
Fidock, Antimalarial drug resistance: 
linking Plasmodium falciparum 
parasite biology to the clinic. Nature  
Medicine, 2017. 23(8): p. 917-928.

13.	 Gallup, J.L. and J.D. Sachs, The economic 
burden of malaria. Am J Trop Med Hyg, 
2001. 64(1-2 Suppl): p. 85-96.

14.	 CDC. Malaria’s Impact Worldwide. 2018 
May 3, 2018; Available from: https://
www.cdc.gov/malaria/malaria_worldwide/
impact.html.

15.	 Sicuri, E., et al., The economic costs of 
malaria in children in three sub-Saharan 
countries: Ghana, Tanzania and Kenya. 
Malar J, 2013. 12: p. 307.

16.	 Ozawa, S., et al., Cost-effectiveness and 
economic benefits of vaccines in low- and 
middle-income countries: a systematic 
review. Vaccine, 2012. 31(1): p. 96-108.

17.	 Greenwood, B., The contribution of 
vaccination to global health: past, present 
and future. Philos Trans R Soc Lond B Biol 
Sci, 2014. 369(1645): p. 20130433.

18.	 Draper, S.J., et al., Malaria Vaccines: 
Recent Advances and New Horizons. Cell 
Host Microbe, 2018. 24(1): p. 43-56.

19.	 Coelho, C.H., et al., Advances in malaria 
vaccine development: report from 
the 2017 malaria vaccine symposium. npj  
Vaccines, 2017. 2(1): p. 34.

20.	 Duncan, C.J. and A.V. Hill, What is 
the efficacy of the RTS,S malaria vaccine? 
BMJ, 2011. 343: p. d7728.

21.	 Tinto, H., et al., Efficacy and safety of RTS,S/
AS01 malaria vaccine with or without a booster 
dose in infants and children in Africa: final results 
of a phase 3, individually randomised, controlled 
trial. Lancet, 2015. 386(9988): p. 31-45.

22.	 Hoffman, S.L., et al., The March Toward Malaria 
Vaccines. American Journal of Preventive 
Medicine, 2015. 49(6): p. S319-S333.

23.	 White, M.T., et al., Immunogenicity of 
the RTS,S/AS01 malaria vaccine and 
implications for duration of vaccine efficacy: 
secondary analysis of data from a phase 3 
randomised controlled trial. Lancet Infectious 
Diseases, 2015. 15(12): p. 1450-1458.



G
eneral intro

d
uctio

n

23

1
24.	 Mahmoudi, S. and H. Keshavarz, Efficacy 

of phase 3 trial of RTS, S/AS01 malaria 
vaccine: The need for an alternative 
development plan. Human Vaccines &  
Immunotherapeutics, 2017. 13(9): p. 2098-2101.

25.	 Pinzon-Charry, A. and M.F. Good, Malaria 
vaccines: the case for a whole-organism 
approach. Expert Opinion on Biological 
Therapy, 2008. 8(4): p. 441-448.

26.	 Hollingdale, M.R. and M. Sedegah, 
Development of whole sporozoite 
malaria vaccines. Expert Review of  
Vaccines, 2017. 16(1): p. 45-54.

27.	 Sissoko, M.S., et al., Safety and efficacy 
of PfSPZ Vaccine against Plasmodium 
falciparum via direct venous inoculation 
in healthy malaria-exposed adults in Mali: 
a randomised, double-blind phase 1 trial. 
Lancet Infect Dis, 2017. 17(5): p. 498-509.

28.	 Ishizuka, A.S., et al., Protection against 
malaria at 1 year and immune correlates 
following PfSPZ vaccination. Nature 
Medicine, 2016. 22(6): p. 614-+.

29.	 Lyke, K.E., et al., Attenuated PfSPZ Vaccine 
induces strain-transcending T cells and durable 
protection against heterologous controlled 
human malaria infection. Proceedings of 
the National Academy of Sciences of the United 
States of America, 2017. 114(10): p. 2711-2716.

30.	 Seder, R.A., et al., Protection against 
malaria by intravenous immunization 
with a nonreplicating sporozoite vaccine. 
Science, 2013. 341(6152): p. 1359-65.

31.	 Butler, N.S., et al., Superior antimalarial 
immunity after vaccination with late liver stage-
arresting genetically attenuated parasites. 
Cell Host Microbe, 2011. 9(6): p. 451-62.

32.	 Bijker, E.M., et al., Novel approaches to 
whole sporozoite vaccination against malaria. 
Vaccine, 2015. 33(52): p. 7462-7468.

33.	 Kreutzfeld, O., K. Muller, and K. Matuschewski, 
Engineering of Genetically Arrested Parasites 
(GAPs) For a Precision Malaria Vaccine. Front 
Cell Infect Microbiol, 2017. 7: p. 198.

34.	 Singer, M. and F. Frischknecht, Time 
for Genome Editing: Next-Generation 

Attenuated Malaria Parasites. Trends 
Parasitol, 2017. 33(3): p. 202-213.

35.	 van Schaijk, B.C.L., et al., A genetically 
attenuated malaria vaccine candidate 
based on P. falciparum b9/slarp gene-
deficient sporozoites. Elife, 2014. 3.

36.	 Mikolajczak, S.A., et al., A Next-generation 
Genetically Attenuated Plasmodium falciparum 
Parasite Created by Triple Gene Deletion. 
Molecular Therapy, 2014. 22(9): p. 1707-1715.

37.	 Khan, S.M., et al., Genetic engineering 
of attenuated malaria parasites for 
vaccination. Current Opinion in  
Biotechnology, 2012. 23(6): p. 908-916.

38.	 Kublin, J.G., et al., Complete attenuation 
of genetically engineered Plasmodium 
falciparum sporozoites in human subjects. 
Sci Transl Med, 2017. 9(371).

39.	 Spring, M., et al., First-in-human evaluation 
of genetically attenuated Plasmodium 
falciparum sporozoites administered by bite 
of Anopheles mosquitoes to adult volunteers. 
Vaccine, 2013. 31(43): p. 4975-83.

40.	 Schofield, L., et al., Gamma interferon, 
CD8+ T cells and antibodies required 
for immunity to malaria sporozoites.  
Nature, 1987. 330(6149): p. 664-6.

41.	 Weiss, W.R., et al., CD8+ T cells (cytotoxic/
suppressors) are required for protection in mice 
immunized with malaria sporozoites. Proc Natl 
Acad Sci U S A, 1988. 85(2): p. 573-6.

42.	 Doll, K.L. and J.T. Harty, Correlates of 
protective immunity following whole 
sporozoite vaccination against malaria. 
Immunol Res, 2014. 59(1-3): p. 166-76.

43.	 Van Braeckel-Budimir, N., S.P. Kurup, and 
J.T. Harty, Regulatory issues in immunity to 
liver and blood-stage malaria. Curr Opin 
Immunol, 2016. 42: p. 91-97.

44.	 Silvie, O., R. Amino, and J.C. Hafalla, 
Tissue-specific cellular immune responses 
to malaria pre-erythrocytic stages. Curr 
Opin Microbiol, 2017. 40: p. 160-167.

45.	 Haeberlein, S., et al., Protective immunity 
differs between routes of administration of 



G
eneral intro

d
uctio

n

24

1
attenuated malaria parasites independent of 
parasite liver load. Scientific Reports, 2017. 7.

46.	 Othman, A.S., et al., The use of transgenic 
parasites in malaria vaccine research. Expert 
Review of Vaccines, 2017. 16(7): p. 685-697.

47.	 van der Velden, M., et al., Protective Efficacy 
Induced by Genetically Attenuated Mid-
to-Late Liver-Stage Arresting Plasmodium 
berghei Deltamrp2 Parasites. Am J Trop 
Med Hyg, 2016. 95(2): p. 378-82.

48.	 Gonzalez-Aseguinolaza, G., et al., Natural killer T 
cell ligand alpha-galactosylceramide enhances 
protective immunity induced by malaria 
vaccines. J Exp Med, 2002. 195(5): p. 617-24.

49.	 Li, X., et al., Colocalization of a CD1d-Binding 
Glycolipid with a Radiation-Attenuated 
Sporozoite Vaccine in Lymph Node-Resident 
Dendritic Cells for a Robust Adjuvant Effect. 
J Immunol, 2015. 195(6): p. 2710-21.

50.	 Curran, M.A., et al., PD-1 and CTLA-4 
combination blockade expands infiltrating 
T cells and reduces regulatory T and 
myeloid cells within B16 melanoma tumors. 
Proceedings of the National Academy 
of Sciences of the United States of  
America, 2010. 107(9): p. 4275-4280.

51.	 Wolchok, J.D., et al., Nivolumab plus Ipilimumab 
in Advanced Melanoma. New England Journal 
of Medicine, 2013. 369(2): p. 122-133.

52.	 Croft, M., Costimulation of T cells by OX40, 
4-1BB, and CD27. Cytokine Growth Factor 
Rev, 2003. 14(3-4): p. 265-73.

53.	 Dawicki, W., et al., 4-1BB and OX40 
act independently to facilitate robust 
CD8 and CD4 recall responses. J  
Immunol, 2004. 173(10): p. 5944-51.

54.	 Melero, I., et al., Immunostimulatory 
monoclonal antibodies for cancer therapy. 
Nat Rev Cancer, 2007. 7(2): p. 95-106.

55.	 Schaer, D.A., D. Hirschhorn-Cymerman, and 
J.D. Wolchok, Targeting tumor-necrosis factor 
receptor pathways for tumor immunotherapy. 
J Immunother Cancer, 2014. 2: p. 7.

56.	 Anderson, R.J., et al., A self-adjuvanting 
vaccine induces cytotoxic T lymphocytes 

that suppress allergy. Nature Chemical 
Biology, 2014. 10(11): p. 943-949.

57.	 Brown, L.E. and D.C. Jackson, Lipid-based 
self-adjuvanting vaccines. Curr Drug  
Deliv, 2005. 2(4): p. 383-93.

58.	 Tiptiri-Kourpeti, A., et al., DNA vaccines 
to attack cancer: Strategies for improving 
immunogenicity and efficacy. Pharmacol 
Ther, 2016. 165: p. 32-49.

59.	 Moyle, P.M., Biotechnology approaches to 
produce potent, self-adjuvanting antigen-
adjuvant fusion protein sub-unit vaccines. 
Biotechnol Adv, 2017. 35(3): p. 375-389.

60.	 Chauhan, N., et al., An overview of 
adjuvants utilized in prophylactic vaccine 
formulation as immunomodulators. Expert 
Review of Vaccines, 2017. 16(5): p. 491-502.

61.	 McDonald, D.M., S.N. Byrne, and 
R.J. Payne, Synthetic self-adjuvanting 
glycopeptide cancer vaccines. Frontiers in 
Chemistry, 2015. 3.

62.	 Kalnin, K., et al., Incorporation of RG1 
epitope concatemers into a self-adjuvanting 
Flagellin-L2 vaccine broaden durable 
protection against cutaneous challenge with 
diverse human papillomavirus genotypes. 
Vaccine, 2017. 35(37): p. 4942-4951.

63.	 Chua, B.Y., et al., A self-adjuvanting 
lipopeptide-based vaccine candidate for 
the treatment of hepatitis C virus infection. 
Vaccine, 2008. 26(37): p. 4866-4875.

64.	 Gomez-Samblas, M., et al., Self-adjuvanting 
C18 lipid vinil sulfone-PP2A vaccine: 
study of the induced immunomodulation 
against Trichuris muris infection. Open  
Biology, 2017. 7(4).

65.	 Azmi, F., et al., Self-adjuvanting vaccine 
against group A streptococcus: Application 
of fibrillized peptide and immunostimulatory 
lipid as adjuvant. Bioorganic & Medicinal 
Chemistry, 2014. 22(22): p. 6401-6408.

66.	 Moyle, P.M. and I. Toth, Self-adjuvanting 
lipopeptide vaccines. Current Medicinal 
Chemistry, 2008. 15(5): p. 506-516.



G
eneral intro

d
uctio

n

25

1
67.	 Carapau, D., et al., Protective Humoral 

Immunity Elicited by a Needle-Free 
Malaria Vaccine Comprised of a Chimeric 
Plasmodium falciparum Circumsporozoite 
Protein and a Toll-Like Receptor 
5 Agonist, Flagellin. Infection and  
Immunity, 2013. 81(12): p. 4350-4362.

68.	 Cui, B.F., et al., Flagellin as 
a vaccine adjuvant. Expert Review of  
Vaccines, 2018. 17(4): p. 335-349.

69.	 Plant, A. and N.A. Williams, Modulation of 
the immune response by the cholera-like 
enterotoxins. Current Topics in Medicinal 
Chemistry, 2004. 4(5): p. 509-519.

70.	 Stratmann, T., Cholera Toxin Sub-unit B 
as Adjuvant-An Accelerator in Protective 
Immunity and a Break in Autoimmunity. 
Vaccines, 2015. 3(3): p. 579-596.

71.	 Bolhassani, A. and S. Rafati, Heat-
shock proteins as powerful weapons in 
vaccine development. Expert Review of  
Vaccines, 2008. 7(8): p. 1185-1199.

72.	 Strbo, N., et al., Secreted heat shock protein 
gp96-Ig: next-generation vaccines for 
cancer and infectious diseases. Immunologic 
Research, 2013. 57(1-3): p. 311-325.

73.	 Ding, Y., et al., Heat-Shock Protein gp96 
Enhances T Cell Responses and Protective 
Potential to Bacillus Calmette-Guerin Vaccine. 
Scand J Immunol, 2016. 84(4): p. 222-8.

74.	 Jung, I.D., et al., Enhancement of Tumor-
Specific T Cell-Mediated Immunity in Dendritic 
Cell-Based Vaccines by Mycobacterium 
tuberculosis Heat Shock Protein X. Journal of 
Immunology, 2014. 193(3): p. 1233-1245.

75.	 Kim, H.Y., et al., Heat shock protein X 
purified from Mycobacterium tuberculosis 
enhances the efficacy of dendritic cells-based 
immunotherapy for the treatment of allergic 
asthma. Bmb Reports, 2015. 48(3): p. 178-183.

76.	 Andersen-Nissen, E., et al., Evasion of 
Toll-like receptor 5 by flagellated bacteria. 
Proceedings of the National Academy 
of Sciences of the United States of  
America, 2005. 102(26): p. 9247-9252.

77.	 Kang, X.L., Z.M. Pan, and X.N. Jiao, Amino 
acids 89-96 of Salmonella flagellin: a key site 
for its adjuvant effect independent of the TLR5 
signaling pathway. Cellular & Molecular 
Immunology, 2017. 14(12): p. 1023-1025.

78.	 Mueller, A.K., et al., Plasmodium liver 
stage developmental arrest by depletion 
of a protein at the parasite-host interface. 
Proceedings of the National Academy 
of Sciences of the United States of  
America, 2005. 102(8): p. 3022-3027.

79.	 Lin, J.W., et al., The Subcellular Location 
of Ovalbumin in Plasmodium berghei 
Blood Stages Influences the Magnitude 
of T-Cell Responses. Infection and  
Immunity, 2014. 82(11): p. 4654-4665.

80.	 Montagna, G.N., et al., Antigen Export during 
Liver Infection of the Malaria Parasite Augments 
Protective Immunity. Mbio, 2014. 5(4).

81.	 Lin, J.W., et al., A Novel ‘ Gene Insertion/Marker 
Out’ (GIMO) Method for Transgene Expression 
and Gene Complementation in Rodent Malaria 
Parasites. Plos One, 2011. 6(12).

82.	 Salman, A.M., et al., Generation of 
Transgenic Rodent Malaria Parasites 
Expressing Human Malaria Parasite Proteins. 
Methods Mol Biol, 2015. 1325: p. 257-86.

83.	 Roestenberg, M., et al., Protection against 
a malaria challenge by sporozoite inoculation. 
N Engl J Med, 2009. 361(5): p. 468-77.

84.	 Mordmuller, B., et al., Sterile protection against 
human malaria by chemoattenuated PfSPZ 
vaccine. Nature, 2017. 542(7642): p. 445-449.

85.	 Bijker, E.M., et al., Protection against malaria 
after immunization by chloroquine prophylaxis 
and sporozoites is mediated by preerythrocytic 
immunity. Proceedings of the National 
Academy of Sciences of the United States of 
America, 2013. 110(19): p. 7862-7867.

86.	 Annoura, T., et al., Two Plasmodium 6-Cys 
family-related proteins have distinct and 
critical roles in liver-stage development. 
Faseb Journal, 2014. 28(5): p. 2158-2170.

87.	 Arredondo, S.A. and S.H.I. Kappe, 
The s48/45 six-cysteine proteins: mediators 



G
eneral intro

d
uctio

n

26

1
of interaction throughout the Plasmodium 
life cycle. International Journal for 
Parasitology, 2017. 47(7): p. 409-423.

88.	 Silvie, O., K. Goetz, and K. Matuschewski, 
A sporozoite asparagine-rich protein 
controls initiation of Plasmodium liver stage 
development. Plos Pathogens, 2008. 4(6).

89.	 Aly, A.S.I., et al., SAP1 is a critical post-
transcriptional regulator of infectivity in 
malaria parasite sporozoite stages. Molecular 
Microbiology, 2011. 79(4): p. 929-939.

90.	 Vaughan, A.M., et al., Type II fatty acid 
synthesis is essential only for malaria parasite 
late liver stage development. Cellular 
Microbiology, 2009. 11(3): p. 506-520.

91.	 Yu, M., et al., The fatty acid biosynthesis enzyme 
FabI plays a key role in the development 
of liver-stage malarial parasites. Cell Host 
Microbe, 2008. 4(6): p. 567-78.

92.	 Iwanaga, S., et al., Identification of an AP2-
family Protein That Is Critical for Malaria Liver 
Stage Development. Plos One, 2012. 7(11).

93.	 Dellibovi-Ragheb, T.A., et al., Host biotin 
is required for liver stage development 
in malaria parasites. Proceedings of 
the National Academy of Sciences, 2018.

94.	 Haussig, J.M., K. Matuschewski, and T.W. Kooij, 
Inactivation of a Plasmodium apicoplast protein 
attenuates formation of liver merozoites. Mol 
Microbiol, 2011. 81(6): p. 1511-25.

95.	 Ishino, T., et al., LISP1 is important for the egress 
of Plasmodium berghei parasites from liver 
cells. Cell Microbiol, 2009. 11(9): p. 1329-39.

96.	 Kumar, H., et al., Protective efficacy and 
safety of liver stage attenuated malaria 
parasites. Sci Rep, 2016. 6: p. 26824.

97.	 Sahu, T., et al., ZIPCO, a putative metal 
ion transporter, is crucial for Plasmodium 
liver-stage development. EMBO Mol  
Med, 2014. 6(11): p. 1387-97.

98.	 Dankwa, D.A., et al., A Plasmodium yoelii 
Mei2-Like RNA Binding Protein Is Essential 
for Completion of Liver Stage Schizogony. 
Infect Immun, 2016. 84(5): p. 1336-1345.

99.	 van Schaijk, B.C., et al., Type II fatty acid 
biosynthesis is essential for Plasmodium 
falciparum sporozoite development in 
the midgut of Anopheles mosquitoes. 
Eukaryot Cell, 2014. 13(5): p. 550-9.

100.	 Flick, K., et al., Optimized expression 
of Plasmodium falciparum erythrocyte 
membrane protein 1 domains in Escherichia 
coli. Malar J, 2004. 3: p. 50.

101.	 Tuju, J., et al., Vaccine candidate discovery 
for the next generation of malaria vaccines. 
Immunology, 2017. 152(2): p. 195-206.

102.	 102.	Milek, R.L., et al., Plasmodium falciparum: 
heterologous synthesis of the transmission-
blocking vaccine candidate Pfs48/45 in 
recombinant vaccinia virus-infected cells. Exp 
Parasitol, 1998. 90(2): p. 165-74.

103.	 Milek, R.L., H.G. Stunnenberg, and R.N. Konings, 
Assembly and expression of a synthetic gene 
encoding the antigen Pfs48/45 of the human 
malaria parasite Plasmodium falciparum in 
yeast. Vaccine, 2000. 18(14): p. 1402-11.







CHAPTER 2THE USE OF  
TRANSGENIC PARASITES IN 

MALARIA VACCINE RESEARCH

Ahmad Syibli Othman1,2*, Catherin Marin-Mogollon1*,  
Ahmed M. Salman3, Blandine M Franke-Fayard1,  

Chris J. Janse1, Shahid M. Khan1#

1 Leiden Malaria Research Group, Parasitology, Leiden University Medical 
Center (LUMC), Leiden, the Netherlands

2 Faculty of Health Sciences, Universiti Sultan Zainal Abidin,  
Terengganu, Malaysia

3 The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, 
Oxford, United Kingdom

* These authors contributed equally to this review
# Corresponding author: Shahid Khan 

Expert Review of Vaccines, 2017, 16(7): p. 685-697



The use o
f transg

enic p
arasites in m

alaria vaccine research

30

2

ABSTRACT
Introduction
Transgenic malaria parasites expressing foreign genes, for example fluorescent and 

luminescent proteins, are used extensively to interrogate parasite biology and host-

parasite interactions associated with malaria pathology. Increasingly transgenic parasites 

are also exploited to advance malaria vaccine development. 

Areas Covered
We review how transgenic malaria parasites are used, in vitro and in vivo, to determine 

protective efficacy of different antigens and vaccination strategies and to determine 

immunological correlates of protection. We describe how chimeric rodent parasites 

expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank 

order human malaria vaccines before their advancement to clinical testing. In addition, we 

describe how transgenic human and rodent parasites are used to develop and evaluate 

live (genetically) attenuated vaccines. 

Expert Commentary
Transgenic rodent and human malaria parasites are being used to both identify vaccine 

candidate antigens and to evaluate both sub-unit and whole organism vaccines before they 

are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical 

testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability 

of protection as well as to uncover critical protective immune responses and to refine 

vaccination strategies.
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INTRODUCTION
In the mid-nineties genetic modification to create permanent modifications in malaria 

parasite genomes was first described in the rodent malaria parasite Plasmodium berghei[1]. 

This technology was extended to other Plasmodium species, including the human 

malaria parasite P. falciparum, and was initially used for loss-of-function analyses to 

uncover the function of Plasmodium genes, including genes encoding potential vaccine 

candidate antigens (reviewed in[2, 3]). In addition to gene-disruption and gene-mutation, 

methodologies have been developed to create malaria parasites that express ‘foreign’ 

genes from other organisms, so called transgenic parasites. Amongst the first transgene 

mutants were rodent malaria parasites that expressed fluorescent and luminescent 

reporter proteins. These parasites have been used to visualize and analyze parasite growth 

and development in vitro and in vivo and have been valuable tools to analyze cellular 

and molecular features of malaria parasite biology (reviewed in [4, 5, 6, 7]). Transgenic 

rodent parasites have also been used to provide mechanistic insights into host-parasite 

interactions that regulate host (immune) responses to infection or those that mediate 

malarial pathology [8, 9, 10, 11, 12, 13]. 

Transgenic parasites expressing fluorescent or luminescent reporter proteins have 

been created in rodent malaria species, the human parasite P. falciparum and the primate 

parasite P. cynomolgi. These parasites have been exploited in screening assays to measure 

(inhibition of) parasite growth at different points of the parasite life-cycle. Fluorescent 

and luminescent P. falciparum parasites have been used in vitro to examine the effect of 

drugs and other inhibitors on blood stage growth and on gametocytes[6, 14, 15, 16, 17]

and fluorescent P. cynomolgi parasites have been generated to screen for compounds that 

target the hypnozoite stage in the liver[18]. Transgenic fluorescent and luminescent rodent 

parasites have been used in in vitro screening assays to test inhibitors that target parasite 

development in the blood and liver [6, 19, 20, 21, 22].  

In addition to measuring growth inhibition in vitro, transgenic rodent parasites have 

been used to examine the impact of drug or vaccine interventions in vivo, where inhibition 

of parasite development is measured as the reduction of reporter signal(mostly luminescent) 

in organs of the treated (compared to unimmunized/untreated) rodent host[6, 17, 19, 22, 

23]. As the life-cycle and basic biology of rodent and human Plasmodium parasites are 

very similar and since the vast majority of genes within their genomes are conserved [24], 

transgenic rodent parasites are frequently used to evaluate protective immunity against 

candidate Plasmodium antigens in vivo and are used to assess different vaccine delivery 

platforms and vaccination regiments. Several of these studies have been conducted 

in different inbred mice strains that exhibit different, often polarized, immunological 

responses to infection. Transgenic rodent parasites have been used in preclinical studies 

to examine protective immune responses to pre-erythrocytic (sporozoite and liver stage) 

vaccines (see Section 2).
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More recently transgenic rodent parasites have been generated that express proteins 

of the human Plasmodium species P. falciparum and P. vivax. These so-called ‘chimeric’ 

parasites have been used to evaluate the (in vivo) action of drugs against human 

Plasmodium protein targets [25, 26], to study malaria pathology during pregnancy, in vivo 

[27] and to evaluate the protective efficacy of vaccines that target human Plasmodium 

antigens (reviewed in [28, 29, 30] and see Table 1). In these vaccine studies, mice are 

immunized with P. falciparum or P. vivax antigens and subsequently challenged with 

chimeric rodent parasites expressing the cognate P. falciparum or P. vivax antigens. Such 

chimeric parasites permit an in vivo immunological evaluation of novel target Plasmodium 

antigens and vaccination strategies and can indicate the magnitude and type of protective 

immune response induced. This knowledge can be used to down-select from candidate 

antigens under consideration before proceeding to clinical studies [31].

Lastly, genetic modification of rodent and human malaria parasites has also been used 

to generate parasites that arrest in the liver. These parasites can provoke strong protective 

immune responses in the host and are therefore being evaluated as live, attenuated vaccines 

[32, 33, 34].Many gene-deletion rodent parasites have been tested in rodents for growth-

arrest in the liver and for their capacity to induce potent protective immune responses. 

These so called genetically attenuated parasites (GAPs) have been created in transgenic 

reporter lines, which simplifies the in vivo evaluation of both their safety and protective 

efficacy. In order to generate completely safe GAP vaccines, GAPs must be generated that 

completely arrests in the liver. Consequently, multiple gene-deletions in the same GAP 

are considered necessary, each governing independent but essential processes during 

liver stage development. Therefore, in order to generate and test a P. falciparum GAP in 

human test subjects, large scale screening of single and multiple gene-deletion mutants in 

rodents is necessary to identify suitable genes for deletion in P. falciparum. 

In this review we describe the use of transgenic malaria parasites and their use as 

preclinical evaluation tools to measure vaccine efficacy and immune responses after 

vaccination. We describe: (i) transgenic rodent and human parasites that express reporter 

proteins that have been used to evaluate immunogenicity of vaccine antigens and vaccine 

efficacy; (ii) the use of transgenic chimeric rodent parasites, expressing antigens of P. 

falciparum or P. vivax, to compare immunogenicity of vaccines and vaccine strategies; 

and (iii) the use of transgenic parasites to identify and evaluate genetically attenuated 

parasite(GAP) vaccines and to examine immunological correlates of protection after 

vaccination in vivo.

TRANSGENIC PARASITES EXPRESSING REPORTER 
PROTEINS
Transgenic rodent and human malaria parasites that express fluorescent and luminescent 

reporter proteins have been used in screening assays to efficiently and rapidly measure 

inhibition of parasite growth at different points of the parasite life-cycle [6, 17, 22, 35]. 
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Table 1. Transgenic rodent and human malaria parasites used in malaria vaccine research

Transgenic rodent malaria parasites (RMP) expressing reporter proteins

Reporter Remarks

Fluorescent 
proteins (e.g. 
GFP, mCherry)

A number of RMP expressing different fluorescent reporter proteins have been used 
to quantify parasite growth of different life cycle stages and to analyze interactions 
between infected cells and immune factors (see Section 2 for references)a

Luminescent 
proteins (e.g. 
luciferase)

A number of different luminescent reporter RMP have been generated that have 
been used to quantify parasite growth of different life cycle stages, both in vitro 
and in vivo (see Sections2and 4 for references)a

Ovalbumin 
(OVA)

Several  OVA-expressing RMP have been used to analyze interactions of 
the parasite with the host immune system (see Sections2and 4 for references)a

Transgenic P. falciparum parasites expressing reporter proteins

Reporter Remarks

GFP GFP-expressing P. falciparum parasites have been used in GAI assays [16]
Luciferase Luminescent P. falciparum parasites have been used to quantify inhibition of oocyst 

production in SMFA assays [14]

Chimeric rodent malaria parasites expressing human Plasmodiumb proteins

Protein 
product  

P. falciparum/
P. vivax gene Remarks

RMgm 
ID Ref

PfLSA-1 PF3D7_1036400 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; in Pb (ANKA)

#1314 [31]

PfLSA-3 PF3D7_0220000 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; in Pb (ANKA)

#1315 [31]

PfCelTOS PF3D7_1216600 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; inPb (ANKA)

#1310 [31]

PfUIS3 
(ETRAMP13)

PF3D7_1302200 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; inPb (ANKA)

#1311 [31]

PfLSAP1 PF3D7_1201300 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; inPb (ANKA)

#1308 [31]

PfLSAP2 PF3D7_0202100 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; inPb (ANKA)

#1312 [31]

PfETRAMP5 PF3D7_0532100 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; inPb (ANKA)

#1309 [31]

PfFalstatin PF3D7_0911900 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; inPb (ANKA)

#1313 [31]

PfCSP PF3D7_0304600 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; inPb (ANKA)

#1316 [31]

PfTRAP PF3D7_1335900 Additional copy; Pf (NF54) gene under the control 
of Pbuis4 promoter; inPb (ANKA)

#1317 [31]

PfUIS3/

PfTRAP

PF3D7_1302200 
PF3D7_1335900

(2) Additional copies; Pf (NF54) genes under 
the control of Pbuis4 promoter; in Pb (ANKA)

#4076 [76]

PfCSP/

PfTRAP

PF3D7_0304600 
PF3D7_1335900

(2) Additional copies; Pf (NF54) genes under 
the control of Pbuis4 promoter; inPb (ANKA)

[95]
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Table 1. (continued)

Protein 
product 

P. falciparum/
P. vivax gene Remarks

RMgm 
ID Ref

PfCSP PF3D7_0304600 Replacement copy; Pb (ANKA)csp replaced 
by Pf(Wellcome strain) csp, full-length Pbcsp 
promoter & 302bp Pbcsp3’UTR.

Reduced sporozoite production

#69 [73]

PfCSP PF3D7_0304600 Replacement copy; Pb (ANKA) csp replaced by 
Pf(NF54) csp under control of endogenous Pbcsp 
promoter and 3’UTR; No drug selectable marker.

Normal sporozoite production and infectivity

#4110

PfCSP PF3D7_0304600 Replacement copy;Py (17XNL) csp replaced with 
Pf (3D7) csp. Human DHFR selectable marker. 
Pbhsp70 3’UTR

Normal sporozoite production and infectivity

#1442 [96]

PfTRAP PF3D7_1335900 Replacement copy;Pb (ANKA)trap replaced by 
Pf(NF54)  trap  under control of endogenous 
Pbtrap  promoter and 3’UTR; No drug selectable 
marker

Normal sporozoite production and infectivity

#4112

PvTRAP PVP01_1218700 Replacement copy;Pb (ANKA) trap replaced with 
Pv (Sal-1) trap. No selectable marker. 

Normal sporozoite production and infectivity

#1103 [97]

Pv25 PVX_111175 Replacement copy; Pb25 and Pb28 replaced with 
Pv  25; in Pb (ANKA)

#222 [49]

Pf25 PF3D7_1031000 Replacement copy; Pb25 and Pb28 replaced with 
Pf25; in Pb (ANKA)

#273 [50]

PfCelTOS PF3D7_1216600 Replacement copy; Pb (ANKA) celtos replaced 
by Pf (NF54) celtos under control of endogenous 
Pbceltos promoter and 3’UTR; No drug selectable 
marker

Normal sporozoite production and infectivity

#4066 [74]

PvCSP 
(VK210)

PVX_119355 Replacement copy; Pb (ANKA) csp replaced by 
PvVK210 csp under control of endogenous Pbcsp 
promoter and 3’UTR; No drug selectable marker

Normal sporozoite production and infectivity

[77]

PvCSP 
(VK247)

PVX_119355 Replacement copy; Pb (ANKA) csp replaced by 
Pv VK247 csp under control of endogenous Pbcsp 
promoter and 3’UTR; No drug selectable marker

Normal sporozoite production and infectivity

[77]

PvCelTOS PVX_123510 Replacement copy; Pb (ANKA) celtos replaced by 
Pvceltos under control of endogenous Pbceltos 
promoter and 3’UTR; No drug selectable marker 

Normal sporozoite production and infectivity

#4111 [75]

Rodent malaria parasites expressing HMP-RMP fusion proteinsb

CSP PF3D7_0304600 The repeat region of Pb(NK65) csp is replaced 
with the Pf (7G8) csp repeat region.

#76 [98]
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Table 1. (continued)

Protein 
product

P. falciparum/
P. vivax gene Remarks

RMgm 
ID Ref

MSP1 PF3D7_0930300 The Pb (ANKA) msp-1_19 C-terminal replaced 
with the Pf (D10)  msp-1_19 C-terminal

#201 [78]

MSP1 PF3D7_0930300 ThePb(ANKA)  msp-119 C-terminal replaced with 
the Pf (FCC1/HN)  msp-1_19 C-terminal

#330 [99]

CSP (VK210) PVX_119355 The repeat region of Pb (ANKA) csp is replaced 
with the  Pv (210) csp repeat region. 

#906 [100]

CSP (VK210) PVX_119355 The repeat region ofPb (ANKA) csp is replaced 
with (part of) Pv (210) csp gene

#1104 [47]

CSP (VK247) PVX_119355 The majority of Pb (ANKA) csp gene is replaced 
with Pv (247) csp; the fusion gene retains Pb signal 
sequence (1-20aa) and Pb GPI anchor sequence 
(372-395aa) 

#1443 [101]

P25 PVX_111175 The Pb (ANKA)25 and 28 genes replaced with 
a fusion of Pv25 and Pb 25

#223 [49]

VAR2CSA PF3D7_1200600 A synthetic Pf 3D7 DBL1X-6ε gene (var2csa) fused 
to Pb (ANKA) fam-a

#1436 [27]

Genetically Attenuated Parasites (GAPs)

See Section 4 for details (and references) of transgenic parasites used to generate and test  
GAP vaccines

aFor full list of transgenic reporter parasites generated in RMP see the RMgm Database www.pberghei.eu
bPlasmodium species abbreviations: Pf - P. falciparum; Pv- P. vivax; Pb- P. berghei; Py- P. yoelii

These assays have been used to identify and characterize anti-Plasmodium drugs and 

small molecule inhibitors, as well as vaccines targeting parasite development at different 

points of the life-cycle. Transgenic parasites expressing fluorescent or luminescent 

proteins have been generated in three rodent malaria parasites (RMP), P. berghei, P. 

yoelii and P. chabaudi. For P. berghei and P. yoelii a number of transgenic lines exist that 

express different reporter proteins such as GFP, mCherry or luciferase (or fusions thereof). 

Most of these lines express these proteins under control of Plasmodium promoters of 

constitutively expressed Plasmodium genes (often housekeeping genes), which creates 

parasites that can be visualized and quantified throughout the complete life cycle  

(Figure 1A,B). Frequently used promoter regions of RMP genes include elongation factor 

1-apha (eef1α), dihydrofolatereductase-thymidylate synthase (dhfr-ts) or heat shock 

protein 70 (hsp70). Information on all published RMP transgenic lines can be found in 

the RMgm database of genetically modified rodent parasites (www.pberghei.eu).

Different assays have been developed to quantify parasite growth using reporter 

parasites. To test the effect of inhibitors on blood and liver stage growth, simple and rapid 

assays exist that can quantify parasite numbers in blood samples, infected hepatocytes 

or in other tissues. For example flow cytometric based assays counting GFP (or mCherry) 
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positive parasite-infected red blood cells [20, 36, 37] (Figure 1A) or quantification of 

luminescence signals to determine parasite numbers or parasite loads in blood, liver 

or other organs [19, 21](Figure 1B). Infecting mice with defined numbers of luciferase 

expressing parasites and subsequent quantifying parasite loads (luminescence signal) in 

the liver by real time imaging of live mice is frequently used to establish the in vivo effect of 

either inhibitors and vaccines on liver stage development [6, 17, 22, 23]. Bioluminescence 

imaging is simple to execute and can be used to monitor the course of an infection without 

sacrificing the animal [19] (Figure 1B). This reduces the number of animals required for 

experimentation because multiple measurements can be made in the same animal over 

time that also minimizes the effects of biological variation. In addition, since imaged 

mice do not have to be sacrificed, additional features of parasite development can be 

established, for example characteristics of the ensuing blood stage infection such as 

the prepatent period, i.e. the duration between sporozoite infection and a microscopically 

detectable blood infection. Bio-luminescence imaging is a proven and sensitive method 

to measure parasite liver loads in mice, even after infection with low sporozoite doses. It 

has been shown that parasite liver loads can still be determined even after inoculation of 

1-10 sporozoites and that in vivo imaging quantification of parasite loads correlates very 

Figure 1. The use of transgenic reporter parasites in malaria vaccine research. (A) Representative 
fluorescent images of different life cycle stages of P. falciparum and P. berghei (mCherry and GFP) 
reporter parasites. Blood stage trophozoites (Tr); schizonts (Sc); dissected infected mosquito midguts 
(Mid) with mature oocysts (Oo); salivary gland sporozoites (Spz); P. berghei liver stage schizont (LS). 
Host and parasite DNA are stained with Hoechst or DAPI (blue). (B) Representative rainbow images of 
luminescence intensity in blood (upper panels) or liver (bottom panels) of live mice either uninfected 
(U) or infected (I) with luminescent reporter parasites. Parasite density (luminescence intensity) can 
also be determined in extracted tissue (ex vivo); lungs (lg), kidney (K), adipose/fat tissue (F), liver 
(Lv), spleen (S), brain (B) and heart (H). Bottom panel shows luminescence in extracted livers of 
infected and uninfected mice, 48 h after infection with sporozoites. (C) Schematic representations 
showing the use of transgenic reporter parasites in assays to determine efficacy of erythrocytic, 
transmission blocking (TB) and pre-erythrocytic (sporozoite and liver stage) vaccines. Erythrocytic 
Vaccines: The inhibitory activity of sera from (semi) immune individuals or purified immunoglobulins 
from vaccinated animals/people on parasite invasion and growth in red blood cells are frequently 
determined in Growth Inhibition Assays (GIA). GFP expressing P. falciparum parasites have been 
used in GIA where inhibition of parasite growth was determined by measuring parasitemia by flow 
cytometry. Transmission Blocking Vaccines: The standard membrane-feeding assay (SMFA) is a well-
established method to evaluate the activity of antibodies/serum against human malaria parasites 
in the mosquito, mainly quantified by determination of oocyst production. A transgenic reporter 
P. falciparum line expressing luciferase have been used in SMFA to quantify oocyst production in 
mosquitoes, thus eliminating the need for mosquito dissections. Pre-erythrocytic (sporozoite and liver 
stage) Vaccines: Assays employing luciferase-expressing RMP have been developed to visualize and 
quantify liver stage development. Quantification of parasite liver loads by real time imaging has 
been performed in vaccinated and unvaccinated mice that have been challenged with luminescent 
parasites that either only express luciferase (e.g. in GAP studies; Section 4) or also express human 
malaria proteins (e.g. in studies on human malaria vaccines; Section 3).  
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well with qPCR quantification methods [38]. The sporozoite doses used in different studies 

vary according to the vaccines being tested. Specifically, when examining potential GAP 

vaccines (see below) high doses of the GAP sporozoites are used to infect mice in order 
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to establish if these parasites completely arrest in the liver, an essential and critical safety 

requirement of a live-attenuated vaccine. In addition, mice immunized with GAP parasites 

(see below) are often challenged with relatively high doses of WT parasites (i.e. 1x104), in 

order to test the protective efficacy of different GAP vaccines and vaccination regiments. 

In sub-unit vaccine studies mice are usually challenged with lower doses of sporozoites 

(1-3 x 103), a dose reflective of 1-5 mosquito bites, after which parasite liver loads  

are established.

As well as transgenic RMP lines, reporter parasites have been generated for the human 

parasite P. falciparum. Transgenic P. falciparum parasites expressing fluorescent or 

luminescent proteins have been used to quantify blood stage growth in vitro in standard 

growth inhibition assays(see below),to quantify parasite development in the mosquito 

in standard membrane feeding assays to measure transmission-blocking (TB) activity 

and in high-throughput screening of TB compounds against P. falciparum gametocytes 

(see below). For the TB assays against mosquito stages and gametocytes, transgenic P. 

falciparum (NF54 strain)parasite lines have been generated that express a GFP-luciferase 

fusion protein under control of the strong constitutive hsp70 [39] or the gametocyte 

specific pfs16 promoter [40]. 

In addition to RMP expressing fluorescent and luminescent proteins for vaccine 

studies, multiple transgenic RMP lines expressing the model antigen ovalbumin (OVA) 

as an immunological reporter have been created to study immune responses after 

vaccination. Transgenic Plasmodium parasites expressing OVA have been exploited to 

examine parasite-specific CD8+ T cell responses during both blood and liver infections 

[9, 10, 41, 42, 43]. For example, intravital two-photon microscopy of livers of mice 

infected with P. berghei parasites that express OVA and GFP in their cytoplasm showed 

that transferred OVA-specific CD8+ T cells recognize and forms clusters around infected 

hepatocytes, leading to the elimination of the intra-hepatic parasites [41]. In addition, 

analysis of liver stage parasites expressing OVA, either in their cytoplasm or exported to 

the parasitophorous vacuole membrane, in conjunction with OVA-specific CD8+ and CD4+ 

OVA T cells demonstrated that export of parasite proteins into the infected hepatocytes 

enhanced immunogenicity and CD8+ T cell based protection[10]. 

Below we describe the use of transgenic Plasmodium reporter parasites in preclinical 

assays to evaluate different Plasmodium vaccines and vaccination approaches, that target 

the3 major points of the parasite life-cycle: erythrocytic vaccines, transmission blocking 

vaccines and pre-erythrocytic vaccines.

Erythrocytic Vaccines
Although a number of RMP transgenic reporter parasites have been used in screening 

assays to evaluate drugs or other inhibitors, not many studies have reported the use of 

these parasites in assays to assess blood stage vaccines.  The inhibitory activity of sera 

from (semi) immune individuals or purified immunoglobulins from vaccinated animals 
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or people is mostly evaluated in P. falciparum using in vitro erythrocyte reinvasion and 

growth inhibition activity assays (GIA assays). These assays are used to quantitatively 

measure antibody-mediated effects on parasite invasion and growth, often in small scale 

synchronized cultures of blood stage parasites that are maintained in microtiter plates for 

1-2 cycles in the presence or absence of antibodies. Determination of inhibition of invasion 

and growth in these assays is mainly performed by (automatic and high-throughput) 

microscopic, enzymatic or flow cytometric assays using wild type P. falciparum parasites 

[30, 44, 45, 46].In one study, a flow cytometric assay was developed that used transgenic 

P. falciparum parasites expressing GFP [16]. In this study P. falciparum parasites of the D10 

strain were genetically modified to express GFP under control of the constitutive Pfhsp86 

promoter and inhibition of parasite growth by inhibitory antibodies and human serum 

was determined by measuring parasitemia by flow cytometry. This assay was superior to 

microscopy based approaches and comparable to DNA-staining based techniques to 

quantify growth inhibition (Figure 1C).

Transmission Blocking Vaccines
Mutant RMP are frequently used in (loss-of-function) studies that aim to identify and 

characterize Plasmodium proteins essential for parasite development in mosquitoes, 

which may be suitable targets for TB vaccine strategies. Often these deletion mutants 

have been created in transgenic RMP that express fluorescent or luminescent reporters, 

under control of constitutive stage specific promoters permitting a detailed examination 

of parasite development in the mosquito, for example enabling easier quantification 

of gametocyte development, fertilization and oocyst or sporozoite production. While 

the use of transgenic RMP in TB vaccine studies is limited, chimeric RMP lines expressing 

the ookinete surface protein P25 of P. vivax and P. falciparum have been used in direct 

mosquito feeding (DMF) assays for evaluation of the efficacy of vaccines targeting P25 

of P. vivax and P. falciparum. In these assays immunized mice were challenged with 

the chimeric RMP parasites expressing the human antigen, followed by determination 

of oocyst reduction in mosquitoes that were fed on the immunized and challenged  

mice [44, 47, 48, 49, 50].  

The standard membrane-feeding assay (SMFA) is a well-established and recognized 

method to evaluate TB activity of antibodies/serum against human malaria parasites [51]. 

This assay has been utilized widely to assess the TB activity of purified antibodies and 

serum, both in preclinical and clinical vaccine studies. TB activity in the SMFA is defined 

by the reduction in oocyst numbers in mosquitoes that have been fed with infected blood 

containing gametocytes in the presence of antibodies/serum compared to no(or control) 

antibodies (Figure 1B).Often oocyst production is measured by a microscopic analysis of 

dissected mosquito midguts. Recently, a transgenic reporter P. falciparum line expressing 

luciferase has been used in SMFA to quantify oocyst production in mosquitoes, thus 

eliminating the need for mosquito dissections[39]. This transgenic line was made in parasites 
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of the P. falciparum NF54 strain and expresses a fusion protein of GFP and luciferase which 

is under control of the constitutive Pfhsp70 promoter and parasites of this line do not 

express a drug-selectable marker. This novel dissection-free luminescence-based SMFA 

method, using a transgenic P. falciparum reporter parasite which is not resistance to known 

antimalarials, makes this assay much more amenable to high-throughput screening for 

both TB drugs and vaccines. 

Pre-erythrocytic Vaccines
Transgenic RMP are frequently used in preclinical sporozoite and liver stage vaccine 

studies. Simple and sensitive in vitro and in vivo assays employing luciferase-expressing 

P. berghei and P. yoelii parasites have been developed to visualize and quantify liver 

stage development [19, 22]. In these assays, parasite hepatic development is determined 

by bioluminescence measurement of cultured liver stages or by real-time imaging of 

luminescence emanating from the liver of live mice. These measurements correlate well 

with established (but more laborious) quantitative RT-PCR methods [38, 52]. Both in 

vitro and in vivo luminescence imaging assays have been used to screen inhibitors and 

vaccines against liver stages (Figure 1C; [23, 29, 31, 53, 54]).The simplicity and speed 

of quantitative analysis of parasite liver loads by real-time imaging and the possibility to 

analyze parasite development in live mice without surgery, greatly enhances the analysis 

of the effect of individual vaccines or vaccine strategies that target pre-erythrocytic 

stages. Quantification of parasite liver loads by real time imaging has been performed 

in mice that have been first vaccinated with human Plasmodium sub-unit vaccines and 

then challenged with luminescent chimeric RMP that express human parasite antigens 

(see Section 3) or in mice that have been immunized with genetically attenuated parasites 

and subsequently challenged with luminescent RMP(see Section 4). In addition, imaging 

of luminescent parasites in mice has been successfully used to examining host factors 

regulating liver infections[55]and to analyze the impact of immune responses on inhibition 

of liver stage development[23, 56, 57, 58]. Such studies have revealed the importance of 

adaptive and innate immune responses in protective immunity after vaccination. In these 

studies passively or actively immunized mice (including immunological compromised 

mice) were challenged with luciferase-expressing parasites to monitor reduction in 

parasite liver loads. In addition to the use of luminescent RMP, transgenic RMP expressing 

fluorescent proteins have been used to provide insight into interactions of sporozoites 

with cells in lymph nodes and with dermal tissue and blood vessels, and their interactions 

specifically with cells of the innate and adaptive immune system [59, 60, 61, 62, 63, 64]. 

Using fluorescent P. berghei sporozoites it was demonstrated that fewer sporozoites enter 

the blood and reach the liver in sporozoite-immunized mice than naïve mice. Specifically, 

high circumsporozoite protein (CSP) antibody titers were shown affect sporozoite motility 

in the skin, preventing immobilized sporozoites of entering dermal blood vessels [65].

No assays have yet been reported to analyze P. Falciparum liver stage development in 

vitro with fluorescent or luminescent parasites. Most studies on P. falciparum liver stages, 
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either cultured in hepatocytes (primary human or HC-O4 hepatocytes) or in chimeric mice 

with human liver tissue, have used wild type parasites that were analyzed by RT-PCR or 

by microscopy of fixed and stained cells. One study reported the use of transgenic P. 

falciparum parasites that express luciferase to study liver infection in immune compromised 

mice engrafted with human liver tissue [57]. This FRG huHep mouse is susceptible to 

a P. falciparum sporozoite infection and supports complete liver stage development. 

The reporter P. falciparum (NF54) parasites express a gfp-luciferase fusion gene under 

theconstitutivePfeef1a promoter and the reporter expression cassette is introduced into 

the pf47 locus [66]. In this study [57]a clear effect could be detected on infection of livers 

of FRG huHep mice by passively transferred antibodies against CSP and parasite liver 

loads in these mice were analyzed using bioluminescence imaging 6 days after infection 

with sporozoites (i.e.at the peak of liver-stage luciferase activity).

CHIMERIC RODENT PARASITES EXPRESSING HUMAN 
PLASMODIUM  PROTEINS
In addition to transgenic reporter parasites, rodent parasites expressing human malaria 

parasite proteins (HMP; P. falciparum and P. vivax) have been used in vaccine studies. 

These ‘chimeric’ RMP are used both to analyze immune responses against HMP antigens 

and to evaluate in vivo protective efficacy of vaccines that target HMP antigens (reviewed 

in [28, 29] and see Table 1). The preclinical evaluation of protective immunity involves 

mice being immunized with vaccines targeting different P. falciparum or P. vivax antigens 

followed by challenge with chimeric rodent parasites that express the corresponding 

HMP antigen. Mainly chimeric RMP expressing pre-erythrocytic HMP antigens have been 

generated (Table 1). Chimeric parasites have also been used to study immunogenicity and 

protective efficacy of transmission blocking HMP vaccine antigens, i.e. P. falciparum and P. 

vivax P25 [47, 49, 50]and blood stage vaccine antigens, i.e. P. falciparum MSP1 (Table 1).

Generation of chimeric parasites have been performed using standard methods of RMP 

transfection [67]by introducing HMP genes into the RMP genome, either as additional gene 

copies or by replacing the complete RMP with its HMP ortholog [29]. In addition, chimeric 

parasites have been generated that express fusions of the RMP and HMP orthologous 

genes (Table 1). The recently described GIMO (Gene Insertion-Marker Out) transfection 

method [68] greatly simplifies and speeds up the generation of transgenic parasites 

expressing heterologous proteins, which are free of drug-selection marker genes. Using 

this method two principle types of chimeric RMP expressing HMP proteins have been 

created ([29]; Figure 2A). The first type are ‘additional copy mutants’; here the HMP gene 

is introduced as an additional gene copy into a silent/neutral locus of the GIMO mother-

line and the HMP gene is under the control of a constitutive or stage-specific RMP gene 

promoter. This strategy is often used when an ortholog of the HMP gene is absent from 

the RMP genome. The second type of chimeric parasites are ‘replacement mutants’; here 

the coding sequence (CDS) of the RMP gene is replaced with the CDS of the orthologous 
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HMP gene. This method creates chimeric parasites expressing the HMP gene under control 

of the endogenous RMP gene promoter and transcriptional terminator. The absence of 

a drug-selectable marker in both the additional copy and replacement mutants makes it 

possible to rapidly introduce additional genetic modifications in these chimeric parasites, 

e.g. introduction of additional HMP genes or fluorescent/ luminescent reporter genes.

Chimeric parasites have been used in vaccine studies for a number of reasons. While 

a high level of genetic orthology exists between genes of RMP and HMP, critical differences 

often exist in the sequence and structure of the encoded proteins [24]. In addition, HMP 

express a number of genes encoding vaccine candidates that are absent from RMP  

[24, 31].These differences complicate the analysis of immunogenicity and protective  

efficacy of HMP antigens in rodent models and compromise the effective translation of 

findings into a human malaria vaccine. Therefore ‘humanizing’ RMP by introducing HMP 

genes into rodent parasite genomes can help to circumvent some of these problems. 

HMP cannot readily infect small animals and testing of P. falciparum parasites in rodents 

is expensive as it is largely restricted to immune-deficient mice (i.e. DRAG or FRG) 

transplanted with human hematopoietic stem cells and/or liver tissue [69, 70]. While it is 

possible to test both pre-erythrocytic and blood stage P. falciparum vaccine candidates 

directly in human subjects, these studies are expensive and laborious to perform and 

therefore less suitable for larger screening studies[71]. Preclinical screening studies using 

chimeric RMP make it possible to rapidly evaluate and compare the protective efficacy 

of novel target antigens and vaccination strategies in order to down select candidate 

antigens and strategies that can proceed into clinical studies.

Recently 10 pre-erythrocytic P. falciparum vaccine candidate antigens were tested for 

their protective efficacy using chimeric parasites [31]. The antigens were selected based 

on published literature, immuno-profiling and expression studies. Mice, immunized with 

viral-vectored vaccines expressing the HMP antigens, were challenged with chimeric 

parasites for evaluation of protective immune responses and characterization of 

the immune responses (see Figure 2B for the immunization/challenge protocol). In this 

study two antigens, PfLSA1 and PfLSAP2, generated better protective efficacy than two 

leading pre-erythrocytic P. falciparum vaccine antigens, PfCSP or PfTRAP, in both inbred 

BALB/c and outbred CD-1 mice. The chimeric parasites used in this study had the HMP 

gene introduced as an additional gene copy as a number of the selected genes did not 

have an ortholog in the P. berghei genome, thereby excluding the possibility to make 

replacement mutants. A number of other chimeric RMP have been used, which express 

a HMP ortholog in place of their own RMP gene (Table 1), for example chimeric parasites 

expressing pre-erythrocytic vaccine candidates such as P. vivax and P. falciparum CSP and  

CelTOS ([72, 73, 74, 75]; Table 1). 

Chimeric parasites have also been used to evaluate immunogenicity of antigens against 

other lifecycle stages (i.e. TB vaccines see Figure 2C) as well as being used to evaluate 

different vaccine delivery platforms and to optimize the vaccination strategy and schedule. 

For example, the use of a single chimeric parasite expressing two HMP genes, TRAP and 
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Figure 2. The use of chimeric RMP expressing human malaria parasite (HMP) proteins in malaria 
vaccine research. (A) Additional Copy Mutants have the HMP gene (e.g. the P. falciparum gene coding 
sequence; Pf CDS) introduced as an additional gene copy into a silent/neutral locus of the RMP; 
the HMP gene is under the control of a constitutive or stage-specific RMP gene promoter. Replacement 
Mutants have the RMP coding sequence (Pb CDS) replaced by the orthologous HMP CDS. This often 
2 step replacement method, employing the methods of GIMO transfection, creates chimeric parasites 
expressing the HMP gene under control of the endogenous RMP gene promoter and transcriptional 
terminator. (B) Vaccine immunogenicity and protective efficacy measured in mice immunized with 
HMP liver stage sub-unit vaccines or rodent GAPs. Immunized (and naïve) mice are challenged either 
with luminescent chimeric RMP expressing the cognate HMP antigen or with luminescent ‘wild-type’ 
RMP. Protective efficacy, relative to unvaccinated mice, is quantified by measuring the parasite load by 
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UIS3, showed that combination of two vaccines expressing these antigens could protect 

100% of immunized mice, despite these antigens demonstrating only modest protective 

immunity when administered as a single antigen formulation [76]. This synergistic effect 

was only evident when the two vaccines were mixed and administered into two legs. 

Another study, testing different vaccine delivery platforms targeting P. vivax CSP using 

chimeric RMP that expressed P. vivax CSP, demonstrated that superior immunogenicity 

was generated by virus like particles (VLP) expressing P. vivax CSP compared to other 

formulations, including viral-vectored vaccines or protein plus adjuvant [77].

Chimeric parasites expressing either full length HMP proteins or fusions of HMP-RMP 

proteins can be instructive in determining critical immunological determinants of 

the protective immune responses after vaccination, for example in GIA using material 

obtained from immunized humans or animals [78, 79, 80]. However, the mechanisms of 

protection after vaccination can be lost in in vitro assays if only individual components of 

the adaptive immune response are examined in isolation. For example, responses that 

require both antibody and cell-mediated responses, either acting independently or when 

they work in concert such as in antibody-dependent cell-mediated cytotoxicity responses 

[81]. Ultimately, however, even positive results generated using chimeric parasites in 

rodents or in vitro assays will need to be validated in human vaccine trials.

ATTENUATED PARASITE VACCINES
Transgenic parasites have not only been used for development and evaluation of 

immunogenicity of antigens and protective immunity of subunit vaccines, they have also 

been used to develop and evaluate whole organism vaccines consisting of (genetically) 

attenuated parasites. Vaccination with live, attenuated, sporozoites has been shown to 

induce strong protective immune responses both in rodents and in humans (reviewed in 

[32]). Sporozoite attenuation has been performed by radiation or by genetic modification 

of parasites (reviewed in [32, 33, 34, 82, 83]). A prerequisite for induction of protective 

immunity is that the attenuated sporozoites enter the liver, since heat-killed or over-irradiated 

sporozoites that do not invade hepatocytes do not efficiently confer protection [33, 84]. 

These so-called genetically attenuated parasites (GAPs) have genes encoding proteins 

essential for parasite development in the liver removed, thereby producing parasites 

that arrest in the liver. For both GAPs and radiation-attenuated parasites immunogenicity 

real time imaging of the liver of live mice at 44-48 h after challenge with sporozoites (in vivo imaging 
of luminescence) and/or measuring the time to establish a detectable blood stage infection (pre-
patent period; % survival). (C) Vaccine efficacy of HMP transmission blocking vaccines determined 
in a direct mosquito feeding assay (DMFA) in mosquitoes. In these assays mice are immunized with 
the HMP transmission blocking vaccine. Immunized  and naïve mice are then infected with chimeric 
RMP parasites expressing the cognate HMP antigen. The infected mice are used to feed mosquitoes 
and (reduction in) oocyst production in mosquitoes is quantified 8-10 days after feeding in order to 
measure of the transmission blocking potential of the HMP vaccine.
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(protective efficacy) and safety are critical factors for further clinical development as whole 

organism vaccines. Transgenic rodent parasites have been used extensively in preclinical 

evaluation studies to establish the safety profile of GAPs, i.e. absence of a blood stage 

infection in mice after inoculation with high numbers of GAPs[34]. A number of different 

GAP vaccine candidates have been generated in rodent parasites, by deletion of either 

single or multiple genes. These have been analyzed in mice to ensure they completely 

arrest in the liver and therefore meet the necessary safety profile for translation into human 

GAP. Introducing genes encoding fluorescent and luminescent genes into the genomes of 

GAPs has permitted a detailed analysis on the timing and magnitude of arrest in the liver 

[85, 86] (Figure 1B). Based on studies on growth arrest and safety of rodent GAPs, three 

multiple gene-deletion P. falciparum GAPs have been developed that have advanced into 

clinical evaluation [87, 88, 89]. 

In addition to examining the safety profile of a GAP, transgenic RMP have also been 

used to evaluate the protective immunity induced by attenuated sporozoites, both 

radiation-attenuated sporozoites and GAPs. In multiple studies, mice immunized with 

attenuated parasites have been challenged with fully infectious sporozoites that express 

luciferase to determine liver loads by real time imaging, similar to what has been described 

above for evaluation of protective immunity of sub-unit vaccines (Section 2 and 3;  

Figure 2B). Quantification of parasite liver loads and the pre-patent period provide a direct 

measurement of protective immunity induced by different immunization regimens. 

Rodent GAPs expressing luciferase have also been used to investigate different 

attenuated sporozoite administration strategies [90, 91]. These studies demonstrated 

that the route and dose of administration of attenuated sporozoites are critical factors in 

inducing protective immunity.  Intradermal, subcutaneous and intramuscular administration 

of attenuated sporozoites resulted in reduced parasite liver loads when compared to 

the same number of sporozoites introduced intravenously. Lower parasite liver loads 

after intradermal delivery was associated with reduced protective efficacy compared to 

intravenous immunization. Transgenic fluorescent rodent GAPs have been used to analyze 

direct interactions of lymphocytes with infected hepatocytes using intravital imaging of 

mice that had previously been immunized with attenuated sporozoites [13, 41, 92, 93]. 

These studies have revealed the importance of CD8+ T cell mediated killing and elimination 

of infected hepatocytes in mice immunized with attenuated sporozoites. Further, using 

transgenic RMP expressing the immunological reporter protein ovalbumin, it has been 

possible to analyze direct interactions and effects of antigen specific CD8+ T cell mediated 

immune responses in the liver of mice immunized with attenuated sporozoites ([10, 41]; 

see also Section 2).

EXPERT COMMENTARY
The ability to genetically manipulate the malaria parasite by deleting, mutating genes 

or introducing transgenes in the parasite genome has advanced our understanding of 
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the molecular and cellular biology of malaria parasites for the last 20 years. Genetic 

modification has been central to the functional characterization of genes including genes 

encoding putative vaccine candidate antigens. The generation of reporter parasites with 

additional genes in their genome has resulted in the increased use of transgenic parasites in 

translation-oriented research, for example in preclinical studies evaluating immunogenicity 

and protective efficacy of novel antigens and vaccines. These studies involve transgenic 

parasites of both rodent and human malaria species. Two examples of transgenic human 

parasites are luminescent P. falciparum parasites that have been used in high-throughput 

assays to quantify transmission blocking activity and the use of luminescent P. falciparum 

parasites to analyze the effects of (passively transferred) immune sera on liver infection 

in mice engrafted with human liver tissue (Section 2). These assays are used to generate 

insights into the immunogenicity of putative vaccine candidate antigens, knowledge which 

in turn can be used to improve vaccine strategies that target transmission blocking stages 

and pre-erythrocytic stages, respectively.  

Compared to transgenic P. falciparum parasites, transgenic rodent malaria parasites 

have been more widely applied in experimental vaccine studies, especially in the evaluation 

of pre-erythrocytic antigens and to assess different pre-erythrocytic vaccination strategies. 

For example, luminescent parasites are frequently used to challenge immunized mice in 

standard assays that measure the reduction in parasite liver load as a consequence of 

the protective immune responses induced by different antigens or vaccine strategies. 

Another example is the application of intravital imaging using fluorescent parasites in 

immunized mice, which has revealed critical insights into the immune response targeting 

sporozoites and infected liver cells (Section 2). Such in vivo assays to analyze crucial 

protective immune responses after vaccination and to evaluate protective immunity are 

valuable tools to improve pre-erythrocytic vaccines. 

In addition to reporter rodent parasites, chimeric rodent parasites expressing proteins 

of the human malaria parasites P. falciparum and P. vivax are now being increasingly used in 

vaccine studies. Chimeric RMP expressing HMP proteins are used to determine protective 

efficacy in mice immunized with different sub-unit vaccines expressing P. falciparum 

and P. vivax antigens (Section 3). These studies have been used to select novel vaccine 

candidate antigens for advancement into clinical trials. Chimeric RMP can not only support 

identification of novel antigens, but also contribute to the in vivo evaluation of novel 

delivery platforms and vaccine strategies, both for vaccines targeting pre-erythrocytic 

parasites and transmission blocking vaccines (Section 3). The use of chimeric rodent 

parasites to evaluate protective immunity or transmission blocking immunity is not without 

its limitations. First, the use of chimeric RMP still relies on a murine model, often inbred 

mice strains, and encounter issues related to restriction of MHC epitopes and marked 

immune-dominance of certain epitopes [94]. Outbred mice can possibly be used to more 

accurately reflect what may be seen in humans but it is possible that some antigens 

identified as poorly immunogenic in these studies may in fact be immunogenic in humans. 

Second, when using ‘Additional copy’ chimeric parasites, the HMP gene expression is 
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dependent on the RMP promoter used, which is unlikely to exactly mimic the timing and 

magnitude of the expression of the HMP protein in the HMP. In studies where multiple 

vaccine antigens are examined the chimeric parasites will express the different HMP 

antigens at the same level, which is unlikely to be the case in wild-type HMP. Therefore, 

where possible, it would be useful to also compare protective vaccine efficacy in mice 

using a chimeric RMP parasite where the HMP antigen expression matches its expression 

in the HMP, both in timing and magnitude. Despite these limitations, chimeric RMP allow 

for rapid vaccine (rank-order) screening in vivo and can provide critical insights into both 

the importance of the vaccine target and the mechanism of protection. Indeed data from 

chimeric RMP is being used to justify the selection of novel HMP antigen vaccines (and 

delivery platforms) to advance into clinical testing.

In addition to the role of transgenic parasites in the development of subunit vaccines, 

transgenic parasites have played a central role in the development and evaluation of whole 

organism vaccines consisting of attenuated sporozoites. Studies in rodent malaria models 

on the safety and immunogenicity of GAPs has formed the basis of the development 

of different (multiple gene deletion) P. falciparum GAPs that have now advanced into 

clinical trials (see Section 4). Given the data from rodents studies with both GAPs and 

irradiated sporozoites and from data emerging from irradiated sporozoite vaccine research 

in humans it is anticipated that further improvements can be made to increase GAP 

potency. Here again transgenic RMP can play an important role, for example to optimize 

the routes of attenuated parasite vaccine administration (e.g. studies with devices to 

improve intradermal or intramuscular delivery, use of adjuvants etc) and in development 

of the so-called ‘next generation’ GAP vaccines with increased potency requiring fewer 

sporozoites per dose and fewer vaccination doses to achieve sustained sterile protection 

(e.g. GAPs which arrest late into liver stage development). 

Transgenic parasites used in conjunction with ‘humanized’ animal models or in 

sophisticated in vitro assays are designed to aid and speed up malaria vaccine design, 

specifically to suggest potential priorities for expensive and time-consuming clinical 

trials. As mentioned above, however, the predictive power of these assays can only be 

determined after human trials have been performed and lessons learnt from the success 

and discrepancies that will arise. In addition, over-reliance on a single experimental model 

may result in putative valid vaccine targets not being advanced further, as they did not 

generate sufficient immunity in the testing platform (e.g. in mice).   

FIVE-YEAR VIEW
Despite considerable effort, over decades, a highly effective vaccine against malaria still 

does not exist. This is in part due to the limited number of antigens and methods of 

immunization that have advanced into clinical testing. Most vaccine studies have focused 

on a limited number of antigens but for a broad acting, highly durable and potent malaria 

vaccine this is likely to be too restrictive and insufficient to provide the protection required. 
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Therefore, in order to create multi-antigen and multi-stage vaccines many more antigens 

and improved vaccine delivery platforms will need to be investigated and evaluated as 

a priority in the next 5 years. In addition, the critical host and parasite factors mediating 

protective immunity and those that are necessary for maintaining durable protection 

need also further investigation in the upcoming years. The use of transgenic parasites in 

conjunction with other enabling technologies (e.g. genetic modification of mice or human 

cell lines, advances in imaging etc) has opened up new possibilities and will be used to 

contribute to a more rapid preclinical evaluation of vaccines, vaccination strategies and 

identification of critical factors of protective immune responses. Transgenic P. falciparum 

parasites expressing luminescent reporter proteins are currently valuable tools to assess 

drugs and inhibitors against the parasite in high-throughput assays and are now also 

being used to test the immunogenicity of (novel) transmission blocking antigens and will 

continue to be used to evaluate novel transmission blocking vaccine strategies. In addition, 

the recent availability of luminescent P. falciparum parasites that express luciferase under 

strong promoters (i.e. constitutive, sporozoite or liver-stage specific) will act as a bridge 

between rodent and clinical studies. They will be increasingly used in assays to evaluate 

the effects of (human) immune serum, cells and factors on P. falciparum blood and liver 

cell infection, both in cultured cells and in humanized mice with human hematopoietic 

and human liver cells. Such assays will contribute to generate essential insights into 

the immunogenicity of (in particular pre-erythrocytic) antigens and vaccination strategies. 

Both reporter RMP expressing fluorescent and luminescent proteins as well as chimeric 

RMP expressing HMP antigens will contribute to these studies examining protective 

immune responses in particular of vaccine strategies targeting pre-erythrocytic  vaccines. 

The use of transgenic parasites may not only help to rank order existing candidates but 

also help to reveal novel vaccine candidate antigens and vaccination strategies. Loss of 

function and protein-tagging mutants often reveal parasite proteins that have critical roles 

in parasite development or, for example, are located on the surface of extracellular forms 

of the parasite and may therefore be vulnerable to antibody-based vaccines. Uncovering 

critical protective immune responses and efforts to establish correlates of protection after 

vaccination may be greatly aided by the use of both transgenic parasites and humanized 

mice, which could be used to examine both the induction and recall of immune responses 

in different organs. Transgenic RMP will continue to play an important role in preclinical 

evaluation of novel attenuated sporozoite vaccines both in studies to develop GAPs that 

are more immunogenic and in studies to improve vaccination strategies (e.g. optimizing 

the route of administration). In particular, next generation P. falciparum GAPs that have 

been further modified to express multi-stage and antigens from multiple strains.

KEY ISSUES
•	 Most vaccine studies have focused on a limited number of antigens but for a broad 

acting, highly durable and potent malaria vaccine this is likely to be too restrictive and 
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insufficient to provide the protection required. Multi-stage, multiple-antigen sub-unit 

or genetically attenuated parasite vaccines may provide a solution.

•	 Transgenic (human and rodent) malaria parasites expressing ‘foreign’ proteins, 

for example fluorescent and luminescent proteins, have been used to determine 

the protective efficacy of different antigens and to evaluate vaccination platforms/

strategies. 

•	 Transgenic parasites (e.g. expressing OVA) are being used to understand the critical 

determinants of protection after vaccination; specifically to examine the  induction and 

recall of protective immune responses in the blood and the liver 

•	 Luminescent rodent parasites are now increasingly used to challenge vaccinated 

mice, and non-invasive measurements of parasite liver load permits examination of 

both the protective responses generated by different antigens and to evaluate novel 

vaccine strategies.

•	 Luminescent P. falciparum parasites are being used both in high-throughput assays to 

quantify transmission blocking activity and to analyze the effects of human immune 

sera/immunoglobulins on parasite development in the liver of humanized mice. 

•	 Chimeric rodent parasites, expressing P. falciparum or P. vivax antigens, are being 

used to directly evaluate and rank-order human malaria vaccine candidates and 

determination of the most suitable for clinical testing. 

•	 Chimeric rodent parasites permit an in vivo comparison of different P. falciparum/vivax 

vaccine delivery platforms and vaccination strategies; they are being used to determine 

the best combination of antigens, delivery system and immunization protocol to move 

forward into clinical testing.

•	 Transgenic parasites play a central role in the development and evaluation of whole 

organism vaccines consisting of attenuated sporozoites. Both in evaluation of safety 

and in assessing protective efficacy. Improvements in genetically attenuated parasite 

vaccines and strategies for vaccination (i.e. optimizing the route of administration) will 

continue to require the use of transgenic parasites.

FUNDING 
The manuscript was not funded 

DECLARATION OF INTEREST
A.S Othman is supported by a Skim Latihan Akademik IPTA - SLAI (Ministry of Higher 

Education, Malaysia). C Marin-Mogollon is supported by Colciencias Ph.D. fellowship (Call 

568 from 2012 Resolution 01218 Bogotá, Colombia). A. M Salman is supported by Prof. 

Adrian Hill’s Senior Investigator Award from the Wellcome Trust (095540/Z/11/Z). S Khan, 

B.M Franke-Fayard and C.J Janse are full time employees of the Leiden University Medical 

Center (LUMC).



The use o
f transg

enic p
arasites in m

alaria vaccine research

50

2

REFERENCES
1.	 van Dijk MR, Janse CJ, Waters AP. 

Expression of a Plasmodium Gene 
Introduced into Subtelomeric Regions 
of Plasmodium berghei Chromosomes. 
Science. 1996;271:662-5.

2.	 Carvalho TG, Menard R. Manipulating 
the Plasmodium genome. Curr Issues Mol 
Biol. 2005;7:39-55.

3.	 de Koning-Ward TF, Gilson PR, Crabb BS. 
Advances in molecular genetic systems in 
malaria. Nat Rev Microbiol. 2015;13:373-87.

4.	 Amino R, Menard R, Frischknecht F. In 
vivo imaging of malaria parasites--recent 
advances and future directions. Curr Opin 
Microbiol. 2005;8:407-14.

5.	 Heussler V, Doerig C. In vivo imaging enters 
parasitology. Trends Parasitol. 2006;22:192-
5; discussion 5-6.

6.	 Siciliano G, Alano P. Enlightening 
the malaria parasite life cycle: bioluminescent 
Plasmodium in fundamental and applied 
research. Front Microbiol. 2015;6:391.

7.	 De Niz M, Burda PC, Kaiser G, Del Portillo 
HA, Spielmann T, Frischknecht F, Heussler 
VT. Progress in imaging methods: insights 
gained into Plasmodium biology. Nat Rev 
Microbiol. 2017;15:37-54.

8.	 Franke-Fayard B, Fonager J, Braks A, Khan 
SM, Janse CJ. Sequestration and tissue 
accumulation of human malaria parasites: 
can we learn anything from rodent models 
of malaria? PLoS Pathog. 2010;6:e1001032.

9.	 Lin JW, Shaw TN, Annoura T, Fougere A, 
Bouchier P, Chevalley-Maurel S, Kroeze 
H, Franke-Fayard B, Janse CJ, Couper 
KN, Khan SM. The subcellular location of 
ovalbumin in Plasmodium berghei blood 
stages influences the magnitude of T cell 
responses. Infect Immun. 2014;82:4654-65.

10.	 Montagna GN, Beigier-Bompadre 
M, Becker M, Kroczek RA, Kaufmann 
SH, Matuschewski K. Antigen export 
during liver infection of the malaria 

parasite augments protective immunity.  
MBio. 2014;5:e01321-14.

11.	 Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, 
Zaid A, Wong YC, Lau LS, Mollard V, Cozijnsen 
A, Collins N, Li J, Davey GM, Kato Y, Devi S, 
Skandari R, Pauley M, Manton JH, Godfrey 
DI, Braun A, Tay SS, Tan PS, Bowen DG, Koch-
Nolte F, Rissiek B, Carbone FR, Crabb BS, 
Lahoud M, Cockburn IA, Mueller SN, Bertolino 
P, McFadden GI, Caminschi I, Heath WR. Liver-
Resident Memory CD8+ T Cells Form a Front-
Line Defense against Malaria Liver-Stage 
Infection. Immunity. 2016;45:889-902.

12.	 Holz LE, Fernandez-Ruiz D, Heath WR. 
Protective immunity to liver-stage malaria. 
Clin Transl Immunology. 2016;5:e105.

13.	 Frevert U, Nacer A, Cabrera M, Movila 
A, Leberl M. Imaging Plasmodium 
immunobiology in the liver, brain, and 
lung. Parasitol Int. 2014;63:171-86.

14.	 Stone WJ, Churcher TS, Graumans W, van 
Gemert GJ, Vos MW, Lanke KH, van de Vegte-
Bolmer MG, Siebelink-Stoter R, Dechering 
KJ, Vaughan AM, Camargo N, Kappe SH, 
Sauerwein RW, Bousema T. A scalable 
assessment of Plasmodium falciparum 
transmission in the standard membrane-
feeding assay, using transgenic parasites 
expressing green fluorescent protein-
luciferase. J Infect Dis. 2014;210:1456-63.

15.	 Wang Z, Liu M, Liang X, Siriwat S, Li 
X, Chen X, Parker DM, Miao J, Cui L. 
A flow cytometry-based quantitative 
drug sensitivity assay for all Plasmodium 
falciparum gametocyte stages. PLoS  
One. 2014;9:e93825.

16.	 Wilson DW, Crabb BS, Beeson JG. 
Development of fluorescent Plasmodium 
falciparum for in vitro growth inhibition 
assays. Malaria journal. 2010;9:152.

17.	 Swann J, Corey V, Scherer CA, Kato 
N, Comer E, Maetani M, Antonova-
Koch Y, Reimer C, Gagaring K, Ibanez 
M, Plouffe D, Zeeman AM, Kocken CH, 
McNamara CW, Schreiber SL, Campo B, 



The use o
f transg

enic p
arasites in m

alaria vaccine research

51

2

Winzeler EA, Meister S. High-Throughput 
Luciferase-Based Assay for the Discovery 
of Therapeutics That Prevent Malaria. ACS 
Infect Dis. 2016;2:281-93.

18.	 Voorberg-van der Wel A, Zeeman AM, van 
Amsterdam SM, van den Berg A, Klooster 
EJ, Iwanaga S, Janse CJ, van Gemert GJ, 
Sauerwein R, Beenhakker N, Koopman 
G, Thomas AW, Kocken CH. Transgenic 
fluorescent Plasmodium cynomolgi liver stages 
enable live imaging and purification of Malaria 
hypnozoite-forms. PLoS One. 2013;8:e54888.

19.	 Annoura T, Chevalley S, Janse CJ, Franke-
Fayard B, Khan SM. Quantitative analysis 
of Plasmodium berghei liver stages by 
bioluminescence imaging. Methods Mol 
Biol. 2013;923:429-43.

20.	 Le Bihan A, de Kanter R, Angulo-Barturen 
I, Binkert C, Boss C, Brun R, Brunner R, 
Buchmann S, Burrows J, Dechering KJ, 
Delves M, Ewerling S, Ferrer S, Fischli C, 
Gamo-Benito FJ, Gnadig NF, Heidmann B, 
Jimenez-Diaz MB, Leroy D, Martinez MS, 
Meyer S, Moehrle JJ, Ng CL, Noviyanti 
R, Ruecker A, Sanz LM, Sauerwein RW, 
Scheurer C, Schleiferboeck S, Sinden R, 
Snyder C, Straimer J, Wirjanata G, Marfurt 
J, Price RN, Weller T, Fischli W, Fidock 
DA, Clozel M, Wittlin S. Characterization 
of Novel Antimalarial Compound ACT-
451840: Preclinical Assessment of Activity 
and Dose-Efficacy Modeling. PLoS  
Med. 2016;13:e1002138.

21.	 Lin JW, Sajid M, Ramesar J, Khan SM, 
Janse CJ, Franke-Fayard B. Screening 
inhibitors of P. berghei blood stages 
using bioluminescent reporter parasites. 
Methods Mol Biol. 2013;923:507-22.

22.	 Prudencio M, Mota MM, Mendes AM. 
A toolbox to study liver stage malaria. 
Trends Parasitol. 2011;27:565-74.

23.	 Sack BK, Miller JL, Vaughan AM, Kappe 
SH. Measurement of Antibody-Mediated 
Reduction of Plasmodium yoelii Liver 
Burden by Bioluminescent Imaging. 
Methods Mol Biol. 2015;1325:69-80.

24.	 Otto TD, Bohme U, Jackson AP, Hunt M, 
Franke-Fayard B, Hoeijmakers WA, Religa 
AA, Robertson L, Sanders M, Ogun SA, 
Cunningham D, Erhart A, Billker O, Khan SM, 
Stunnenberg HG, Langhorne J, Holder AA, 
Waters AP, Newbold CI, Pain A, Berriman M, 
Janse CJ. A comprehensive evaluation of 
rodent malaria parasite genomes and gene 
expression. BMC Biol. 2014;12:86.

25.	 Tewari R, Patzewitz EM, Poulin B, Stewart 
L, Baker DA. Development of a transgenic 
Plasmodium berghei line (Pb pfpkg) 
expressing the P. falciparum cGMP-
dependent protein kinase, a novel antimalarial 
drug target. PLoS One. 2014;9:e96923.

26.	 Blume M, Hliscs M, Rodriguez-Contreras 
D, Sanchez M, Landfear S, Lucius R, 
Matuschewski K, Gupta N. A constitutive 
pan-hexose permease for the Plasmodium 
life cycle and transgenic models for 
screening of antimalarial sugar analogs. 
FASEB J. 2011;25:1218-29.

27.	 de Moraes LV, Dechavanne S, Sousa PM, 
Barateiro A, Cunha SF, Nunes-Silva S, Lima 
FA, Murillo O, Marinho CR, Gangnard S, 
Srivastava A, Braks JA, Janse CJ, Gamain 
B, Franke-Fayard B, Penha-Goncalves C. 
Murine Model for Preclinical Studies of 
Var2CSA-Mediated Pathology Associated 
with Malaria in Pregnancy. Infect  
Immun. 2016;84:1761-74.

28.	 Cockburn I. Chimeric parasites as tools 
to study Plasmodium immunology and 
assess malaria vaccines. Methods Mol  
Biol. 2013;923:465-79.

29.	 Salman AM, Mogollon CM, Lin JW, van 
Pul FJ, Janse CJ, Khan SM. Generation 
of Transgenic Rodent Malaria Parasites 
Expressing Human Malaria Parasite Proteins. 
Methods Mol Biol. 2015;1325:257-86.

30.	 Mlambo G, Kumar N. Transgenic rodent 
Plasmodium berghei parasites as tools for 
assessment of functional immunogenicity 
and optimization of human malaria 
vaccines. Eukaryot Cell. 2008;7:1875-9.

31.	 Longley RJ, Salman AM, Cottingham MG, 
Ewer K, Janse CJ, Khan SM, Spencer AJ, 



The use o
f transg

enic p
arasites in m

alaria vaccine research

52

2

Hill AV. Comparative assessment of vaccine 
vectors encoding ten malaria antigens 
identifies two protective liver-stage 
candidates. Sci Rep. 2015;5:11820.

32.	 Bijker EM, Borrmann S, Kappe SH, 
Mordmuller B, Sack BK, Khan SM. Novel 
approaches to whole sporozoite vaccination 
against malaria. Vaccine. 2015;33:7462-8.

33.	 Hollingdale MR, Sedegah M. Development 
of whole sporozoite malaria vaccines. 
Expert Rev Vaccines. 2017;16:45-54.

34.	 Khan SM, Janse CJ, Kappe SH, Mikolajczak 
SA. Genetic engineering of attenuated 
malaria parasites for vaccination. Curr Opin 
Biotechnol. 2012;23:908-16.

35.	 Dube A, Gupta R, Singh N. Reporter 
genes facilitating discovery of drugs 
targeting protozoan parasites. Trends  
Parasitol. 2009;25:432-9.

36.	 Franke-Fayard B, Trueman H, Ramesar 
J, Mendoza J, van der Keur M, van der 
Linden R, Sinden RE, Waters AP, Janse CJ. 
A Plasmodium berghei reference line that 
constitutively expresses GFP at a high level 
throughout the complete life cycle. Mol 
Biochem Parasitol. 2004;137:23-33.

37.	 Hopp CS, Chiou K, Ragheb DR, Salman 
A, Khan SM, Liu AJ, Sinnis P. Longitudinal 
analysis of Plasmodium sporozoite motility 
in the dermis reveals component of blood 
vessel recognition. Elife. 2015;4.

38.	 Ploemen IH, Prudencio M, Douradinha BG, 
Ramesar J, Fonager J, van Gemert GJ, Luty 
AJ, Hermsen CC, Sauerwein RW, Baptista 
FG, Mota MM, Waters AP, Que I, Lowik CW, 
Khan SM, Janse CJ, Franke-Fayard BM. 
Visualisation and quantitative analysis of 
the rodent malaria liver stage by real time 
imaging. PLoS One. 2009;4:e7881.

39.	 Vos MW, Stone WJ, Koolen KM, van Gemert 
GJ, van Schaijk B, Leroy D, Sauerwein RW, 
Bousema T, Dechering KJ. A semi-automated 
luminescence based standard membrane 
feeding assay identifies novel small molecules 
that inhibit transmission of malaria parasites 
by mosquitoes. Sci Rep. 2015;5:18704.

40.	 Lucantoni L, Fidock DA, Avery VM. 
Luciferase-Based, High-Throughput Assay 
for Screening and Profiling Transmission-
Blocking Compounds against Plasmodium 
falciparum Gametocytes. Antimicrob 
Agents Chemother. 2016;60:2097-107.

41.	 Kimura K, Kimura D, Matsushima Y, 
Miyakoda M, Honma K, Yuda M, Yui 
K. CD8+ T cells specific for a malaria 
cytoplasmic antigen form clusters around 
infected hepatocytes and are protective 
at the liver stage of infection. Infect  
Immun. 2013;81:3825-34.

42.	 Lundie RJ, de Koning-Ward TF, Davey 
GM, Nie CQ, Hansen DS, Lau LS, Mintern 
JD, Belz GT, Schofield L, Carbone FR, 
Villadangos JA, Crabb BS, Heath WR. 
Blood-stage Plasmodium infection induces 
CD8+ T lymphocytes to parasite-expressed 
antigens, largely regulated by CD8alpha+ 
dendritic cells. Proc Natl Acad Sci  
U S A. 2008;105:14509-14.

43.	 Miyakoda M, Kimura D, Yuda M, Chinzei Y, 
Shibata Y, Honma K, Yui K. Malaria-specific 
and nonspecific activation of CD8+ T cells 
during blood stage of Plasmodium berghei 
infection. J Immunol. 2008;181:1420-8.

44.	 Blagborough AM, Musiychuk K, Bi H, Jones 
RM, Chichester JA, Streatfield S, Sala KA, 
Zakutansky SE, Upton LM, Sinden RE, 
Brian I, Biswas S, Sattabonkot J, Yusibov 
V. Transmission blocking potency and 
immunogenicity of a plant-produced Pvs25-
based subunit vaccine against Plasmodium 
vivax. Vaccine. 2016;34:3252-9.

45.	 Bergmann-Leitner ES, Duncan EH, Mullen GE, 
Burge JR, Khan F, Long CA, Angov E, Lyon 
JA. Critical evaluation of different methods for 
measuring the functional activity of antibodies 
against malaria blood stage antigens. Am J 
Trop Med Hyg. 2006;75:437-42.

46.	 Duncan EH, Bergmann-Leitner ES. 
Miniaturized Growth Inhibition Assay to Assess 
the Anti-blood Stage Activity of Antibodies. 
Methods Mol Biol. 2015;1325:153-65.

47.	 Mizutani M, Iyori M, Blagborough AM, 
Fukumoto S, Funatsu T, Sinden RE, 



The use o
f transg

enic p
arasites in m

alaria vaccine research

53

2

Yoshida S. Baculovirus-vectored multistage 
Plasmodium vivax vaccine induces both 
protective and transmission-blocking 
immunities against transgenic rodent malaria 
parasites. Infect Immun. 2014;82:4348-57.

48.	 Blagborough AM, Yoshida S, Sattabongkot 
J, Tsuboi T, Sinden RE. Intranasal and 
intramuscular immunization with Baculovirus 
Dual Expression System-based Pvs25 vaccine 
substantially blocks Plasmodium vivax 
transmission. Vaccine. 2010;28:6014-20.

49.	 Ramjanee S, Robertson JS, Franke-Fayard 
B, Sinha R, Waters AP, Janse CJ, Wu Y, 
Blagborough AM, Saul A, Sinden RE. 
The use of transgenic Plasmodium berghei 
expressing the Plasmodium vivax antigen 
P25 to determine the transmission-blocking 
activity of sera from malaria vaccine trials. 
Vaccine. 2007;25:886-94.

50.	 Mlambo G, Maciel J, Kumar N. Murine 
model for assessment of Plasmodium 
falciparum transmission-blocking vaccine 
using transgenic Plasmodium berghei 
parasites expressing the target antigen 
Pfs25. Infect Immun. 2008;76:2018-24.

51.	 Miura K, Deng B, Tullo G, Diouf A, Moretz 
SE, Locke E, Morin M, Fay MP, Long CA. 
Qualification of standard membrane-
feeding assay with Plasmodium falciparum 
malaria and potential improvements for 
future assays. PLoS One. 2013;8:e57909.

52.	 Miller JL, Murray S, Vaughan AM, Harupa 
A, Sack B, Baldwin M, Crispe IN, Kappe SH. 
Quantitative bioluminescent imaging of 
pre-erythrocytic malaria parasite infection 
using luciferase-expressing Plasmodium 
yoelii. PLoS One. 2013;8:e60820.

53.	 Meister S, Plouffe DM, Kuhen KL, Bonamy 
GM, Wu T, Barnes SW, Bopp SE, Borboa 
R, Bright AT, Che J, Cohen S, Dharia NV, 
Gagaring K, Gettayacamin M, Gordon P, 
Groessl T, Kato N, Lee MC, McNamara CW, 
Fidock DA, Nagle A, Nam TG, Richmond 
W, Roland J, Rottmann M, Zhou B, Froissard 
P, Glynne RJ, Mazier D, Sattabongkot J, 
Schultz PG, Tuntland T, Walker JR, Zhou 
Y, Chatterjee A, Diagana TT, Winzeler EA. 

Imaging of Plasmodium liver stages to 
drive next-generation antimalarial drug 
discovery. Science. 2011;334:1372-7.

54.	 Mwakingwe A, Ting LM, Hochman S, Chen 
J, Sinnis P, Kim K. Noninvasive real-time 
monitoring of liver-stage development of 
bioluminescent Plasmodium parasites. J 
Infect Dis. 2009;200:1470-8.

55.	 Portugal S, Carret C, Recker M, Armitage AE, 
Goncalves LA, Epiphanio S, Sullivan D, Roy 
C, Newbold CI, Drakesmith H, Mota MM. 
Host-mediated regulation of superinfection 
in malaria. Nat Med. 2011;17:732-7.

56.	 Keitany GJ, Sack B, Smithers H, Chen L, 
Jang IK, Sebastian L, Gupta M, Sather DN, 
Vignali M, Vaughan AM, Kappe SH, Wang R. 
Immunization of mice with live-attenuated 
late liver stage-arresting Plasmodium yoelii 
parasites generates protective antibody 
responses to preerythrocytic stages of 
malaria. Infect Immun. 2014;82:5143-53.

57.	 Sack BK, Miller JL, Vaughan AM, Douglass 
A, Kaushansky A, Mikolajczak S, Coppi A, 
Gonzalez-Aseguinolaza G, Tsuji M, Zavala 
F, Sinnis P, Kappe SH. Model for in vivo 
assessment of humoral protection against 
malaria sporozoite challenge by passive 
transfer of monoclonal antibodies and immune 
serum. Infect Immun. 2014;82:808-17.

58.	 Miller JL, Sack BK, Baldwin M, Vaughan 
AM, Kappe SH. Interferon-mediated innate 
immune responses against malaria parasite 
liver stages. Cell Rep. 2014;7:436-47.

59.	 Hopp CS, Sinnis P. The innate and 
adaptive response to mosquito saliva and 
Plasmodium sporozoites in the skin. Ann N 
Y Acad Sci. 2015;1342:37-43.

60.	 Cockburn IA, Tse SW, Radtke AJ, Srinivasan 
P, Chen YC, Sinnis P, Zavala F. Dendritic cells 
and hepatocytes use distinct pathways to 
process protective antigen from plasmodium 
in vivo. PLoS Pathog. 2011;7:e1001318.

61.	 Vanderberg JP. Imaging mosquito 
transmission of Plasmodium sporozoites 
into the mammalian host: immunological 
implications. Parasitol Int. 2014;63:150-64.



The use o
f transg

enic p
arasites in m

alaria vaccine research

54

2

62.	 Dups JN, Pepper M, Cockburn IA. Antibody 
and B cell responses to Plasmodium 
sporozoites. Front Microbiol. 2014;5:625.

63.	 Menard R, Tavares J, Cockburn I, Markus 
M, Zavala F, Amino R. Looking under 
the skin: the first steps in malarial infection and 
immunity. Nat Rev Microbiol. 2013;11:701-12.

64.	 Radtke AJ, Kastenmuller W, Espinosa DA, 
Gerner MY, Tse SW, Sinnis P, Germain 
RN, Zavala FP, Cockburn IA. Lymph-node 
resident CD8alpha+ dendritic cells capture 
antigens from migratory malaria sporozoites 
and induce CD8+ T cell responses. PLoS 
Pathog. 2015;11:e1004637.

65.	 Kebaier C, Voza T, Vanderberg J. Kinetics of 
mosquito-injected Plasmodium sporozoites 
in mice: fewer sporozoites are injected 
into sporozoite-immunized mice. PLoS  
Pathog. 2009;5:e1000399.

66.	 Vaughan AM, Mikolajczak SA, Camargo 
N, Lakshmanan V, Kennedy M, Lindner SE, 
Miller JL, Hume JC, Kappe SH. A transgenic 
Plasmodium falciparum NF54 strain that 
expresses GFP-luciferase throughout 
the parasite life cycle. Mol Biochem 
Parasitol. 2012;186:143-7.

67.	 Janse CJ, Ramesar J, Waters AP. High-
efficiency transfection and drug selection 
of genetically transformed blood stages 
of the rodent malaria parasite Plasmodium 
berghei. Nat Protoc. 2006;1:346-56.

68.	 Lin JW, Annoura T, Sajid M, Chevalley-
Maurel S, Ramesar J, Klop O, Franke-
Fayard BM, Janse CJ, Khan SM. 
A novel 'gene insertion/marker out' (GIMO) 
method for transgene expression and 
gene complementation in rodent malaria 
parasites. PLoS One. 2011;6:e29289.

69.	 Wijayalath W, Majji S, Villasante EF, 
Brumeanu TD, Richie TL, Casares 
S. Humanized HLA-DR4.RagKO.
IL2RgammacKO.NOD (DRAG) mice 
sustain the complex vertebrate life cycle 
of Plasmodium falciparum malaria. Malaria 
journal. 2014;13:386.

70.	 Vaughan AM, Mikolajczak SA, Wilson 
EM, Grompe M, Kaushansky A, Camargo 
N, Bial J, Ploss A, Kappe SH. Complete 
Plasmodium falciparum liver-stage 
development in liver-chimeric mice. J Clin 
Invest. 2012;122:3618-28.

71.	 Sauerwein RW, Roestenberg M, Moorthy VS. 
Experimental human challenge infections can 
accelerate clinical malaria vaccine development. 
Nat Rev Immunol. 2011;11:57-64.

72.	 Espinosa DA, Radtke AJ, Zavala F. 
Development and Assessment of Transgenic 
Rodent Parasites for the Preclinical 
Evaluation of Malaria Vaccines. Methods 
Mol Biol. 2016;1403:583-601.

73.	 Tewari R, Spaccapelo R, Bistoni F, Holder 
AA, Crisanti A. Function of region I 
and II adhesive motifs of Plasmodium 
falciparum circumsporozoite protein in 
sporozoite motility and infectivity. J Biol  
Chem. 2002;277:47613-8.

74.	 Espinosa DA, Vega-Rodriguez J, Flores-
Garcia Y, Noe AR, Munoz C, Coleman R, 
Bruck T, Haney K, Stevens A, Retallack 
D, Allen J, Vedvick TS, Fox CB, Reed SG, 
Howard RF, Salman AM, Janse CJ, Khan SM, 
Zavala F, Gutierrez GM. The P. falciparum 
Cell-Traversal Protein for Ookinetes 
and Sporozoites as a Candidate for Pre-
Erythrocytic and Transmission-Blocking 
Vaccines. Infect Immun. 2016.

75.	 Alves E, Salman AM, Leoratti F, Lopez-
Camacho C, Viveros-Sandoval ME, Lall A, 
El-Turabi A, Bachmann MF, Hill AV, Janse 
CJ, Khan SM, Reyes-Sandoval A. Evaluation 
of PvCelTOS as a pre-erythrocytic P. vivax 
vaccine. Clin Vaccine Immunol. 2017.

76.	 Longley RJ, Halbroth BR, Salman AM, 
Ewer KJ, Hodgson SH, Janse CJ, Khan 
SM, Hill AV, Spencer AJ. Assessment of 
the Plasmodium falciparum pre-erythrocytic 
antigen UIS3 as a potential candidate for 
a malaria vaccine. Infect Immun. 2016.

77.	 Salman AM, Montoya-Diaz E, Lall A, Atcheson 
E, Lopez-Camacho C, Ramesar J, Bauza 
K, Collins K, Reis F, Pappas L, González-



The use o
f transg

enic p
arasites in m

alaria vaccine research

55

2

Cerón L, Janse CJ, Hill AV, Khan SM, Reyes-
Sandoval A. Rational development of a highly 
protective P. vivax vaccine evaluated using 
transgenic rodent parasite challenge models. 
Sci Rep. 2017;7:46482

78.	 de Koning-Ward TF, O'Donnell RA, Drew 
DR, Thomson R, Speed TP, Crabb BS. 
A new rodent model to assess blood stage 
immunity to the Plasmodium falciparum 
antigen merozoite surface protein 119 reveals 
a protective role for invasion inhibitory 
antibodies. J Exp Med. 2003;198:869-75.

79.	 Kafuye-Mlwilo MY, Mukherjee P, Chauhan VS. 
Kinetics of humoral and memory B cell response 
induced by the Plasmodium falciparum 
19-kilodalton merozoite surface protein 1 in 
mice. Infect Immun. 2012;80:633-42.

80.	 Sachdeva S, Mohmmed A, Dasaradhi PV, 
Crabb BS, Katyal A, Malhotra P, Chauhan 
VS. Immunogenicity and protective efficacy 
of Escherichia coli expressed Plasmodium 
falciparum merozoite surface protein-
1(42) using human compatible adjuvants. 
Vaccine. 2006;24:2007-16.

81.	 Bouharoun-Tayoun H, Druilhe P. Antibody-
Dependent Cell-Mediated Inhibition 
(ADCI) of Plasmodium falciparum: One- 
and Two-Step ADCI Assays. Methods Mol 
Biol. 2015;1325:131-44.

82.	 Epstein JE, Richie TL. The whole parasite, 
pre-erythrocytic stage approach to malaria 
vaccine development: a review. Curr Opin 
Infect Dis. 2013;26:420-8.

83.	 Hoffman SL, Billingsley PF, James E, 
Richman A, Loyevsky M, Li T, Chakravarty 
S, Gunasekera A, Chattopadhyay R, Li 
M, Stafford R, Ahumada A, Epstein JE, 
Sedegah M, Reyes S, Richie TL, Lyke KE, 
Edelman R, Laurens MB, Plowe CV, Sim 
BK. Development of a metabolically active, 
non-replicating sporozoite vaccine to 
prevent Plasmodium falciparum malaria. 
Hum Vaccin. 2010;6:97-106.

84.	 Hafalla JC, Rai U, Morrot A, Bernal-Rubio 
D, Zavala F, Rodriguez A. Priming of CD8+ 
T cell responses following immunization 

with heat-killed Plasmodium sporozoites. 
Eur J Immunol. 2006;36:1179-86.

85.	 Annoura T, Ploemen IH, van Schaijk BC, 
Sajid M, Vos MW, van Gemert GJ, Chevalley-
Maurel S, Franke-Fayard BM, Hermsen CC, 
Gego A, Franetich JF, Mazier D, Hoffman 
SL, Janse CJ, Sauerwein RW, Khan SM. 
Assessing the adequacy of attenuation of 
genetically modified malaria parasite vaccine 
candidates. Vaccine. 2012;30:2662-70.

86.	 Labaied M, Harupa A, Dumpit RF, 
Coppens I, Mikolajczak SA, Kappe SH. 
Plasmodium yoelii sporozoites with 
simultaneous deletion of P52 and P36 
are completely attenuated and confer 
sterile immunity against infection. Infect  
Immun. 2007;75:3758-68.

87.	 Kublin JG, Mikolajczak SA, Sack BK, 
Fishbaugher ME, Seilie A, Shelton L, 
VonGoedert T, Firat M, Magee S, Fritzen 
E, Betz W, Kain HS, Dankwa DA, Steel 
RW, Vaughan AM, Noah Sather D, Murphy 
SC, Kappe SH. Complete attenuation 
of genetically engineered Plasmodium 
falciparum sporozoites in human subjects. 
Sci Transl Med. 2017;9.

88.	 Spring M, Murphy J, Nielsen R, Dowler M, 
Bennett JW, Zarling S, Williams J, de la 
Vega P, Ware L, Komisar J, Polhemus M, 
Richie TL, Epstein J, Tamminga C, Chuang 
I, Richie N, O’Neil M, Heppner DG, 
Healer J, O’Neill M, Smithers H, Finney 
OC, Mikolajczak SA, Wang R, Cowman 
A, Ockenhouse C, Krzych U, Kappe SH. 
First-in-human evaluation of genetically 
attenuated Plasmodium falciparum 
sporozoites administered by bite of 
Anopheles mosquitoes to adult volunteers. 
Vaccine. 2013;31:4975-83.

89.	 van Schaijk BC, Ploemen IH, Annoura T, Vos 
MW, Foquet L, van Gemert GJ, Chevalley-
Maurel S, van de Vegte-Bolmer M, Sajid 
M, Franetich JF, Lorthiois A, Leroux-Roels 
G, Meuleman P, Hermsen CC, Mazier D, 
Hoffman SL, Janse CJ, Khan SM, Sauerwein 
RW. A genetically attenuated malaria vaccine 



The use o
f transg

enic p
arasites in m

alaria vaccine research

56

2

candidate based on P. falciparum b9/slarp 
gene-deficient sporozoites. Elife. 2014;3.

90.	 Nganou-Makamdop K, Ploemen I, 
Behet M, Van Gemert GJ, Hermsen C, 
Roestenberg M, Sauerwein RW. Reduced 
Plasmodium berghei sporozoite liver load 
associates with low protective efficacy 
after intradermal immunization. Parasite 
Immunol. 2012;34:562-9.

91.	 Ploemen I, Behet M, Nganou-Makamdop 
K, van Gemert GJ, Bijker E, Hermsen 
C, Sauerwein R. Evaluation of immunity 
against malaria using luciferase-expressing 
Plasmodium berghei parasites. Malaria 
journal. 2011;10:350.

92.	 Cockburn IA, Amino R, Kelemen RK, 
Kuo SC, Tse SW, Radtke A, Mac-Daniel 
L, Ganusov VV, Zavala F, Menard R. In 
vivo imaging of CD8+ T cell-mediated 
elimination of malaria liver stages. Proc 
Natl Acad Sci U S A. 2013;110:9090-5.

93.	 Trimnell A, Takagi A, Gupta M, Richie 
TL, Kappe SH, Wang R. Genetically 
attenuated parasite vaccines induce 
contact-dependent CD8+ T cell killing 
of Plasmodium yoelii liver stage-infected 
hepatocytes. J Immunol. 2009;183:5870-8.

94.	 Yewdell JW. Confronting complexity: real-
world immunodominance in antiviral CD8+ 
T cell responses. Immunity. 2006;25:533-43.

95.	 Ewer KJ, Sierra-Davidson K, Salman AM, 
Illingworth JJ, Draper SJ, Biswas S, Hill AV. 
Progress with viral vectored malaria vaccines: 
A multi-stage approach involving “unnatural 
immunity”. Vaccine. 2015;33:7444-51.

96.	 Zhang M, Kaneko I, Tsao T, Mitchell R, 
Nardin EH, Iwanaga S, Yuda M, Tsuji M. 
A highly infectious Plasmodium yoelii 

parasite, bearing Plasmodium falciparum 
circumsporozoite protein. Malaria  
journal. 2016;15:201.

97.	 Bauza K, Malinauskas T, Pfander C, Anar 
B, Jones EY, Billker O, Hill AV, Reyes-
Sandoval A. Efficacy of a Plasmodium 
vivax malaria vaccine using ChAd63 and 
modified vaccinia Ankara expressing 
thrombospondin-related anonymous 
protein as assessed with transgenic 
Plasmodium berghei parasites. Infect 
Immun. 2014;82:1277-86.

98.	 Persson C, Oliveira GA, Sultan AA, Bhanot 
P, Nussenzweig V, Nardin E. Cutting 
edge: a new tool to evaluate human pre-
erythrocytic malaria vaccines: rodent 
parasites bearing a hybrid Plasmodium 
falciparum circumsporozoite protein. J 
Immunol. 2002;169:6681-5.

99.	 Cao Y, Zhang D, Pan W. Construction 
of transgenic Plasmodium berghei as 
a model for evaluation of blood-stage 
vaccine candidate of Plasmodium 
falciparum chimeric protein 2.9. PLoS  
One. 2009;4:e6894.

100.	 Espinosa DA, Yadava A, Angov E, 
Maurizio PL, Ockenhouse CF, Zavala F. 
Development of a chimeric Plasmodium 
berghei strain expressing the repeat region 
of the P. vivax circumsporozoite protein for 
in vivo evaluation of vaccine efficacy. Infect 
Immun. 2013;81:2882-7.

101.	 Mizutani M, Fukumoto S, Soubeiga AP, 
Soga A, Iyori M, Yoshida S. Development of 
a Plasmodium berghei transgenic parasite 
expressing the full-length Plasmodium 
vivax circumsporozoite VK247 protein for 
testing vaccine efficacy in a murine model. 
Malaria journal. 2016;15:251.







CHAPTER 3OX40 STIMULATION ENHANCES 
PROTECTIVE IMMUNE RESPONSES  

INDUCED AFTER VACCINATION  
WITH ATTENUATED  

MALARIA PARASITES

Ahmad Syibli Othman1,3, Blandine M Franke-Fayard1,  
Takashi Imai1, Esmé T. I. van der Gracht2, Anke Redeker2,  

Ahmed M. Salman1,4, Catherin Marin-Mogollon1,  
Jai Ramesar1, Séverine Chevalley-Maurel1, Chris J. Janse1,  

Ramon Arens2* and Shahid M. Khan1*

1Leiden Malaria Research Group, Parasitology, Leiden University Medical 
Center (LUMC), Leiden, The Netherlands

2Department of Immunohematology and Blood Transfusion, Leiden 
University Medical Center (LUMC), Leiden, The Netherlands

3Faculty of Health Sciences, Universiti Sultan Zainal Abidin,  
Terengganu, Malaysia

4The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, 
Oxford, United Kingdom

* The corresponding authors 

Frontiers in Cellular and Infection Microbiology, 2018, 8: 247



O
X

40 stim
ulatio

n enhances G
A

P vaccinatio
n

60

3

ABSTRACT
Protection against a malaria infection can be achieved by immunization with live-attenuated 

Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, 

T cell responses are thought to be critical in the elimination of infected liver cells. In cancer 

immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, 

OX40 (CD134) and 4-1BB (CD137), have been used to enhance T cell function by increasing 

co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal 

antibody treatment on protective immunity induced in mice immunized with genetically 

attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after 

vaccination as shown by an increase in the number of protected mice and delay to blood-

stage infection after challenge with wild-type sporozoites. Consistent with the enhanced 

protective immunity enforced OX40 stimulation resulted in an increased expansion of 

antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and 

spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. 

In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-

specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors 

can improve sporozoite-based vaccine efficacy.



O
X

40 stim
ulatio

n enhances G
A

P vaccinatio
n

61

3

INTRODUCTION
Malaria remains a major threat to the lives of more than 3 billion people world-wide and 

there remains a pressing but unmet need for an effective vaccine, which can provide 

sustained protection against either infection or disease. Despite three decades of clinical 

testing different (recombinant) sub‐unit vaccines, only modest protection has been 

reported so far [1-4] and this has renewed an interest in whole parasite-based vaccine 

approaches [5, 6]. It was first shown in rodent models of malaria that complete protection 

against infection can be obtained by vaccination using live attenuated sporozoites [7, 8].  

Sterile protection against a malaria infection was also demonstrated in humans after 

immunization with Plasmodium falciparum sporozoites, either attenuated by radiation or 

administered under chemoprophylaxis [9-11]. A prerequisite for induction of protective 

immunity using sporozoite-based vaccines is that sporozoites retain their capacity to 

invade liver cells after their administration. The most advanced live-attenuated vaccine 

is based on radiation-attenuated sporozoites (PfSPZ-Vaccine), which is currently being 

evaluated both in the clinic and in field trials [12, 13]. In rodent models, immunization with 

sporozoites of genetically-attenuated parasites (GAP) can induce similar or even better 

levels of protective immunity compared to  irradiated sporozoites (Irr-Spz) [14, 15] . Rodent 

GAP studies have been critical in the creation of two P. falciparum GAP-based vaccines 

that are currently undergoing clinical evaluation [16-18]. 

A number of studies from both the clinic and the field have shown that Irr-Spz can 

generate strong protective immunity in humans [13, 19, 20]. However, in order to achieve 

high level protective immunity multiple immunizations with high doses of attenuated 

sporozoites are required [9, 13]. The high numbers of sporozoites required for vaccination 

increases the costs of sporozoite-based vaccines and complicates the production and 

application of such vaccines for mass administration in malaria-endemic countries. 

The major challenge is to produce a highly immunogenic live-attenuated vaccine, which 

requires the fewest attenuated sporozoites per dose and the fewest doses to induce 

sustained sterile protection against a malaria infection.

While the precise mechanisms of protection mediated by immunization with attenuated 

sporozoites remain unknown, T cells appear to be critical for protection and in particular 

CD8+ T cells are thought to play a major role in eliminating infected hepatocytes. Early 

rodent studies using Irr-Spz have demonstrated a vital role for CD8+ T cells [21, 22]. Recent 

mechanistic investigations into protective immune responses induced by immunization 

with attenuated sporozoites have demonstrated diverse and robust immune responses 

that encompasses both CD8+ and CD4+ T cells, as well as a significant contribution from 

antibodies [23, 24]. Nonetheless, CD8+ T cells are considered to be the main effector cells 

in eliciting protection after sporozoites immunization [25].

Recently, cancer immunotherapies have employed antibodies that target proteins on 

the surface of T cells, as treatment with these antibodies have been shown to restore, 

expand and enhance the function of tumor-reactive T cells. The antagonistic antibodies 
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targeting CTLA-4 and PD-1 have been used to block inhibitory signals to T cells [26, 

27], while agonistic antibodies targeting CD27, OX40 and 4-1BB on CD4+ and CD8+ T 

cells have been used to increase costimulatory signals [28-30]. These immunostimulatory 

antibodies have been shown to improve the control of tumors and this was associated with 

an increase in tumor-specific T cell function [31].In this study, we have analyzed the effect 

of agonistic OX40 monoclonal antibody (OX40 mAb) treatment on protective immunity 

induced in mice by immunization with GAP sporozoites. We immunized BALB/c mice using 

sporozoites of a P. yoelii GAP, an established rodent model to evaluate GAP vaccination 

[14]. We found that OX40 mAb (α-OX40) treatment enhanced protective immunity, which 

was correlated with an expansion effector CD4+ and CD8+ T cell subsets, in both the liver 

and the spleen. In addition α-OX40 treatment induced the production of effector cytokine-

producing T cells in the liver and spleen. Our results indicate that targeting costimulatory 

receptors on T cells can be used to improve sporozoite-based vaccine potency and in 

turn could be used to improve GAP vaccine implementation by reducing the numbers of 

sporozoites required to induce protective immunity.

MATERIALS AND METHODS
Experimental animals and parasites
Female BALB/cByJ mice (6-7 weeks; Charles River, NL and Harlan, Bicester, UK) were used. 

All animal experiments of this study were approved by the Animal Experiments Committee 

of the Leiden University Medical Center (DEC 13132 and 14307). The Dutch Experiments 

on Animal Act is established under European guidelines (EU directive no. 86/609/EEC 

regarding the Protection of Animals used for Experimental and Other Scientific Purposes). 

All experiments were performed in accordance with relevant guidelines and regulations. 

Two P. yoelii (Py) lines were used: i) the reference ‘wild type’ Py17XNL parasite line 1971cl1 

(PyWT; PyGFP-luccon; line RMgm-689; www.pberghei.eu [32]; which contains the fusion 

gene gfp-luc gene under control of the constitutive eef1α promoter integrated into 

the silent 230p gene locus (PY17X_0306600) and does not contain a drug-selectable 

marker and ii) the ‘genetically attenuated parasite’ Py17XNL mutant that lacks the gene 

fabb/f  (3-oxoacyl-acyl-carrier protein synthase; PY17X_1126500). This mutant (ΔPyFabBF-

GFP-Luccon; PyΔfabb/f; mutant RMgm-4109; www.pberghei.eu) was generated in 

the reference line 1971cl1 [33] by standard methods of transfection using a DNA construct 

that targets the fabb/f gene containing hdhfr/fcu selectable marker cassette by double  

cross-over integration. 

Mosquito infection, analysis of oocysts and preparation and injection of 
sporozoites
Sporozoites were obtained by manual dissection of the salivary glands of infected female 

Anopheles stephensi mosquitoes 14 days after feeding on infected mice. Mosquitoes were 

kept at a temperature of 24.5°C and 80% humidity. Salivary glands were collected in RPMI 

medium, homogenized and filtered (40µm Falcon, Corning, Amsterdam, NL). The free 
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sporozoites were counted in a Bürker counting chamber using phase-contrast microscopy. 

For intravenous (IV) administration sporozoites were suspended in RPMI medium and per 

mouse 200 μl was injected into the tail vein. Oocyst numbers in dissected midguts from 

infected mosquitoes were established 8 days after feeding using light-microscopy.

Determination of parasite liver load by real time in vivo imaging
Parasite liver loads in live mice after immunization and after challenge were quantified 

by real time in vivo imaging as previously described [34]. Liver stages were visualized 

and liver loads quantified by measuring luciferase activity of parasites in whole bodies 

of mice at 44 h after injection of sporozoites using the IVIS Lumina II Imaging System 

(Perkin Elmer Life Sciences, Waltham, USA). During measurements mice were anesthetized 

using the isofluorane-anesthesia system (XGI-8, Caliper Life Sciences, Hopkinton, USA). 

D-luciferin was dissolved in PBS (100 mg/kg; Caliper Life Sciences, USA) and injected 

subcutaneously in the neck. Measurements were performed within 8 min after the injection 

of D-luciferin. Quantitative analysis of bioluminescence of whole bodies was performed by 

measuring the luminescence signal intensity using the ROI (region of interest) settings of 

the Living Image® 4.4 software.

Immunization protocol and determination of prepatent period after challenge
For the immunization experiments mice were immunized using isolated PyΔfabb/f 

sporozoites according to the immunization protocols described in the Results section. 

Blood of immunized mice was analyzed for possible breakthrough blood infections by 

Giemsa-stained blood smears one day before challenge with PyWT sporozoites. Immunized 

mice and naïve controls were challenged 14 days after the last immunization with 3000  

(i.e. 3 × 103) PyWT sporozoites. Challenged mice were monitored for blood-stage infections 

by Giemsa-stained blood smears made at day 4 to 14 after challenge. The prepatent 

period (measured in days after sporozoites challenge) is defined as the day when a blood 

stage infection with a parasitemia of 0.5–2% is observed [35]. Organs (and serum) used for 

immunological analysis were collected from the mice at day 7 after immunization or at 7 

days after challenge.

OX40 monoclonal antibody (mAb) treatment
Mice were treated with 200 µg of OX40 mAb (clone RM134L; Bio X Cell, West Lebanon, 

NH, United States) in 200 µl PBS and administrated by intraperitoneal injection (IP) either 

at day 0 or one day after prime or boost immunization. 

Treatment with ARTC2-blocking nanobodies
Immunized mice and naïve controls were treated with 50 µg ARTC2-blocking nanobodies  

(Biolegend) in 200 µl PBS administered by IP injection 30 min before sacrificing mice for 

collection of the organs for the immunological assays. 
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Liver perfusion and purification of liver and spleen cells
Mice were perfused under anesthesia by intracardiac injection of 20 ml PBS (B. Braun, 

Oss, NL). Perfused livers were minced in small pieces and digested for 30 min at 37°C 

in Dulbecco’s Modified Eagle Medium (Thermo Fisher Scientific, Breda, NL) containing 

250 U/ml collagenase and 20 µg/ml DNase. Hepatic leukocytes was obtained by passing 

the digested tissue through a 70 µM cell-strainer (BD Biosciences. San Diego, CA) and 

Percoll gradient. For spleens,  splenocytes were harvested by mincing the tissue through 

a 70 μm cell strainer.

Cell surface staining, intracellular staining, and flow cytometry
For cell surface staining, hepatic leukocytes and splenocytes were resuspended in staining 

buffer (PBS, 2% FCS. 0.05% sodium azide) and incubated with fluorescent conjugated Abs 

for 30 min at 4°C. For intracellular cytokine staining, hepatic leukocytes and splenocytes 

were re-stimulated in vitro with medium containing 5 × 104  PyWT sporozoites for 24 h 

in 96-well flat-bottom plates (1.5 × 106 hepatic leukocytes and splenocytes per well) as 

described [36]. In order to improve re-stimulation and to increase the number of antigen-

presenting cells, 1.5 × 105 of splenocytes were added at the start of the cultures to all 

wells. Twenty hours after incubation 1 μg/ml brefeldin A (Golgiplug; BD Pharmingen) 

was added to all wells. After re-stimulation, cells were transferred to U-bottom 96-well 

plates, and the cell surface stained with fluorescent conjugated Abs at 4°C for 30 min in 

staining buffer. After washing, cells were fixed with 0.5% paraformaldehyde at 4°C for 

30 min, followed by intracellular staining for cytokines at 4°C for 30 min in Perm/Wash 

buffer (BD Biosciences). After washing and resuspending in staining buffer, cells were 

acquired using a BD LSRII flow cytometer and data were analyzed using FlowJo software 

(Tree Star). Fluorochrome-conjugated mAbs specific for CD3, CD4, CD8, CD44, CD11a, 

KLRG1, CD134, IFN-γ, IL-2, and TNF were purchased from BD Biosciences or eBioscience  

(San Diego, CA).

ELISA
Enzyme-linked immunosorbent assay (ELISA) plates (Corning,Inc.) were coated overnight 

at 4°C by adding 1 × 104 PyΔfabb/f sporozoite lysate diluted in 100 µl NaHCO3 buffer 

(pH 9,6) per well. Plates were washed three times with PBS-T (0.05% Tween 20 in 1×PBS) 

prior to blocking for 2 h in blocking buffer (1% BSA in PBS-T). Next, sera was diluted 

in blocking buffer at 1:100 for sporozoite lysate per well. Plates were incubated for 3 

h at room temperature before washing as described above. Next, 100 µl of a 1:5000 

dilution of horseradish peroxidase (HRP) conjugated anti-mouse IgG (Jackson Immuno-

Research) was added and incubated for an additional 1 h at room temperature. Finally, 

plates were washed again and 100 µl of TMB Substrate solution (Thermo Scientific) was 

added for 5 min. The reaction was stopped by addition of 50 µl of 0.5 N sulfuric acid 

prior to measurement of absorbance at 450 nm using a Multiskan FC (Thermo Scientific) 

microplate reader.
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Statistics
All data are calculated using the GraphPad Prism software package 5.04 (GraphPad 

Software, Inc). For ELISA, cell surface and intracellular staining analysis, statistical analysis 

was performed using the unpaired Student’s t-test. For the survival analysis, statistical 

analyzes to determine differences in protection after challenge were performed using 

a Kaplan–Meier survival plot, and survival curves were compared using the log-rank 

(Mantel-Cox) test. Survival was considered as the complete absence of parasites in blood. 

The significance threshold were 0.05 in all analysis.

RESULTS 
Establishing a GAP Sporozoite-BALB/c immunization-challenge protocol 
to investigate strategies to improve GAP immunization
The P. yoelii-BALB/c parasite-mouse combination is a well-established model used to 

analyze vaccines that target sporozoites or liver-stage parasites. To analyze protective 

immunity induced after GAP immunization, we used sporozoites of P. yoelli Δfabb/f GAP 

parasites. The PyΔfabb/f parasites (GAP) lacks the fabb/f gene (PY17X_1126500) and 

arrest late into liver stage development [33, 37]. This GAP produces oocysts and salivary 

gland sporozoites comparable to the wild-type parent P. yoelii 17XNL PyGFP-luccon line 

(PyWT) (Figure S1A). Both GAP and PyWT sporozoites express the fusion protein GFP-

Luciferase under control of the constitutive eef1a promoter, permitting the determination 

of parasite liver loads in live mice by real time bioluminescence imaging [33]. The GAP 

sporozoites exhibit levels of in vivo liver infection that are comparable to PyWT sporozoites  

(Figure S1B), however, these  GAP sporozoites are unable to initiate a blood infection 

(Table S1). 

Protective immunity in immunized mice after challenge with WT sporozoites is defined 

either by the number of mice that are completely protected from infection or by the delay 

in time taken to establish a blood stage infection, i.e. the prepatent period (time-to-

event analysis) [38]. In this study the prepatent period is defined as the number of days 

to reach a 0.5-2% parasitemia after PyWT sporozoites challenge as previously described 

[17]. Previously we had established that a primary immunization followed by boost 

immunization with 1 × 104  GAP sporozoites induced sterile protection in more than 90% 

of BALB/c mice against challenge with 1 × 104  PyWT sporozoites [33]. To examine putative 

enhancing protective immunity of treatment with adjuvants/immunomodulatory molecules 

we attempted to identify a ‘sub-saturating’ immunization regiment by immunizing mice 

with only a single dose of GAP parasites. Mice were immunized with either 1, 2.5 or 5 × 

104 GAP sporozoites and then challenged 14 days later with 3 × 103 PyWT sporozoites 

(Figure 1A). A single immunization with all three doses resulted in none of the mice being 

completely protected. We observed a maximum of one day delay in prepatent period in 

immunized mice compared to naïve mice. Since the blood stage multiplication rate is 10× 

per 24 h, a 1 day delay in the prepatent period of blood stage infection represents 90% 
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reduction in the infection in the liver [39]. The immunization with 2.5 and 5 × 104 GAP 

sporozoites resulted in a significance longer prepatent period (‘survival’; p = 0.014 and  

p = 0.025,  respectively) compared to naïve mice after challenge with PyWT sporozoites.  

Since we did not observe a major difference between the dose of 2.5 and 5 × 104, we 

Figure 1. Suboptimal protection after GAP immunization and effect of α-OX40 treatment on prepatent 
period after infecting mice with wild type (PyWT) sporozoites. (A) Protection assays performed in 
groups of BALB/c mice (n=5 per group) immunized with as single dose of 1, 2.5 or 5 × 104

 

GAP 
sporozoites and challenged 14 days later with 3 × 103 PyWT sporozoites. Challenged mice were 
monitored for blood-stage infections. The Kaplan-Meier curves illustrate the prepatent period (day 
at which a parasitemia of 0.5–2% is observed). Immunization with 2.5 and 5 × 104

 

GAP sporozoites 
resulted in a significant longer prepatent period compared to control, non-immunized mice (Log-Rank 
(Mantel-Cox) test; p = 0.014 and  p = 0.025; respectively). (B) Effect of α-OX40 treatment on parasite 
development in liver and blood. BALB/c mice were treated with α-OX40 on day 0 and infected with 
3.0 × 103 PyWT sporozoites 13 days later.  Infected mice were monitored for blood-stage infections. 
The Kaplan-Meier curves illustrate that there was no significant differences were observed in prepatent 
period between α-OX40 treated mice (n=15) and control, non-treated mice (n=8) in two experiments.
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choose the protocol of 2.5 × 104 GAP immunization followed by 3 × 103 PyWT sporozoites 

challenge, to analyze the effect of α-OX40 treatment on protective immunity.

In addition, we performed an experiment to analyze the possible effect of treatment 

with α-OX40 in naive mice on liver and/or blood stage infection.  Naïve mice treated with 

200 µg of α-OX40 in 200 µl PBS by intraperitoneal injection (IP) and non-treated mice were 

challenged with PyWT sporozoites 14 days after treatment. No differences in prepatent 

period were observed between treated and untreated mice (Figure 1B), indicating that 

α-OX40 treatment has no effect on growth/multiplication of PyWT parasites in both 

the liver and blood in non-immunized mice.

α-OX40 treatment increases the protective immunity in mice immunized 
with a single GAP immunization
To determine whether OX40 is expressed on activated T cells in mice immunized with  

2.5 × 104 P. yoelii fabb/f GAP sporozoites, we determined the OX40 cell surface expression 

at day 3 post-immunization. OX40 expression was clearly detected on activated (CD44hi) 

CD4+ and CD8+ T cells in the liver (Figure 2A). In the spleen, the expression of OX40 on 

activated CD4+ T cells was also observed, albeit at lower levels compared to activated liver 

CD4+ T cells whereas OX40 expression on activated splenic CD8+ T cells was not detected 

(Figure 2A). These data show that GAP immunization is associated with the upregulation of 

co-stimulatory OX40 receptor on CD4+ and CD8+ T cells. Therefore to  examine if α-OX40 

treatment enhances protective immune responses after GAP vaccination, we treated mice 

with α-OX40 one day after they were immunized with a single dose of 2.5 × 104 GAP 

sporozoites as described above (Figure 2B). As expression of OX40 is upregulated after 

antigen recognition, we scheduled α-OX40 administration 1 day after the immunization 

[40]. Immunized mice were injected intraperitoneally with 200 µg α-OX40 in 200 µl PBS 

by IP injection. In two experiments we observed an increase in protective immunity in 

GAP-immunized plus α-OX40 mice (Figure 2C). In the control groups of mice, naïve and 

GAP-immunized but not OX40 treated, none of the mice were protected against PyWT 

sporozoites challenge and all mice became patent at day 5 or 6 in two experiments. In 

contrast, in the two groups of GAP-immunized plus α-OX40 treated mice, a total of 4 out 

of 15 (26.7%) mice were completely protected and in 9 of the remaining 11 mice (60%) 

PyWT parasites emerged in the blood one day later than GAP-immunized mice and naive 

mice (Figure 2C). The vaccination of GAP with α-OX40 induced a significant increase 

in protection compared to immunization with only GAP parasites in both independent 

experiments (*p = 0.011 and **p = 0.0017). 

α-OX40 treatment after a single GAP immunization results in an increase 
of effector (CD44hi CD11ahi) CD4+ T cells in both  liver and spleen
One week after immunization, organs and blood were collected from mice that were 

immunized with a single dose of 2.5 × 104 GAP sporozoites either with or without α-OX40  
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treatment (Figure 3A). In all immunized mice we observed a significant and strong increase  

in total white blood cells (WBCs) and CD4+/CD8+ T cells compared to the naïve control 

mice. Strikingly, we observed only in the GAP-immunized plus α-OX40 treated mice 

a significant increase (**p =0.0023) in CD4+ T cell numbers in the liver compared to GAP-

immunized mice (Figure 3B). We analyzed the phenotype of the antigen-experienced 

Figure 2. α-OX40 treatment increases the protective immunity in mice that received a single GAP 
immunization. (A) OX40 expression on activated CD44hi CD4+ and CD44hi CD8+ T cells in 
the spleen and liver at day 3 after immunization. Flow cytometric histograms indicate OX40 
expression (red) and fluorescence minus-one (FMO) controls (blue). (B) The time line shows 
immunization of BALB/c mice with GAP sporozoites (2.5 × 104), α-OX40 treatment and challenge with 
wild type (PyWT) sporozoites (3 × 103). Challenged mice were monitored for blood-stage infections 
from day 18 onwards to determine the prepatent period. (C) The Kaplan-Meier curves illustrate 
the prepatent period (day at which a parasitemia of 0.5–2% is observed). Data show representative 
from 2 independent experiments with (i) 5 and (ii) 10 mice per group: Naïve vs GAP not significant 
(n.s.); GAP + α-OX40 vs GAP  p = 0.011 and p = 0.0017; GAP + α-OX40 vs Naïve, p = 0.008 and 
0.004, respectively in both experiments. 
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Figure 3. α-OX40 treatment after a single GAP immunization results in an increase of effector 
(CD44hiCD11ahi) CD4+ T cells in both liver and spleen. (A) The time line showing immunization of 2 
groups of BALB/c mice with GAP sporozoites (2.5 × 104) that were treated or not treated with α-OX40 
one day after immunization. T cells were collected from the liver and spleen at day 7 and analyzed for 
phenotype analysis at day 7 or for cytokine expression at day 8 after in vitro re-stimulation with whole 
sporozoites. (B) The total number of WBC, CD8+ and CD4+ T cells in liver and spleen of different 
groups of mice. Significant differences in total WBC (*p = 0.03) and CD4+  T cells (**p = 0.0023) were 
observed between the livers of α-OX40 treated and non-treated mice. Representative data is shown 
from 2 independent experiments with 6 mice per group. (C) The upper panel shows the percentages 
of (CD44hiCD11ahi) T cells of total CD8+ and CD4+ T cells in liver and spleen in the different groups 
of mice. The lower panel shows the total number of (CD44hiCD11ahi) CD8+ and (CD44hiCD11ahi) CD4+ 
T cells in liver and spleen. A significant increase of (CD44hiCD11ahi) CD4+ cells was observed in both 
liver and spleen of mice immunized with GAP plus α-OX40 compared to only GAP-immunized mice  
(***p =0.0004  and *p =0.044, respectively). Representative data is shown from 2 independent 
experiments with 6 mice per group. Significant difference by unpaired t-test is indicated by not 
significant (n.s.) and significant; *p<0.05 or ** p<0.01, ***p<0.001, ****p<0.0001.
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effector T cells using CD44 and CD11a as markers [41-43]. When we compared effector 

(CD44hiCD11ahi) CD8+ and CD4+ T cells we found that in both the spleen and the liver 

of GAP-immunized plus α-OX40 treated mice the number of (CD44hiCD11ahi) CD4+ T 

cells were significantly increased (*p = 0.044 and ***p = 0.0004; respectively), compared 

to GAP-immunized mice. No significant differences were observed in (CD44hiCD11ahi) 

CD8+ T cells in α-OX40 treated or untreated GAP-immunized mice, either in the liver or 

spleen (Figure 3C). Combined these results show that the administration of α-OX40 after 

a priming  GAP immunization  enhances the number of antigen-experienced effector CD4+ 

T cells in both the liver and spleen.

Increased effector T cell formation by α-OX40 treatment after  
prime-boost GAP immunization
In order to examine the effect of α-OX40 treatment on both the formation and recall 

of the adaptive immune response after GAP vaccination, we adopted a prime-boost 

immunization strategy. Specifically, we immunized mice initially with a 2.5 × 104 GAP 

sporozoites followed 2 weeks later by a boost with 2.5 × 104 GAP sporozoites (Figure 4). 

This GAP immunization schedule provides 90-100% sterile protective immunity in BALB/c 

mice [14].  α-OX40 treatment, as described above, was performed 1 day after the boost 

immunization as described for a vaccination protocol against mouse cytomegalovirus 

infection [44], and organs and blood collected one week after the boost immunization. 

In GAP-immunized plus α-OX40 treated mice we observed a strong significant increase 

in total WBCs in both the spleen (**p = 0.001) and liver (*p = 0.035) compared to GAP-

immunized mice (Figure 4). We also observed an increase in total CD4+ and CD8+ T cells 

in GAP-immunized plus α-OX40 mice in the liver (p = 0.0625, *p =  0.043 respectively). In 

the spleen we only observed a significant increase in total CD4+ T cells (*p = 0.019) but 

not in the CD8+ T cells in GAP-immunized plus α-OX40 treated mice compared to GAP-

immunized mice.  In both the spleen and the liver of GAP-immunized plus α-OX40 treated 

mice the number of (CD44hiCD11ahi) CD4+ (**p = 0.0014 and **p = 0.0045; respectively) 

and CD8+  (**p = 0.0073 and *p = 0.0357; respectively) T cells were significantly increased 

compared to GAP-immunized mice (Figure 5A). Also, when we compared activated 

effector-type (CD44hiKLRG1hi) CD4+ and CD8+ T cells, we found that in the spleens of GAP-

immunized plus α-OX40 mice the number of (CD44hiKLRG1hi) CD4+ T cells were significantly 

increased (*p = 0.043) compared to GAP-immunized mice (Figure 5B). Combined these 

results suggest that enforced OX40 stimulation after a prime-boost immunization does 

not only impact the expansion of antigen-experienced effector CD4+ T cells, as was shown 

after a single immunization, but also expands the pool of antigen-experienced effector 

CD8+ T cells. 
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α-OX40 treatment increases IFN-γ and TNF producing CD4+ T cells in 
both liver and spleen and increases the amount of sporozoite-specific 
antibodies after prime-boost GAP immunization 
In order to study the impact of the α-OX40 treatment on the cytokine production of 

the CD4+ and CD8+ T cells after prime-boost immunization, we performed intracellular 

staining for IFN-γ and TNF of hepatic leucocytes and splenocytes isolated 7 days after 

the final immunization. Before staining cells were stimulated in vitro for a period of 24 h 

with sporozoites.  It has been reported that treatment with anti-ARTC2 antibodies can 

improve T cell survival and recovery after in vitro stimulation  consequently mice were 

Figure 4. Prime-boost GAP immunization plus α-OX40 during the boost provokes the expansion of 
total WBC, CD8+ and CD4+ T cell numbers in the liver and spleen. (A) Time line showing immunization 
of 2 groups of BALB/c mice with GAP sporozoites (2.5 × 104). Both groups received a prime (day 0) 
and boost (day 14) immunization, and were either treated or not treated with α-OX40 one day after 
the boost immunization. T cells were collected from the liver and spleen at day 7 for phenotype 
analysis at day 7 or for cytokine expression at day 8 after in vitro re-stimulation with whole sporozoites. 
(B) The total number of WBC, CD8+ and CD4+ T cells in liver and spleen of different groups of mice. 
Significant differences were observed between total WBC (*p = 0.035 and **p = 0.001) and  CD4+  
T cells (*p = 0.0625 and *p = 0.019) collected from the liver and spleen of treated and untreated 
mice. In addition, a significant difference in total CD8+ T cells  (*p = 0.019) was observed between 
livers of treated and untreated mice. Representative data is shown from 2 independent experiments 
with 6 mice per group. Significant difference by unpaired t-test is indicated as not significant (n.s.) or 
significant; * p<0.05 or ** p<0.01.
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treated with ARTC2 nanobodies 30 min before collection of the organs [45]. We observed 

a significant increase in IFN-γ producing CD4+ (**p = 0.0065) and CD8+ (**p = 0.0018) 

T cells in the spleens of GAP-immunized plus α-OX40 treated mice compared to GAP-

immunized mice. In the liver of GAP-immunized plus α-OX40 treated mice, there was an 

increase of IFN-γ producing CD4+ T cells (p = 0.0506) but not of CD8+ T cells. Further, we 

observed a significant increase in TNF producing CD4+ T cells in both liver (*p = 0.0398) 

and spleen (**p = 0.0068) of GAP-immunized plus α-OX40 treated mice compared to 

GAP-immunized mice but TNF production in CD8+ T cells was not significantly different 

in either the liver or spleen (Figure 6A). Taken together, these results show that α-OX40 

treatment after a prime-boost GAP immunization elicits a significant increase in IFN-γ 

and TNF producing CD4+ T cells in both liver and spleen of GAP-immunized plus α-OX40 

treated mice compared to GAP-immunized mice. 

In addition to collecting organs at day 7 after the final immunization, we also collected 

serum from these mice to perform ELISA analysis with P. yoelii sporozoite lysate to quantify 

parasite-specific IgG responses. This analysis revealed that mice immunized with GAP 

sporozoites generate sporozoite-specific antibody responses and that there is a significant 

(*p=0.02, Student’s t-test) increase in the total IgG produced in mice immunized with GAP 

plus α-OX40 treatment compared to mice immunized with only GAP (Figure 6B).      

DISCUSSION
Vaccination with live attenuated sporozoites can induce protective immunity in humans but 

induction of sterile protection requires immunization with multiple doses and each dose 

consisting of relatively high numbers of sporozoites [1, 6]. Enhancing the immunogenicity 

of whole sporozoite (wsp) vaccines, for example by adding adjuvants, can be used to both 

reduce the number of sporozoites per dose and the number of vaccine doses, as well as 

directing the adaptive immune response. We show in this study that treatment of mice 

Figure 5. Increased effector T cell formation by α-OX40 treatment after prime-boost GAP 
immunization. (A) See Figure 4  for the time line of immunization and collection of T cells. The upper 
panel shows the percentages of (CD44hiCD11ahi) CD8+ and CD4+ T cells in liver and spleen. The lower 
panel shows the total number of (CD44hiCD11ahi) CD8+ and (CD44hiCD11ahi) CD4+ T cells in liver 
and spleen. A significant increase of (CD44hiCD11ahi) CD8+ cells (*p = 0.0357 and **p = 0.0073) and 
(CD44hiCD11ahi) CD4+ (**p = 0.0045 and **p = 0.0014) was observed in both liver and spleen,  in 
mice immunized with GAP plus α-OX40 compared to only GAP-immunized mice. Representative data 
is shown from 2 independent experiments with 6 mice per group. Significant difference by unpaired 
t-test is indicated by not significant (n.s.) and significant; * p<0.05 or ** p<0.01, ***p<0.001. (B) 
The upper panel shows percentages of (CD44hiKLRG1hi) CD8+ and CD4+ T cells in liver and spleen in 
the different groups of mice. The lower panel shows the total number of (CD44hiKLRG1hi) CD8+ and 
(CD44hiKLRG1hi) CD4+ T cells. A significant increase of  (CD44hiKLRG1hi) CD4+ T cells was observed 
in spleens of mice immunized with GAP plus α-OX40 compared to only GAP-immunized mice  
(*p =0.043, respectively). Representative data is shown from 2 independent experiments with 6 mice 
per group. Significant difference by unpaired t-test is indicated by not significant (n.s.) and significant; 
* p<0.05 or ** p<0.01, ***p<0.001.
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with an agonistic antibody against the T cell costimulatory molecule OX40, a member of 

the tumor necrosis factor receptor (TNFR) superfamily [46], enhances protective immunity 

after immunization with GAP sporozoites.

Previously it has been shown that targeting OX40 increases the magnitude of T cell 

responses and improves T cell functionality [47, 48]. OX40 is transiently expressed on 

T cells following cognate interactions between T cell receptors (TCRs) and antigen-major 

histocompatibility (MHC) complexes on antigen presenting cells (APCs) [48]. While OX40 
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is expressed on both activated CD4+ and CD8+ T cells, OX40 expression on CD4+ T cells 

is greater than CD8+ T cells and consequently α-OX40 treatment is expected to exert its 

greatest effect on CD4+ T cells [46, 48, 49]. OX40 signaling promotes T cell proliferation 

and survival, influences CD4+ T cell differentiation into T helper subsets [50-53] and is 

reported to reverse CD4+ T cell hypo-responsiveness [54]. While it has been previously 

described that OX40 is expressed on activated human and rodent CD4 T cells after 

a malaria blood stage infection [55, 56] no data had been reported on the expression 

of OX40 on T cells after a sporozoite/liver stage Plasmodium infection/immunization. 

We demonstrate in this study that after GAP-sporozoite immunization OX40 expression 

was observed on activated (CD44hi) CD4+ and CD8+ T cells in the liver. Similarly OX40 

expression was upregulated on activated CD4+ T cells in the spleen but not observed 

on activated CD8+ T cells. We therefore hypothesized that therapeutic ligation of OX40 

during immunization with attenuated Plasmodium sporozoites would increase  parasite-

specific CD4+ and CD8+ T cell activity, limit the degree of T cell exhaustion and improve T 

cell effector-memory formation, all resulting in increased clearance of PyWT sporozoites/

liver stages.

To analyze the effect of adjuvants on wsp vaccination approaches we first developed 

a model with a sub-saturating immunization regiment,  which we could use to measure 

enhancement of protective immunity through the application of adjuvants. In this study we 

demonstrate that a single immunization with 2.5 and 5 × 104 sporozoites induces partial 

protection as determined by an absence of sterile protection after PyWT sporozoites 

challenge but a 1 day delay in the emergence of parasites in the blood (prepatent period). 

A 1 day delay in prepatent period has been correlated with a 10× reduction in parasites 

released from the liver [39], indicating a 10× increase in protective immunity compared to 

unimmunized mice. 

Figure 6. α-OX40 treatment increases IFN-γ and TNF producing CD4+ T cells in both  liver and spleen 
and increases the amount of sporozoite-specific antibodies after prime-boost GAP immunization. 
(A) See Figure 4  for the time line of immunization and collection of T cells. The upper panel shows 
percentage of IFN-γ and TNF cytokine producer CD8+ and CD4+ T cells in liver and spleen after in 
vitro sporozoite re-stimulation. The second panel shown the total number of IFN-γ and TNF cytokine 
producer CD8+ and CD4+ T cells in liver and spleen. Significant differences in both IFN-γ cytokine 
producer CD8+ and CD4+ T cells (**p = 0.0018 and **p = 0.0065, respectively) were observed between 
spleens of α-OX40 treated and untreated mice. In addition, an increase in  IFN-γ cytokine producer 
CD4+ T cells (p = 0.0506) was observed in livers of treated mice compared to livers of untreated 
mice. Further, a significant differences of TNF producing CD4+ T cells in both liver and spleen  
(*p = 0.0398 and **p = 0.0068, respectively) were observed between α-OX40 treated and untreated 
mice. Representative data is shown from 2 independent experiments with 6 mice per group. 
Significant difference by unpaired t-test is indicated by not significant (n.s.) and significant; * p<0.05 
or ** p<0.01, ***p<0.001. (B) Quantification by ELISA of P. yoelii WT sporozoite-specific IgG obtained 
from naïve and prime-boost immunized mice with P. yoelii GAP (with or without α-OX40 treatment). 
The concentration of the total IgG in the ELISA was quantified using the values for each sample based 
on the standard curve obtained with defined concentrations of polyclonal antibodies against PyCSP 
(Bioss Antibodies Inc., USA).
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In cytomegalovirus (CMV) vaccination studies it was found that the increase in vaccine 

potency can be achieved by α-OX40 treatment through the expansion of both antigen-

specific CD4+ and CD8+ T cells [44]. A marked upregulation of OX40 is observed on 

Plasmodium specific CD4+ T cells that are generated in both human and rodent malaria 

blood stage infections and, in rodent studies, α-OX40 treatment was shown to increase 

parasite-specific memory CD4+ T cells resulting in a reduced blood-stage infection [55-57]. 

However, prior to this study the effects of OX40 treatment on immune responses induced 

by wsp vaccination have not been described.  

Our analyzes of T cell responses in mice immunized with a single dose of GAP parasites, 

showed an increase in total WBC numbers in the livers and an increase in CD4+ effector 

(CD44hiCD11ahi) T cells in both liver and spleen of α-OX40 treated mice compared to 
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untreated mice. It has been reported by Cooney et al. that T cells with a CD44hiCD11ahi 

phenotype are indicative of antigen-experienced effector cells in GAP-immunized 

BALB/c mice [42]. While protective immunity after wsp immunization is thought to largely 

dependent on the killing infected hepatocytes by CD8+ T cells and IFN-γ [16, 58, 59], 

adoptive transfer of CD4+ T cells from GAP-immunized C57BL/6 mice was able to provide 

sterile protection to 50% of naïve animals against a WT infection, indicating an important 

role for CD4+ T cells in GAP induced immunity [58]. In addition, protective immunity induced 

by sporozoites of a P. yoelii GAP, similar to the one used in our study, was dependent not 

only on CD8+ T cells but also CD4+ T cells [60]. Immune responses induced by P. yoelii 

GAPs that arrest late into liver development [14] are reported to involve both the cellular 

and humoral arm of the adaptive immune response. Indeed, Keitany et al. showed that 

functional antibodies are induced after immunization with P. yoelii GAPs, which can inhibit 

sporozoite invasion of liver cells and reduce intrahepatic parasite development [61-63]. 

Since enhancement of CD4+ T cell responses by OX40 stimulation may lead to an increase 

in humoral immunity we examined total IgG responses generated in mice after prime-

boost GAP immunization, either with or without α-OX40 treatment. These studies revealed 

that anti-sporozoite antibodies were generated after GAP immunization and significantly 

more IgG was generated in mice immunized with GAP plus α-OX40 treatment compared 

to mice immunized with only GAP. This observation indicates that the increase in CD4+ T 

cells after α-OX40 treatment may be directly contributing to B cell maturation/activation.    

We further examined the effect of α-OX40 treatment on adaptive immune responses 

by analyzing immune responses in mice that had received a boost immunization after 

the prime immunization. After this prime-boost strategy we observed an increase in total 

WBC numbers in livers and spleens of both GAP-immunized plus α-OX40 and GAP-only 

immunized mice. However, we observed a significant increase in effector (CD44hiCD11ahi) 

CD4+ and CD8+ T cells in liver and spleen of GAP-immunized plus α-OX40 treated mice 

compared to GAP-only immunized mice. This is in contrast to the single prime strategy 

where we only observed a significant in increase only in effector (CD44hiCD11ahi) splenic 

and liver CD4+ T cells in GAP-immunized plus α-OX40 treated mice. When we examined 

the activation phenotype (CD44hiKLRG1hi) of these T cells in liver and spleen, α-OX40 

treatment significantly increased only the number of activated CD4+ T cells and only those 

present in the spleen. Additionally, we observed a significant increase in IFN-γ producing 

CD4+ and CD8+ T cells in the spleen but not in the liver [60]. We also observed a significant 

increase in TNF producing CD4+ T cells, but not CD8+ T cells, in the liver and spleens of 

GAP-immunized plus α-OX40 treated mice. Therefore CD4+ T cells in the spleen may 

contribute to protective immunity either by enhancing humoral responses targeting 

sporozoites invasion [62] or by enhancing CD8+ T cell responses that target infected 

hepatocytes. Recently it was reported, in mice that liver resident CD8+ T cells induced 

by wsp vaccination may be primed in the spleen and their conversion occurring after 

reencountering parasite antigen in the liver [64]. Our results indicate that the increased 

protective immunity observed in GAP-immunized plus α-OX40 treated mice acts primarily 
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via enhanced CD4+ T cell responses in the spleen. It is known that CD4+ T cell help is 

necessary for an effective CD8+ T cell memory response against non-inflammatory antigens, 

such as tumor cells and certain pathogens that may not carry sufficient danger signals 

[65]. Mice depleted of CD4+ T cells during immunization with sporozoites failed to exhibit 

a robust CD8+ T cell expansion and were not protected against challenge [66, 67]. Murray et 

al. found that CD4+ T cell help was also necessary to induce protection after immunization 

with GAP sporozoites [60]. OX40, in addition to being a costimulatory receptor that 

potentiates proliferation, survival, memory formation, and effector function of CD4+ and 

CD8+ T cells, can also overcome the suppressive activity of regulatory T cells (Tregs) [68]. 

Overcoming immune suppression effects could also benefit the generation of protective 

immunity after wsp vaccination as it has been recently shown that wsp immunization, 

in particular after GAP administered via the skin, can induce regulatory responses [33]. 

Together, our results indicate that improving CD4+ T cell activation enhances protective 

immunity against malaria.  Whether this CD4+ T cell stimulation acts primarily by improving 

humoral responses targeting sporozoites or by increasing CD8+ T cell responses against 

infected liver cells and how these responses may contribute to formation of immunological 

memory and duration of protection requires further investigation. 

A limited number of other studies have been performed on the effect of adjuvants on 

protective immunity induced by wsp immunization. In particular the use of the glycolipid 

α-galactosylceramide (α-GalCer) [69] and its analog 7DW8-5 have been analyzed [70]. 

Co-administration of these molecules with sporozoites resulted in enhanced recruitment 

and activation/maturation of dendritic cells in lymph nodes draining the site of vaccine 

administration and thereby enhancing parasite-specific T cell immunogenicity. Although 

the possible use of certain adjuvants in human vaccination studies may be difficult due 

to costs, applicability or side-effects, these pre-clinical studies provide useful information 

of the largely unknown mechanisms underlying protective immunity. Although α-OX40 

treatment is currently in clinical trials for cancer immunotherapy, the use of antibody-based 

α-OX40 treatment may, for vaccines for the developing world, be unrealistic as they are 

likely to be too expensive. Other (protein based) agents that can stimulate costimulatory 

responses, including agonists of OX40 are being developed as potential adjuvants 

in vaccine development. For example, combination therapy using the protein ligand 

of OX40, OX40L, fused to a cancer vaccine have been shown to reduce breast cancer 

metastasis, by enhancing antigen specific CD4+ and CD8+ T cell responses and inhibiting 

immunosuppressive Treg responses [71]. The co-administration of proteins like OX40L 

which are likely to be cheaper and easier to produce, may therefore be more practical 

and feasible approaches to pursue. In conclusion, this study demonstrates how specific 

immune response to vaccination coupled with activation of costimulatory molecules on 

the surface of T cells, can enhance protective immunity after wsp immunization and merits 

further investigation to see if such approaches not only increase the magnitude but also 

the breadth of an immune responses after vaccination.
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SUPPLEMENTARY DATA

Supplementary Figure S1. Phenotype features of P. yoelii GAP (GAP) parasites compared to P. yoelii 
wildtype (PyWT) parasites. (A) No significant differences in oocyst and sporozoite production in 
Anopheles stephensi mosquitoes between PyWT and GAP were observed. Oocysts and sporozoites 
were counted at day 8 and day 14 after the mosquito feeding, respectively. (B) No significant 
differences in parasite liver load between mice infected with 1 × 104 GAP sporozoites and mice 
infected with 1 × 104 PyWT sporozoites IV at 44 h post infection, were observed. Parasite liver load in 
mice was determined by measuring in vivo luciferase activity and depicted as relative light units (RLU). 
The right panel shows representative images of real time in vivo imaging of luciferase expressing liver 
stage parasites in mice at 44 h after injection of PyWT and GAP sporozoites.

Supplementary Table S1. Breakthrough blood infections and prepatent period in mice after intravenous 
injection of different doses of PyWT and GAP  sporozoites.

Parasites Dose Breakthrough/Infected animalsa Prepatency (days)

PyWT 3 × 103 6/6 5
GAP 1 × 104 0/4 -

2.5 × 104 0/40 -
5 × 104 0/4 -

a Number of mice showing breakthrough infections of the total number of infected mice
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ABSTRACT
In this study we created genetically attenuated rodent malaria parasites (GAPs) that express 

putative immunomodulatory proteins to increase GAP immunogenicity. Four different 

proteins were selected with known adjuvant activity: nontoxic cholera toxin B (CTB) 

subunit, mouse heat shock protein Gp96, Mycobacterium heat shock protein X (HspX) and 

Salmonella flagellin (FliC). These proteins were C- terminally tagged to UIS4, a protein 

expressed in liver stages where it is located on the parasitophorous vacuole membrane 

(PVM). The genes encoding the fusion proteins, were introduced into the genome of 

a Plasmodium yoelii GAP and were expressed under control of the P. yoelii uis4 promoter. 

To create the adjuvant GAPs, we first developed a P. yoelii GAP GIMO parent line 

(GIMOPyGAP-fabb/f) for rapid introduction of the adjuvant fusion-transgenes into the genome 

without retention of a drug selectable marker (SM). Specifically, in this GIMO parent line 

the hdhfr::yfcu positive::negative SM is introduced into the fabb/f gene, creating a GAP 

that arrests during late liver-stage development. The four adjuvant-expression cassettes 

were introduced into the fabb/f locus of GIMOPyGAP-fabb/f by performing GIMO transfection 

and negative selection. Adjuvant GAP-immunogenicity was determined by analysis of 

protective immunity induced by sporozoite immunization of BALB/c mice. When compared 

to immunization performed with non-adjuvanted P. yoelii  fabb/f GAP, we were unable 

to observe a significant enhancement  in protection  (>10×) against wild type P. yoelii  

sporozoite challenge after immunization with the four adjuvant GAPs.
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INTRODUCTION
Complete protection against a malaria infection can be obtained after immunization with 

live attenuated sporozoites, both in rodent models of malaria and in humans [1-3]. Sterile 

protection against a malaria infection has been achieved in humans after immunization 

with Plasmodium falciparum sporozoites, that have either been attenuated by radiation 

or administered under chemoprophylaxis [4-6]. A prerequisite for induction of protective 

immunity by sporozoite-based vaccines is that sporozoites retain their capacity to invade 

liver cells after their administration. The most advanced live-attenuated vaccine is based 

on radiation-attenuated sporozoites (PfSPZ-Vaccine), which is currently being evaluated 

both in the clinic and in field trials [2, 7]. In rodent models of malaria, immunization with 

sporozoites of genetically-attenuated parasites (GAP) can induce similar, or even better, 

levels of protective immunity compared to irradiated sporozoites (Irr-Spz) [1, 8-10]. These 

rodent GAP studies have been critical in the creation of two P. falciparum GAP vaccines, 

which are currently undergoing clinical evaluation [11-13].

A number of studies from both the clinic and the field have shown that Irr-Spz can 

generate strong protective immunity in humans [7, 14, 15]. However, in order to achieve high 

levels of protection, multiple immunizations with high doses of attenuated sporozoites are 

required [4, 7]. Immunization with high sporozoite doses increases the costs of sporozoite-

based vaccines and complicates their production, compromising mass administration 

in malaria-endemic countries. A major challenge is to produce a highly immunogenic 

live-attenuated vaccine, which requires the fewest attenuated sporozoites per dose and 

the fewest doses to induce sustained sterile protection against a malaria infection.

While the precise mechanisms of protection mediated by immunization with attenuated 

sporozoites remain unknown, T cells, in particular CD8+ T cells, appear to be critical for 

protective immunity as they are thought to play a major role in eliminating infected 

hepatocytes [16, 17]. Recent mechanistic investigations into immune responses induced by 

sporozoite-based immunization have shown that protective immune responses encompass 

diverse and robust immune responses that include not only CD8+ but also CD4+ T cells, 

and a significant contribution from antibodies [17, 18].

Rodent models of malaria have been used to explore different approaches to 

enhance immunogenicity of vaccines consisting of attenuated sporozoites [9, 10, 19]. 

For example, it has been shown that immunization of mice with GAP that arrest growth 

late during liver stage development induce higher levels of protective immunity than 

GAP that arrest early after invasion of hepatocytes [8]. In a limited number of studies, 

adjuvants have been co-administered with attenuated sporozoites to enhance protective 

immune responses after immunization. It has been shown that the co-administration of 

the glycolipid α-galactosylceramide (α-GalCer) and its analog 7DW8-5 with sporozoites 

can enhance the recruitment and activation/maturation of dendritic cells in draining 

lymph nodes at the site of sporozoite administration, thereby enhancing parasite-

specific T cell immunogenicity [20, 21]. We recently demonstrated that immunization 
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with attenuated sporozoites in combination with treatment with agonistic antibodies, 

targeting the costimulatory receptor on activated T–cells, OX40, can enhance protective  

immunity [22].

Although these preclinical studies provide useful information about the mechanisms 

underlying protective immunity, the use of adjuvants in human vaccination studies may be 

hampered by cost, applicability or side-effects. Further, induction of protective immune 

responses by GAP immunization is dependent on sporozoites migrating to the liver and 

invading hepatocytes. The administration of adjuvants at the site of GAP injection will 

result in systemic distribution of the adjuvant which will therefore be considerably diluted 

at the sites where parasite antigens are taken up by antigen presenting cells (APCs), i.e. 

the liver, spleen or proximal lymph nodes [23]. In order to maximize the adjuvant effect 

(i.e. increase antigen uptake by APCs and/or provide stimulatory signals to enhance APC 

function) it is important to maximize the adjuvant effect at the point of antigen uptake and 

processing [23, 24].    

Due to the limitations of co-injecting adjuvants with attenuated sporozoites, we 

explored the possibility of creating GAPs that express immunomodulatory proteins 

in sporozoites and/or liver stages, so called adjuvant GAPs [25-28] . Self-adjuvanting  

vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present 

in the same molecule, have been developed for subunit vaccines targeting cancer cells, 

viruses [29, 30], nematodes [31] and bacteria [32, 33], for example by conjugation of  

lipopeptide-based Toll-like receptor (TLR) agonists to the target protein [28]. In vaccine 

development against malaria, the vaccine candidate antigen CSP has been fused to 

bacterial flagellin [34], a protein which is a potent TLR5 agonist [35]. However, to the best of 

our knowledge, no sporozoite-based vaccine has been reported that expresses additional 

immunomodulatory/adjuvant molecules [9, 10, 19].

We selected four TLR agonists that can increase adaptive immune responses and have 

the ability to improve cross-presentation of antigens, as has been demonstrated in other 

animal and/or human studies. The selected adjuvant proteins are: (i) nontoxic cholera 

toxin B subunit from Vibrio cholerae (CTB)[36, 37]; (ii) heat shock protein Gp96 of mice 

(Gp96)[38-40]; (iii) heat shock protein X from Mycobacterium tuberculosis (HspX) [41, 42]; 

and (iv) the TLR5 binding region of Salmonella typhimurium flagellin (amino acids 89–96; 

FliC)  [35, 43, 44]. The genes encoding these proteins were fused to a Plasmodium protein 

expressed in liver stages, UIS4 (PY17X_0502200), which is located at the parasitophorous 

vacuole membrane (PVM) in infected hepatocytes. We fused these proteins to a PVM 

protein as it has been shown that ovalbumin (OVA) fused to proteins located in the PV/

PVM induce stronger T cell responses than ovalbumin expressed in the cytoplasm of 

transgenic parasites [45, 46]. The fusion genes were introduced by GIMO transfection 

[47, 48] into a novel GIMO GAP parasite line (GIMOPyGAP-fabb/f) whose growth is arrested 

late during liver stage development. The four adjuvant GAP were analyzed using the P. 

yoelli-BALB/c screening model for assessing protective immunity after GAP immunization 

[49]. We describe the immunogenicity studies and compared the protective immunity 
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induced by immunization with these adjuvant GAPs compared to the non-adjuvanted P. 

yoelii Δfabb/f GAP.

MATERIALS AND METHODS
Experimental animals and wild type and transgenic P. yoelii lines
Female OF1 and BALB/cByJ mice (6-7 weeks; Charles River) were used. All animal 

experiments of this study were approved by the Animal Experiments Committee of 

the Leiden University Medical Center (DEC 12042 and 14207).  All experiments were 

performed in accordance with relevant guidelines and regulations. Two P. yoelii (Py) lines 

were used: (i) the reference ‘wild type’ Py17X parasite line 1971cl1 (Py-GFP-Luccon; line 

RMgm-689; www.pberghei.eu) which contains the fusion gene gfp-luc gene under control 

of the eef1α promoter integrated into the silent 230p gene locus (PY17X_0306600) and 

does not contain a drug-selectable marker and (ii) a Py17X mutant that lacks the gene 

fabb/f (3-oxoacyl-acyl-carrier protein synthase; PY17X_1126500). This mutant (2251cl3; 

PyGAP; ΔPyFabb/f-GFP-Luccon; mutant RMgm-4109; www.pberghei.eu) was generated in 

the reference line 1971cl1 by replacing the fabb/f gene by the hdhfr::fcu selectable marker 

(SM) cassette.

Generation of transgenic P. yoelii parasite lines
i) Generation of a P. yoelii GAP GIMO parent line (GIMOPyGAP-fabb/f) for 
introduction of transgenes
The GIMO GAP parent line (GIMOPyGAP-fabb/f; 2668cl1) was generated in line 1971cl1 by 

standard methods of transfection [50] using a DNA construct (pL2138) that targets the fabb/f 

gene (PY17X_1126500) by double cross-over integration and contains the hdhfr::yfcu 

SM driven by the P. yoelii hsp70 promoter (PY17X_0712100). To generate GIMOPyGAP-fabb/f 

we constructed DNA plasmid pL2138 using the basic gene insertion construct pL0034, 

which contains the hdhfr::yfcu selectable marker (SM) cassette under the control of the P. 

berghei eef1α promoter with 3’ terminal sequence of pbdhfr/ts. The P. berghei eef1α 

promoter was replaced by the P. yoelii hsp70 promoter (PY17X_0712100) using PstI and 

NcoI digestion resulting in construct pL2137. The P. yoelii hsp70 promoter was amplified 

from genomic P. yoelii  DNA using primers 8080 and 8081 (1078 bp)(see Table S1 for all 

primer sequences). Next, we used an existing construct (pL1980) that have been used 

to generate P. yoelii GAP GIMO (pL1980) [49], which contains 5’ and 3’ fabb/f  targeting 

regions, the hdhfr::yfcu selectable marker (SM) cassette under the control of the eef1α 

promoter with 3’ terminal sequence of pbdhfr/ts. We  replaced the eef1α-hdhfr::yfcu 

selectable marker (SM) cassette from pL1980 with the hsp70-hdhfr::yfcu cassette from 

pL2137 by digestion of the plasmids with PstI and  AgeI. This final construct (pL2138) 

was analyzed by restriction digestion to confirm correct assembly. Before transfection, 

the construct pL2138 was linearized by digesting with HindIII/EcoRI. Parasites of line 

1971cl1 were transfected with construct pL2138 (exp. 2668) using standard transfection 
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technologies and transformed parasites selected by positive selection with pyrimethamine 

[50]. Selected parasites were cloned by limiting dilution and mutant 2668cl1 was used 

for genotype and phenotype analysis. Correct integration of the hdhfr::yfcu SM in 

the fabb/f gene in 2668cl1 of gene was verified by Southern analyses of Pulsed Field 

Gel (PFG)-separated chromosomes and diagnostic PCR analysis [50]. PFG-separated 

chromosomes were hybridized with a mixture of two probes: a probe of the hdhfr gene 

and a ~800 bp fragment of the 5′UTR of PBANKA_0508000 located on chromosome 5 

[48]. PCR primers used to confirm correct integration of the construct are listed in Table S1. 

ii) Introducing an mCherry::uis4 expression cassette in GIMOPyGAP-fabb/f 
Parasites of GIMOPyGAP-fabb/f were transfected with a construct that contains a mCherry::uis4 

expression cassette. This construct (pL2154) aims at replacing the hdhfr::yfcu SM in 

the fabb/f locus of GIMOPyGAP-fabb/f. The pL2154 plasmid  contains the P. yoelii uis4 

(PY17X_0502200) CDS fused to an mCherry cassette under the control of the P. yoelii uis4 

promoter with 3’ terminal sequence of the P. yoelii uis4.

Plasmid pL2154 was generated by three cloning steps. In the first step, we amplified 

the uis4 coding sequence (CDS) together with its 5’-UTR promoter region (1764 bp) from 

P. yoelii genomic DNA using 8130 and 8131 primers.  Next, we replaced the hdhfr::yfcu 

selectable marker cassette (SM) of plasmid pL1980 ([49] and described above) with 

the PCR amplified uis4 CDS and 5’-UTR using PstI and KpnI digestion. In the second step, 

the 3’-UTR (938 bp)of P. yoelii uis4 was amplified from genomic DNA using primers 8132 

and 8133 primers. This PCR-amplified cassette was cloned into the intermediate plasmid 

which contains the 5’ and 3’ fabb/f  targeting regions and the uis4 CDS and 5’-UTR cassette 

using XhoI and KpnI, resulting in construct pL2148. Next, the mCherry CDS was amplified 

from plasmid pL1628 [47] using primers 8148 and 7739 and cloned into pL2148 using XhoI 

and SpeI. This final construct (pL2154) was analyzed was analyzed by restriction digestion 

to confirm correct assembly. Before transfection, the construct pL2138 was linearized by 

digesting with HindIII/EcoRI.

Transfection (exp. 2696), negative selection with 5-FC, cloning and genotyping of 

transformed parasites was performed using standard  methods [47, 50]. Correct integration 

of the mCherry::uis4 expression cassette in the fabb/f gene in 2696cl1 was verified was 

verified by Southern analyses of Pulsed Field Gel (PFG)-separated chromosomes and 

diagnostic PCR analysis as described above.  

iii) Generation of four transgenic GAP expressing putative 
immunomodulatory proteins fused to UIS4
Parasites of GIMOPyGAP-fabb/f were transfected with four different constructs that contain an 

expression cassette with uis4 fused to the the following genes: ) nontoxic cholera toxin B 

subunit from Vibrio cholerae (CTB) [36, 37]; (ii) heat shock protein Gp96 of mice (Gp96) 

[38-40]; (iii) Heat shock protein X from Mycobacterium tuberculosis (HspX) [41, 42] and 

(iv) the TLR5 binding region of Salmonella typhimurium flagellin (amino acids 89–96; FliC) 
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[35, 43, 44]. These constructs aims at replacing the hdhfr::yfcu SM in the fabb/f locus of 

GIMOPyGAP-fabb/f. The complete CDS of the ctb gene was amplified from plasmid pUC57-CTB 

(synthesized by GenScript HK Limited) using primers 8189 and 8190 (394 bp) and cloned into 

pL2148 (see above) using XhoI and SpeI, resulting in construct 2165. The complete CDS of 

the gp96 gene was amplified from plasmid pCMV-mouse Hsp90b1 cDNA purchased from 

Dharmacon (Catalog number: MMM4769-202763350) using primers 8146 and 8147 (2428 

bp) and cloned into pL2148 using SacI and MfeI, resulting in construct 2156. The complete 

CDS of the hspx gene was amplified from Mycobacterium tuberculosis H37Rv DNA (kindly 

provided by K. Franken, Department of Infectious Diseases, Leiden University Medical 

Center, Leiden, The Netherlands) using primers 8144 and 8145 (460 bp) and cloned into 

pL2148 using XhoI and SpeI, resulting in construct 2152. The flic sequence (89 to 96 aa) 

gene was amplified from cDNA of Salmonella enteritidis (ATCC line 13076; kindly provided 

by Dr. J. J. Verweij, Leiden University Medical Center, Leiden, The Netherlands) using 

primers 8152 and 8153 (145 bp) and cloned into pL2148 using XhoI and SpeI, resulting 

in construct 2155. All amplified sequences are fused the to the P. yoelii uis4 gene and 

these fusion genes are under control of the uis4 5’-UTR regulatory sequences. The final 

DNA constructs were linearized with HindIII/EcoRI before transfection. Transfections (exp 

2690 with pL2165; 2692 with pL2156; 2694 with pL2152; 2698 with pL2155), negative 

selection with 5-FC, cloning and genotyping  of transformed parasites was performed 

using standard methods [47, 50]. Correct integration of the constructs in the fabb/f gene 

in the transgenic GAP lines, CTB::UIS4 (2690cl1); Gp96::UIS4 (2692cl2), HspX::UIS4 

(2694cl1), FliC::UIS4 (2698cl2)  was verified was verified by Southern analyses of Pulsed 

Field Gel (PFG)-separated chromosomes and diagnostic PCR analysis as described above.

iv) Generation of the GIMO P. yoelii 17X line GIMOPys1

The GIMOPys1 (2828cl2) was generated in line 1971cl1 (see above) by standard methods 

of transfection [50] using a DNA construct (pL2203) that targets the neutral s1 gene 

locus (PY17X_1210000) by double cross-over integration and contains the hdhfr::yfcu SM 

driven by the P. yoelii hsp70 promoter (PY17X_0712100). We used plasmid pL2200 that 

contains the hdhfr::yfcu selectable marker (SM) cassette under the control of the P. yoelii 

hsp70 5’-UTR promoter and the 3’ terminal sequence of pbdhfr/ts. In this plasmid we 

replaced the existing targeting 5’-UTR and 3’-UTR regions of gene PBANKA_1122300 

with the 5’-UTR and 3’-UTR regions of s1 gene. These regions were  amplified from P. 

yoelii genomic DNA using primer sets 8450/8451 (1040 bp) and 8452/8453 (937 bp), 

respectively. First, the 5’UTR-targeting region (1040 bp) of s1 was cloned into pL2200 

plasmid using HindIII and PstI. Next, the 3’-UTR targeting region (937 bp) of s1 was 

cloned into the intermediate plasmid using KpnI and NotI, resulting in the final GIMO 

s1 plasmid (pL2203). This construct was linearized with HindIII/EcoRI before transfection. 

Transfection (exp 2828), positive selection with pyrimethamine, cloning and genotyping of 

transformed parasites was performed using standard technologies [50]. Correct integration 
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of the hdhfr::yfcu SM in the fabb/f gene in 2828cl2 of gene was verified was verified by 

Southern analyses of Pulsed Field Gel (PFG)-separated chromosomes and diagnostic PCR 

analysis as described above.  

v) Introducing an gp96@lisp2 expression cassette in GIMOPys1 
Parasites of GIMOPys1  were transfected with a pL2221 construct that contains an expression 

cassette where the gp96 gene (see above) is under control of the 5’-UTR promoter region 

of lisp2  (PY17X_1004400). This construct (pL2221) aims at replacing the hdhfr::yfcu SM 

in the s1 locus of GIMOPys1. First we generated an intermediate plasmid which contains 

an expression cassette where the gp96 gene (see above) is under control of the 5’-UTR 

promoter region (1060 bp) of lisp2  (PY17X_1004400).  First, we amplified the lisp2  

promoter region from genomic DNA using primers 8507 and 8508. The amplified fragment 

was cloned into the plasmid pL2156 (described above) to replace the 5’fabb/f targeting 

region, uis4 CDS and and 5’-UTR cassette using PspOMI and SacI. Next, the 3’-UTR 

(883 bp) of lisp2 was amplified by PCR from genomic DNA using primers 8509 and 8510 

primers and cloned using MfeI and NotI restriction enzymes into the intermediate plasmid 

to replace 3’-UTR uis4 and 3’-UTR fabb/f targeting region. This resulted in a construct 

where the gp96 gene is under control of the lisp2 promoter region and the 3’-UTR of 

the lisp2. Next, by using the GIMO s1 plasmid (pL2203; described above), the hdhfr::yfcu 

SM cassette was replaced with the gp96 gene and the 5’-UTR and 3’-UTRl sequence using 

XmaI enzyme. The final DNA construct (pL2221) was linearized with PspOMI and NotI 

before transfection. Transfection (exp 2866), negative selection with 5-FC, cloning and 

genotyping of transformed parasites was performed using standard methods [47, 50]. 

Correct integration of the gp96@lisp2 expression cassette in the s1 gene in 2866cl1 was 

verified by Southern analyses of Pulsed Field Gel (PFG)-separated chromosomes and 

diagnostic PCR analysis as described above.

vi) Generation of transgenic GAP expressing Gp96 and FliC  fused to 
HEP17/EXP1
We generated two constructs that target the fabb/f gene and that contains an expression 

cassette with the gp96 gene (see above) or the flic sequence (see above) fused to HEP17/

EXP1 (PY17X_0928700). These constructs aims at replacing the hdhfr::yfcu SM in the fabb/f 

locus. First, the 5’UTR promoter region of hep17 (1380 kb upstream of the start codon) 

and the signal peptide (SP) sequence of hep17 (bp 1 to 81) were amplified from wild-type 

P. yoelii DNA using primers 7838 and 7839 (1481 bp) and this fragment was subcloned into 

plasmid pL1980 ([49]; described above). Second, the remaining sequence of the hep17 

CDS after the SP (bp 82 to 785), along with the 3’-UTR region (806 bp) was amplified 

using primers 7840 and 7841 (1539 bp) and cloned into this vector. Third, we cloned 

into this vector the mCherry CDS, resulting in plasmid pL2100. This vector was used to 

replace the mCherry CDS with the flic and gp96 sequence by cloning into MfeI/BglII sites 
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the flic sequence (amplified from pL2155 using 7947 and 7948 primers) and the gp96 

sequence (amplified from pL2156 using 7955 and 7956 primers). The resulting final vectors 

with flic and gp96 fused to hep17 were pL2114 and pL2115, respectively. The final DNA 

constructs were linearized with PspOMI/NotI before transfection. Transfection, negative 

selection with 5-FC, cloning and genotyping  of transformed parasites was performed 

using standard  methods [47, 50]. Correct integration of the construct in the fabb/f gene 

in the transgenic GAP line FliC::hep17/exp1 (2587m1cl1) was verified was verified by 

Southern analyses of Pulsed Field Gel (PFG)-separated chromosomes and diagnostic PCR 

analysis as described above.  

Mosquito infection, analysis of oocysts and preparation and injection of 
sporozoites
Sporozoites were obtained by manual dissection of the salivary glands of infected A. 

stephensi mosquitoes 14 days after feeding on infected mice as described [22]. For 

intravenous (IV) administration sporozoites were suspended in RPMI1640 medium and per 

mouse 200 μl was injected into the tail vein. Oocyst numbers in dissected midguts from 

infected mosquitoes were established 8 days after feeding using light-microscopy.

Determination of parasite liver load and prepatent period after infection, 
immunization or challenge
Parasite liver loads in live mice quantified by real time in vivo imaging as previously 

described [51]. Mice were monitored for blood-stage infections by Giemsa-stained blood 

smears made at day 4-14 after infection or challenge. The prepatent period  is defined as 

the day when a blood stage infection with a parasitemia of 0.5–2% is observed [48].

In vitro hepatocyte cultures and analysis of parasite development
The human hepatocyte cell line HepG2-CD81 was used for in vitro cultures of liver stages 

as described [52]. Isolated sporozoites (5×104 ) were added to monolayers of HepG2-

CD81 cells on coverslips in 24 well plates. At 40 hours after infection, nuclei were stained 

with Hoechst 33342 at a final concentration of 10 µM and live imaging of parasites was 

performed using a DM RA Leica fluorescence microscope (40×). Images analysis was done 

with the Leica LAS X software.

Statistics
All data were analyzed using the GraphPad Prism software package 5.04 (GraphPad 

Software, Inc). For oocysts/sporozoite number and in-vivo imaging (RLU) analysis, 

statistical analysis was performed using the unpaired Student’s t-test. Survival analysis 

were performed using Kaplan–Meier survival plots and survival curves were compared 

using the log-rank (Mantel-Cox) test. Survival was considered as the complete absence of 

parasites in blood. The significance threshold was 0.05 in all analysis.
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RESULTS
Generation of a P. yoelii GAP GIMO parent line (GIMOPyGAP-fabb/f) to 
introduce transgenes
In order to introduce adjuvant transgenes into the genome of a non-lethal P. yoelii (17X) 

GAP, we created a ‘GIMO GAP motherline’. This line was created for the following reasons:  

(i) P. yoelii 17X in combination with BALB/c mice is a standard combination used to analyse 

protective immune responses induced by GAP immunization [53]; (ii) the insertion of 

the positive/negative selectable marker (i.e. creation of the GIMO locus) into P. yoelii fabb/f 

gene (PY17X_1126500) creates a late-arresting P. yoelii GAP, therefore making it possible 

for adjuvant transgene expression to be maintained late into liver stage development  

[8, 49]; and (iii) the GIMO-locus in a P. yoelii GAP can be used to insert adjuvant-expression 

cassettes rapidly using GIMO transfection, yielding drug-resistance marker free adjuvant-

GAPs [47, 48].

In the GIMO-transfection protocol, transgene-expression cassettes replace 

the positive-negative hdhfr::yfcu selection marker (SM), which is present in the genome 

of a standard GIMO mother line, resulting in SM-free transgenic parasites [47]. Recently, 

a P. yoelii 17X fabb/f GAP (line 2251cl3) has been created in a line that constitutively 

expresses GFP and luciferase (1971cl1) by introducing the hdhfr::yfcu SM into the fabb/f 

locus [49]. The presence of the fusion gene gfp-luciferase under control of the constitutive 

eef1a  promoter permits quantification of parasite liver loads by in vivo imaging after 

sporozoite administration [48, 54]. We initially used this line as a GAP GIMO parent line 

for introduction of transgene-expression cassettes. However we encountered problems 

selecting for the desired transgenic GAP. After transfection and the application of 

negative drug selection in mice, we repeatedly selected for parasite populations in which 

the majority of the parasites still had the genotype of the GAP GIMO parental line without 

the transgene-expression cassettes (data not shown). Since these parasites still contained 

the hdhfr::yfcu SM we reasoned that expression of the negative marker yfcu in parasites 

of line 2251cl3 was not sufficient to kill parasites by the 5-FC treatment. In this parental 

GIMO line the hdhfr::yfcu SM expression is controlled by the eef1a P. berghei promoter 

which may be less effective in driving transgene expression in P. yoelii than in P. berghei. 

We therefore decided to generate a new GIMO P. yoelii 17X fabb/f GAP parent line, where 

the hdhfr::yfcu SM is under control of the strong hsp70  promoter of P. yoelii [55].

This new GIMO GAP parent line (GIMOPyGAP-fabb/f; 2668cl1) was also generated in 

the parent 1971cl1 line by standard methods of transfection. A DNA construct was used 

that targets the fabb/f gene to introduce the hdhfr::yfcu SM driven by the P. yoelii hsp70 

promoter by double cross-over integration (Figure 1A). Transfection followed by positive 

selection with pyrimethamine, cloning and genotyping of transformed parasites was 

performed using standard technologies [50]. Correct integration of the hdhfr::yfcu SM in 

the fabb/f gene was verified by Southern blot analyses of Pulsed Field Gel (PFG)-separated 

chromosomes and diagnostic PCR analysis (Figure 1B). This line (2668cl1) showed wild 
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Figure 1. Generation and genotype analysis of the P. yoelii GAP GIMO parent line (GIMOPyGAP-fabb/f) 
for introduction of adjuvant-expression cassettes. (A) Schematic representation of the introduction of 
the hdhfr-yfcu selectable marker (SM) cassette into the fabb/f gene locus of the parent P. yoelii parasite 
(line 1971cl1). Construct pL2138 contains the hdhfr-yfcu SM flanked by the hsp70 promoter region and 
the 3’ pbdhfr UTR. This construct is integrated into the fabb/f locus by double cross-over homologous 
recombination at the fabb/f homology regions (HR1, HR2). Positive selection with pyrimethamine 
selects for parasites that have the fabb/f coding sequence replaced by the SM cassette, thereby 
creating a GAP GIMO line (2668cl1) for introduction of adjuvant expression cassettes. Location of 
primers used for PCR analysis and sizes of PCR products are shown. (B) Diagnostic PCR (left panel) 
and Southern analysis of PFG-separated chromosomes (right panel) confirm correct integration of 
construct pL2138 in parasites of line 2668cl1. PCR shows the presence of the hdhfr::yfcu marker. 
5’ integration PCR (5’-int; primers p1/p2), 3’ integration PCR (3’-int; primers p5/p6), hdhfr::yfcu 
(primers p3/p4). Primer locations and product sizes are shown in A and primer sequences in Table 
S1). Hybridization of PFG-separated chromosomes with a mixture of two probes (the hdhfr probe and 
a control probe recognizing p25 gene on chromosome 5) shows the presence of the SM cassette 
marker in the fabb/f-locus on chromosome 11 in three clones of the 2668 line. 
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type blood stage growth as determined during the cloning procedure (data not shown).  

This GIMOPyGAP-fabb/f line was used as the parental GIMO GAP line to introduce the different 

adjuvant transgenes as described in the next sections.  

Introduction of the mCherry::uis4 fusion gene into GIMOPyGAP-fabb/f and 
analysis of mCherry::UIS4 expression in sporozoites and liver stages
To express putative adjuvants, we fused the adjuvant proteins to P. yoelii UIS4 

(PY17X_0502200; up-regulated in infective sporozoites, ETRAMP10.3) and placed 

the fusion genes under control of the 5’-promoter and 3’-transcriptional terminator 

sequences of P. yoelii uis4. UIS4 is a protein of the parasitophorous vacuole membrane 

(PVM) that surrounds the parasites in infected hepatocytes [56]. We fuses the adjuvant 

proteins to a PVM protein as it has been previously shown that ovalbumin (OVA) fused 

to PVM proteins induces stronger T cell responses than OVA located in the cytoplasm of 

transgenic parasites [45, 46].

To analyze whether the C-terminal fusion of a heterologous protein to UIS4 affects 

either UIS4 expression or its PVM location, we first generated a transgene reporter line that 

expresses mCherry fused to UIS4. We transfected GIMOPyGAP-fabb/f parasites with a construct 

containing a mCherry::uis4 expression cassette (exp. 2696). This construct targets and 

replaces the hdhfr::yfcu SM in the fabb/f locus of GIMOPyGAP-fabb/f with the mCherry::uis4 

cassette (Figure 2A). Transfection, negative selection with 5-FC, cloning and genotyping 

of transformed parasites was performed using standard technologies [47, 50]. Correct 

integration of the mCherry::uis4 expression cassette in the fabb/f gene in the cloned line 

2696cl1 was verified by Southern analyses of PFG-separated chromosomes and diagnostic 

PCR analysis (Figure 2B).  We next analyzed mCherry::UIS4 expression during the parasite’s 

life cycle by fluorescence microscopy. No mCherry signal was detected in blood stages 

or developing oocysts (Figure 2C), in agreement with the absence of UIS4 expression in 

these stages. In sporozoites, uis4 is transcribed but transcripts are translationally repressed 

[57, 58].  We could indeed detect no mCherry signals in >80% of live, freshly isolated 

sporozoites. However, in sporozoites kept for longer periods in RPMI1640 culture medium, 

weak mCherry signals were visible, with >50% of the sporozoites weakly mCherry-positive 

as early as 1 hour after isolation (Figure 2C). mCherry expression was clearly detected 

in cultured liver stage parasites, predominantly located at the periphery of the parasites 

(Figure 2D), consistent with UIS4 localization in the PV/PVM [57]. Although we did not 

further analyze the exact location of mCherry::UIS4 in the PV, our results demonstrate that 

the fusion protein mCherry::UIS4 is only expressed in liver stages and is mainly located 

at the periphery of the parasite during liver stage development. In addition, our results 

indicate that the fusion of UIS4 to mCherry does not affect the development of sporozoites 

into mature liver stages. Parasites lacking expression of UIS4 display a strongly retarded 

liver stage maturation [56, 59]; in contrast, mCherry::UIS4-expressing parasites display 

normal liver stage development, as shown both in vitro analysis of liver stage maturation 

in hepatocyte cultures (Figure 2D) and by in vivo imaging of parasite liver loads in mice 
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Figure 2. Introduction of the mCherry::uis4 fusion gene into GIMOPyGAP-fabb/f and analysis of 
mCherry::UIS4 expression in sporozoites and liver stages. (A) Schematic representation of 
the introduction of the mCherry::uis4 expression cassette into the genome of GIMOPyGAP-fabb/f (line 
2868cl1). Construct pL2154 contains the uis4 coding DNA sequence (CDS) fused to mCherry which is 
flanked by the uis4 promoter and 3’-UTR regions. This construct is integrated into the modified fabb/f 
locus of GIMOPyGAP-fabb/f, that contains the hdhfr::yfcu selectable marker (SM) cassette, by double cross-
over homologous recombination at the homology regions (HR1, HR2). Negative selection with 5-FC 
selects for parasites that have the SM cassette replaced by the mCherry::uis4 expression cassette. 
Location of primers used for PCR analysis and sizes of PCR products are shown. (B) Diagnostic PCR (left 
panel) and Southern analysis of PFG-separated chromosomes (right panel) confirm correct integration 
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infected with mCherry::uis4 sporozoites (Figure 2E).  All mice infected with mCherry::uis4 

sporozoites did not develop a blood stage infection as expected based on the introduction 

of the transgene expression cassette into the fabb/f gene locus, resulting in the absence of 

FabB/F expression and late liver stage developmental arrest.

Generation of four adjuvant GAPs expressing putative immunomodulatory 
proteins fused to UIS4 
To generate adjuvant GAP that express putative immunomodulatory proteins we selected 

the following four adjuvants: (i) nontoxic cholera toxin B subunit from Vibrio cholerae (CTB), 

(ii) heat shock protein Gp96 of mice (Gp96), (iii) heat shock protein X from Mycobacterium 

tuberculosis (HspX) and (iv) the TLR5 binding region of Salmonella typhimurium flagellin 

(amino acids 89–96; FliC). We fused the coding sequence of these genes to the uis4 gene 

of P. yoelii under control of the 5’-promoter and 3’-transcriptional terminator  sequences 

of uis4 and the expression cassettes were introduced into the fabb/f gene locus of  

GIMOPyGAP-fabb/f parasites by GIMO transfection. We transfected GIMOPyGAP-fabb/f parasites with 

the four adjuvant constructs that are designed to replace the hdhfr::yfcu SM in the fabb/f 

locus of GIMOPyGAP-fabb/f (Figure 3A, B) with the adjuvant transgene. Transfection, negative 

selection with 5-FC, cloning and genotyping of transformed parasites was performed using 

standard technologies [47, 50]. Correct integration of the transgene expression cassette 

into the fabb/f gene was verified by Southern analyses of PFG-separated chromosomes 

and diagnostic PCR analysis for the following transgenic GAP lines, CTB::UIS4 (2690cl1), 

Gp96::UIS4 (2692cl2), HspX::UIS4 (2694cl1), FliC::UIS4 (2698cl2) (Figure 3C). These 

of construct pL2154 in in parasites of line 2696cl1. PCR shows the absence of the hdhfr::yfcu SM 
marker and the presence of the mCherry::uis4 fusion gene. 5’ integration PCR (5’-int; primers p9/
p10), 3’ integration PCR (3’-int; primers p13/p14), hdhfr::yfcu (SM; primers p7/p8), mCherry::uis4 
(CDS; primers p11/p12). Primer locations and product sizes are shown in A and primer sequences in  
Table S1). Hybridization of PFG-separated chromosomes with a mixture of two probes (the hdhfr probe 
and a control probe recognizing p25 gene on chromosome 5) shows the removal of the SM cassette 
marker from the fabb/f locus on chromosome 11 in 2696cl1 parasites. (C) Analysis of mCherry::UIS4 
expression in live blood and mosquito parasite stages by fluorescence microscopy. No mCherry signal 
was detected in blood stages and oocysts. Left panel: a representative schizont of the negative blood 
stages is shown and an oocyst-containing midgut of an A. stephensi mosquito. Right panel: no signal 
was detected in >80% of sporozoites that were analyzed directly after isolation (Spz-fresh; upper 
panel). Incubation of sporozoites in RPMI 1640 for longer periods (>1 hour) resulted in weak mCherry 
signals in >50% of the ‘activated’ sporozoites (Spz-act; lower panel). H: Hoechst; BF: bright field; M: 
merged. BS and Spz; Scale bar: 2 µm. (D) Analysis of mCherry::UIS4 expression in live, cultured liver 
stages. Representative images of maturing liver schizonts, showing mCherry signals, mainly located at 
the periphery of the parasite. H: Hoechst; BF: bright field; M: merged. Scale bar: 10 µm. (E) Parasite 
liver loads in mice at 44 hour after infection with 1 × 104 sporozoites of a parent PyGAP (line 2251cl3) 
and the PyGAP expressing UIS4::mCherry (line 2696cl1). Parasite liver loads in mice were determined 
by measuring in vivo luciferase activity and depicted as relative light units (RLU). The left panel shows 
images of real time in vivo imaging of luciferase expressing liver stage parasites in mice at 44 h after 
injection of sporozoites.
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Figure 3. Introduction of four adjuvant-expression cassettes into GIMOPyGAP-fabb/f and genotype 
analysis of the adjuvant GAPs. (A) Schematic representation of the introduction of the adjuvant-
expression cassette into the genome GIMOPyGAP-fabb/f (line 2868cl1). The construct contains the uis4 
coding DNA sequence (CDS) fused to the adjuvant which is flanked by the uis4 promoter and 3’ UTR 
regions. This construct is integrated into the modified fabb/f locus of GIMOPyGAP-fabb/f, that contains 
the hdhfr::yfcu selectable marker (SM) cassette, by double cross-over homologous recombination at 
the homology regions (HR1, HR2). Negative selection with 5-FC selects for parasites that have the SM 
cassette replaced by the adjuvant expression cassette. Location of primers used for PCR analysis 
and sizes of PCR products are shown. (B) The four adjuvant GAP that were generated and contain 
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adjuvant GAP lines showed wild type blood stage growth as determined during the cloning 

procedure (data not shown).

Sporozoites of 3 adjuvant GAPs, CTB::UIS4, HspX::UIS4 and FliC::UIS4, are 
infectious to mice and develop into maturing liver stages
The four adjuvant GAP lines were infectious to mosquitoes and produced wild type-like 

numbers of oocysts. All lines produced salivary gland sporozoites, with three lines 

(Gp96::UIS4; HspX::UIS4, FliC::UIS4) producing sporozoite numbers that were comparable 

to sporozoite numbers produced by the parent PyGAP, whereas  CTB::UIS4 produced 

lower numbers of sporozoites (Figure 4A). Sporozoites of three of the four adjuvant  GAP  

(CTB::UIS4; HspX::UIS4, FliC::UIS4) were infective to mice, as shown by in vivo imaging 

of parasite liver loads after infection of mice with adjuvant GAP sporozoites (Figure 4B). 

However, no hepatic infection was detected in mice infected with Gp96::UIS4 sporozoites 

(Figure 4B and Figure 5B). The normal liver parasite liver loads of CTB::UIS4; HspX::UIS4 

and FliC::UIS4 parasites, as visualised by in vivo imaging of the liver 44h after infection and 

shown by the presence of developing schizonts in in vitro cultures of infected hepatocytes 

(Figure 4C) demonstrate that the expression of these adjuvants do not disrupt intrahepatic 

development of the late arresting P. yoelii fabb/f GAP.

Fusion of Gp96 to PVM proteins affects parasite development
The absence of detectable parasites in the liver of mice infected with Gp96::UIS4 

sporozoites may be due to different reasons. Gp96::UIS4 sporozoites may not be able to 

invade hepatocytes, or they may be able to invade but arrest growth soon after invasion. 

Growth arrest may result from either toxicity of Gp96 for the parasite or from a perturbation 

of the correct function of UIS4 (i.e. the formation maintenance of PV/PVM) upon fusion to 

GP96.  Another possibility is that expression of the Gp96::UIS4 results in efficient detection 

and clearance of infected hepatocytes by the immune system. To examine the possible 

toxicity of Gp96  for developing liver stage parasites, we generated a transgenic P. yoelii 

17XNL line (2866cl1) that expressed Gp96 in the cytoplasm of the parasite and was not 

fused to a Plasmodium protein. Gp96 was placed under control of the promoter of the liver 

stage specific gene, lisp2  (Figure S1A) which has been previously used to drive transgene 

expression in the cytoplasm of liver stages [60-62]. The gp96@lisp2 expression cassette 

CTB, Gp96, HspX or FliC fused to uis4 under control of the promoter and 3’-UTR regions of uis4 as 
shown in A. (C) Diagnostic PCR (left panel) and Southern analysis of PFG-separated chromosomes 
(right panel) confirm correct integration of the constructs in parasites of the four different adjuvant 
GAP and the parent PyGAP (line 2668cl1). PCR shows the absence of the hdhfr::yfcu SM marker 
and the presence of the coding DNA sequence (CDS) of the fusion gene. 5’ integration PCR (5’-
int.), 3’ integration PCR (3’-int.). Primer locations are shown in A and primer sequences in Table S1). 
Hybridization of PFG-separated chromosomes with a mixture of two probes (the hdhfr probe and 
a control probe recognizing p25 gene on chromosome 5) confirms the removal of the SM cassette 
marker from the fabb/f locus on chromosome 11 in the different adjuvant GAP parasites.
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Figure 4. Analysis of mosquito and liver stage development of the four adjuvant GAP. (A) Oocyst and 
sporozoite production in A. stephensi of the four adjuvant GAP and the parent PyGAP (line 2251cl3). 
Oocyst and sporozoite numbers were determined at day 8 and day 14, respectively, after mosquito 
infection. (B) Parasite liver loads in mice 44 hour after infection with 1 × 104 sporozoites of a parent 
PyGAP (line 2251cl3) and the four adjuvant GAP. Parasite liver loads were determined by measuring 
in vivo luciferase activity and depicted as relative light units (RLU). The left panel shows images of 
real time in vivo imaging of luciferase-expressing liver stage parasites in mice at 44 h after injection 
of sporozoites. (C) Analysis of development of liver stages in in vitro cultures of infected hepatocytes. 
Representative images of maturing GFP-expressing liver schizonts of three adjuvant GAP are shown. 
H: Hoechst; M: merged. Scale bar: 10 µm.
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Figure 5. Analysis of protective immunity induced by immunization of mice with sporozoites of 
the adjuvant GAP. (A) The time line shows immunization of BALB/c mice with adjuvant GAP sporozoites 
(a single dose of 2.5 × 104) and challenge 14 days later with 3 × 103 wild type (PyWT; line 1971cl1) 
sporozoites. Challenged mice were monitored for blood-stage infections from day 18 onwards to 
determine the prepatent period. (B) Parasite liver loads in mice at 44 hour after immunization with 2.5 
× 104 sporozoites of a parent PyGAP (line 2251cl3) and the four adjuvant GAP and after challenge of 
the immunized mice with 3 × 103 wild type sporozoites (PyWT; line 1971cl1). Parasite liver load were 
determined by measuring in vivo luciferase activity and depicted as relative light units (RLU). The upper 
panel shows images of real time in vivo imaging of luciferase expressing liver stage parasites in mice 
at 44 h after sporozoite injection. (C) Survival curves (Kaplan-Meier analysis) illustrating the prepatent 
period (day at which a parasitemia of 0.5–2% is observed) and the Log-Rank (Mantel-Cox) Test was 
used to compare groups of mice. Data shown correspond to groups of 5 mice.  Significance values: 
naïve vs PyGAP *p = 0.027; naïve vs CTB::GAP *p = 0.027; naïve vs gp96::GAP **p = 0.007; naïve vs 
HspX::GAP p = 0.065; naïve vs FliC::GAP p = 0.065). 

was introduced into a novel P. yoelii 17XNL GIMO line (GIMOPys1; 2828cl2), which has 

a hdhfr::yfcu SM under control of the P. yoelii hsp70, introduced into the silent s1 locus  

of the 1971cl1 line (Figure S2). The gp96@lisp2 parasites (line 2866cl1) exhibit normal 

development throughout the parasite’s life cycle, including its liver stage development 

and the time to patency in the blood after sporozoite inoculation is comparable to that 

of WT parasites (Figure S1C). These observations indicate that expression of Gp96  in 

the  cytoplasm is not toxic for the parasite. This suggests that fusion of Gp69 to UIS4 

compromises the essential function of UIS4 at the PVM, resulting in the absence of 

liver stage development, comparable to mutants lacking expression of UIS4 [56, 59].  

Previously we have fused transgenes, such as ovalbumin and mCherry, to another PVM 

protein HEP17/EXP1  [45, 63], which is expressed on the PVM of both blood- and liver-

stage parasites and is essential for blood stage development. We therefore attempted 

to generate a transgenic line that express Gp69 fused to HEP17/EXP1  and, as a control, 

a transgenic line where FliC was fused to HEP17/EXP1.  In seven independent transfection 

experiments we were unable to select for parasites that contained a gp96::hep17/exp1 

expression cassette integrated into the fabb/f locus, whereas we were able to select 

parasites where the FliC::hep17/exp1 expression cassette had integrated into the fabb/f 

locus (line 2587m1cl1) of the parental GIMO GAP line 2567cl1 (Figure S3). Combined, 

our observations indicate that fusion of Gp96 to Plasmodium PVM proteins is lethal to 

the parasite. 

Analysis of protective immunity induced by immunization of mice with 
sporozoites of the adjuvant GAP 
To analyze protective immunity induced by immunization with adjuvant GAP sporozoites, 

we used a recently developed ‘sub-saturating’ immunization regiment in BALB/c mice using 

GAP-sporozoites (ΔPyFabBF-GFP-Luccon) [22]. This ‘sub-optimal’ immunization regiment 

results in mice that are only partially protected against a challenge with a fixed dose of 
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WT parasites as determined by a delay of blood-stage prepatency. In this protocol (Figure 

5A) mice are immunized with a single dose of 2.5 × 104 GAP sporozoites and  challenged 

14 days later with 3 × 103 wild type P. yoelii sporozoite (Py-GFP-Luccon; PyWT). A single 

immunization with this parasite dose results in a maximum of one day delay in prepatent 

period in immunized mice compared to naïve mice and none of the mice are completely 

protected. Since the blood stage multiplication rate is approximately 10× per 24 h, a one 

day delay in the prepatent period represents a ~90% reduction of liver infection, and this 

protocol was used to determine 10-fold increase in GAP vaccine potency after the addition 

of an adjuvant [22]. 

We used this protocol to analyze protective immunity of the four adjuvant GAP, 

CTB::UIS4; Gp96::UIS4, HspX::UIS4, FliC::UIS4. Groups of 5 mice were immunized with 

a single dose of 2.5 × 104 adjuvant GAP sporozoites and challenged 14 days later with  

3 × 103 WT sporozoites. Parasite liver loads were determined by in vivo imaging at 44 hours 

after injection of sporozoites, both after immunization and after challenge. In addition, 

the time to blood stage patency (prepatent period) after challenge was determined to be 

4-7 days after WT sporozoite challenge. As a control we immunized mice with sporozoites 

of the non-adjuvanted P. yoelii fabb/f GAP (line 2251cl3).

Parasite liver loads of all groups of mice immunized with the adjuvant-GAPs, except 

for the Gp96::UIS4,  were comparable to liver loads of mice immunized with the parent 

P. yoelii fabb/f GAP (Figure 5B). The absence of Gp96::UIS4 parasites in the liver at 44h 

after immunization was expected based on the absence of liver stage development 

Gp96::UIS4-expressing parasites (see previous section above). After challenge with WT 

sporozoites 14 days after immunization, the parasite liver load of mice immunized with 

CTB::UIS4, Gp96::UIS4 and the control GAP were significantly reduced compared to naïve 

mice infected with the same parasite dose (Figure 5C). Although parasite liver loads of 

HspX::UIS4 and FliC::UIS4 immunized mice were reduced compared to those of naïve 

mice, this reduction was not significant. Despite the variation in the parasite liver loads 

after WT sporozoite challenge all adjuvant GAP immunized mice became patent with a 1-2 

day delay compared to the naïve mice, but all groups of adjuvant GAP-immunized mice 

had a prepatent period that was similar to that of P. yoelii fabb/f GAP-immunized mice (at 

day 5-6). These observations indicate that the four adjuvant GAP had a similar or lower 

than 10-fold increased potency when compared to the parent, non-adjuvanted GAP. 

DISCUSSION
In this study we generated four different transgenic GAPs engineered to express 

the potential immunomodulatory proteins CTB, Gp96, HspX and FliC, shown to act as 

adjuvants in other vaccine studies [35-43]. These proteins have been shown to interact 

with innate immune pattern recognition receptors on antigen presenting cells (APC)  that 

can both trigger cytokine production to limit infection and directing adaptive immune 

responses against pathogen as well as tumor antigens. The selected adjuvant molecules 
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are thought to stimulate different Toll-like receptors (TLRs), which can not only improve 

antibody and CD4+ T cell responses but also promote the cross-presentation of vaccine 

antigens directing the immune response towards the formation of cytotoxic (CD8+) T cells. 

Parasite antigen-specific  CD8+ T cells are considered of particular importance in detection 

and clearance of Plasmodium-infected hepatocytes [59, 64]. However, immunization with 

none of the four adjuvant GAP developed in the present study resulted in a significant 

increase in protective efficacy (more than 10-fold) compared to the unmodified 

PyGAP in the P. yoelli-BALB/c model employed in this study to measure enhanced  

protective immunity.

This inability to achieve significantly higher protective immunity with the adjuvant 

GAPs could be due to a number of factors, but is unlikely to be due to a poor expression 

of the adjuvant proteins. These proteins were fused to UIS4, a protein associated with 

the PVM, which surrounds the parasites inside a hepatocyte [57]. UIS4 is strongly expressed 

during Plasmodium liver stage development [65] and is essential for normal development 

of liver stages [57, 58]. Mutants that lack UIS4 expression have a very strong defect in liver 

stage development with only very few parasites developing in hepatocytes 24 hours after 

sporozoite infection [56]. We found that fusion of mCherry to the C-terminus of UIS4 in 

PyGAP parasites did not affect UIS4 expression; mCherry is clearly exported to the PVM/

PV and these transgenic parasite develop into liver schizonts, similarly to the unmodified 

PyGAP. Parasite liver loads 44 hours after injection of three of the four adjuvant GAP 

sporozoites (CTB::UIS4, HspX::UIS4 and FliC::UIS4) were comparable to the parasite liver 

loads achieved after the administration of the same number of non-adjuvanted PyGAP 

sporozoites, indicating that fusion of these adjuvants to UIS4 did not negatively impact 

UIS4 expression. This PyGAP-like liver stage development of adjuvant GAPs was also 

confirmed by microscopy analyses of in vitro infected hepatocytes. In contrast,  we were 

unable to detect liver stage development with the GP96 adjuvant-expressing parasite, 

neither in vivo nor in vitro. By analyzing additional mutants expressing Gp96, either 

expressed in the liver-stage parasite’s cytoplasm or fused to another PVM protein, we 

provide evidence that fusion of this protein to proteins of the PVM interferes with parasite 

development. Therefore, the failure of Gp96::UIS4 sporozoites to establish a liver infection 

appears to be due to the incorrect or absent PVM formation after hepatocyte invasion by 

the parasites. The lack of PVM formation and rapid arrest during liver stage development 

might affect both Gp96 expression and exposure to the immune system, which may 

explain Gp96’s inability to enhance GAP immunogenicity. However, despite the fact that 

Gp96::UIS4 sporozoites arrest early during liver stage development, immunization with 

Gp96::UIS4 sporozoites induced levels of protective immune responses similar to those 

of the late-arresting PyΔfabb/f GAP. This observation was unexpected since it has been 

shown that late-arresting GAP induce stronger protective immunity than early arresting 

parasites [8], and might suggest that protective immunity induced in the P. yoelii/

BALB/c model employed is mainly generated against sporozoite antigens with limited 

contribution of antigens expressed in developing liver stages. The adjuvants were fused 
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to UIS4, a protein expressed only after sporozoite invasion of hepatocytes. While uis4 is 

already transcribed in sporozoites, these transcripts are translationally repressed [57, 58]. 

Translational repression is mediated by sequences inside the open reading frame of uis4 

[57] and we found that transcripts of the uis4 and mCherry fusion were also translationally 

repressed. This suggests that the adjuvants fused to UIS4 are not expressed in sporozoites 

and interact with immune responses only after the intracellular parasite aborts liver  

stage development. 

Our failure to measure enhanced protective immune responses may be due to 

the inability of the selected adjuvants to induce protective immune responses that can 

more effectively detect and destroy developing liver stage parasites. While the precise 

mechanisms of protection mediated by immunization with attenuated sporozoites remain 

unknown, CD8+ T cells and IFN-γ appear to be critical for protective immunity as they 

are thought to play a major role in eliminating infected hepatocytes [59, 66, 67]. Recent 

mechanistic investigations into immunity induced by sporozoite-based immunization 

have shown that protective immune responses encompass diverse and robust immune 

responses that include not only CD8+ but also CD4+ T cells and a significant contribution 

from antibodies against sporozoite antigens [17, 18]. The selected adjuvants are known 

to stimulate TLR 2 (Gp96), TLR 4 (Gp96/CTB/HSPX) and TLR 5 (FliC) on the plasma 

membrane of APCs [37, 39, 41, 44] and the selection was based on the hypothesis 

that when GAP-infected hepatocytes disintegrate and release parasite antigens they 

will also simultaneously release the adjuvant, with parasite antigens being taken up by 

APCs and the released adjuvants stimulating TLRs on the same APC. This would then 

result in increased inflammatory responses against parasite antigens thereby improving 

and increasing cellular and humoral immune responses. It is possible that the adjuvants 

selected do not stimulate the most appropriate adaptive response that would result in 

the recognition and elimination of infected liver cells.

In this study we did not directly measure the effect of the TLR-agonists on different 

immune cell populations in immunized mice and we only measured protective immunity 

by determination of the prepatent period after challenge with WT parasites. One can 

speculate that either the adjuvants did not activate the appropriate immune cells or that 

those that are involved in removal of infected liver cells are activated but this activation is 

not sufficient to result in a more than 10-fold increase in protective immunity (i.e. 1 day or 

more delay in patency).

The failure to measure enhanced protective immune responses may also be due to 

the immunization protocol we employed. In this study we have used the P. yoelli-BALB/c 

immunization protocol which involves immunization with a single dose of sporozoites 

of a late arresting PyGAP followed by a challenge with wild type sporozoites 14 days 

later [22]. The effect of the selected adjuvants on protective immunity may have 

been better observed after prime-boost immunization strategies where the re-call of 

expanded immunological memory responses may enhance protective immunity. Indeed, 

such strategies might also be used to examine if immunization with the adjuvant GAP 
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results in an increase of the duration of protective immune response compared to  

non-adjuvanted GAP.

In conclusion, we have tested a set of potential adjuvants and created a panel of adjuvant 

GAPs to assess the possibility of enhancing immunogenicity of GAP. Whilst we were not 

able to detect a higher that 10-fold increase in vaccine potency, we have developed an 

immunization-challenge protocol, as well as a PyGAP GIMO mother line to rapidly create 

adjuvant GAPs, which can be used to evaluate other immunization schedules, additional 

adjuvants and/or novel enhanced GAPs. Manipulation, of the host immune response to 

direct and increase appropriate adaptive immune responses after vaccination is of value 

not only to enhance GAP vaccines but also other vaccines that need to generate immune 

responses to target liver infections.
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Supplementary Figure S1. Generation, genotype and phenotype analysis of a transgenic P. yoelii line 
expressing Gp96 under control of the promoter region of the liver specific lisp2 gene. (A) Schematic 
representation of the introduction of the Gp96-expression cassette into the GIMOPyS1 parasite (line 
2828cl1; see Figure S2). Construct pL2221 contains the Gp96 coding DNA sequence (CDS) flanked by 
the lisp2 promoter region and the 3’ pbdhfr UTR. This construct is integrated into the modified P. yoelii 
s1 locus of GIMOPyS1 that contains the hdhfr::yfcu selectable marker (SM) cassette  by double cross-
over homologous recombination at the homology regions (HR1, HR2). Negative selection with 5-FC 
selects for parasites that have the SM cassette replaced by the Gp96 expression cassette. Location 
of primers used for PCR analysis and sizes of PCR products are shown. (B) Diagnostic PCR (left panel) 
and Southern analysis of PFG-separated chromosomes (right panel) confirm correct integration of 
construct pL2221 in line 2866cl1 parasites. PCR shows the absence of the hdhfr::yfcu marker and 
the presence of the Gp96 CDS. 5’ integration PCR (5’-int; primers p17/p18), 3’ integration PCR (3’-int; 
primers p21/p22), hdhfr::yfcu (SM, primers p15/p16), Gp96 CDS (primers p19/p20). Primer locations 
and product sizes are shown in A, and primer sequences are presented in Table S1). Hybridization 
of PFG-separated chromosomes with a mixture of two probes (the hdhfr probe and a control probe 
recognizing p25 gene on chromosome 5) shows the removal of the SM cassette marker in the s1 
locus on chromosome 12 in 2866cl1 parasites. (C) Oocyst and sporozoite production in A. stephensi 
of the Gp96@lisp2 parasite line and the parent wild type (WT) P. yoelli line (line 1971cl1). Oocyst and 
sporozoite numbers were determined at day 8 and day 14, respectively, after mosquito infection. 
(D) Parasite liver loads in mice at 44 hour after infection with 1 × 104 sporozoites of the Gp96@lisp2 
parasite line (3 mice) and the parent wild type (WT) P. yoelli line (line 1971cl1) (17 mice). Parasite liver 
loads were determined by measuring in vivo luciferase activity and depicted as relative light units 
(RLU; middle panel). The left panel shows images of real time in vivo imaging of luciferase expressing 
liver stage parasites in mice at 44 h after injection of sporozoites. The right panel shows a Kaplan-
Meier curve illustrating the prepatent period (day at which a parasitemia of 0.5–2% is observed). 

SUPPLEMENTARY DATA
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Supplementary Figure S2. Generation and genotype analysis of the P. yoelii GIMO parent line 
(GIMOPys1) for introduction of expression cassettes into the s1 locus. (A) Schematic representation of 
the introduction of the hdhfr-yfcu selectable marker (SM) cassette into the s1 gene locus of the parent 
P. yoelii parasite (line 1971cl1). Construct pL2203 contains the hdhfr-yfcu SM flanked by the hsp70 
promoter region and the 3’ pbdhfr UTR. This construct is integrated into the s1 locus by double 
cross-over homologous recombination at the s1 homology regions (HR1, HR2). Positive selection 
with pyrimethamine selects for parasites that have the s1 coding sequence replaced by the SM 
cassette, thereby creating a GIMO line (2828cl2) for introduction of adjuvant expression cassettes. 
Location of primers used for PCR analysis and sizes of PCR products are shown. (B) Diagnostic PCR 
(left panel) and Southern analysis of PFG-separated chromosomes (right panel) confirm correct 
integration of construct pL2203 in parasites of line 2828cl2. PCR shows the presence of the hdhfr::yfcu 
marker. 5’ integration PCR (5’-int; primers p25/p26), 3’ integration PCR (3’-int; primers p29/p30), 
hdhfr::yfcu (primers p27/p28), s1 (CDS; primers p23/p24). Primer locations and product sizes are 
shown in A and primer sequences in Table S1). Hybridization of PFG-separated chromosomes with 
a mixture of two probes (the hdhfr probe and a control probe recognizing p25 gene on chromosome 
5) shows the presence of the SM cassette marker in the s1  locus on chromosome 12 in two clones of  
the 2828 line.  
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Supplementary Figure S3. Introduction of the Flic::hep17 fusion gene into GIMOPyGAP-fabb/f and 
genotype analysis of the FliC::HEP17 parasite line. (A) Schematic representation of the introduction 
of the FliC::hep17 expression cassette into the genome of GIMOPyGAP-fabb/f (line 2567cl1). Construct 
pL2114 contains the flic coding sequence (CDS) fused to the hep17 open reading frame (ORF) which 
is flanked by the hep17 promoter and 3’-UTR regions. This construct is integrated into the modified 
fabb/f locus of GIMOPyGAP-fabb/f by double cross-over homologous recombination at the homology 
regions (HR1, HR2). This locus contains the hdhfr::yfcu selectable marker (SM) cassette with the SM 
under control of the P. berghei eef1α promoter and an mCherry expression cassette with mCherry 
under control of the hsp70 promoter. Negative selection with 5-FC selects for parasites that have 
the SM cassette replaced by the FliC::hep17 expression cassette. Location of primers used for PCR 
analysis and sizes of PCR products are shown. (B) Diagnostic PCR (left panel) and Southern analysis 
of PFG-separated chromosomes (right panel) confirm correct integration of construct pL2114 in in 
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parasites of line 2587m1cl1. PCR shows the absence of the hdhfr::yfcu SM marker and the presence of 
the FliC CDS. 5’ integration PCR (5’ int; primers p33/p34), 3’ integration PCR (3’ int; primers p37/p38), 
hdhfr::yfcu (SM; primers p31/p32), FliC (CDS; primers p35/p36). Primer locations and product sizes 
are shown in A and primer sequences in Table S1). Hybridization of PFG-separated chromosomes with 
a mixture of two probes (the hdhfr probe and a control probe recognizing p25 gene on chromosome 5) 
shows the removal of the SM cassette marker from the fabb/f locus on chromosome 11 in 2587m1cl1 
parasites. (C) Schematic representation of (unsuccessful) attempts to introduction of the Gp96::hep17 
expression cassette into the genome of GIMOPyGAP-fabb/f (line 2567cl1). Construct pL2115 contains 
the Gp96 coding sequence (CDS) fused to the hep17 open reading frame (ORF) which is flanked by 
the hep17 promoter and 3’ UTR regions. This construct aims at integration into the modified fabb/f 
locus of GIMOPyGAP-fabb/f by double cross-over homologous recombination at the homology regions 
(HR1, HR2). This locus contains the hdhfr::yfcu selectable marker (SM) cassette with the SM under 
control of the P. berghei eef1α promoter and an mCherry expression cassette with mCherry is under 
control of the hsp70 promoter. Negative selection with 5-FC aims at selecting for parasites in which 
the SM cassette has been replaced by the GP96::hep17 expression cassette.
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ABSTRACT
Vaccination with live, attenuated sporozoites provide strong protective immunity against 

malaria infection in both mice and humans. Using rodent models of malaria it has been 

shown that attenuated parasites that arrest late into liver-stage development provide 

superior immunity to those that arrest early. It is essential that attenuated-parasite vaccines 

cannot establish a pathogenic blood infection. We attempted to create rodent malaria 

mutants that show complete growth arrest during late liver-stage development by deleting 

different combination of two genes from the Plasmodium berghei parasite genome. 

The genes lisp1, lisp2, mei2 and palm, were selected as they encode proteins that play an 

important role in the final maturation of the parasite’s liver-stages. We showed that three 

genetically attenuated parasites (GAPs), ∆lisp1∆lisp2, ∆mei2∆lisp1 and ∆lisp1∆palm, 

produced blood-stage infections in mice after infection with 5 × 104 sporozoites. In 

contrast no blood-stage infections were observed in mice infected with 5 × 104 or 2-3 

× 105 ∆mei2∆lisp2 and ∆mei2∆palm sporozoites. However, after a high dose of 5 × 105 

sporozoites of either mutant, some mice developed a blood infection. The ∆mei2∆lisp2 

and ∆mei2∆palm mutants replicate and arrest late into liver-stage development as shown 

in vitro by the presence of large intrahepatic stages that express the merozoite proteins 

MSP1 and AMA1, and in vivo through the detection of high parasite liver-loads 44 hours 

after infection. We compared the immunogenicity of ∆mei2∆lisp2 and ∆mei2∆palm late-

arresting GAPs (LA-GAPs) with that of an early-arresting GAP (∆b9∆slarp) in both BALB/c 

and C57BL/6 mice. Our results showed no significant differences exists in the induction 

of protective immunity between the two late-arresting GAPs and that the LA-GAPs were 

not significantly more protective than the early-arresting GAP. Overall, our results show 

that two double gene-deletion mutants were highly but not completely attenuated and 

that unexpectedly these LA-GAPs are not significantly more protective than parasites that 

arrest during liver-stage infection.
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INTRODUCTION
Complete protection against a malaria infection has been demonstrated after immunization 

with live attenuated sporozoites both in rodent models of malaria and in humans [1-3]. 

Such sterile protection against a malaria infection in humans has been obtained after 

immunization with Plasmodium falciparum (Pf) sporozoites, which have been attenuated 

by radiation or administered under chemoprophylaxis [4-6]. A prerequisite for induction of 

protective immunity by whole sporozoite-based (wsp) vaccines is that sporozoites retain their 

capacity to invade liver cells after administration, as heat-killed sporozoites are unable to 

induce strong protective immunity [7, 8]. Vaccination with radiation-attenuated sporozoites 

(Irr-Spz) is currently the most advanced wsp vaccination strategy and is currently under 

evaluation both in the clinic and in the field [2, 9]. A number of studies have demonstrated 

that Irr-Spz vaccination can elicit strong protective immunity in humans [9-11]. However, 

in order to achieve high levels of protection, multiple immunizations with high doses of 

attenuated sporozoites are required [6, 9]. In the context of mass administration of wsp 

vaccines in malaria-endemic countries, multiple immunizations with high sporozoites 

doses have considerable implications for cost of goods due to the complicated production 

of sporozoites. A major challenge is to produce a highly immunogenic live-attenuated 

vaccine, that requires the fewest attenuated sporozoites per dose, and the fewest doses 

to induce sustained sterile protection against a malaria infection.

In rodent models of malaria it has been shown that immunization with sporozoites 

of genetically-attenuated parasites (GAPs) can induce similar, or even better, levels of 

protective immunity compared to Irr-Spz [1, 12-14]. Genetic attenuation of sporozoites is 

based on the deletion of one or multiple genes that play an important role during liver-

stage development, resulting in complete growth arrest of the parasites in the liver and 

thereby preventing the development of a blood-stage infection after immunization with 

GAP sporozoites. An advantage of GAP sporozoites compared to Irr-Sporozoites is that 

homogenous sporozoites populations can be produced with defined genetic identity and 

an attenuation phenotype that can be designed to induce optimal protective immunity. 

Moreover, the use of GAP sporozoites provide manufacturing advantages compared 

to Irr-Spz [1, 13, 14]. Most notably because sporozoites do not need to be irradiated 

before they are vialed and because their production poses little risk to the individuals who 

produce the vaccine as GAP sporozoites are unable to establish a pathogenic blood-stage 

infection. GAP studies in rodent malaria models have been critical for the generation 

of several P. falciparum GAP vaccine candidates, which are currently undergoing clinical 

evaluation [15-19]. Moreover, rodent models of malaria have been used to explore 

different approaches to enhance immunogenicity of wsp vaccines [1, 13, 14]. For example, 

it has been demonstrated that co-administration of adjuvants during immunization with 

attenuated sporozoites can enhance protective immune responses [20-22]. In addition, it 

has been shown that immunization of mice with GAP whose growth is arrested late during 

liver-stage development can induce higher levels of protective immunity than immunization 
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with GAP that arrest early after invasion of hepatocytes. Specifically, it has been shown that 

late-arresting GAP (LA-GAP) induce greater numbers of a broader range of CD8+ T cells, 

which results in increased protection against a malaria infection compared to immunization 

with early-arresting GAPs [12], most probably due to a greater number and repertoire 

of antigens expressed by LA-GAP. This may also explain the high degree of protective 

immunity observed when humans are immunized by fully infectious sporozoites under 

chemoprophylactic treatment with chloroquine [5, 23]. In this immunization approach, 

liver-stage development progresses normally but the merozoites that are released from 

the liver and infect erythrocytes are killed by chloroquine. This wsp approach induces 

sterile protection against parasite challenge but requires approximately 60-fold fewer 

cumulative sporozoites numbers than immunization with Irr-Spz which arrest early during 

liver-stage development [24]. A prerequisite for a GAP vaccine for humans use, is that 

the GAP sporozoites are unable to establish a potentially pathogenic blood-stage infection 

which requires that parasite growth is completely arrested during development in the liver. 

Consequently, multiple gene deletions in the same GAP are considered necessary, each 

governing independent but essential processes during liver-stage development [25]. 

Currently, three P. falciparum GAPs have been developed for clinical evaluation, all of 

which are early-arresting GAPs, that halt development soon after hepatocyte invasion 

[26-28]. In these GAPs either two or three genes, which encode proteins that play a vital 

role in early liver-stage development, have been deleted. Three of the selected proteins, 

P52, P36 and B9 are all members of the so-called 6-Cys gene family and all participate in 

the formation and maintenance of the parasitophorous vacuole (PV) inside the infected 

hepatocyte [29, 30] and the fourth protein, SLARP/SAP1, is involved in the regulation of 

gene expression [31, 32]. In contrast to the creation of early-arresting GAPs, the generation 

of safe LA-GAPs has been challenging. Although several genes have been identified that 

encode proteins that play an important role during late liver-stage development, deletion 

of those genes did not result in complete growth arrest in rodent models of malaria. 

Examples include multiple proteins involved in type II fatty acid synthesis pathways (FAS 

II, i.e. Fab proteins) [33, 34], a transcription factor with AP2 domain(s) (AP2-L) [35], biotin-

protein ligase 1 (HCS1) [36] and proteins involved in formation and egress of merozoites 

from liver-schizonts, i.e. liver merozoite formation protein (PALM) [37], putative liver stage 

protein 1 (LISP1) [38], liver-specific protein 2 (LISP2; also known as sequestrin) [29, 39] and 

ZIP domain-containing protein (ZIPCO) [40]. Only the deletion of  the genes encoding 

FabB/F [33] and MEI2-like RNA-binding protein (PlasMei2; hereafter referred to as mei2) 

have been reported to result in complete growth arrest in the rodent parasite P. yoelii [41]. 

However, studies in P. falciparum have shown that parasites lacking FabB/F expression are 

unable to complete mosquito stage development [42]. 

In an effort to identify GAPs that arrest late into liver-stage development and are unable 

to establish a blood infection, we investigated whether deleting combinations of genes 

that have been shown to have a role in late liver-stage development, could synergize to 

create fully arrested GAPs. Our studies show that the combination of the following deleted 
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genes, mei2-palm or mei2-lisp2, had the strongest attenuation phenotype in P. berghei 

and both Δmei2Δlisp2 and Δmei2Δpalm parasites were arrested in growth late during 

liver-stage development. Our observation of the strong attenuation of Δmei2Δlisp2 is in 

line with a recent study where a similar phenotype was observed for the equivalent genetic 

deletion in P. yoelii [43]. However, we show that infection with high doses of Δmei2Δlisp2 

and Δmei2Δpalm sporozoites can result in ‘breakthrough’ blood infections. Moreover, 

unexpectedly, mouse immunization studies indicated that there was no improvement in 

protective immunity generated by LA-GAPs compared to an early-arresting GAP, which 

arrests soon after hepatocyte invasion. We discuss the implications of these findings both 

in the context of LA-GAP vaccine development and why late-arresting parasites do not 

provoke higher protective immunity despite the presence of much greater antigen load 

and diversity.

MATERIALS AND METHODS
Experimental animals and wild type and transgenic P. berghei lines
Female OF1, BALB/c ByJ and C57BL/6 mice (6-7 weeks; Charles River Laboratories, France) 

were used. All animal experiments of this study were approved by the Animal Experiments 

Committee of the Leiden University Medical Center (DEC 12042 and 14207) and Instituto 

de Medicina Molecular (IMM Lisboa). The Dutch Experiments on Animal Act and Animal 

Care Committee of IMM Lisboa (ACCiMM) are established under European guidelines (EU 

directive no. 86/609/EEC regarding the Protection of Animals used for Experimental and 

Other Scientific Purposes). All experiments were performed in accordance with relevant 

guidelines and regulations. Four P. berghei (Pb) lines were used: i) the reference ‘wild 

type’ PbANKA parasite line 676m1cl1 (PbANKA-GFP-Luccon; mutant RMgm-29; www.

pberghei.eu) which contains the fusion gene gfp-luc gene under control of the constitutive 

eef1α promoter integrated into the neutral 230p gene locus (PBANKA_0306000) and ii) 

the parent line PbANKA parasite line 1868cl1 (PbANKA-mCherryhsp70+Luceef1α; line RMgm-

1320; www.pberghei.eu) which contains the fusion gene mcherry gene under control of 

the strong hsp70 promoter and luciferase gene under control of the constitutive eef1α 

promoter integrated into the neutral 230p gene locus (PBANKA_0306000). Both lines does 

not contain a drug-selectable marker. Also, two previously generated of early-arresting 

GAP mutant parasite lines (in P. berghei ANKA background) were used Δslarp (1839cl3; 

mutant RMgm-1140; www.pberghei.eu) and Δb9Δslarp (1844cl1; mutant RMgm-1141; 

www.pberghei.eu).

Generation of marker-free mei2 and lisp1 single gene-deletion mutants
The mei2 (PBANKA_1122300) and lisp1 (PBANKA_1024600) genes were deleted in P. 

berghei by standard methods of transfection [44] using gene-deletion plasmids that were 

obtained from PlasmoGEM (Wellcome Trust Sanger Institute, UK). For deletion of mei2, 

construct PbGEM-300555 (pL2206) and for deletion of lisp1, construct PbGEM-334115 
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(pL2204) were used (http://plasmogem.sanger.ac.uk/) [45]. Both constructs contain 

the hdhfr::yfcu selectable marker (SM) cassette with the P. berghei eef1α promoter region 

and 3’ terminal sequence of pbdhfr. Before transfection, the constructs were linearized by 

digesting with NotI. Parasites of line 1868cl1 were transfected with constructs pL2206 (exp. 

2834) and pL2204 (exp. 2832) using standard transfection technologies and transformed 

parasites selected by positive selection with pyrimethamine [44]. Selected parasites were 

cloned by limiting dilution and mutants 2834cl2 and 2832cl3 were used for genotype 

analysis and to generate the SM-free gene deletion mutants. To remove the hdhfr::yfcu SM 

cassette from the genomes of 2834cl2 and 2832cl3, these parasites were selected (negative 

selection) by treatment of infected mice with 5-Fluorocytosine (5-FC) as described [46]. This 

treatment selects for parasites that have undergone homologous recombination between 

the two 3’-UTR of pbdhfr untranslated regions present in the integrated constructs pL2206 

and pL2204, flanking the hdhfr::yfcu cassette and thereby removing the SM [47]. Selection 

and cloning of the parasites resulted in the SM-free single gene-deletion mutants ∆mei2 

(2834cl2m1cl1) and ∆lisp1 (2832cl3m0cl1) that were used to generate the double gene-

deletion mutants (see next section).

 Generation of double gene-deletion mutants
Parasites of ∆mei2, which contains a disrupted plasmei2 gene and is SM-free, was 

used to delete the following genes in independent transfection experiments: lisp1 

(PBANKA_1024600), lisp2 (PBANKA_1003000) and palm (PBANKA_0101100). In 

addition, parasites of ∆lisp1, which contains a disrupted lisp1 gene and is SM-free, 

was used to delete the following genes in independent transfection experiments: lisp2 

(PBANKA_1003000) and palm (PBANKA_0101100). To delete the lisp1, palm and lisp2 

genes, the gene-deletion constructs PbGEM-334115 (pL2204), PbGEM-266100 (pL2205) 

(http://plasmogem.sanger.ac.uk/) [45] and pL1462 (Annoura et al., 2014; http://www.

pberghei.eu/index.php?rmgm=930) were used, respectively. The PlasmoGEM constructs 

were obtained from Wellcome Trust Sanger Institute, UK. The PlasmoGem constructs 

contain the hdhfr::yfcu SM and pL1462 contains the dhfr gene of Toxoplasma gondii flanked 

by the pbdhfr promoter region and the 3’-UTR of pbdhfr. Transfection with linearized 

constructs, positive selection of transfected parasites with pyrimethamine and cloning of 

selected parasites were performed as described [44]. This resulted in the 5 following lines/

clones: Δmei2Δlisp2 (line 2900cl3), Δmei2Δlisp1 (line 2901cl1), Δmei2Δpalm (line 2903cl3), 

Δlisp1Δlisp2 (line 2961cl1) and Δlisp1Δpalm (line 2961cl1) that were used for genotype 

and phenotype analyses (see next sections). 

Genotyping single- and double gene-deletion mutants
Correct integration of the constructs and deletion of the genes were verified by Southern 

analyses of Pulsed Field Gel (PFG)-separated chromosomes and diagnostic PCR analysis 

[44].  To show integration of the PlasmoGem constructs containing hdhfr::yfcu SM or 
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removal of the hdhfr::yfcu SM by negative selection, the PFG-separated chromosomes 

were hybridized with a mixture of two probes: a probe of the hdhfr gene and a ~800 bp 

fragment of the 5′UTR of PBANKA_0508000 located on chromosome 5 [48]. To show 

correct integration of the construct pL1462 containing the tgdhfr SM the PFG-separated 

chromosomes were hybridized with a probe recognizing the 3’-UTR of pbdhfr [44].  PCR 

primers used to confirm correct integration of the constructs are listed in Table S2.

Mosquito infection, analysis of oocysts and preparation and injection of 
sporozoites
Infection of A. stephensi mosquitoes, collection and counting of sporozoites by manual 

dissection of mosquito salivary glands (at day 21 days after feeding) were performed as 

described [22, 26]. Mosquitoes were kept at a temperature of 21°C and 80% humidity. 

Salivary glands were collected in RPMI medium, homogenized and filtered (40 µm Falcon, 

Corning, Amsterdam, NL). The free sporozoites were counted in a Bürker counting chamber 

using phase-contrast microscopy. For intravenous (IV) administration, sporozoites were 

suspended in RPMI-1640 medium and per mouse 200 μl was injected into the tail vein.

Determination of parasite liver load and prepatent period after infection, 
immunization or challenge
Parasite liver loads in live mice, after infection, immunization or challenge, were 

quantified by real time in vivo imaging as previously described [49]. Time and dose 

schedules of immunization and challenge by intravenous injection of sporozoites are 

indicated in the Results section and in the Figures. Parasite liver loads were visualized 

and quantified by measuring luciferase activity of parasites in whole bodies of mice at 

44, 56 and 65 h after injection of sporozoites using the IVIS Lumina II Imaging System 

(Perkin Elmer Life Sciences, Waltham, USA). During measurements mice were anesthetized 

using the isofluorane-anesthesia system (XGI-8, Caliper Life Sciences, Hopkinton, USA). 

D-luciferin was dissolved in PBS (100 mg/kg; Caliper Life Sciences, USA) and 60 µl injected 

subcutaneously in the neck. Measurements were performed within 8 min after the injection 

of D-luciferin. Quantitative analysis of bioluminescence of whole bodies was performed by 

measuring the luminescence signal intensity (RLU; relative light units) using the ROI (region 

of interest) settings of the Living Image® 4.5.5 software. Mice were monitored for blood-

stage infections by Giemsa-stained blood smears made at day 4 to 30 after infection or 

challenge. The prepatent period (measured in days after sporozoites challenge) is defined 

as the day when a blood-stage infection with a parasitemia of 0.5–2% is observed [48]. 

Analysis of liver stage development in-vitro 
Sporozoites were isolated from salivary glands of infected A. stephensi mosquitoes 21 days 

after an infectious blood meal as described above. The human-hepatoma cell line Huh7 

was used for in vitro cultures of the liver stages as described [33]. Isolated sporozoites 
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(5 × 104) were added to monolayers of Huh7 cells on coverslips in 24 well plates (with 

a confluency of 80–90%) in ‘complete’ RPMI supplemented with 10% (vol/vol) fetal bovine 

serum (FBS), 2% (vol/vol) penicillin-streptomycin, 1% (vol/vol) GlutaMAX (Invitrogen), and 

maintained at 37°C with 5% CO2. At 24, 48 and 72 hours after infection, nuclei were 

stained with Hoechst 33342 at a final concentration of 10 µM and live imaging of mCherry-

expressing parasites and liver-stage size were measured using Leica LAS X software by 

determining the area of the parasite at its greatest circumference using the mCherry-

positive area (µm2). The following exposure times: Alexa 488/FITC: 0.7 s; mCherry: 0.7 s; 

Hoechst 0.136 s (1x gain) were used. 

 For immunofluorescence analyses of liver-stages, the infected cells at 24, 48 and 

72 h post infections were fixed with 4% paraformaldehyde in PBS for 30 min and cells 

were permeabilized with 1% Triton X-100 in PBS for 30 min at RT. The infected cells 

were incubated overnight at 4°C with the rabbit anti-P. yoelii MSP1 [50] and rat anti-P. 

falciparum AMA1 [51] as a primary antibodies in 10% fetal calf serum in PBS, washed 3 

times with PBS at RT, followed by incubation for 1 h with secondary conjugated antibodies 

anti-rabbit IgG Alexa Fluor®488 (Invitrogen) or anti-rat IgG FITC (Thermofisher). Nuclei 

were stained with the DNA-specific dye Hoechst-33342 at a final concentration of 10 μM 

(Sigma, The Netherlands) for 30 min at RT. Fixed cells were covered with 1-2 drops of 

an anti-fading agent (Vectashield), and a coverslip placed onto of the cells and sealed 

with nail polish. Stained cells were analysed for fluorescence using a Leica fluorescence 

MDR microscope (40x magnification). Pictures were recorded with a DC500 digital camera 

microscope using Leica LAS X software with the following exposure times: Alexa 488/FITC: 

0.7 s; mCherry: 0.7 s; Hoechst 0.136 s (1x gain).

Statistics
All data were analyzed using the GraphPad Prism software package 5.04 (GraphPad 

Software, Inc). For sporozoites number and in-vivo imaging (RLU) analysis, statistical 

analysis was performed using the unpaired Student’s t-test. For the survival analysis, 

statistical analyzes to determine differences in protection after challenge were performed 

using a Kaplan–Meier survival plot, and survival curves were compared using the Log-rank 

(Mantel-Cox) test. Survival was considered as the complete absence of parasites in blood. 

The significance threshold were 0.05 in all analysis.

RESULTS
Generation of five double gene-deletion mutants; removing genes with a 
reported role in late liver-stage development
To screen for genetically attenuated parasites (GAP) that fully arrest growth late during 

liver-stage development we first generated two single gene-deletion mutants lacking 

either plasmei2, hereafter called mei2,  (PBANKA_1122300) or lisp1 (PBANKA_1024600). 

To delete these two genes, we used two PlasmoGem constructs  PbGEM-300555 KO 
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and PbGEM-334115 KO, respectively [45]. These constructs are designed to replace 

the complete open reading frame (ORF) of these genes by the hdhfr::yfcu  selectable 

marker (SM) cassette by double cross-over homologous recombination. The two gene-

deletion mutants, ∆mei2 and ∆lisp1, were generated in the reference reporter line 

1868cl1, which expresses mCherry and luciferase under control of the constitutive hsp70 

and eef1a promoters, respectively [52]. Transfection followed by positive selection with 

pyrimethamine, cloning and genotyping of transformed parasites was performed using 

standard technologies [44], resulting in isolation of the following cloned lines 2834cl2 

(∆mei2) and 2832cl3 (∆lisp1) (Figure S1, S2). Subsequently, negative selection was applied 

by treating mice with 5-FC that were infected with parasites of the two lines. This selection 

procedure selects for parasites with the hdhfr::yfcu SM cassette removed [53]. Negative 

selection, followed by cloning, resulted in the isolation of the following cloned lines 

that are drug-selectable marker free, 2834cl2m1cl1 (∆mei2) and 2832cl3m0cl1 (∆lisp1)  

(Figure S1, S2). These two lines have been used to create the following five double gene-

deletion mutants ∆mei2∆lisp2, ∆mei2∆lisp1, ∆mei2∆palm, ∆lisp1∆lisp2, and ∆lisp1∆palm 

(Figure S3, S4). To delete lisp2 (PBANKA_1003000) we used the construct reported in 

Annoura et al. [29], which replaces the complete lisp2 ORF by a tgdhfr SM cassette by double 

cross-over homologous recombination. To delete lisp1 and palm (PBANKA_0101100) we 

used the PlasmoGem constructs  PbGEM-334115 KO and PbGEM-266100 KO, respectively 

[45]. These constructs are designed to replace the complete ORF by the hdhfr::yfcu SM 

cassette. Transfection followed by positive selection with pyrimethamine, cloning and 

genotyping of transformed parasites were performed using standard technologies [44], 

resulting in isolation of the five cloned lines ∆mei2∆lisp2 (2900cl3), ∆mei2∆lisp1 (2901cl1), 

∆mei2∆palm (2903cl3), ∆lisp1∆lisp2 (2961cl1), and ∆lisp1∆palm (2963cl1) (Figure S3, S4). 

Parasites of all five lines showed normal, wild type (WT) blood-stage growth as determined 

during the cloning procedure (data not shown). In addition, they all produced salivary 

gland sporozoites in A. stephensi mosquitoes in numbers that that were in the range of 

WT P. berghei ANKA parasites (Table S1). 

Screening double gene-deletion mutants for liver-stage growth arrest and 
absence of blood infections 
To screen for complete liver-stage growth arrest, we infected C57BL/6 mice with 5 × 104 

sporozoites of the five double gene-deletion mutants and the single gene-deletion mutant 

∆mei2. C57BL/6 mice were selected as they are highly susceptible to infection of the liver 

by P. berghei sporozoites. In this screen the single gene-deletion mutant ∆lisp2 and ∆palm 

were not included since P. berghei mutants lacking these genes have been analyzed 

previously for breakthrough blood infections [29, 37]. For ∆lisp2 we previously reported 

that 43-100% of Swiss mice infected with 5 × 104 sporozoites developed blood infections, 

although with a delay in prepatent period of 2-3 days compared to mice infected with 

the same number of wild type (WT) parasites [29]. For ∆palm, Haussig et al., [37] reported 
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that 20% of C57BL/6 mice infected with 105 sporozoites developed blood infections, with 

a delay in prepatent period of 4-8 days compared to mice infected with the same number 

of WT parasites.

 We first determined parasite liver loads in mice infected with 5 × 104 ∆mei2, 

∆mei2∆lisp2, ∆mei2∆palm, ∆mei2∆lisp1, ∆lisp1∆lisp2 and ∆lisp1∆palm sporozoites by in 

vivo imaging at 44 hours (h) after injection (Figure 1A). As an early-arresting GAP control 

we also infected mice with the same number of ∆slarp sporozoites. We could measure 

parasites in the liver at 44 h in the 6 lines. At this time point the control parasites, ∆slarp, 

that arrest early after invasion of hepatocytes are not detectable by in vivo imaging 

(Figure 1A). At 44 h post infection mice infected with the double gene-deletion mutants 

∆mei2∆palm and ∆mei2∆lisp1 have lower parasite liver loads compared to mice infected 

with either WT or the single gene-deletion mutant ∆mei2 (Figure 1A).

Some mice infected with 5 × 104 ∆mei2∆lisp1, ∆lisp1∆lisp2 and ∆lisp1∆palm 

sporozoites developed blood infections, specifically 50%, 100% and 30% of the mice, 

respectively (Table 1, Figure 1A). These mice that established a blood-stage infection had 

a delay to blood-stage patency, but while ∆lisp1∆lisp2-infected mice were delayed 2-3 

days longer than in WT infected mice, ∆mei∆lisp1 and ∆lisp1∆palm were delayed by 5-9 

days (Table 1, Figure 1A). Mice infected with 5 × 104 ∆mei2∆lisp2, ∆mei2∆palm and ∆mei2 

sporozoites did not develop blood infections (Table 1, Figure 1A). The absence of blood 

infections in mice infected with the single gene-deletion ∆mei2 was unexpected since 50% 

of the mice infected with the double gene-deletion mutant ∆mei2∆lisp1 developed blood 

infections. Next we infected mice with higher doses of sporozoites (2-5 × 105) with these 

three (∆mei2∆lisp2, ∆mei2∆palm and ∆mei2) mutants. At a dose of 2 × 105 sporozoites 3 

out of 10 mice infected with ∆mei2 sporozoites developed blood infections with a long 

prepatent period of 12-14 days, demonstrating that parasites lacking only mei2 do not 

completely arrest in the liver (Table 1). No mice developed blood infections when infected 

with 2-3 × 105 ∆mei2∆lisp2 and ∆mei2∆palm sporozoites. However, at the highest dose, 

5 × 105 sporozoites, we observed blood infections in one out of ten mice infected with 

∆mei2∆lisp2 and one out of three mice infected with ∆mei2∆palm, with prepatent periods 

of 12 and 14 days (Table 1). These observations indicate that all five double gene-deletion 

mutants are not completely attenuated in the rodent parasite P. berghei.

Analysis of liver-stage development of two double gene-deletion mutants 
with the strongest attenuation phenotype
Next we analyzed in more detail the late liver-stage development of ∆mei2∆lisp2 and 

∆mei2∆palm, the mutants with the strongest attenuation phenotype. First we analyzed 

the persistence of attenuated parasites in the liver by in vivo imaging. In WT-infected mice 

luminescence signals in livers decrease between 48 h and 52 h, as merozoites are released 

from infected hepatocytes and enter the blood circulation and at 60 h luminescence signals 

emanate from the whole body of the mouse as luminescent parasites are inside red blood 
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Figure 1. Parasite development in the liver and attenuation-phenotype after infection of C57BL/6 mice 
with sporozoites of different gene-deletion mutants. (A) The time line shows infection of C57BL/6 mice 
with sporozoites of gene-deletion mutants, determination of parasite liver load by in vivo imaging and 
determination of the prepatent period of blood infection. Left: Parasite liver loads in mice (n=6) at 
44 h after intravenous injection of 5 × 104 sporozoites of WT and 7 gene deletion mutants. Parasite 
liver loads were determined by measuring in vivo luciferase activity and depicted as relative light 
units (RLU). Significance values (unpaired two-tailed t test): WT vs ∆mei2∆palm *p = 0.02; WT vs 
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Table 1. Development of blood stage infections in C57BL/6 mice infected intravenously with a single 
dose of sporozoites (sporozoites) of different parasite mutants.  

Parasite line or mutant
No. of sporozoites  
per dose ( × 104) No. of mice patenta

No. of days to 
patencyb

WT 5 3/3 5

∆mei2 5 0/6 n.a.
20 3/10 9 - 10

∆mei2∆lisp2 5 0/6 n.a.
20 0/10 n.a.
30 0/3 n.a.
50 1/10 12

∆mei2∆lisp1 5 3/6 12 - 14

∆mei2∆palm 5 0/6 n.a.
30 0/5 n.a.
50 1/3 9

∆lisp1∆lisp2 5 6/6 7 - 8

∆lisp1∆palm 5 2/6 10 - 13

a The number of mice that developed a blood stage infection
b The time of blood stage parasitemia between 0.5-2% WT - wild type; n.a. – not applicable

∆mei2∆lisp1 *p = 0.04). n.s. – not significant. Right: The Kaplan-Meier curves illustrate the prepatent 
period (day at which a parasitemia of 0.5–2% is observed). Data are shown of groups of 6 mice.  
Significance values [Log-Rank (Mantel-Cox) test]: WT vs ∆mei2∆lisp2, ∆mei2∆palm, ∆mei2∆lisp1, 
∆lisp1∆lisp2, ∆lisp1∆palm **p = 0.004.  (B) The time line shows infection of C57BL/6 mice with 
sporozoites of gene-deletion mutants and determination of parasite liver load by in vivo imaging. 
The graph shows parasite liver loads in mice (n=6) at different hours (h) after intravenous injection of  
5 × 104 sporozoites (44, 56 and 65 h) of 3 gene-deletion mutants. Parasite liver loads were determined 
by measuring in vivo luciferase activity and depicted as relative light units (RLU). Significance values 
(unpaired two-tailed t test): *p < 0.05; **p < 0.01; ***p < 0.001. n.s. – not significant.

cells and distributed across all organs [54]. In contrast, in mice infected with ∆mei2 and 

∆mei2∆palm parasites can still be detected in the liver at 56 and 65 h, without luminescent 

parasites in the blood circulation, although the mice had lower liver loads compared to 

44 h (Figure 1B). Specifically, liver loads at 56 h in ∆mei2- and ∆mei2∆palm-infected mice 

had decreased 2-5 fold compared to 44 h and in both groups of mice we could not detect 

liver signals in 4 out of the 6 mice at 65 h. In contrast, in ∆mei2∆lisp2-infected mice no 

parasites could be detected in the liver at both 56 and 65 h (Figure 1B). These observation 

indicate differences between the two double gene-deletion mutants; while ∆mei2∆lisp2 
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infected hepatocytes are lost or removed  after 44 h, ∆mei2∆palm infected hepatocytes 

can persist up to 65 h.

Next we analyzed ∆mei2∆lisp2 and ∆mei2∆palm development in cultured Huh7 

hepatoma cells.  We measured the size parasites within a hepatocyte at 24, 48 and 72 h. 

At 24 and 48 h little or no differences were observed between the size of WT parasites 

and ∆mei2∆lisp2 and ∆mei2∆palm parasites (Figure 2) However, at 72 h the liver-stages 

of both mutants were significantly larger than WT liver-stages, with a mean size of 1399 

µm2 for ∆mei2∆lisp2 and 1191 µm2 for ∆mei2∆palm compared to  507 µm2 or 630 µm2 

for WT parasites at 48 and 72 h, respectively (Figure 2). These observations may suggest 

that, in vitro, liver-stages of ∆mei2∆lisp2 and ∆mei2∆palm can continue growing and/or 

dividing. However, in vivo we could not detect ∆mei2∆lisp2 parasites in mice livers after 56 

h (Figure 1B). To examine the developmental progress of ∆mei2∆lisp2 and ∆mei2∆palm 

during late liver-stage development, we examined the expression of two merozoite 

genes, msp1 and ama1, which are expressed late during liver-stage development. In P. 

berghei blood-stages the merozoite surface membrane protein MSP1 is expressed in early 

schizonts [55]  whereas the micronemal protein AMA1 is expressed in late schizonts [51]. In 

rodent Plasmodium parasites we have previously measured MSP1 expression in infected 

hepatocytes at 44 h using anti-MSP1 antibodies [56]. By immunofluorescence analyses using 

anti-MSP1 and anti-AMA1 antibodies, we found that both ∆mei2∆lisp2 and ∆mei2∆palm 

liver-schizonts expressed MSP1 and AMA1 at 72 h, and this staining was comparable to 

72 h WT liver-schizonts (Figure 3). These observations indicate that the increase in size of 

parasites inside the hepatocytes at these later time points of development is associated 

with the expression of merozoite antigens, including antigens that are expressed later into 

schizont development (i.e. AMA1). 

Analysis of immunogenicity of two double gene-deletion mutants with the 
strongest attenuation phenotype
We compared the immunogenicity of the late-arresting GAPs (LA-GAPs), ∆mei2∆lisp2 and 

∆mei2∆palm, with protective immunity of an early-arresting GAP (∆b9∆slarp), using similar 

immunization protocols that have been used to compare immunogenicity of a mid-to-late 

arrester GAP with the early-arresting ∆b9∆slarp GAP [57]. First, we immunized BALB/c 

mice using an immunization scheme employing single doses of 1,200 (high), 800 (medium), 

or 400 (low) sporozoites, followed by a challenge with 104 GFP-luciferase expressing WT 

sporozoites 3 weeks after immunization (Figure 4A). At 44 h after challenge, we measured 

parasite liver loads in the immunized mice by in vivo imaging. In mice immunized with 

∆mei2∆lisp2 and ∆b9∆slarp, we were only able to detect liver-stage parasites in one 

∆b9∆slarp immunized animal. In contrast, 2 out of 5 mice in each of the ∆mei2∆palm 

LA-GAP immunization groups, WT liver-stage parasites could be detected in the liver at 

44 h (Figure 4B). 

All mice immunized with medium or high doses of the two LA-GAP sporozoites showed 

sterile protection against WT challenge and immunization with the early-arresting GAP also 
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Figure 2. Size of liver-stage parasites of gene-deletion mutants at different time points after infection of 
hepatocytes. Upper panel: Representative images of live parasite at different time points after infection 
of Huh7 hepatocytes with sporozoites of two gene-deletion mutants, showing mCherry expression. 
Liver-stages express cytoplasmic mCherry (under control of the constitutive hsp70 promoter). Liver-
stage size was measured by determining the area of the parasite at its greatest circumference (green 
circles) using the mCherry-positive area (µm2). Nuclei of parasites and hepatocytes were stained with 
Hoechst (blue). Lower panel: Size of liver stages, determined as described above; at least 20 parasites 
were measured at each time point. Significant differences (unpaired two-tailed t-test): *p < 0.05;  
***p < 0.001;  ****p < 0.0001. n.s. – not significant. Scale bar: 10 μm.

induced complete protection at these higher doses (Figure 4C and Table 2). After the low 

dose immunization, all 5 mice immunized with LA-GAP ∆mei2∆lisp2 were protected, 

whereas 2 mice developed a blood infection  after ∆mei2∆palm GAP immunization 

and 1 mouse after immunization with the early-arresting GAP (Figure 4C). As expected, 

challenging naive BALB/c mice with 10,000 WT sporozoites resulted in detectable parasite 

liver loads and all 5 mice developed blood infections with a prepatent period of 5 days 

(Figure 4B,C). As summarized in Table 2, there was no significant difference in protective 

efficacy in BALB/c mice induced by immunization with either of the two LA-GAPs compared 
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Figure 3. Expression of merozoite proteins MSP1 and AMA1  in liver stages of gene-deletion mutants 
at 72 hours after infection of hepatocytes. Representative images of fixed liver-stages at 72 hours 
after infection of Huh7 hepatocytes with sporozoites of two gene-deletion mutants, showing MSP1 
and AMA1 expression. Liver-stages express cytoplasmic mCherry (under control of the constitutive 
hsp70 promoter). Parasites are stained with anti-MSP1 (α-MSP1; green; Alexa-488) and anti-AMA1 
antibodies (α-AMA1; green; FITC) and the nuclei of the parasite and hepatocyte are stained with 
Hoechst (blue). Scale bar: 10 μm.

to the early-arresting GAP. Interestingly, all high- and mid-dose ∆mei2∆palm immunized 

mice did not develop a WT blood-stage infection despite the detectable presence of 

WT parasites in some mice at 44 h after challenge. This indicates that WT parasites were 

cleared late from the liver in the ∆mei2∆palm immunized mice.   

We performed a second immunization experiment in BALB/c mice, aimed to identify 

potential differences in maintenance and duration of protection between the two LA-GAPs 

and the early-arresting GAP. In this experiment BALB/c mice were immunized with a single 

dose of 800 sporozoites and challenged 6 weeks later with 3 × 103 parasites. As a control, 

we challenged immunized mice with 3 × 103 sporozoites at weeks 6. In the repeat 

early challenge experiment, we again detected no parasite liver loads at 44 h after WT 

challenge in the LA-GAP ∆mei2∆lisp2 and the early-arresting GAP immunized mice, but 

we detected higher WT-parasite liver loads at 44 h in the LA-GAP ∆mei2∆palm immunized 

mice (Figure 5A). These higher parasite liver load in LA-GAP ∆mei2∆palm immunized mice 

is comparable to what we observed in the first experiment (Figure 4A). Unexpectedly, in 

this experiment all immunized mice challenged after 3 weeks developed blood infections, 

although with a prepatent period delay of 2-4 days compared to naïve mice (Figure 5A; 

Table 2). This was unexpected since in the first experiment all mice that were immunized 

with a dose of 800 sporozoites were completely protected against WT challenge at 3 

weeks. The difference between the two experiments is that the first experiment was 

performed in Leiden (The Netherlands) whereas the second experiment was performed in 

Lisbon (Portugal). In both laboratory the same BALB/c mice were used (BALB/c ByJ strain 

obtained from Charles River, France).
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Figure 4. Analysis of protective immunity induced by immunization of BALB/c ByJ mice with 
sporozoites) of gene-deletion mutants (challenge of mice after 3 weeks; Leiden experiment). (A) 
The time line shows immunization of BALB/c  mice with sporozoites of gene-deletion mutants, 
challenge of mice with wild type (WT) sporozoites,  determination of WT parasite liver load by in 
vivo imaging and determination of the prepatent period of blood infection. (B) Parasite liver loads 
in mice (n=5) at 44 h after challenge of the immunized mice with 1 × 104 WT sporozoites. Parasite 
liver loads were determined by measuring in vivo luciferase activity and depicted as relative light 
units (RLU). (C) The Kaplan-Meier curves illustrate the prepatent period (day at which a parasitemia 
of 0.5–2% is observed). Data are shown of groups of 5 mice.  Significance values [Log-Rank (Mantel-
Cox) test]: Naive vs ∆b9∆slarp, ∆mei2∆lisp2 and ∆mei2∆palm **p < 0.005. No significant differences 
between mice immunized with early-arresting ∆b9∆slarp and mice immunized with ∆mei2∆lisp2 and 
∆mei2∆palm.
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Figure 5. Analysis of protective immunity induced by immunization of BALB/c ByJ mice with sporozoites 
of gene-deletion mutants (challenge of mice after 3 and 6 weeks; Lisbon experiment).  (A) The time 
line shows immunization of BALB/c mice with sporozoites of gene-deletion mutants, challenge of 
mice with wild type (WT) sporozoites after 3 weeks,  determination of WT parasite liver load by in 
vivo imaging and determination of the prepatent period of blood infection. Left: Parasite liver loads 
in mice (n=3) at 44 h after challenge of the immunized mice with 1 × 104 WT sporozoites. Parasite 
liver loads were determined by measuring in vivo luciferase activity and depicted as relative light units 
(RLU). Right: The Kaplan-Meier curves illustrate the prepatent period (day at which a parasitemia of 
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0.5–2% is observed). Data are shown of groups of 3 mice.  Significance values [Log-Rank (Mantel-Cox) 
test]: significant longer prepatent period of ∆b9∆slarp and ∆mei2∆lisp2 immunized mice compared 
to naive, non-immunized and ∆mei2∆palm immunized mice *p = 0.02.  (B) The time line shows 
immunization of BALB/c mice with sporozoites of gene-deletion mutants, challenge of mice with 
wild type (WT) sporozoites after 6 weeks,  determination of WT parasite liver load by in vivo imaging 
and determination of the prepatent period of blood infection. The graph shows Kaplan-Meier 
curves illustrating the prepatent period (day at which a parasitemia of 0.5–2% is observed). Data are 
shown of groups of 5 mice.   Significance values [Log-Rank (Mantel-Cox) test]:  Naïve vs ∆b9∆slarp  
**p = 0.008; Naïve vs ∆mei2∆lisp2 *p = 0.04; Naïve vs ∆mei2∆palm **p = 0.008. No significant 
differences between mice immunized with early-arresting ∆b9∆slarp and mice immunized with 
∆mei2∆lisp2 and ∆mei2∆palm.

Table 2. Protective immunity after challenge with 103 wild type sporozoites of BALB/c mice immunized 
with early-arresting GAP (∆b9∆slarp) or LA-GAPs (∆mei2∆lisp2, ∆mei2∆palm) sporozoites.

Mouse strain Parasite line
No. of doses and 
sporozoite number ( × 103)

No. of mice 
patenta

No. of days to 
patencyd

BALB/c ByJ ∆mei2∆lisp2 1 x 0.4 0/5b n.a.
(experiment in Leiden) 1 x 0.8 0/5b n.a.

1 x 1.2 0/5b n.a.
∆mei2∆palm 1 x 0.4 2/5b 7

1 x 0.8 0/5b n.a.
1 x 1.2 0/5b n.a.

∆b9∆slarp 1 x 0.4 1/5b 7
1 x 0.8 0/5b n.a.
1 x 1.2 0/5b n.a.

Naïve − 5/5b 5
BALB/c ByJ ∆mei2∆lisp2 1 x 0.8 3/3b 4 - 5
(experiment in Lisbon) 1 x 0.8 5/5c 4 - 16

∆mei2∆palm 1 x 0.8 3/3b 7
1 x 0.8 4/5c 6 - 16

∆b9∆slarp 1 x 0.8 3/3b 6 - 7
1 x 0.8 4/5c 6

Naïve − 3/3b 4
− 2/2c 4

a The number of mice that developed a blood stage infection
b Mice were challenged with 1 x 104 WT sporozoites 21 days after immunization
c Mice were challenged with 3 x 103 WT sporozoites 42 days after immunization
d The time of blood stage parasitemia between 0.5-2%
n.a. – not applicable

 In the delayed challenge study, performed using 3 × 103 WT sporozoites at 6 weeks 

after immunization, we observed that most early-arresting or LA-GAP immunized mice 

develop a blood-stage infection (Figure 5B; Table 1); however, the prepatent periods are 

considerably delayed from 2-12 days compared to naïve mice. However, no significant 

differences exist between the prepatent periods of the two LA-GAP immunized mice 
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and the early-arresting GAP immunized mice (Figure 5B). Only 2 mice were protected 

after delayed challenge, one in the group immunized with the early-arresting GAP and 

one in the group of LA-GAP ∆mei2∆palm immunized mice (Figure 5B). Combined these 

observations indicate the absence of large differences in immunogenicity between 

the LA-GAP and early-arresting GAP in the BALB/c model used.

Next we immunized C57BL/6 mice as these mice are known to be a more stringent 

model for inducing protective immunity against P. berghei liver-stages [58]. The C57BL/6 

mice were immunized three times at weekly intervals either with 104 (high) or 103 (low) 

sporozoites (Figure 6A). Two weeks after the final immunization mice were challenged with 

104 WT sporozoites. In the groups of mice immunized with the low dose of 103 sporozoites, 

all mice, except one (immunized with LA-GAP ∆mei2∆lisp2), developed blood infections 

(Figure 6B, Table 3). Most immunized but unprotected mice developed a 2-4 days delayed 

blood-stage infection compared to naïve mice, regardless of the GAP used. There were 

no significant differences in the prolongation of the prepatent period between the mice 

immunized with 103 (low) sporozoites of the LA-GAPs or the early-arresting GAP. 

In the groups of mice immunized with the high dose of 104 sporozoites, 5 out of 7 mice 

were protected from infection when mice were immunized with the LA-GAP ∆mei2∆lisp2 

and 6 out of 8 mice were protected from infection when mice were immunized with the early-

arresting GAP. However, after high dose immunization with the LA-GAP ∆mei2∆palm only 

one mouse was protected and the remainder had a 2-3 days delay to blood-stage patency 

compared to naive mice. With the high sporozoites dose (104) immunization ∆mei2∆palm 

immunized mice have significant shorter prepatent periods compared to ∆mei2∆lisp2 

and the early-arresting GAP whereas no differences exist between mice immunized with 

∆mei2∆lisp2 and the early-arresting GAP (Figure 6B).

DISCUSSION
In this study we generated five different double gene-deletion mutants, removing genes 

that have been shown to play a role in late liver-stage parasite development, in order to 

create fully arrested LA-GAPs. Three out of five mutants, ∆mei2∆lisp1, ∆lisp1∆lisp2 and 

∆lisp1∆palm led to breakthrough blood infections in mice after infection with a (low) dose 

of 5 × 104 sporozoites. In all these mutants lisp1 was one of the two deleted genes. LISP1 

has been reported as not playing a role in liver-schizont maturation or in the formation 

of the merozoites, but rather as being involved in the release of liver merozoites [38]. 

Parasites lacking LISP1 expression display a 10-15 fold reduction in the number of 

merozoites released from hepatocytes and ensuing capacity to generate a blood-stage 

infection in mice [38]. In our study 50% of the mice infected with the double gene-deletion 

mutant ∆mei2∆lisp1 developed blood-stage infections after inoculation with 5 × 104 

sporozoites. This was unexpected since the same number of sporozoites of the ∆mei2 

single gene-deletion mutant did not lead to a blood-stage infection. This could be due 

to experimental variation and it is possible that with a larger sample size ∆mei2-infected 
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mice with blood-stage infections would have been detected. However, while the single-

gene deletion mutants lacking either lisp2, lisp1 or palm are known to be only partially 

arrested in the liver [29, 37, 38], it has been reported that P. yoelii mutants lacking mei2 

have a very strong attenuation phenotype and blood infections were only observed in 

mice infected with very high doses of sporozoites [41, 43]. Therefore,  it is possible that 

the deletion of lisp1 (a gene responsible for parasite release from hepatocytes) in addition 

to mei2 (which appears to affect parasite nuclear division and merozoite formation) could 

have resulted in parasites that are retained within the infected hepatocyte for a longer 

period of time, allowing for some infectious merozoites to form and give gave rise to  

the blood-stage infections.

The combination of deleting mei2 with either lisp2 or palm resulted in mutants 

that showed the strongest attenuation phenotype. The additive effect on the level of 

attenuation of combining lisp2 or palm with mei2 was demonstrated when mice were 

infected with 2 × 105 sporozoites. In these experiments we were unable to detect blood-

Figure 6. Analysis of protective immunity induced by immunization of C57BL/6 mice with sporozoites 
of gene-deletion mutants. (A) The time line shows immunization of C57BL/6 mice with 3 doses 
of sporozoites of gene-deletion mutants, challenge of mice with wild type (WT) sporozoites, 
determination of WT parasite liver load by in vivo imaging and determination of the prepatent period 
of blood infection. The graph shows the parasite liver loads in mice (n =7 - 8) at 44 h after challenge 
of the immunized mice with 1 × 104 WT sporozoites. Mice were immunized with 3 doses of either 
104 or 103 sporozoites.  Parasite liver loads were determined by measuring in vivo luciferase activity 
and depicted as relative light units (RLU). Significance values (unpaired two-tailed t test): Naive vs 
1,000 ∆b9∆slarp *p = 0.017; Naive vs 1,000 ∆mei2∆lisp2 **p = 0.008; Naive vs 1,000 ∆mei2∆palm 
**p = 0.001; Naive vs 10,000 ∆mei2∆palm ***p = 0.0002). (B) The Kaplan-Meier curves illustrate 
the prepatent period (day at which a parasitemia of 0.5–2% is observed). Data are shown of groups 
of 7 - 8 mice.  Significance values [Log-Rank (Mantel-Cox) test]: Naive vs ∆b9∆slarp, ∆mei2∆lisp2 and 
∆mei2∆palm ***p < 0.001.

Table 3. Protective immunity after challenge with 103 wild type sporozoites of C57BL/6 mice immunized 
with early-arresting GAP (∆b9∆slarp) or LA-GAPs (∆mei2∆lisp2, ∆mei2∆palm) sporozoites.

Mouse strain Parasite line
No. of doses and sporozoite 
number ( × 103)

No. of  
mice patenta

No. of days to 
patencyc

C57BL/6 ∆mei2∆lisp2 3 x 1.0 7/8b 4 - 6
3 x 10 2/7b 6 - 8

∆mei2∆palm 3 x 1.0 8/8b 4 - 8
3 x 10 7/8b 6

∆b9∆slarp 3 x 1.0 8/8b 4 - 7
3 x 10 2/8b 6

Naïve − 5/5b 4

a The number of mice that developed a blood stage infection 
b Mice were challenged with 1 x 104 WT sporozoites 21 days last after immunization
c The time of blood stage parasitemia between 0.5-2%
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stage infections after infection with either ∆mei2∆lisp2 or ∆mei2∆palm, whereas 30% 

of the mice established a blood-stage infection when infected with the same number 

of ∆mei2 sporozoites. The additive effect on attenuation of combining lisp2 and mei2 

was also recently reported in P. yoelii, where Δmei2Δlisp2 infected mice did not establish 

blood-stage infections, following injection of up to 5 × 105 sporozoites, whereas 3 out 

of 30 mice infected with 2 × 105 sporozoites of the P. yoelii Δmei2 mutant did produce 

blood-stage infections [43]. The additive effects may be explained by the different roles 

the three proteins have on the full maturation of parasite liver-stages. MEI2 is predicted 

to be a RNA binding protein and is located in distinct cytoplasmic structures reminiscent 

of RNA-storage ‘P-bodies’ [41]. P. yoelii liver-stage schizonts lacking this protein exhibited 

an abnormal DNA segregation phenotype and failed to form merozoites [41]. PALM is 

a Plasmodium apicoplast protein and its absence in rodent parasites affects merozoite 

formation in late liver-schizonts, with reduced merozoite segregation and merosome 

formation [37]. LISP2 has been shown to be specifically expressed during parasite liver-

stages and is present in the parasitophorous vacuole (PV) that surround the parasites 

and also in the cytoplasm of infected hepatocytes. Absence of this protein also results 

in reduced and delayed merozoite formation, as observed for mutants lacking MEI2 and 

PALM [59], and although all three proteins affect correct merozoite formation, their distinct 

cellular localization indicates that may play diverse roles in different biological processes. 

Given that P. yoelii mutants lacking both mei2 and lisp2 [43] did not result 

in a breakthrough blood infection even after 5 × 105 sporozoites, our observed 

a breakthrough blood infection in one out of ten mice infected with 5 × 105 P. berghei 

∆mei2∆lisp2 sporozoites was unexpected. However, differences in attenuation phenotype 

between identical P. yoelii and P. berghei gene-deletion mutants have been reported in 

previous studies. For example, P. yoelli mutants lacking the gene encoding β-ketoacyl-

ACP synthase II gene (fabb/f) show a much stronger attenuation phenotype [33] than 

P. berghei mutants lacking the orthologous fabb/f gene [34, 56]. Interestingly, while 

both P. berghei and P. yoelii lacking fabb/f show varying degrees of attenuation in liver-

stage development, P. falciparum parasites lacking this gene are unable to complete 

development in the mosquito [60]. Further, while a complete attenuation phenotype has 

been reported for P. yoelii parasites lacking two genes, p52 and p36, encoding proteins 

critical for the formation and maintenance of the PV [28], P. berghei parasites lacking these 

genes are not completely attenuated and these mutants can develop blood infections 

[56]. This discrepancy in attenuation between different Plasmodium species was further 

demonstrated by the observation that P. falciparum sporozoites lacking p52 and p36 could 

produce a blood infection in humans [19]. Specifically, in a phase I clinical study where 

volunteers were exposed to bites of 200 infected mosquitoes, one out of six volunteers 

became blood-stage positive. 

Currently, only two genetically attenuated P. falciparum mutants have been generated, 

informed by studies performed in rodent malaria models, which have advanced into 

clinical studies. Both of these P. falciparum GAPs arrest early after hepatocyte invasion 
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and consist of 2 or 3 gene-deletions; in these parasites slarp has been deleted in 

combination with either b9 [26] or with p52 and p36 [19]. Recently, a clinical safety study 

has been performed in human volunteers using the P. falciparum GAP lacking  slarp, p52 

and p36. Ten out of ten volunteers exposed to the bites of 150-200 triple gene-deletion 

GAP infected mosquitoes remained blood-stage negative [18]. The limited number of 

methods to rapidly and cost-effectively test the attenuation and protective efficacy of P. 

falciparum GAPs limits the direct down-selection of P. falciparum GAPs, and presently 

very few studies have been performed in humans that can confirm the predictive value of 

rodent models in assessing the attenuation level of GAPs that lack certain genes or gene 

combinations. Rodent Plasmodium parasites take about 2 days to complete liver-stage 

development while this process takes a week in P. falciparum. Thus, the deletion of liver-

stage specific genes may result in different levels of attenuation in different Plasmodium 

species. Therefore, while the deletion of mei2 in combination with either palm or lisp2 

results in very strong, but incomplete, attenuation in rodent parasites, additional studies 

in P. falciparum are required to investigate if deletion of the same combination of genes 

results in complete attenuation in P. falciparum. 

We have examined the development of the two GAPs with the strongest late-arrest 

attenuation phenotype, ∆mei2∆lisp2 and ∆mei2∆palm, and compared the phenotypes 

to that of an early-arresting GAP (i.e. ∆b9∆slarp). The P. berghei early-arresting GAP, 

∆b9∆slarp, has been analysed in different studies [26, 57]. This GAP lacks the expression 

of the  SLARP/SAP1 protein which is involved in gene expression in sporozoites [26, 31] 

and the B9 protein that is located in the PV, [29]; this GAP aborts development soon after 

hepatocyte invasion. The P. berghei ∆b9∆slarp GAP is able to generate strong protective 

immunity against WT P. berghei challenge in both BALB/c and C57BL/6 mice [26]. In 

the present study we have shown, in vitro, that ∆mei2∆lisp2 and ∆mei2∆palm liver-stage 

parasites develop into large dividing schizonts that express both early and late merozoite 

proteins, MSP1 and AMA1. Surprisingly, mature schizonts of both mutants develop into 

significantly larger parasites than WT liver-schizonts. This may suggest that these parasites 

continue growing and/or replicating aberrantly and may therefore express more antigens 

than WT parasites at late stages of development. A remarkable difference between 

the two LA-GAPs is the difference in their persistence in the liver as detected by in vivo 

imaging of luminescence signals, which indicate that ∆mei2 and ∆mei2∆palm parasites 

may persist longer than ∆mei2∆lisp2 parasites. Additional studies are required to identify 

the mechanisms underlying the enlargement of ∆mei2∆lisp2 and ∆mei2∆palm liver-

schizonts. Despite its enhanced development in vitro, the LA-GAP ∆mei2∆lisp2 cannot be 

detected in vivo in the liver at 56 h post infection, whereas ∆mei2 and ∆mei2∆palm GAPs 

can still be detected up to 65 h post infection. The faster disappearance of parasites from 

the liver may result from different factors; ∆mei2∆lisp2 liver-schizonts may more rapidly 

rupture in vivo, resulting in release of the non-infectious merozoites or the liver-schizonts 

may disintegrate faster and thereby losing luminescence signals. It is also possible that 

infected hepatocytes may undergo apoptosis or are more rapidly cleared by immune 
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factors. Again, additional investigation is required to unravel the mechanisms underlying 

differences in persistence and clearance of LA-GAPs in the liver. 

In one study by Butler et al. [12] employing rodent malaria models, it was found that late-

arresting GAPs induce stronger protective immune responses compared to early-arresting 

GAPs. It is presumed that this increase in immunogenicity arises from the greater amount 

and repertoire of antigens present in LA-GAP compared to early-arresting parasites [12]. It 

was shown that immunization with late-arresting GAP (LA-GAP) induced greater numbers 

of a broader range of CD8+ T cells compared to early-arresting parasites. Butler et al. 

compared the immunogenicity of a P. yoelii LA-GAP lacking expression of FabB/F with an 

P. yoelii GAP lacking expression of slarp/sap1 and with radiation attenuated parasites, both 

of which arrest early after hepatocyte invasion. The higher levels of protective immunity 

induced by LA-GAP were observed in both BALB/c, Swiss Webster and C56BL/6 mice [12]. 

Based on the results of the Butler study, we anticipated that immunization of mice 

with two LA-GAPs generated in this study would also result in significantly enhanced 

protective immunity compared to the early-arresting GAP, in both BALB/c and in 

C57BL/6 mice. All the more so since the LA-GAPs ∆mei2∆lisp2 and ∆mei2∆palm appear 

to continue development at late liver-stages that may result in even more antigens per 

parasite. Therefore, our observations that protective immunity induced after ∆mei2∆lisp2 

and ∆mei2∆palm immunization is not significantly different compared to ∆b9∆slarp 

immunization, neither in C57BL/6 nor in BALB/c mice, was highly unexpected. 

The difference between our study and the Butler study might be explained by 

differences between the early-arresting GAPs or the LA-GAPs used in the different studies. 

However, differences in immunogenicity of the early-arresting GAP seems unlikely, since 

in both studies the early-arresting GAP lack the slarp/sap1 gene, which would result in 

both mutants having a similar arrest phenotype and, likely, antigen profile. With respect 

to differences in the LA-GAP used, we do show that the ∆mei2∆lisp2 and ∆mei2∆palm 

mutants develop in very large schizonts expressing proteins that include proteins expressed 

late into liver-stage development. In the Butler study an LA-GAP was used that lacks 

the fabb/f gene; rodent parasites lacking this gene arrest during the maturation of liver-

schizonts [33, 56] and it has not been reported whether these parasites are enlarged or 

persist longer in mouse livers than WT parasites. It is therefore surprising that ∆mei2∆lisp2 

and ∆mei2∆palm do not induce better protective immune responses than early-arresting 

parasites, since they are likely to express the same (if not more) antigens as those found 

in parasites lacking fabb/f. 

Another possible explanation for the differences in immunogenicity between LA-GAP 

and early-arresting GAP observed in ours and the Butler study, is the use of GAPs that 

are generated in different rodent Plasmodium species. We used P. berghei to create our 

GAPs whereas Butler et al. generated the GAP lacking fabb/f in P. yoelii. Differences in 

T- or B-cell epitopes of antigens of these two species may influence the immunogenicity 

of parasites in different mouse strains. Moreover, it has been shown that these two rodent 

Plasmodium species differentially regulate key immune-effector pathways resulting in 
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differences in memory CD8+ T cell-mediated immunity against liver-stage antigens [61]. It 

is also interesting to note that we observed differences in immunogenicity of our LA-GAPs 

in BALB/c mice in two different laboratories. Specifically, while in the Leiden laboratory 

were able to generate full protection in BALB/c mice after immunization with a single dose 

of 800 LA-GAPs sporozoites, none of the BALB/c mice were protected using the same 

LA-GAP dose in the Lisbon laboratory. In both laboratory the same BALB/c mice were used 

(BALB/c ByJ strain obtained from Charles River, France).

Combined, our observations indicate that (1) additional gene-deletion GAPs may need 

to be screened to identify GAPs that completely arrest during late liver-stage development 

and (2) the hypothesis that the greater the amount and diversity of antigens in a LA-GAPs 

the more likely it is to generate stronger protective immunity, requires reconsideration. 

Additional studies are required to define what immune mechanisms contribute to 

the induction, maintenance and deployment of adaptive immune response after LA-GAP 

immunization and the role of different rodent malaria parasites and different mouse 

strains in inducing protective immune responses. Using different Plasmodium species 

and employing different immunization protocols it might be possible to unveil these 

processes. These studies have important implications for the development of LA-GAPs for 

the human parasite P. falciparum. However, only by clinically evaluating of both the safety 

and the immunogenicity of LA-GAP will we be able to draw conclusions on the benefits of 

using LA-GAP compared to early-arresting GAP for vaccination. 
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SUPPLEMENTARY DATA

Supplementary Figure S1. Generation and genotype analysis of the selectable marker free P. berghei 
single gene-deletion mutant ∆mei2. (A) Schematic representation of the introduction of the hdhfr-
yfcu selectable marker (SM) cassette into the ∆mei2 gene locus of the parent P. berghei parasite (line 
1868cl1). Construct pL2206 contains the SM flanked by the eef1α promoter region and the 3’-UTR 
of pbdhfr. This construct is integrated into the mei2 locus by double cross-over homologous 
recombination at the mei2 homology regions (HR1, HR2). Positive selection with pyrimethamine 
selects for parasites that have the mei2 coding sequence replaced by the SM cassette, resulting in 
parasite line 2834cl2. To remove the SM cassette from the genome of 2834cl2 parasites were selected 
(negative selection) by treatment of infected mice with 5-Fluorocytosine (5-FC). This treatment selects 
for parasites that has undergone homologous recombination between the two 3’-UTR of pbdhfr 
untranslated regions present in the integrated constructs pL2206, flanking the SM cassette and 
thereby removing the SM. This creates the SM free P. berghei ∆mei2 single gene-deletion mutant 
(2834cl2m1cl1). Location of primers (p) used for PCR analysis and sizes of PCR products are shown. 
Details of primers are shown Table S2. (B) Diagnostic PCR (left panel) and Southern analysis of PFG-
separated chromosomes (right panel) confirm correct integration of construct pL2206 in parasites of 
line 2834cl2. PCR shows the presence of the hdhfr::yfcu SM (primers p3/p4); 5’ integration PCR (5’-int; 
primers p1/p2); mei2 open reading frame PCR (ORF; primers p5/p6). Primer locations and product 
sizes are shown in A and primer sequences in Table S2. Hybridization of PFG-separated chromosomes 
(chr.) with a mixture of two probes (the hdhfr probe and a control probe recognizing p25 gene on 
chromosome 5) shows the presence of the SM cassette marker in the mei2 locus on chromosome 11 
in two clones of the 2834 line and the absence of the SM in the mei2 locus on chromosome 11 in SM 
free ∆mei2 single gene-deletion mutant (2834cl2m1cl1). 
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Supplementary Figure S2. Generation and genotype analysis of the selectable marker free P. berghei 
single gene-deletion mutant ∆lisp1. (A) Schematic representation of the introduction of the hdhfr-yfcu 
selectable marker (SM) cassette into the lisp1 gene locus of the parent P. berghei parasite (line 1868cl1). 
Construct pL2204 contains the SM flanked by the eef1α promoter region and the 3’-UTR of pbdhfr. 
This construct is integrated into the lisp1 locus by double cross-over homologous recombination at 
the lisp1 homology regions (HR1, HR2). Positive selection with pyrimethamine selects for parasites 
that have the lisp1 coding sequence replaced by the SM cassette, resulting in parasite line 2832cl3. 
To remove the SM cassette from the genome of 2834cl2 parasites were selected (negative selection) 
by treatment of infected mice with 5-Fluorocytosine (5-FC). This treatment selects for parasites that 
has undergone homologous recombination between the two 3’-UTR of pbdhfr untranslated regions 
present in the integrated constructs pL2204, flanking the SM cassette and thereby removing the SM. 
This creates the SM free P. berghei ∆ lisp1 single gene-deletion mutant (2832cl3m0cl1). Location 
of primers (p) used for PCR analysis and sizes of PCR products are shown. Details of primers are 
shown Table S2. (B) Diagnostic PCR (left panel) and Southern analysis of PFG-separated chromosomes 
(right panel) confirm correct integration of construct pL2204 in parasites of line 2832cl3. PCR shows 
the presence of the hdhfr::yfcu SM (primers p3/p4); 5’ integration PCR (5’-int; primers p1/p2); lisp1 
open reading frame PCR (ORF; primers p5/p6). Primer locations and product sizes are shown in A and 
primer sequences in Table S2. Hybridization of PFG-separated chromosomes (chr.) with a mixture of 
two probes (the hdhfr probe and a control probe recognizing p25 gene on chromosome 5) shows 
the presence of the SM cassette marker in the lisp1 locus on chromosome 10 in three clones of 
the 2832 line and the absence of the SM in the lisp1 locus on chromosome 10 in SM free ∆lisp1 single 
gene-deletion mutants (2832cl3m0cl1).
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Supplementary Figure S3. Generation and genotype analysis of the double gene-deletion mutants 
∆mei2∆lisp1, ∆mei2∆lisp2 and ∆mei2∆palm. (A) Schematic representation of the introduction of 
the selectable marker (SM) cassettes (hdhfr::yfcu or tgdhfr) into the lisp2, lisp1 and palm gene loci of 
the single-gene deletion mutant ∆mei2 (2834cl2m1cl1). To delete the lisp2, lisp1 and palm genes, 
the gene-deletion constructs pL1462, pL2204, and pL2205 were used, respectively. pL2204 and 
pL2205 constructs contain the hdhfr::yfcu SM flanked by the eef1α promoter region and the 3’-UTR 
of pbdhfr and pL1462 contains the dhfr gene of Toxoplasma gondii flanked by the pbdhfr promoter 
region and the 3’-UTR of pbdhfr. These constructs integrate by double cross-over homologous 
recombination at the homology regions (HR1, HR2) of lisp2, lisp1 and palm. Positive selection with 
pyrimethamine selects for parasites that have the lisp2, lisp1 and palm coding sequences replaced 
by the SM cassettes of the different constructs, resulting in parasite lines 2900cl3 (∆mei2∆lisp2), 
2901cl1 (∆mei2∆lisp1) and 2903cl3 (∆mei2∆palm), respectively. Location of primers (p) used for 
PCR analysis and sizes of PCR products are shown. Details of primers are shown Table S2. chr. – 
chromosomes. (B) Diagnostic PCR (left panel) and Southern analysis of PFG-separated chromosomes 
(right panel) confirm correct integration of constructs pL2204, pL2205 and pL1462 in parasites of 
∆mei2 (2834cl2m1cl1). PCR shows the presence of the tgdhfr SM (primers p13/p14); the hdhfr::yfcu 
SM (primers p3/p4); 3’ integration of lisp2 PCR (3’-int; primers p15/p16); 5’ integration of lisp1 PCR 
(5’-int; primers p9/p10); 3’ integration of lisp1 PCR (3’-int; primers p11/p12); 5’ integration of palm 
PCR (5’-int; primers p17/p18); 3’ integration of palm PCR (3’-int; primers p19/p20). Primer locations 
and product sizes are shown in A and primer sequences in Table S2. Hybridization of PFG-separated 
chromosomes with a mixture of two probes (the hdhfr probe and a control probe recognizing p25 gene 
on chromosome 5) shows the presence of the SM cassette in the lisp1 and palm locus on chromosome 
10 and 1 in three clones of the 2901 and 2903 lines, respectively. For the three clones of line 2900, 
hybridization with the 3′-UTR pbdhfr probe recognizes the integrated construct on chromosome 10, 
the reporter mCherry-Luccon construct on chromosome 3, and the endogenous dhfr gene located on  
chromosome 7. chr. – chromosomes.
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Supplementary Figure S4. Generation and genotype analysis of the double gene-deletion mutants 
∆lisp1∆lisp2, and ∆lisp1∆palm. (A) Schematic representation of the introduction of the selectable 
marker (SM) cassettes (hdhfr::yfcu or tgdhfr) into the lisp2 and palm gene loci of the single-gene 
deletion mutant ∆lisp1 (2832cl3m0cl1). To delete the lisp2 and palm genes, the gene-deletion 
constructs pL1462 and pL2205 were used, respectively. Construct pL1462 contains as SM the dhfr 
gene of Toxoplasma gondii flanked by the pbdhfr promoter region and the 3’-UTR of pbdhfr. Construct 
pL2205 contains the hdhfr::yfcu SM flanked by the eef1α promoter region and the 3′-UTR of pbdhfr. 
These constructs integrate by double cross-over homologous recombination at homology regions 
(HR1, HR2) of lisp2 and palm. Positive selection with pyrimethamine selects for parasites that have 
the lisp2 and palm coding sequences replaced by the SM cassettes, resulting in parasite lines 2961cl1 
(∆lisp1∆lisp2) and 2963cl1 (∆lisp1∆palm), respectively. Location of primers (p) used for PCR analysis 
and sizes of PCR products are shown. Details of primers are shown Table S2. chr. – chromosomes. 
(B) Diagnostic PCR (left panel) and Southern analysis of PFG-separated chromosomes (right panel) 
confirm correct integration of constructs pL1462 and pL2205 in parasites of ∆lisp1 (2832cl3m0cl1). 
PCR shows the presence of the tgdhfr SM (primers p13/p14); hdhfr::yfcu SM (primers p3/p4);  
(3’ integration of lisp2 PCR (3’-int; primers p15/p16); 5’ integration of palm PCR (5’-int; primers p17/
p18); 3’ integration of palm PCR (3’-int; primers p19/p20). Primer locations and product sizes are 
shown in A and primer sequences in Table S2. Hybridization of PFG-separated chromosomes with 
a mixture of two probes (the hdhfr probe and a control probe recognizing p25 gene on chromosome 
5) shows the presence of the SM cassette marker in the lisp2 locus on chromosome 10 in three 
clones of the 2961 line. For the three clones of 2963 line, hybridization with the 3′-UTR pbdhfr probe 
recognizes the integrated construct on chromosome 1, the reporter mCherry-Luccon construct on 
chromosome 3, the endogenous dhfr gene located on chromosome 7 and the integrated lisp1 gene 
deletion construct after SM excision on chromosome 10.

Supplementary Table S1. Sporozoite production in A. stephensi mosquitoes fed with different P. berghei 
gene-deletion mutants

Parasite line / mutant
Sporozoite no. (× 103)a

Mean ± sd

WT 20.8 ± 4.2
∆mei2 15.4 ± 3.4
∆mei2∆lisp2 14,9 ± 7.7
∆mei2∆palm 11 ± 2.9
∆mei2∆lisp1 14 (1 exp.)
∆lisp1 n.d.
∆lisp1∆lisp2 17.3 (1 exp.)
∆lisp1∆palm 27.3(1 exp.)

a Mean number of sporozoites per mosquito
WT – wild type; exp. – experiment; n.d. – not done
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ABSTRACT 
The transmission-blocking vaccine candidate Pfs48/45 from the human malaria parasite 

Plasmodium falciparum is known to be difficult to express in heterologous systems, either 

as full-length protein or as correctly folded protein fragments that retain conformational 

epitopes. In this study we express full-length Pfs48/45 in the rodent parasite P. berghei. 

Pfs48/45 is expressed as a transgene under control of the strong P. berghei schizont-

specific msp1 gene promoter (Pfs48/45@PbMSP1). Pfs48/45@PbMSP1 schizont-infected 

red blood cells produced full-length Pfs48/45 and the structural integrity of Pfs48/45 

was confirmed using a panel of conformation-specific monoclonal antibodies that bind 

to different Pfs48/45 epitopes. Sera from mice immunized with transgenic Pfs48/45@

PbMSP1 schizonts showed strong transmission-reducing activity in mosquitoes infected 

with P. falciparum using standard membrane feeding. These results demonstrate that 

transgenic rodent malaria parasites expressing human malaria antigens maybe used as 

means to evaluate immunogenicity and functionality of difficult to express malaria vaccine  

candidate antigens.
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INTRODUCTION
Efficient and conformationally-accurate expression of Plasmodium proteins in heterologous 

systems, such as yeast or bacteria, is frequently problematic resulting in misfolded or 

incorrectly modified proteins, which are often poorly expressed [1, 2]. This hampers 

the screening of Plasmodium antigens in immunization studies for their suitability as 

vaccine candidate antigens. Preclinical evaluation of Plasmodium antigens often involves 

immunizing rodents with recombinant Plasmodium proteins followed by an examination 

of induced immune responses, either in vivo using rodent models of malaria or in vitro by 

performing functional assays with human malaria parasites incubated with immune sera 

[3]. Multiple factors contribute to inefficient expression of Plasmodium proteins, such as 

the high AT content of Plasmodium genes, large size and often unique protein structure (i.e. 

encoding repeated stretches of amino acids) and unique post-translational modifications 

[1, 4]. This is particularly evident for cysteine-rich proteins where correct folding depends 

on accurate formation of disulfide bridges to form domains specific for Plasmodium 

proteins [5-7]. Transgenic rodent malaria parasites (RMP) expressing human malaria 

parasite (HMP) proteins are increasingly used to evaluate and rank order candidate malaria 

vaccines before investing in scalable manufacture to support advancement to clinical 

testing [3]. Such transgenic RMP have been used in preclinical assays to evaluate vaccine 

potential of HMP proteins, both in vivo where mice are immunized with HMP antigens and 

subsequently challenged with transgenic RMP expressing the cognate HMP or in in vitro 

assays where immune sera or antibodies are evaluated for inhibition of parasite growth or 

invasion. Both the functional complementation of RMP genes by the HMP orthologs [3] 

and analysis of HMP expression using antisera, provide evidence for correct expression of 

functional HMP proteins in transgenic RMP [8]. Based on these studies, we reasoned that 

transgenic RMP can be used as expression systems to more efficiently express, screen, 

validate and down-select HMP antigens as potential novel malaria vaccine candidates 

[2, 9]. Further, the expression of conformationally-accurate Plasmodium proteins could 

be used to generate epitope-specific monoclonal antibodies, which in turn can be used 

to better characterize the vaccine antigen. The use of RMP would circumvent many of 

the above-mentioned problems associated with expression in heterologous expression 

systems including, but not limited to, peculiarities of post-translational modifications 

and Plasmodium-specific domains involved in protein trafficking and cellular location. As 

a proof of concept, we generated transgenic P. berghei (Pb) parasites that express full 

length Pfs48/45 from P. falciparum (Pf). The Pfs48/45 protein is expressed in Plasmodium 

gametocytes and gametes [10, 11] and contains multiple cysteine-rich domains with 

multiple disulfide bonds [12-14]. These constitute distinct conformational B cell epitopes 

that can be recognized by several monoclonal antibodies some of which have transmission-

blocking (TB) activity [15]. Pfs48/45 becomes exposed on the surface of gametes once 

the parasite is taken up in blood meal by a mosquito and here the antigen can be targeted 

by antibodies and other components of the blood meal [16]. Expression of Pfs48/45 for TB 
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immunization studies has been problematic in most commonly used expression systems, 

mainly due to incorrect or insufficient protein folding, which is dependent on the correct 

formation of disulfide bridges in this cysteine-rich protein [17, 18]. The limited reactivity 

of recombinant Pfs48/45 with monoclonal antibodies against conformational epitopes of 

Pfs48/45 has indicated this misfolding [19, 20]. 

MATERIAL AND METHODS
Experimental animals and parasites
Female OF1 and C57Bl/6 mice (6 to 8 weeks old; Charles River/Janvier) and Wistar rats 

(HsdCpb:WU; 175-199 gr, Harlan Netherlands BV) were used.  All animal experiments of 

this study were approved by the Animal Experiments Committee of the Leiden University 

Medical Center (DEC 12042, 12043). The Dutch Experiments on Animal Act is established 

under European guidelines (EU directive no. 86/609/EEC regarding the Protection of 

Animals used for Experimental and Other Scientific Purposes). All experiments were 

performed in accordance with relevant guidelines and regulations. The following reference 

lines of the ANKA strain of P. berghei (Pb) were used in this study: line cl15cy1 (Janse et al., 

2006) and line GIMOpbANKA (1596cl1; RMgm-687 in www.pberghei.eu; referred to as PbWT). 

The GIMOpbANKA (1596cl1) was generated in the cl15cy1 parent line and this line expresses 

a fusion of a drug resistance gene hdhfr (human dihydrofolate reductase) and a drug 

sensitivity gene yfcu (yeast cytosine deaminase and uridyl phosphoribosyl transferase), 

the so called positive-negative selectable marker (SM), constitutively expressed by the P. 

berghei eef1α promoter stably integrated into the 230p locus [21]. 

Generation and genotyping of the transgenic parasite line, Pfs48/45@
PbMSP1
To introduce the Pfs48/45 gene (PF3D7_1346700) into the redundant p230p gene locus 

(PBANKA_0306000) of the Pb genome, we generated DNA construct pL1706. The basic 

gene insertion construct pL0046 was used, which contains the 5’ and 3’ 230p targeting 

regions, the tgdhfr/ts selectable marker (SM) cassette and an mCherry expression cassette 

under the control of the eef1α promoter with 3’ terminal sequence of pbdhfr/ts. The eef1α 

promoter was replaced by the msp1 promoter (PBANKA_0831000) using AflII and 

BamHI digestion. The msp1 promoter was amplified from genomic Pb ANKA DNA using 

primers 6145 and 6146. In addition the mCherry coding sequence (CDS) was replaced by 

the Pfs48/45 CDS using BamHI and SgrAI digestion. The Pfs48/45 CDS  was amplified from 

genomic DNA of the Pf NF54 strain using primers 5583 and 5584. This resulted in construct 

pL1706.  In order to introduce the expression construct in the genome of the parent GIMO 

PbANKA line (1596cl1) , we next removed the tgdhfr/ts SM by digestion of the plasmid 

with SbfI and  AflII. The ends of the linearized constructs were then rendered blunt using 

Klenow enzyme treatment, and re-ligated. This final construct (pL1707) were analyzed 

via restriction digestions to confirm correct assembly. Before transfection, the construct 

pL1707 was linearized by digesting the plasmid with KspI.
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Parasites of line 1596cl1 were transfected with this construct (exp. 1807) using standard 

transfection technologies and transformed parasites selected by negative selection with 

5-fluorocytosine (5-FC) [21, 22]. Selected parasites were cloned by limiting dilution. 

Three independent clones have been obtained after the cloning and correct integration 

of the construct was confirmed by Southern Analysis of PFG-separated chromosomes 

(data not shown).  Mutant 1807cl2 was used for further genotype and phenotype analysis. 

Correct integration of the construct into the p230p gene locus was performed by diagnostic 

PCR-analysis and Southern analysis of pulsed field gel (PFG) separated chromosomes 

as described previously [23]. For Southern analysis, PFG-separated chromosomes were 

hybridized to a mixture of two probes, one recognizing hdhfr and one control probe, 

recognizing the p25 gene on chromosome 5 [22].

Western and IFA analyses of Pfs48/45 expression
Transgenic schizonts were obtained from short-term overnight cultures of infected blood 

obtained by cardiac puncture from rats or mice as previously described [24]. Leucocytes 

were removed from the infected blood using Plasmodipur filters before the parasites were 

put into short-term overnight culture. Schizonts from the short-term cultures were purified 

using Nycodenz gradient centrifugation, resulting in parasite populations consisting of 

>90% schizonts [24]. 

For Western analysis, purified schizont preparations were extracted in 25 mM Tris-HCl, 

pH 8.0, 150 mM NaCl, 1.0% sodium deoxycholate, and 1 mM phenylmethylsulfonyl 

fluoride. Insoluble debris was removed by centrifugation at 13,000 g for 5 min at room 

temperature (RT) and the supernatant was used for Western analysis [15].  Parasite proteins 

were separated by electrophoresis on a 12% SDS-PAGE gel and transferred to Hybond 

ECL nitrocellulose membrane (Amersham Biosciences) for 2 h at 200 mAh. Membranes 

were blocked for non-specific binding in phosphate-buffered saline (PBS) with 0.1% Tween 

20 (PBST) containing 3% skim milk (Elk, Campina, The Netherlands) overnight at 4°C. 

Blots were hybridized with 4 anti-Pfs48/45 monoclonal antibodies that recognize Pfs48/45 

epitopes I, IIb, III and V (antibodies 85RF45.1, 85RF45.2b, 85RF45.3, 85RF45.5) [14]. 

One microgram of protein was loaded in each lane and for reduced reaction, the DTT 

was added at final concentration of 10 mM [25]. After incubation with the monoclonal 

antibodies the membranes were washed with PBST and incubated for 1 hour at RT with 

horseradish peroxidase (HRP)-conjugated goat anti-rat IgG secondary antibody (Sigma-

Aldrich) and developed in Amersham ECL Western Blotting Detection Kit according to 

the manufacturer’s instructions (GE Healthcare). As a loading control, the membranes were 

also incubated with rabbit anti-P. yoelii MSP1 antibody [26], followed by incubation with 

HRP-conjugated goat anti-rabbit IgG secondary antibody (GE Healthcare).

The amount of Pfs48/45 protein in total schizont extract was estimated by quantitative 

Western blot analysis. Protein extracts of the schizont and gametocyte lysates (see above) 

and R0.10C recombinant protein were quantified using PierceTM BCA protein assay kit 

(Thermo Fisher Scientific). Protein extracts (500 ng) were loaded on the SDS-PAGE gel and 
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a serial dilution series (50, 25, 12.5, 6 and 3 ng) of the recombinant P. falciparum P48/45 

fused to GLURP R0 domain (R0.10C)  was loaded on the gel. Proteins were separated 

by electrophoresis and transferred  to nitrocellulose membrane as described above and 

the blot was probed with antibody 85RF45.1 (1:2000 dilution) as the primary antibody. 

The X-ray film was exposed to the membrane for 30 sec and developed using HQ 

350XT X-ray Film Processor. The optical intensity (or Optical Densitometry (OD) values) 

of the signals were quantified with a BioRad GS-800™ Calibrated Densitometer using 

Quantity One software (Bio-Rad). 

For immunofluorescence analyses (IFA), schizonts-infected red blood cells (RBC) were 

collected from short-term overnight cultures of infected mice blood described above [24]. 

The schizont-infected RBC were washed 3 times in PBS and 5 µl of packed cells resuspended 

in 1 ml PBS. 15-20 µl of this suspension was placed in a well of a 10-well black cell-line 

diagnostic microscope slide (Thermo Scientific) and allowed to air dry. The slides were fixed 

with 4% paraformaldehyde in PBS for 30 min and cells were permeabilized with 1% Triton 

X-100 in PBS for 30 min at RT. The slides were incubated overnight at 4°C with the four 

different rat anti-Pfs48/45 antibodies and rabbit anti-MSP1 antibody (described above) in 

10% fetal calf serum in PBS, washed 3 times with PBS at RT, followed by incubation for 1 

hour with secondary conjugated antibodies anti-rabbit IgG Alexa Fluor®488 (Invitrogen) 

or anti-rat IgG Alexa Fluor®594 (Invitrogen). Nuclei were stained with the DNA-specific 

dye Hoechst-33342 at a final concentration of 10 µM (Sigma, The Netherlands) for 30 min 

at RT. Fixed cells were covered with 1-2 drops of an anti-fading agent (Vectashield), and 

a coverslip placed onto of the cells and sealed with nail polish. Stained cells were analysed 

for fluorescence using a Leica fluorescence MDR microscope (100x magnification). Pictures 

were recorded with a DC500 digital camera microscope using Leica LAS X software with 

the following exposure times: Alexa: 0.7 s; Hoechst 0.136 s; bright field 0.62 s (1x gain).

Immunization with schizont-extracts and purification of IgG from 
immunized mice
For generation of the schizont-extracts for immunization, 10 Wistar rats were infected 

with either PbWT (c15cy1) or Pfs48/45@PbMSP1 parasites and at a parasitemia of 1-3% 

infected blood was collected by cardiac puncture. Leucocyte removal,  short-term 

overnight culture of infected RBC and Nycodenz gradient purification of schizonts was 

performed as described above. Purified schizont-infected RBC were divided into samples 

containing 1.1 × 109 schizont-infected RBC cells. The cells were pelleted by centrifugation 

(450 g, 8 minutes) and stored at −80°C after removal of the supernatant. 

Groups of 10 C57BL/6 mice were immunized with either PbWT (c15cy1) or Pfs48/45@

PbMSP1 schizonts by intravenous injection of 1 × 108 schizont-infected red blood cells 

(in 200 µl RPMI). Mice were immunized a total of four times, at 2 week intervals. Before 

injection, schizonts were subjected to 3 freeze (dry ice) - thaw (RT) cycles, to ensure 

parasites were killed. Fourteen days after the last immunization blood was collected from 

all mice by cardiac puncture and serum collected after centrifugation (1500×g for 10 
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min). Serum was stored at −20°C until further analysis. IgG was purified from the pooled 

serum from 10 mice, by protein G affinity chromatography (Pierce, Rockford, IL) according 

to the manufacturer’s instructions and adjusted to a final concentration of 4 mg/ml in 

phosphate-buffered saline (PBS). 

Standard Membrane Feeding Assay (SMFA)
IgG purified from sera obtained from immunized mice was assessed for transmission 

reducing (TR) activity in SMFA as previously described [27, 28] using P. falciparum (Pf) 

gametocytes. Briefly, Pf gametocyte cultures (16 to 18 days old) of P. falciparum NF54 

(originally provided by Steve Hoffman, Sanaria, Rockville, MD) were adjusted to 0.15 to 0.2% 

stage V gametocytemia at 50% hematocrit. Sixty microliters of a test sample (with a defined 

concentration of purified mouse IgG) in 1x PBS was mixed with 100 µl of the gametocyte 

mixture, and the final mixture was immediately fed to 50 female Anopheles stephensi 

(Nijmegen strain, 3 to 6 days old) mosquitoes through a membrane-feeding apparatus. 

Mosquitoes were kept for 8 days and dissected (20 per sample) to count the number of 

oocysts. As assay controls both malaria-naïve human sera and an anti-Pf25 monoclonal 

antibody (4B7; [29]) were used to establish background and complete inhibition of oocyst 

formation, respectively.  Significance of inhibition (% inhibition in oocyst intensity) was 

determined by the zero-inflated negative binomial model described previously [28].

RESULTS AND DISCUSSION
In this study the coding sequence of the gene encoding Pfs48/45 (PF3D7_1346700) 

was introduced into the redundant P. berghei p230p gene locus (PBANKA_0306000)  

[3, 21, 30]. The Pfs48/45 gene was placed under control of 1.3 kb of the promoter region of 

the schizont-specific Pb msp1 gene (PBANKA_0831000). This promoter was chosen since 

msp1 is one of the highest transcribed genes in developing Pb schizonts [31] and the Pb 

schizont stage can be easily produced and purified in large quantities [24]. The transgenic 

parasite (Pfs48/45@PbMSP1) was generated by the method of GIMO transfection and 

selection [21]. Using this method transgenes can be rapidly introduced into the p230p 

gene locus in a GIMOpbANKA parent line by replacing the positive-negative selectable 

marker expression cassette by the transgene expression cassette (Supplementary M&M 

and Figure 1A). Correct replacement of the selectable marker cassette and insertion of 

the Pfs48/45 expression cassette in a cloned line of Pfs48/45@PbMSP1 (1807cl2) was 

confirmed by diagnostic PCR and Southern analysis of chromosomes separated by 

pulsed-field gel electrophoresis (Figure 1B). Analysis of the growth rate of transgenic 

Pfs48/45@PbMSP1 parasites during the cloning period demonstrated normal growth 

of blood stages, comparable to wild type (WT) PbANKA parasites (i.e. all mice (n=3) 

achieved a 0.5-2% parasitemia on day 8, after inoculation with a single infected red 

blood cell). To obtain transgenic schizonts, parasites were cultured overnight using 

standard methods to produce and purify Pb schizonts (Supplementary M&M). 
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We confirmed expression of Pfs48/45 in the transgenic schizonts by Western and 

immuno-fluorescence analysis using four anti-Pfs48/45 monoclonal antibodies 85RF45.1 

(45.1), 85RF45.2b (45.2b), 85RF45.3 (45.3), and 85RF45.5 (45.5). Three of these (45.1, 

45.2b and 45.3) recognize conformational epitopes (epitopes I, IIb and III respectively) in 

the C terminal region of Pfs48/45 [14]. 

In Western analysis all the antibodies recognize a protein of the expected size (48 kDa) 

in protein extracts from Pfs48/45@PbMSP1 schizonts and WT Pf gametocytes but not in 

extracts from a Pb line that does not express Pfs48/45 (i.e. GIMOpbANKA line 1596cl1). As 

a positive control, recombinant protein that contains a fragment of P. falciparum Pfs48/45 

fused to the GLURP R0 domain (R0.10C) was included and as expected a 150 kDa band 

was present after probing with monoclonal antibodies 45.1, 45.2b and 45.3 but was 

not present after probing with 45.5 (Figure 1C) [32]. We next examined the presence of 

Pfs48/45 epitopes using the anti-Pfs48/45 antibodies by immuno-fluorescence assay (IFA)  

(Figure 1D). All antibodies recognized Pfs48/45 produced in the Pfs48/45@PbMSP1 

schizonts and did not react with proteins of WT Pb schizonts (Figure 1C and 1D). These 

results demonstrate that transgenic Pb schizonts can effectively express full length 

Figure 1. Generation, genotype and phenotype analyses of Pfs48/45@PbMSP1, a transgenic P. 
berghei parasite expressing P. falciparum P48/45 in schizonts. (A) Schematic representation of 
the introduction of the Pfs48/45-expression cassette into the GIMOpbANKA parasite (line 1596cl1). 
Construct pL1707 contains the Pfs48/45 gene flanked by the msp1 promoter region and the 3’ pbdhfr 
UTR. This construct is integrated into the modified P. berghei 230p locus of GIMOpbANKA that contains 
the hdhfr::yfcu selectable marker (SM) cassette  by double cross-over homologous recombination 
at the homology regions (230p; grey boxes). Negative selection with 5-FC selects for parasites that 
have the SM cassette replaced by the Pfs48/45 expression cassette. Location of primers used for PCR 
analysis and sizes of PCR products are shown. (B) Diagnostic PCR (upper panel) and Southern analysis 
of PFG-separated chromosomes (lower panel) confirm correct integration of construct pL1707 in line 
1807cl2 parasites. PCR shows the absence of the hdhfr::yfcu marker and the presence of the Pfs48/45. 
5’ integration PCR (5’ int; primers p5/p6), 3’ integration PCR (3’ int; primers p7/p8), hdhfr::yfcu (primers 
p1/p2), Pfs48/45 (primers p3/p4). Primer locations and product sizes are shown in A and primer 
sequences in Table S1). Hybridization of PFG-separated chromosomes with a mixture of two probes 
(the hdhfr probe and a control probe recognizing p25 gene on chromosome 5) shows the removal of 
the SM cassette marker in the 230p locus on chromosome 3 in 1807cl2 parasites. (C) Western  analysis 
of Pfs48/45 expression in protein extracts of purified gametocytes of P. falciparum (Pf Gam), purified 
schizonts of wild type P. berghei (1596cl1) and purified schizonts of Pfs48/45@PbMSP1 (1807cl2). As 
a positive control, recombinant P. falciparum P48/45 fragment fused to GLURP R0 domain (R0.10C) 
was included (expected molecular size is 150 kDa). Blots were stained with 4 different anti-Pfs48/45 
antibodies (45.1-3, 45.5) that recognize different epitopes. Anti-PyMSP1 antibody staining was used 
as a loading control. (D) Immuno-fluorescence analyses of Pfs48/45 expression in purified schizonts 
of Pfs48/45@PbMSP1 (1807cl2), and  the reference parent P. berghei GIMO line (i.e. WT; 1596cl1). 
Fixed parasites were stained with four different rat anti-Pfs48/45 mAbs (45.1-3, 45.5) and rabbit anti-
PyMSP1 antibody followed by secondary conjugated  antibodies anti-rabbit IgG Alexa Fluor ® 488 
(green) or anti-rat IgG Alexa Fluor ® 594 (red). Nuclei stained with the DNA-specific dye Hoechst 
33342 (H). All pictures were recorded with the same exposure/gain times; anti-rabbit IgG Alexa Fluor 
® 488 (green) 0.7 s; anti-rat IgG Alexa Fluor ® 594 (red) 0.6s; Hoechst (blue) 0.136 s; bright field 0.62 
s (1x gain). BF: bright field; M: merged. Scale bar: 2 µm.
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Pfs48/45, which retains a number of conformational epitopes. Pfs48/45, like MSP1, contains 

a GPI anchor and is present at the plasma membrane of Pf gametocytes/gametes [33]. 

The immuno-fluorescence analyses indicate that Pfs48/45 was located in the cytoplasm 

of the transgenic merozoites as the fluorescence signals did not completely overlap with 
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fluorescence signals obtained with anti-MSP1 antibodies, which stain MSP1 at the merozoite 

plasma membrane in mature schizonts (Figure 1D). Possible reasons for this observation is 

that GPI attachment may be different between rodent and human Plasmodium parasites, 

or that the attachment of Pfs48/45 onto P. berghei merozoites would require the presence 

of other Plasmodium proteins normally present in gametocytes/gametes.

In order to estimate the proportion of Pfs48/45 present in the protein lysates of Pfs48/45@

PbMSP1 schizonts we performed a quantitative Western Blot analysis. Densitometry analysis 

of signals obtained after probing known amounts of Pfs48/45@PbMSP1 protein schizont 

lysates and a dilution series of recombinant Pfs48/45 with anti-Pfs48/45 monoclonal 45.1, 

revealed that the intensity of the schizont lysate signals corresponds to less than 1 ng of 

recombinant Pfs48/45 (Supplementary Figure S1), indicating that is between 0.25 - 0.12% 

of the total schizont lysate is Pfs48/45 (Figure 2A).

Next, we examined if Pfs48/45@PbMSP1 transgenic schizont lysate could be used to 

raise sera that could block Pf transmission in mosquitoes, presumably by Pfs48/45 specific 

antibodies. Two groups of 10 C57BL/6 mice were immunized 4 times (2 week interval) with 

lysates of 1x108  schizonts of either Pfs48/45@PbMSP1 or WT (c15cy1) parasites (Figure 

2B). Purified schizonts were inactivated by three rounds of freezing on dry ice followed 

by thawing at room temperature before immunization and schizont lysates were injected 

intravenously. Two weeks after the final immunization, serum was collected from all animals 

and a serum pool made for each group. Total IgG was isolated from the pooled sera 

and tested for transmission-reducing activity (TR activity) in standard membrane feeding 

assays (SMFA) using Pf gametocytes (Supplementary M&M). Pf gametocytes were fed 

to A. stephensi mosquitoes in the presence of IgG obtained from mice immunized with 

Figure 2. Quantification of Pfs48/45 protein in Pfs48/45@PbMSP1 schizont lysate and transmission 
reducing (TR) activity of IgG isolated from mice immunized with Pfs48/45@PbMSP1 schizont lysates. 
A. Pfs48/45@PbMSP1 schizont lysates (500 & 250 ng), P. falciparum gametocytes (Pf Gam.; 500 
ng) and P. berghei WT schizont lysate (PbWT; 500 ng) were analyzed in Western blot analysis using 
anti-Pfs48/45 monoclonal 85RF45.1 (1:2000). Densitometry analysis was performed on signals after 
probing Pfs48/45@PbMSP1 schizont lysate (500 ng) and a dilution series (50, 25, 12.5, 6 and 3 ng) of 
recombinant Pfs48/45 (r48/45; R0.10C) with antibody 45.1. The Table shows the calculated Pfs48/45 
protein content (ng) and the percentage of Pfs48/45 protein in parasite samples; see Supplementary 
Figure S1 for determination of Pfs48/45 in samples. *quantification performed after subtraction 
of background (b/g) Optical Densitometry (OD) values and **quantitation based on regression 
curve calculations (see Supplementary Figure S1). B. Timeline showing the immunization  of mice 
with extracts of Pfs48/45@PbMSP1 and PbWT schizont lysates and collection of sera for isolation 
of IgG that is tested for TR activity in standard membrane feeding assays (SMFA) of P. falciparum 
gametocytes to Anopheles stephensi mosquitoes (see C). C. Left panel: First SMFA with IgGs from 
mice immunized with purified schizonts of Pfs48/45@PbMSP1 and PbWT. TR activity was determined 
by the mean number of oocysts 8 days after feeding, and significance of inhibition was determined 
by the zero-inflated negative binomial model described previously [28]. Right panel: Second SMFA 
with serially diluted IgGs. IgG from mice immunized with purified schizonts of Pfs48/45@PbMSP1 was 
titrated resulting in the concentrations shown in the Figure. Significant TR activity was detected until 
a concentration of 187 µg/ml (*p=0.014). Significant; *p < 0.05, ***p < 0.001.
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schizonts of either Pfs48/45@PbMSP1 or WT. In the first experiment, IgG (1500 µg/ml) from 

Pfs48/45@PbMSP1-immunized mice showed 99.8% inhibition in oocyst density (p=0.001) 

compared to the IgG obtained from WT immunized (Figure 2C). Next, TR activity was 

determined in SMFA using a dilution series of the IgG obtained from Pfs48/45@PbMSP1-

immunized mice. Significant TR activity with IgG from Pfs48/45@PbMSP1-immunized mice 
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was still observed at a concentration of 187 µg/ml (p=0.014) compared to the control IgG 

(Figure 2C). The quantitative Western blot analysis (Figure 2A) indicated that is between 

0.25-0.12% of the total Pfs48/45@PbMSP1 schizont lysate was Pfs48/45 and therefore 

it is likely that the majority of the IgG from the immunized mice is not directed against 

Pfs48/45. The failure to induce TR activity of IgG of mice immunized with WT schizont lysate 

indicates that the small proportion of anti-Pfs48/45 antibodies are mediating the TR activity 

after Pfs48/45@PbMSP1 schizont lysate immunization. The strong TR activity mediated by 

the total IgG isolated from Pfs48/45@PbMSP1 immunized mice (Figure 2C), indicates that 

Pfs48/45 expressed in P. berghei can induce antibodies with potent TR activity.     

Combined, our proof-of concept studies demonstrate that transgenic Pb schizonts 

can be used as a system to produce a difficult to express HMP protein that is correctly 

folded and retains conformational epitopes of the native protein. This opens possibilities 

to use this expression system to evaluate the immunogenicity of other difficult to express 

antigens or specific domains of these parasites. Studies using sera obtained from mice 

immunized with Pf proteins expressed by transgenic Pb parasites could be used to rank-

order novel vaccine candidate antigens, not only in TB studies but also for blood-stage 

antigens using blood stage growth inhibition assays (GIA) or sporozoite-antigens using 

inhibition of sporozoite invasion (ISI) assays [3]. Moreover, the expression in transgenic 

schizonts of HMP proteins with affinity tags will allow for the purification of these HMP 

proteins from whole parasite lysate preparations and immunization with purified protein 

will mean that all of the raised immune response is due to the target antigen and will 

permit a more detailed analyses of antigen immunogenicity, for example to examine and 

clone potent inhibitory and cross-reactive B-cells/antibodies after rodent immunization 

[34]. The creation of transgenic parasites that express antigens from multiple life-cycles 

that can induce potent immune responses is also of interest to the development of whole 

organism vaccines [35]. For example, genetically attenuated sporozoite vaccines could 

be further modified to induce immune responses against multiple life cycle stages by 

expression in sporozoites and liver stages antigens of blood- or transmission–stages to 

produce a multi stage-vaccine.
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Supplementary Figure S1. Quantification of Pfs48/45 protein in Pfs48/45@PbMSP1 schizont lysate 
by Western blot analyses as shown in Figure 2A. Densitometry and regression curve analysis was 
performed on signals after probing Pfs48/45@PbMSP1 schizont lysate (500 ng) and a dilution series 
(50, 25, 12.5, 6 and 3 ng) of recombinant Pfs48/45 fusion protein (r48/45; R0.10C) with antibody 
45.1. Regression analysis based on the dilution series of recombinant Pfs48/45 fusion (R0.10C). 
Optical densitometry (OD) values of signals before and after *background (b/g) subtraction and 
the calculated protein content and the percentage of Pfs48/45 protein of the total amount of protein 
in the P. falciparum gametocyte (Pf Gam), P. berghei WT schizont (PbWT) and Pfs48/45@PbMSP1 
schizont lysates. ** To calculate the amount and percentage of Pfs48/45 in the protein samples we 
adjusted for the proportion of Pfs48/45 (approximately 35%) in the recombinant protein R0.10C 
(a GLURP::Pfs48/45 fusion protein). 

SUPPLEMENTARY DATA
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In this thesis we describe a set of studies, performed using rodent models of malaria, 

aimed to identify methods to improve vaccines consisting of live attenuated sporozoites, in 

particular genetically attenuated parasites (GAP) vaccines. Studies in rodents and humans 

have shown that immunization with live-attenuated sporozoites can generate protective 

immunity, however induction of sterile protection in humans has required immunization 

with multiple vaccine doses and each dose consisting of relatively high numbers of 

sporozoites [1, 2]. Increasing the immunogenicity of whole sporozoite (wsp) vaccines can 

both reduce the number of sporozoites per dose and the number of vaccine doses. In 

the studies described in this thesis we attempted to increase GAP immunogenicity by: 

(i) adding adjuvants during GAP immunization; (ii) introducing genes encoding putative 

immunomodulatory proteins in the GAP genome to create ‘self-adjuvanting’ parasites; (iii) 

generating GAPs that arrest late into liver-stage development (LA-GAP) to increase antigen 

load and diversity during immunization; and (iv) exploring possibilities to genetically 

modify parasite to express vaccine antigens from different life cycle stages, in order to test 

the ability of parasites to induce immune responses against multiple life cycle stages and 

to inform the creation of a ‘multi-stage’ GAP vaccine.

IMPROVING GAP IMMUNIZATION BY THE ADDITION 
OF IMMUNOSTIMULATORY MOLECULES (CHAPTER 3)
While the precise mechanisms of protection mediated by immunization with attenuated 

sporozoites remain unknown, T cells appear to be critical for protection and in particular 

CD8+ T cells are thought to play a major role in eliminating infected hepatocytes. Early 

rodent studies using sporozoites attenuated by irradiation (Irr-Spz) have demonstrated 

a vital role for CD8+ T cells [3, 4]. Recent mechanistic investigations into protective immune 

responses induced by immunization with attenuated sporozoites have demonstrated 

diverse and robust immune responses that encompasses both CD8+ and CD4+ T cells, 

as well as a significant contribution from antibodies [5, 6]. Nonetheless, CD8+ T cells 

are considered to be the main effector cells in eliciting protection after sporozoites 

immunization [7].

Cancer immunotherapies have employed antibodies that target proteins on the surface 

of T cells, as treatment with these antibodies have been shown to restore, expand and 

enhance the function of tumor-reactive T cells. The antagonistic antibodies targeting 

CTLA-4 and PD-1 have been used to block inhibitory signals to T cells [8, 9], while agonistic 

antibodies targeting CD27, OX40 and 4-1BB on CD4+ and CD8+ T cells have been used 

to increase costimulatory signals [10-12]. These immunostimulatory antibodies have been 

shown to improve the control of tumors and this was associated with an increase in tumor-

specific T cell function [13]. 

 We show that treatment of mice with an agonistic antibody against the T cell 

costimulatory molecule OX40 enhances protective immunity after immunization with GAP 

sporozoites. The increase in protection was correlated with an expansion effector CD4+ 
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and CD8+ T cell subsets, in both the liver and the spleen. In addition α-OX40 treatment 

induced the production of effector cytokine-producing T cells in the liver and spleen. 

Previously it has been shown that targeting OX40 increases the magnitude of T cell 

responses and improves T cell functionality [14, 15]. OX40 is transiently expressed on 

T cells following cognate interactions between T cell receptors (TCRs) and antigen-major 

histocompatibility (MHC) complexes on antigen presenting cells (APCs) [15]. While OX40 

is expressed on both activated CD4+ and CD8+ T cells, OX40 expression on CD4+ T cells 

is greater than CD8+ T cells and consequently α-OX40 treatment is expected to exert its 

greatest effect on CD4+ T cells [15-17]. Our analyses of T cell responses in mice immunized 

with a single dose of GAP parasites, showed an increase in total WBC numbers in the livers 

and an increase in CD4+ effector (CD44hiCD11ahi) T cells in both liver and spleen of α-OX40 

treated mice compared to untreated mice. While protective immunity after sporozoite 

immunization is thought to largely dependent on the killing infected hepatocytes by CD8+ 

T cells and IFN-γ [18-20], adoptive transfer of CD4+ T cells from GAP-immunized C57BL/6 

mice was able to provide sterile protection to 50% of naïve animals against a WT infection, 

indicating an important role for CD4+ T cells in GAP induced immunity [19]. In addition, 

protective immunity induced by sporozoites of a P. yoelii GAP, similar to the one used 

in our study, was dependent not only on CD8+ T cells but also CD4+ T cells [21]. Since 

enhancement of CD4+ T cell responses by OX40 stimulation may lead to an increase in 

humoral immunity we examined total IgG responses generated in mice after prime-boost 

GAP immunization, either with or without α-OX40 treatment. These studies revealed that 

anti-sporozoite antibodies were generated after GAP immunization and significantly more 

IgG was generated in mice immunized with GAP plus α-OX40 treatment compared to 

mice immunized with only GAP. This observation indicates that the increase in CD4+ T cells 

after α-OX40 treatment may directly contribute to B cell maturation/activation. It is known 

that CD4+ T cell help is necessary for an effective CD8+ T cell memory response against 

non-inflammatory antigens, such as tumor cells and certain pathogens that may not carry 

sufficient danger signals [22]. Indeed, we explored the possibility of adding immune-

modulatory (danger) signals into a late arresting GAP in order to increase T cells responses 

(Chapter 4). Mice depleted of CD4+ T cells during immunization with sporozoites failed 

to exhibit a robust CD8+ T cell expansion and were not protected against challenge  

[23, 24]. Murray et al. found that CD4+ T cell help was also necessary to induce protection 

after immunization with GAP sporozoites [21]. Together, our results indicate that improving 

CD4+ T cell activation enhances protective immunity against malaria. 

Future studies 
Additional studies are required to determine if CD4+ T cell stimulation and expansion after 

anti-OX40 treatment acts only to improve humoral responses targeting sporozoites or 

also enhances CD8+ T cell responses against infected liver cells. Also how the expansion 

of T cells subsets contribute to formation of immunological memory and on duration of 
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protection requires further investigation. If this method of adjuvant treatment can be 

applied to human GAP vaccines could be determined by performing small controlled 

human malaria infection (CHMI) studies. However, the use of adjuvants with human 

malaria vaccines may be difficult to deploy in the field due to costs, applicability or side-

effects and therefore these pre-clinical studies in rodent models not only provide useful 

information of the largely unknown mechanisms underlying protective immunity but are of 

importance to select the most appropriate adjuvant to advance further. Although α-OX40 

treatment is currently in clinical trials for cancer immunotherapy, the use of antibody-based 

α-OX40 treatment for vaccines for the developing world may be unrealistic as they are 

likely to be too expensive. Other (protein based) agents that can stimulate costimulatory 

responses, including agonists of OX40 are being developed as potential adjuvants 

in vaccine development. For example, combination therapy using the protein ligand 

of OX40, OX40L, fused to a cancer vaccine have been shown to reduce breast cancer 

metastasis, by enhancing antigen specific CD4+ and CD8+ T cell responses and inhibiting 

immunosuppressive Treg responses [25]. The co-administration of proteins like OX40L 

which are likely to be cheaper and easier to produce, may therefore be more practical 

and feasible approaches to pursue. In conclusion, this study demonstrates how specific 

immune response to vaccination coupled with activation of costimulatory molecules on 

the surface of T cells, can enhance protective immunity after sporozoite immunization and 

merits further investigation to see if such approaches not only increase the magnitude 

but also the breadth of an immune responses after vaccination. Moreover, knowing that 

both formation of parasite-antigen specific CD4 and CD8 T cell responses play a role in 

the reduction of sporozoites and elimination of infected hepatocytes, we created and 

analysed GAPs that encoded immunostimulatory proteins. These so called ‘adjuvant 

GAPs’ studies are described below (Chapter 4). 

IMPROVING GAP IMMUNOGENICITY BY CREATING 
‘SELF-ADJUVANTING’ PARASITES THAT ALSO 
EXPRESS PUTATIVE IMMUNOMODULATORY 
MOLECULES (CHAPTER 4)
GAP immunization in combination with exogenous adjuvants provides useful information 

about mechanisms underlying protective immunity. Induction of protective immune 

responses by GAP immunization is dependent on sporozoites migrating to the liver and 

invading hepatocytes. However, the administration of adjuvants at the site of GAP injection 

will result in systemic distribution of the adjuvant which will therefore be considerably 

diluted at the sites where parasite antigens are taken up by antigen presenting cells (APCs), 

i.e. the liver, spleen or proximal lymph nodes [26]. In order to maximize the adjuvant effect, 

i.e. the increase of the number of APCs that have both taken up parasite antigen and have 

received adjuvant induced stimulatory signals to enhance their function, it is important 

to maximize the adjuvant effect at the point of antigen uptake and processing [26, 27]. 
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We therefore, explored the possibility of creating GAPs that were engineered to express 

immunomodulatory proteins in sporozoites and liver stages, so called ‘adjuvant GAPs’.

Four different proteins were selected with known adjuvant activity: nontoxic cholera 

toxin B (CTB) sub-unit, mouse heat shock protein Gp96, Mycobacterium heat shock 

protein X (HspX) and Salmonella flagellin (FliC), shown to act as adjuvants in other vaccine 

studies [28-36]. The selected adjuvant molecules are thought to stimulate different Toll-like 

receptors (TLRs), which can not only improve antibody and CD4+ T cell responses but 

also promote the cross-presentation of vaccine antigens directing the immune response 

towards the formation of cytotoxic (CD8+) T cells. Parasite antigen-specific CD8+ T cells are 

considered of particular importance in detection and clearance of Plasmodium-infected 

hepatocytes [19]. However, immunization with none of the four adjuvant GAP developed 

in the present study resulted in a significant increase in protective efficacy (more than 

10-fold) compared to the unmodified PyGAP in the P. yoelli-BALB/c model employed in 

this study to measure enhanced protective immunity. 

This inability to achieve significantly higher protective immunity with the adjuvant 

GAPs could be due to a number of factors, but is unlikely to be due to a poor expression of 

the adjuvant proteins. These proteins were fused to UIS4, a protein associated with the PVM, 

which surrounds the parasites inside a hepatocyte [37]. UIS4 is strongly expressed during 

Plasmodium liver stage development [38]. Our failure to measure enhanced protective 

immune responses may be due to the inability of the selected adjuvants to induce 

protective immune responses that can more effectively detect and destroy developing 

liver stage parasites. 

The selected adjuvants are known to stimulate TLR 2 (Gp96), TLR 4 (Gp96/CTB/HSPX) 

and TLR 5 (FliC) on the plasma membrane of APCs [30, 32, 34, 39] and the selection was 

based on the hypothesis that when GAP-infected hepatocytes disintegrate and release 

parasite antigens they will also simultaneously release the adjuvant, with parasite antigens 

being taken up by APCs and the released adjuvants stimulating TLRs on the same APC. 

This would then result in increased inflammatory responses against parasite antigens 

thereby improving and increasing cellular and humoral immune responses. It is possible 

that the adjuvants selected do not stimulate the most appropriate adaptive response that 

would result in the recognition and elimination of infected liver cells. In this study we did 

not directly measure the effect of the TLR-agonists on different immune cell populations 

in immunized mice and we only measured protective immunity by determination of 

the prepatent period after challenge with WT parasites. One can speculate that either 

the adjuvants did not activate the appropriate immune cells or that those that are involved 

in removal of infected liver cells are activated but this activation is not sufficient to result in 

a more than 10-fold increase in protective immunity (i.e. 1 day or more delay in patency). 

Future studies
The failure of the adjuvant GAPS to greatly enhance protective immune responses may 

be due to the immunization protocol we employed. In this study, we have used the P. 
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yoelli-BALB/c immunization protocol which involves immunization with a single dose of 

sporozoites of a late arresting PyGAP followed by a challenge with wild type sporozoites 

14 days later [40]. In future studies, the effect of the selected adjuvants on protective 

immunity may have been better observed after prime-boost immunization strategies 

where the re-call of expanded immunological memory responses may enhance protective 

immunity in different strains of mice. Indeed, such strategies might also be used to 

examine if immunization with the adjuvant GAP results in an increase of the duration 

of protective immune response compared to non-adjuvanted GAP. Whilst we were not 

able to detect a higher that 10-fold increase in vaccine potency, we have developed an 

immunization-challenge protocol, as well as a PyGAP GIMO mother line to rapidly create 

adjuvant GAPs, which can be used to evaluate other immunization schedules, additional 

adjuvants and/or novel enhanced GAPs. Novel adjuvant GAPs could be tested that encode 

other immunomodulatory molecules that have been characterized to enhance both anti-

microbial and tumor vaccines. In our study we focused on adjuvants that interact with TLRs 

on the APC cell surface; in case of take-up of GAP-infected hepatocytes by APC this may 

be an issue since both the adjuvant and parasites are intracellular within the phagosome of 

the APC. In this case, adjuvant signaling would be better if it were to trigger cytoplasmic 

pattern recognition receptors (PPRs) either inside the APC or, indeed, the infected cell. For 

example,  the C-terminus of flagellin has a NAIP5 ligand that would potentially activate 

intracellular sensing pathways, which could activate hepatocyte death and/or inflammatory 

cytokine production and perhaps increase the adjuvant potency [41, 42]. In Chapter 5 we 

only used the FliC portion of Salmonella flagellin that has been demonstrated to interact 

with TLR5 on the surface of APCs. In future studies we could therefore create and analyze 

a new adjuvant GAP that encodes full length flagellin to expand the adjuvant potential 

of this molecule. Manipulation, of the host immune response to direct and increase 

appropriate adaptive immune responses after vaccination is of value not only to enhance 

GAP vaccines but also other vaccines that need to generate immune responses to target 

liver infections.

THE GENERATION AND CHARACTERIZATION OF 
NOVEL LATE ARRESTING GAP (LA-GAP) (CHAPTER 5)
In contrast to the creation of early arresting-GAP, the generation of safe LA-GAPs have 

been challenging. Several genes have been identified that encode proteins that play an 

important role during late liver-stage development, deletion of those genes did not result 

in complete growth arrest in rodent models of malaria. A prerequisite for a GAP vaccine for 

humans use, is that the GAP sporozoites are unable to establish a potentially pathogenic 

blood-stage infection which requires that parasite growth is completely arrested during 

development in the liver.

We tested whether dual deletion of a variety of genes, with a role in late liver stage 

development, could synergize to create fully arrested GAPs. Specifically, we created 
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genetically attenuated rodent malaria parasites (GAPs) by deleting combinations of two 

genes from the parasite genome and screened for complete growth arrest during late 

liver development. The genes we selected for further investigation were: lisp1, lisp2, mei2 

and palm as they have been shown to encode proteins that have been shown to play an 

important role for final-stages of liver stage maturation/development [43-47]. 

We found that three GAPs, ∆lisp1∆lisp2, ∆mei2∆lisp1 and ∆lisp1∆palm, could produce 

blood infections in mice after infection with 5 × 104 sporozoites. In contrast no blood 

infections were observed in mice infected with ∆mei2∆lisp2 and ∆mei2∆palm 5 × 104 or 

2-3 × 105 sporozoites. However, after a high dose of 5 × 105 sporozoites of either mutant, 

some mice developed a blood infection. Given that P. yoelii mutants lacking both mei2 and 

lisp2 [48] did not result in a breakthrough blood infection even after 5 × 105 sporozoites, 

it was unexpected that we observed a breakthrough blood infection in one out of ten 

mice infected with 5 × 105 P. berghei ∆mei2∆lisp2 sporozoites. However, differences in 

attenuation phenotype between identical P. yoelii and P. berghei gene-deletion mutants 

have been reported in previous studies. For example, P. yoelli mutants lacking the gene 

encoding β-ketoacyl-ACP synthase II gene (fabb/f) show a much stronger attenuation 

phenotype [49] than P. berghei mutants lacking the orthologous fabb/f gene [50, 51].

We have examined the development the two GAPs with the strongest late-arrest 

attenuation phenotype, ∆mei2∆lisp2 and ∆mei2∆palm and compared the phenotypes to 

that of an early-arresting GAP (i.e. ∆b9∆slarp). The additive effect on the level of attenuation 

of combining lisp2 or palm with mei2 is demonstrated when we infected mice with 2 × 105 

sporozoites. In these experiments we were unable to detect blood-stage infections after 

infection with either ∆mei2∆lisp2 or ∆mei2∆palm, whereas 30% of the mice established 

a blood-stage infection when infected with the same number of ∆mei2 sporozoites.

The ∆mei2∆lisp2 and ∆mei2∆palm mutants replicate and arrest late into liver-stage 

development as shown in vitro by the presence of large intrahepatic stages that express 

the merozoite proteins MSP1 and AMA1, and in vivo through the detection of high 

parasite liver-loads 44 hours after infection. Surprisingly, mature schizonts of both mutants 

develop into significantly larger parasites than WT liver-schizonts. This may suggest that 

these parasites continue growing and/or replicating aberrantly and may therefore express 

more antigens than WT parasites at late stages of development.

We compared the immunogenicity of ∆mei2∆lisp2 and ∆mei2∆palm late-arresting 

GAPs (LA-GAPs) with immunogenicity of an early-arresting GAP (∆b9∆slarp). Immunization 

studies in both BALB/c and C57BL/6 mice showed that there were no significant differences 

in the induction of protective immunity between the two late-arresting GAPs. Moreover, 

the LA-GAPs were not significantly more protective than the early-arresting GAP. In one 

study in rodent models reported by Butler et al. [52] it was found that late-arresting 

GAPs induce stronger protective immune responses compared to early-arresting GAPs. 

It is presumed that this increase in immunogenicity arises from the greater amount and 

repertoire of antigens present in LA-GAP compared to early-arresting parasites [52]. It 

was shown that immunization with late-arresting GAP (LA-GAP) induced greater numbers 
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of a broader range of CD8+ T cells compared to early-arresting parasites. The difference 

between our study and the Butler study might be explained by differences between 

the early-arresting GAPs or the LA-GAPs used in the different studies. However, differences 

in immunogenicity of the early-arresting GAP seems unlikely, since in both studies 

the early-arresting GAP lack the slarp/sap1 gene, which would result in both mutants 

having a similar arrest phenotype and, likely, antigen profile. With respect to differences 

in the LA-GAP used, we do show that the ∆mei2∆lisp2 and ∆mei2∆palm mutants develop 

in very large schizonts expressing proteins that include proteins expressed late into liver-

stage development. In the Butler study an LA-GAP was used that lacks the fabb/f gene; 

rodent parasites lacking this gene arrest during the maturation of liver-schizonts [49, 51] 

and it has not been reported whether these parasites are enlarged or persist longer in 

mouse livers than WT parasites and it has not been reported whether these parasites are 

enlarged or persist longer in mouse livers than WT parasites. It is therefore surprising that 

∆mei2∆lisp2 and ∆mei2∆palm do not induce better protective immune responses than 

early-arresting parasites, since they are likely to express the same (if not more) antigens as 

those found in parasites lacking fabb/f. 

Another possible explanation for the differences in immunogenicity between LA-GAP 

and early-arresting GAP observed in ours and the Butler study, is the use of GAPs that 

are generated in different rodent Plasmodium species. We used P. berghei to create our 

GAPs whereas Butler et al. generated the GAP lacking fabb/f in P. yoelii. Differences in 

T- or B-cell epitopes of antigens of these two species may influence the immunogenicity 

of parasites in different mouse strains. Moreover, it has been shown that these two rodent 

Plasmodium species differentially regulate key immune-effector pathways resulting in 

differences in memory CD8+ T cell-mediated immunity against liver-stage antigens [53].

Future studies
Currently, only two genetically attenuated P. falciparum mutants have been generated, 

informed by studies performed in rodent malaria models, which have advanced into 

clinical studies. Both of these P. falciparum GAPs arrest early after hepatocyte invasion and 

consist of 2 or 3 gene-deletions; in these parasites slarp has been deleted in combination 

with either b9  [54] or with p52 and p36 [55]. Recently, a clinical safety study has been 

performed in human volunteers using the P. falciparum GAP lacking  slarp, p52 and p36. 

Ten out of ten volunteers exposed to the bites of 150-200 triple gene-deletion GAP-

infected mosquitoes remained blood-stage negative [56]. The limited number of methods 

to rapidly and cost-effectively test the attenuation and protective efficacy of P. falciparum 

GAPs limits the direct down-selection of P. falciparum GAPs, and presently very few studies 

have been performed in humans that can confirm the predictive value of rodent models 

in assessing the attenuation level of GAPs that lack certain genes or gene combinations. 

Rodent Plasmodium parasites take about 2 days to complete liver-stage development while 

this process takes a week in P. falciparum. Thus, the deletion of liver-stage specific genes 

may result in different levels of attenuation in different Plasmodium species. Therefore, 
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while the deletion of mei2 in combination with either palm or lisp2 results in very strong, 

but incomplete, attenuation in rodent parasites, additional studies in P. falciparum are 

required to investigate if deletion of the same combination of genes results in complete 

attenuation in P. falciparum. 

Based on the results of the Butler study, we anticipated that immunization of mice 

with two LA-GAPs generated in this study would also result in significantly enhanced 

protective immunity compared to the early-arresting GAP, in both BALB/c and in 

C57BL/6 mice. All the more so since the LA-GAPs ∆mei2∆lisp2 and ∆mei2∆palm appear 

to continue development at late liver-stages that may result in even more antigens per 

parasite. Therefore, our observations that protective immunity induced after ∆mei2∆lisp2 

and ∆mei2∆palm immunization is not significantly different compared to ∆b9∆slarp 

immunization, neither in C57BL/6 nor in BALB/c mice, was highly unexpected. 

Combined, our observations indicate that (1) additional gene-deletion GAPs may need 

to be screened to identify GAPs that completely arrest during late liver-stage development 

and (2) the hypothesis that the greater the amount and diversity of antigens in a LA-GAPs 

the more likely it is to generate stronger protective immunity, requires reconsideration. 

Additional studies are required to define what immune mechanisms contribute to 

the induction, maintenance and deployment of adaptive immune response after LA-GAP 

immunization and the role of different rodent malaria parasites and different mouse 

strains in inducing protective immune responses. Using different Plasmodium species 

and employing different immunization protocols it might be possible to unveil these 

processes. These studies have important implications for the development of LA-GAPs for 

the human parasite P. falciparum. However, only by clinically evaluating of both the safety 

and the immunogenicity of LA-GAP will we be able to draw conclusions on the benefits of 

using LA-GAP compared to early-arresting GAP for vaccination. 

GENERATION OF TRANSGENIC PARASITES 
EXPRESSING ANTIGENS FROM OTHER LIFE CYCLE 
STAGES (CHAPTER 6)
In order to establish if transgenic parasites can express additional proteins and if these 

antigens are able to provoke immune responses we examined if P. berghei blood-stage 

schizonts could be used express the P. falciparum transmission blocking vaccine candidate 

antigen, Pfs48/45. The transmission-blocking vaccine candidate Pfs48/45 from the human 

malaria parasite Plasmodium falciparum is known to be difficult to express in heterologous 

systems, either as full-length protein or as correctly folded protein fragments that retain 

conformational epitopes [57, 58]. The Pfs48/45 protein is expressed in Plasmodium 

gametocytes and gametes [59, 60] and contains multiple cysteine-rich domains with 

multiple disulfide bonds [44, 61, 62]. These constitute distinct conformational B cell 

epitopes that can be recognized by several monoclonal antibodies some of which have 

transmission-blocking (TB) activity [63]. The distinct and complex structure of Pfs48/45 is 
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thought to contribute to difficulties of expression of this protein in heterologous expression 

systems [64].

We expressed Pfs48/45 as a transgene under control of the strong P. berghei schizont-

specific msp1 gene promoter (Pfs48/45@PbMSP1). We show that these Pfs48/45@

PbMSP1 schizont-infected red blood cells not only produced full-length Pfs48/45 but also 

that Pfs48/45 retains it structural integrity, as confirmed using a panel of conformation-

specific monoclonal antibodies. We confirmed that this P. berghei expressed Pfs48/45 

could evoke antibody responses, in mice, that reduce P. falciparum development in 

the mosquito. Specifically, we showed that purified IgG isolated from mice immunized 

with transgenic Pfs48/45@PbMSP1 schizont lysate exhibited strong transmission-reducing 

activity in mosquitoes infected with P. falciparum, using standard membrane feeding. 

Quantitative Western blot analysis indicated that only 0.25-0.12% of the total Pfs48/45@

PbMSP1 schizont lysate was Pfs48/45 and therefore it is likely that the majority of 

the IgG from the immunized mice is not directed against Pfs48/45. Further, the failure 

to IgG from mice immunized with WT schizont lysate to block parasite development in 

the mosquito, indicates that the small proportion of anti-Pfs48/45 antibodies are mediating 

the transmission reducing activity after Pfs48/45@PbMSP1 schizont lysate immunization. 

These results demonstrate that transgenic rodent malaria parasites expressing human 

malaria antigens can be used as means to evaluate immunogenicity and functionality of 

difficult to express malaria vaccine candidate antigens. 

Future studies:
The proof-of concept studies in Chapter 6 demonstrate that transgenic P. berghei parasites 

can be used as a system to produce a difficult to express human Plasmodium proteins, 

which are correctly folded and retain the conformational epitopes of the native protein. 

Therefore transgenic rodent malaria parasites can be used as expression systems to more 

efficiently express, screen, validate and down-select human Plasmodium antigens as 

potential novel malaria vaccine candidates.

This P. berghei expression system may therefore be used to evaluate the immunogenicity 

of other difficult to express antigens or specific domains of these parasite antigens. 

Studies using sera obtained from mice immunized with P. falciparum proteins expressed 

by transgenic P. berghei parasites could be used to rank-order novel vaccine candidate 

antigens, not only in transmission-reduction studies but also for blood-stage antigens 

using blood stage growth inhibition assays (GIA) or sporozoite-antigens using inhibition 

of sporozoite invasion (ISI) assays [65]. Moreover, the expression in transgenic schizonts 

of human Plasmodium proteins with affinity tags would allow for the purification of 

these proteins from whole parasite lysate preparations. All of the raised immune 

response Immunization with purified protein would be due to the target antigen, and 

therefore permit a more detailed analyses of antigen immunogenicity, for example to 

examine and clone potent inhibitory and cross-reactive B-cells/antibodies after rodent  

immunization [66].
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Tis study demonstrates that it is possible to express vaccine antigens, from different 

life cycle stages in a genetically modified parasite and thus it opens up possibilities to 

create GAPs that express antigens from multiple life-cycles, so called multi-stage GAP 

vaccine, which could not only protective immune responses against sporozoite and liver 

stages but also to blood- and mosquito-stages. Moreover, this study suggests that it might 

be possible to express vaccine antigens from other Plasmodium strains or species, i.e. P. 

vivax, to create stage- and strain-transcending GAP vaccines, respectively. 
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SUMMARY
A number of studies have shown that immunization with live, attenuated sporozoites 

can generate strong protective immunity against malaria infection in humans. The major 

challenge for sporozoite-based vaccines is to produce a highly immunogenic live-

attenuated vaccine, which requires the fewest attenuated sporozoites per dose and 

the fewest doses in order to induce sustained sterile protection against malaria in 

the field. In this thesis, we describe a set of studies performed in rodent models of 

malaria to improve malaria vaccines consisting of sporozoites of genetically attenuated 

parasites (GAPs). We attempted to increase GAP immunogenicity by: (i) adding adjuvants 

during GAP immunization; (ii) introducing genes encoding putative immunomodulatory 

proteins in the GAP genome to create ‘self-adjuvanting’ GAP; (iii) generating GAP that 

arrest late into liver-stage development (known as late-arresting GAPs, or “LA-GAPs”) to 

increase antigen load and diversity during immunization; and (iv) exploring possibilities to 

genetically modify parasite to express vaccine antigens from different life-cycle stages, in 

order to test the ability of GAPs to induce immune responses against multiple life-cycle 

stages and to inform the creation of a ’multi-stage’ GAP vaccine.

We have used well-established rodent malaria models in combination with standard 

and adapted immunization protocols in order to evaluate protective immune responses 

induced by different GAPs and immunization approaches. In addition, we also used 

a variety of well-established genetic modification technologies to create a variety of 

(transgenic) rodent malaria parasite mutants and made use of transgenic parasites that 

express luminescent and fluorescent reporter proteins to analyze parasite development. 

In Chapter 2 we provide a review on the use of transgenic malaria parasites in vaccine 

research, both for testing novel vaccines and for generation of GAP-based vaccines. 

In Chapter 3 we describe studies in which we examine if agonistic OX40 monoclonal 

antibody (OX40 mAb) treatment could be used to improve protective immunity induced by 

immunization with an LA-GAP. In cancer immunotherapies, agonistic antibodies that target 

T cell surface proteins such as CD27, OX40 (CD134) and 4-1BB (CD137) have been used to 

enhance T cell function by increasing co-stimulation. In these studies, we analyze the effect 

of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice 

immunized with GAP. We show that OX40 stimulation enhanced protective immunity after 

vaccination as shown by an increase in the number of protected mice and delay to blood-

stage infection after challenge with wild-type sporozoites. Consistent with the enhanced 

protective immunity enforced by OX40 stimulation resulted in increased expansion of 

antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and 

spleen, and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. 

In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-

specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors 

can improve sporozoite-based vaccine efficacy.
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GAP immunization in combination with exogenous adjuvants provides useful 

information about mechanisms underlying protective immunity. However, the use of 

such adjuvants in populations where malaria is endemic may be difficult due to cost-of-

goods, applicability or side-effects. Due to the limitations of co-injecting adjuvants with 

attenuated sporozoites, we describe in Chapter 4 studies where we explored the possibility 

of creating GAPs that express immunomodulatory proteins in sporozoites and liver stages, 

so-called ‘self-adjuvanting GAPs’. We selected four TLR agonists that can increase and 

direct adaptive immune responses and have the ability to improve cross-presentation of 

antigens as has been demonstrated in other animal and/or human studies. The selected 

adjuvant proteins are: (i) nontoxic cholera toxin B subunit from Vibrio cholerae; (ii) heat 

shock protein Gp96 of mice; (iii) heat shock protein X from Mycobacterium tuberculosis; 

and (iv) the TLR5 binding region of Salmonella typhimurium flagellin. The genes encoding 

the ‘adjuvant’ proteins were fused to a Plasmodium gene expressed in liver stages, uis4. 

UIS4 is located at the parasitophorous vacuole membrane (PVM) in infected hepatocytes. 

We fused the adjuvant proteins to a PVM protein, as it has been shown that ovalbumin 

(OVA) fused to proteins located in the PV/PVM induce stronger T cell responses than 

ovalbumin expressed in the cytoplasm of transgenic parasites. To facilitate the generation 

of multiple ‘self-adjuvanting’ lines in P. yoelii LA-GAP, we generated a GIMO locus in the P. 

yoelii fabb/f gene locus, thereby creating a novel P. yoelii GIMO GAP mother line. This 

line was used for the rapid introduction of the adjuvant fusion-transgenes into the P. yoelii 

genome without retention of a drug-selectable marker (SM). The four adjuvant GAPs were 

analysed for protective immunity using the P. yoelli-BALB/c screening model for assessing 

protective immunity after GAP immunization. When compared to immunization performed 

with non-adjuvanted P. yoelii  fabb/f GAP, we were unable to observe a significant 

(more than 10-fold) enhancement  in protection  against wild-type P. yoelii  sporozoite 

challenge after immunization with the four adjuvant GAPs. Several possible explanations 

for the inability to achieve significantly higher protective immunity with the adjuvant 

GAPs are discussed in Chapter 4. Whilst we were not able to detect a higher than 10-fold 

increase in vaccine potency, we have developed an immunization-challenge protocol, as 

well as a novel P. yoelii GIMO GAP mother line to rapidly create adjuvant GAPs, which 

can be used to evaluate other immunization schedules, additional adjuvants and novel  

enhanced GAPs. 

In Chapter 5 we explore the creation of novel LA-GAPs.  It has been shown that 

immunization of mice with GAP that arrest late during liver stage development can induce 

higher levels of protective immunity compared to immunization with GAP that arrest early 

after invasion of hepatocytes. Specifically, it has been shown that LA-GAPs induce greater 

numbers of a broader range of CD8+ T cells, which results in increased protection against 

a malaria infection compared to immunization with early-arresting GAP, most probably due 

to a greater number and repertoire of antigens expressed by LA-GAPs. Currently, three 

P. falciparum GAPs have been developed for clinical evaluation and all are early-arresting 

GAPs, which arrest development soon after hepatocyte invasion. In contrast to the creation 
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of early arresting-GAPs, the generation of safe LA-GAPs have been challenging. Several 

genes have been identified that encode proteins that play an important role during late 

liver stage development but deletion of those genes did not result in complete growth 

arrest in rodent models of malaria. In order to create an LA-GAP that completely arrests 

late into liver stage development and cannot establish a blood infection, we describe 

studies where we create double gene-deletion mutants using combinations of different 

genes that have a role in late liver stage development and could synergize to create 

fully arrested GAPs. Four genes, lisp1, lisp2, mei2 and palm were selected that encode 

proteins that have been shown to play an important role for final maturation of liver stages. 

We created the following double gene-deletion mutants: ∆lisp1∆lisp2, ∆mei2∆lisp1, 

∆lisp1∆palm, ∆mei2∆lisp2 and ∆mei2∆palm. We found that three GAPs, ∆lisp1∆lisp2, 

∆mei2∆lisp1 and ∆lisp1∆palm, could produce blood infections in mice after infection 

with 5 × 104 spz. In contrast, no blood infections were observed in mice infected with 

5 × 104 or 2-3 × 105 ∆mei2∆lisp2 and ∆mei2∆palm spz. However, after a high dose of 

5 × 105 spz of either mutant, some mice developed a blood infection. The ∆mei2∆lisp2 

and ∆mei2∆palm mutants replicated and arrested late into liver-stage development as 

shown in in vitro cultures by large intrahepatic stages that express the merozoite proteins 

MSP1 and AMA1, and in vivo where high parasite liver-loads are detected 44 hours after 

infection. We compared the immunogenicity of ∆mei2∆lisp2 and ∆mei2∆palm LA-GAPs 

with the immunogenicity of an early-arresting GAP (∆b9∆slarp). Immunization studies 

in both BALB/c and C57BL/6 mice showed that there were no significant differences in 

the induction of protective immunity between the two LA-GAPs. Moreover, the LA-GAPs 

were not significantly more protective than the early-arresting GAP. These studies indicate 

that the hypothesis that the greater the amount and diversity of antigens in an LA-GAP, 

the more likely it is to generate stronger protective immunity, requires reconsideration.

The creation of GAPs expressing vaccine antigens from different parasite life-cycle 

stages could improve GAP vaccine potency by providing stage-transcending immunity. In 

Chapter 6 we created transgenic parasites that express additional antigens, and examined 

if the introduced antigen provoked specific immune responses. Specifically, we generated 

P. berghei parasite that express the P. falciparum transmission-blocking vaccine candidate 

antigen, Pfs48/45. We expressed Pfs48/45 in P. berghei blood stages, as blood stages are 

easier to produce than sporozoites, and next we examined if these blood stage parasites 

could be used to provoke antibody responses against Pfs48/45. In addition to providing 

a template for creating ‘enhanced’ GAPs that express vaccine antigens from multiple 

parasite life-cycle stages, these studies also demonstrate the utility of P. berghei parasites 

as a P. falciparum protein expression system. Efficient and conformationally-accurate 

expression of Plasmodium proteins in heterologous systems, such as yeast or bacteria, 

is frequently problematic resulting in misfolded or incorrectly modified proteins, which 

are often poorly expressed. This hampers the screening of antigens of human malaria 

parasites in immunization studies for their suitability as vaccine candidate antigens. We 

reasoned that the use of transgenic rodent malaria parasites expressing human malaria 
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proteins for the production of such proteins would circumvent problems associated with 

expression in heterologous expression systems, including peculiarities of post-translational 

modifications and Plasmodium-specific domains involved in protein trafficking and cellular 

location. Hence, in Chapter 6 we also describe studies where we express full-length 

Pfs48/45 in the rodent parasite P. berghei. Expression of Pfs48/45 for TB immunization 

studies has been problematic in most commonly used expression systems, mainly due to 

incorrect or insufficient protein folding, which is dependent on the correct formation of 

disulfide bridges in this cysteine-rich protein. We expressed Pfs48/45 as a transgene under 

control of the strong P. berghei schizont-specific msp1 gene promoter (Pfs48/45@PbMSP1). 

Pfs48/45@PbMSP1 schizont-infected red blood cells produced full-length Pfs48/45 and 

the structural integrity of Pfs48/45 was confirmed using a panel of conformation-specific 

monoclonal antibodies that bind to different Pfs48/45 epitopes. Sera from mice immunized 

with transgenic Pfs48/45@PbMSP1 schizonts showed strong transmission-reducing activity 

in mosquitoes infected with P. falciparum using standard membrane feeding. These results 

demonstrate that transgenic rodent malaria parasites expressing human malaria antigens 

can be used as a means to evaluate immunogenicity and functionality of difficult-to-

express malaria vaccine candidate antigens. 
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NEDERLANDSE SAMENTVATTING
Verschillende onderzoeken hebben laten zien dat immunisatie met levende, verzwakte 

sporozoieten een krachtige, beschermende afweer tegen malaria infecties kan induceren. 

De grootste uitdaging in het toepassen van vaccins gebaseerd op verzwakte sporozoieten 

is het maken van een vaccin dat een duurzame, volledige bescherming tegen een malaria 

infectie kan induceren met zo weinig mogelijk sporozoieten per dosis en zo weinig mogelijk 

doses per vaccinatieregime. 

Dit proefschrift behandeld een reeks van studies uitgevoerd in knaagdiermodellen 

van malaria met als doel om malaria vaccins, die bestaan uit verzwakte sporozoieten 

van genetisch geattenueerde parasieten (GAP), te verbeteren. Wij hebben getracht  

de immunogeniciteit van de vaccins te verhogen door: (i) gebruik te maken van 

immunologische adjuvantia tijdens GAP immunisaties; (ii) introductie van genen coderend 

voor potentiele, immuun-modulerende eiwitten in het genoom van de GAP om zo ‘zelf-

adjuverende’ GAPs te ontwikkelen; (iii) het genereren van GAPs waarvan de ontwikkeling 

in het leverstadium laat tot stilstand wordt gebracht (LA-GAP; Late Arrester GAP) en 

daardoor blootstelling aan meer antigenen te bewerkstelligen gedurende de immunisatie; 

en (iv) het verder genetisch modificeren van GAPs door genen te introduceren coderend 

voor antigenen van diverse ontwikkelingsstadia van de parasiet om te onderzoeken of het 

mogelijk is om een zogenaamd ‘multi-stage’ vaccin te ontwikkelen dat een afweerreactie 

kan opwekken tegen antigenen van diverse ontwikkelingsstadia.

Wij hebben gebruik gemaakt van veelvuldig toegepaste knaagdiermalaria-modellen in 

combinatie met zowel standaard als aangepaste immunisatieprotocollen voor de evaluatie 

van beschermende afweerreacties opgewekt door vaccinaties met de verschillende GAPs 

en immunisatie-strategieën. Daarnaast hebben wij in deze studies een verscheidenheid 

aan moleculaire technieken toegepast om diverse genetisch gemodificeerde malaria 

parasieten te maken en is er gebruik gemaakt van transgene malaria parasieten die 

luminescerende en fluorescerende indicatoreiwitten tot expressie brengen om parasiet-

infecties te analyseren. In Hoofdstuk 2 wordt een overzicht gegeven van het gebruik 

genetisch gemodificeerde malaria parasieten in vaccinonderzoek, zowel voor het testen 

van nieuwe vaccins als voor het maken van GAP vaccins.

In Hoofdstuk 3 beschrijven wij studies waarin wij onderzoeken of behandeling met 

een agonistisch OX40 monoclonaal antilichaam (OX40 mAb) toegepast kan worden om 

de afweer na immunisatie met een LA-GAP te versterken. Agonistische antilichamen 

die reageren met oppervlakte-eiwitten van T cellen zoals CD27, OX40 (D134) en 4-1BB 

(CD137) worden toegepast in immunotherapieën tegen kanker waarin deze antilichamen 

door co-stimulatie de activiteit van T cellen verhogen. In deze studies hebben wij het 

effect van behandeling met OX40 mAb op de afweerreactie geanalyseerd in GAP-

geïmmuniseerde muizen. Wij tonen aan dat stimulatie met OX40 een verhoogde afweer 

induceert. Dit uit zich in een groter aantal beschermde muizen en een uitgestelde infectie 

in het bloed na blootstelling van de geïmmuniseerde muizen aan een malaria infectie. 

NEDERLANDSE SAMENTVATTING
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Overeenkomstig met de verhoogde afweer, laat OX40 stimulatie een verhoogde toename 

zien van effector (CD11ahiCD44hi) CD8+ en CD4+ T cellen  in de lever en milt, alsmede 

een toename van het aantal IFN-γ en TNF producerende CD4+ T cellen in deze organen. 

GAP immunisatie in combinatie met OX40 behandeling laat bovendien een significante 

toename zien van sporozoiet-specifieke IgG reacties. Deze studies laten zien dat stimulatie 

van co-stimulatoire T cel receptoren de effectiviteit van sporozoiet-vaccins kan verbeteren.

GAP immunisatie gecombineerd met toegediende adjuvantia geeft bruikbare 

inzichten in de onderliggende mechanismen die een rol spelen in de totstandkoming 

van een beschermende afweer. Echter, het gebruik van dergelijke adjuvantia in malaria-

endemische gebieden is niet eenvoudig  vanwege de kosten, de minder gemakkelijke 

toediening en eventuele bijwerkingen die de adjuvantia teweeg kunnen brengen. Vanwege 

deze beperkingen, beschrijven wij in Hoofdstuk 4 studies waarin wij de mogelijkheden 

hebben onderzocht om zogenaamde zelf-adjuverende GAPs te ontwikkelen die immuun-

modulerende eiwitten tot expressie brengen. Vier TLR agonists werden geselecteerd op 

hun vermogen adaptieve immuunreacties te sturen en te verhogen en welke in staat zijn 

om kruispresentatie van antigenen te verbeteren zoals eerder is aangetoond in studies in 

proefdieren of mensen. De geselecteerde adjuvant-eiwitten zijn: (i) ‘nontoxic cholera toxin 

B subunit’ van Vibrio cholerae (CTB); (ii) ‘heat shock protein Gp96’ van muizen (Gp96); 

(iii) ‘heat shock protein X’ van Mycobacterium tuberculosis (HspX); en (iv) ‘TLR5 binding 

region’ van Salmonella typhimurium flagellin. De genen coderend voor deze adjuvant-

eiwtten werden gefuseerd met uis4, een gen dat tot expressie komt in het leverstadium. 

UIS4 is gelokaliseerd op het ‘parasitophorous vacuole membrane’ (PVM) in geïnfecteerde 

hepatocyten. De adjuvant-eiwitten zijn gefuseerd met een PVM-membraaneiwit omdat 

eerder is aangetoond dat ovalbumine (OVA), gefuseerd met membraan-eiwitten 

van de PVM, sterkere T cel reacties induceert dan wanneer OVA tot expressie wordt 

gebracht in het cytoplasma van transgene parasieten. Voor het maken van meerdere, 

zelf-adjuverende LA-GAP, werd een GIMO locus gegenereerd in het genoom van een 

LA-GAP van de knaagdier malaria parasiet P. yoelii voor het introduceren van transgenen, 

waardoor een nieuwe P. yoelii GIMO LA-GAP moederlijn werd gecreëerd. Deze lijn is 

gebruikt voor het eenvoudig en snel introduceren van de gefuseerde adjuvant-genen 

zonder dat selectiemarkers in het genoom aanwezig blijven. De vier resulterende zelf-

adjuverende GAP lijnen werden getest op hun vermogen een beschermende afweer te 

induceren in het P. yoelli-BALB/c screening model voor analyse van afweer tegen een 

malaria infectie na GAP immunisatie. Vergeleken met immunisaties uitgevoerd met een 

niet zelf-adjuverende P. yoelii LA-GAP, hebben we geen significante (meer dan 10-voudig) 

verhoging van beschermende afweer tegen een malaria infectie kunnen aantonen na 

immunisatie met de vier zelf-adjuverende GAPs. Verschillende mogelijke verklaringen 

hiervoor worden in Hoofdstuk 4 besproken. Alhoewel wij geen significante verbetering 

van de immunogeniciteit van GAP hebben kunnen bewerkstelligen, hebben wij wel een 

immunisatie-infectie protocol ontwikkeld alsmede een GAP GIMO moederlijn gecreëerd 

waarmee snel en efficiënt nieuwe zelf-adjuverende GAP lijnen gemaakt en getest kunnen 
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worden voor de evaluatie van nieuwe immunisatie-strategieën, additionele adjuvantia en 

nieuwe, verbeterde GAPs. 

In Hoofdstuk 5 onderzoeken wij het maken van nieuwe’ late-arrester’ GAPs (LA-GAPs). 

Er is aangetoond in muizen dat immunisatie met GAP, waarvan de ontwikkeling laat in 

het leverstadium tot stilstand komt (‘late arresters’), een hogere mate van beschermende 

immuniteit opwekt in vergelijking met immunisatie met GAP waarvan de ontwikkeling 

vroeg tot stilstand komt in levercellen. Aangenomen wordt dat LA-GAPs meer antigenen 

tot expressie brengen waardoor zij meer en een grotere verscheidenheid aan CD8 T cellen 

activeren tijdens de immunisatie. Dit resulteert in een verhoogde afweer tegen een infectie 

met malaria in vergelijking met de afweer na immunisatie met GAPs die vroeg in hun 

ontwikkeling in de lever worden geremd. Op dit moment zijn er drie P. falciparum GAPs 

ontwikkeld voor klinische evaluatie van de immunogeniciteit. Alle drie GAPs zijn echter 

GAPs die vroeg in hun ontwikkeling in het leverstadium, kort na invasie van de levercel, 

worden geremd. In tegenstelling tot de ontwikkeling van deze GAPs, is de ontwikkeling van 

LA-GAPs een grote uitdaging gebleken. Verschillende genen, coderend voor eiwitten die 

een belangrijke rol spelen in het late leverstadium,  zijn geïdentificeerd maar uitschakeling 

van deze genen in knaagdiermodellen van malaria heeft niet geresulteerd in een volledige 

remming van de ontwikkeling van de parasiet in de lever. Om een veilige LA-GAP  

te ontwikkelen die laat in zijn ontwikkeling in de levercel volledig tot stilstand komt en 

geen doorbraak kent naar de bloedstadia, beschrijven wij studies waarin wij genetisch 

gemodificeerde parasieten ontwikkelen met dubbele gen-deleties waarbij verschillende 

combinaties van genen worden uitgeschakeld. Vier genen, lisp1, lisp2, mei2 en palm werden 

geselecteerd waarvan bekend is dat ze een rol spelen in de ontwikkeling van de parasiet  

in het late leverstadium. Wij hebben de volgende dubbele gen-deletie mutanten (GAPs) 

gemaakt: ∆lisp1∆lisp2, ∆mei2∆lisp1, ∆lisp1∆palm, ∆mei2∆lisp2 and ∆mei2∆palm. Bij drie 

GAPs, ∆lisp1∆lisp2, ∆mei2∆lisp1 en ∆lisp1∆palm, hebben we geconstateerd dat infectie 

van muizen met 5 × 104 sporozoieten toch resulteerde in een bloed-infectie in een aantal 

muizen. Twee andere GAPs daarentegen, ∆mei2∆lisp2 en ∆mei2∆palm, lieten geen 

infecties van het bloed zien na infectie van muizen met 5 × 104 or 2-3 × 105 sporozoieten. 

Echter, na infectie met een hogere dosis van 5 × 105 sporozoieten bleken beide mutanten 

bloedinfecties te veroorzaken in sommige muizen. Wij vonden dat de ontwikkeling van  

de ∆mei2∆lisp2 en ∆mei2∆palm mutanten pas laat geremd werd in leverstadium. Dit werd 

aangetoond door de aanwezigheid van grote, delende leverstadia in levercel kweken, 

die de merozoiet-specifieke eiwitten MSP1 en AMA1 tot expressie brengen en tevens 

door het aantonen van grote aantallen parasieten, in vivo in muizen, in de lever 44 uur 

na infectie. De immunogeniciteit van de ∆mei2∆lisp2 en ∆mei2∆palm LA-GAPs werd 

door ons vergeleken met de immunogeniciteit van de GAP ∆b9∆slarp die vroeg geremd 

wordt in ontwikkeling na invasie van lever cellen. Immunisatie-studies in zowel BALB/c en 

C57BL/6 muizen hebben aangetoond dat er geen significante verschillen zijn tussen beide 

LA-GAPs met betrekking tot hun vermogen een beschermende immuniteit te induceren. 

De LA-GAPs lieten bovendien niet meer bescherming zien dan de GAP ∆b9∆slarp die 
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vroeg geremd wordt in de lever. Deze studies laten derhalve zien dat de hypothese, 

waarin wordt verondersteld dat de grotere hoeveelheid/diversiteit van antigenen van een 

LA-GAP verantwoordelijk is voor een sterkere afweerreactie in vergelijking met een GAP 

waarvan de ontwikkeling vroeg tot stilstand komt, opnieuw bekeken moet worden.  

Het creëren van GAPs die vaccin-kandidaat antigenen van diverse stadia van de 

levenscyclus van de parasiet tot expressie brengen zou de effectiviteit van het GAP 

vaccin ten goede kunnen komen door hun vermogen een immuniteit op te wekken tegen 

meerdere ontwikkelingsstadia van de parasiet. In Hoofdstuk 6 hebben we transgene 

parasieten ontwikkeld die additionele antigenen tot expressie brengen en hebben wij 

onderzocht of het geïntroduceerde antigeen specifieke immuunreacties opwekte. Meer 

specifiek, wij hebben een transgene lijn gemaakt van de knaagdier malaria parasiet  

P. berghei, die het zogenaamde ‘transmission blocking vaccine antigen’ Pfs48/45 van  

de humane parasiet P. falciparum tot expressie brengt in de bloedstadia. Dit gametocyt-

specifieke antigen werd tot expressie gebracht in de P. berghei bloedstadia omdat 

bloedstadia, in tegenstelling tot sporozoieten, makkelijker te produceren zijn. Vervolgens 

hebben we onderzocht of de transgene bloedstadia gebruikt kunnen worden voor het 

induceren van specifieke immuunreacties tegen Pfs48/45. Deze studies zijn niet alleen een 

voorbeeld voor het maken van geoptimaliseerde GAPs die vaccin antigenen van diverse 

stadia tot expressie brengen, maar laten ook zien dat P. beghei toegepast kan worden 

als expressiesysteem voor P. faciparum antigenen. Efficiënte en conformatie-accurate 

expressie van P. falciparum eiwitten in heterologe systemen, zoals gist of bacteriën, is 

vaak problematisch, resulterend in verkeerd gevouwen of niet goed gemodificeerde 

eiwitten. Dit hindert de screening van eiwitten van humane parasieten als geschikte 

vaccin-kandidaten in immunisatie studies. We hebben verondersteld dat het gebruik van 

transgene knaagdier malariaparasieten als expressiesysteem voor eiwitten van humane  

malariaparasieten de problemen geassocieerd met het gebruik van heterologe 

expressiesystemen zou kunnen omzeilen, inclusief de problemen met betrekking tot post-

translationele modificaties en expressie van Plasmodium specifieke domeinen betrokken 

bij eiwitmigratie en cellulaire lokalisatie. In Hoofdstuk 6 beschrijven we studies waarin 

we het gehele Pfs48/45 eiwit tot expressie brengen in blodstadia van de knaagdier 

malariaparasiet P. berghei. Expressie van Pfs48/45 voor immunisatiestudies in gangbare 

expressiesystemen is moeilijk gebleken, voornamelijk door incorrecte of niet voldoende 

vouwing van het eiwit, wat afhankelijk is van de correcte formatie van zwavelbruggen in dit 

cysteïne-rijke eiwit. We hebben Pfs48/45 als transgen tot expressie gebracht onder controle 

van de sterke, P. berghei schizont-specifieke msp-1 promoter (Pfs48/45@PbMSP1). Rode 

bloedcellen geïnfecteerd met Pfs48/45@PbMSP1 schizonten lieten expressie zien van het 

Pfs48/45 eiwit en de structurele integriteit van Pfs48/45 werd aangetoond met een reeks 

aan conformatie-specifieke monoclonale antilichamen gericht tegen verschillende Pfs48/45 

epitopen. Sera van muizen geïmmuniseerd met transgene Pfs48/45@PbMSP1 schizonten 

lieten, middels standaard membraanvoedingen, een sterk gereduceerde transmissie 

activiteit zien in muggen geïnfecteerd met P. faciparum. Deze resultaten tonen aan dat 
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transgene knaagdier malariaparasieten, welke antigenen van humane malariaparasieten 

tot expressie brengen, gebruikt kunnen worden om de immunogeniciteit en functionaliteit 

te evalueren van malaria vaccin kandidaat antigenen, die in heterologe systemen moeilijk 

tot expressie kunnen worden gebracht. 
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