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General introduction

The family of Polyomaviridae

Ludwig Gross discovered the first polyomavirus (PyV) in 1953, while he was study-

ing murine leukemia virus (MLV). He observed that newborn mice inoculated 

with a contaminated preparation of MLV developed not only leukemia but also 

tumours of the parotid gland (1). Due to its ability to induce various (“poly”) 

tumours (“oma”) in mice, the virus was later named mouse PyV (2, 3). Since 1999, 

PyVs have been recognized as a separate virus family, the Polyomaviridae (4). Before 

that time they belonged to the genus Polyomavirus in the family Papovaviridae that 

contained the papillomaviruses, PyVs and the simian vacuolating agent 40 (SV40).

SV40, the prototype of the Polyomaviridae family (5), was first identified as a 

contaminant of rhesus monkey kidney cell cultures used for poliovirus and 

adenovirus vaccine production between 1955 and 1963 (6, 7). This caused serious 

concerns, but so far SV40 has never been shown to be harmful in humans (8). 

In general, SV40 only leads to a persistent asymptomatic infection of its natural 

host, the rhesus macaque (9).

Advanced techniques such as polymerase chain reaction (PCR) with degenerated 

primers, rolling circle amplification (RCA), and next generation sequencing (NGS) 

have led to a fast increase in identification of novel PyVs during the last decade 

(4, 10, 11). Of the approximately 100 PyVs currently known, 80 have been recently 

classified as species (4, 11).

PyVs are small, non-enveloped viruses with circular dsDNA genomes of approxi-

mately 5 kbp (Table 1). They have a restricted host range and besides mammalian 

viruses, PyVs have also been isolated from birds, reptiles, amphibians, fish and 

invertebrates (12, 13).

Virion structure and viral genome

Members of the Polyomaviridae family demonstrate structural similarity, with 

similar capsid sizes, high levels of genetic homology, and comparable genome 

Table 1. Characteristics of the family Polyomaviridae

Virion Non-enveloped, 40-45 nm, icosahedral

Genome Approximately 5 kbp circular dsDNA

Replication Bidirectional from a unique origin of DNA replication

Translation Early and late transcripts, alternative splicing, alternative open reading frames

Host range Mammals, birds, fish, reptiles, amphibians, invertebrates

Taxonomy Four genera including more than 80 species
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sizes. PyV particles are built up of an icosahedral capsid, enclosing a single copy 

of the viral genome. The capsid is comprised of the virus-encoded capsid proteins 

VP1, VP2 and VP3, and consists of 72 pentameric capsomers in a skewed lattice 

arrangement (T = 7) (Figure 1). VP1 is the major virion protein accounting for 80% 

of the total protein content (14). The protruding pentamers are composed of five 

copies of VP1, stabilized by intra- and inter-pentameric disulphide bonds and Ca2+ 

cations. In addition to these pentamers residing at the outer surface of the viral 

capsid, the other viral proteins VP2 and VP3, reside in the inner part of the viral 

particle, where a single copy of one of these two proteins binds into the cavity 

on the internal face of each pentamer in a hair-pin like manner and links the 

genome to the capsid (Figure 1) (10, 11, 15).

All PyVs have a circular dsDNA genome that is packed with cellular histones and 

divided in three functional domains; the early region encoding the regulatory 

proteins, called tumor (T) antigens, the late region encoding capsid proteins (VP1, 

VP2 and VP3), and the non-coding control region (NCCR), which contains the 

origin of DNA replication (ori) and the promoter/enhancer elements directing 

transcription of the viral genes (Figure 2).

Figure 1. Cryo-electron microscopy structure of BK polyomavirus (BKPyV) viral particles (adopted 
from (14)). 

 
A External view of the BKPyV virion shown at a contour level of 0.022. A viral protein VP1 pentamer 
is highlighted. B View of a 40-Å-thick slab through the unsharpened/unmasked virion map shown at a 
contour level of 0.0034. Pyramidal density below each VP1 penton and two shells of electron density 
adjacent to the inner capsid layer can be seen. The density within 6 Å of the fitted coordinates for SV40 
VP1 is coloured grey. Density for VP2 and VP3 is coloured blue/green and for packaged dsDNA yellow/
pink.
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The early region on the proximal side of the ori is transcribed before genome 

replication starts and encodes amongst others the large (LT) and small tumor (ST) 

antigen, which are expressed from two different mRNAs derived by alternative 

splicing of a single primary transcript. LT and ST accumulate in the nucleus and 

help in the replication of viral DNA.

LT is the major regulatory protein and is indispensable for PyV replication. During 

the viral DNA replication process, LT forms a multimeric complex which binds 

to the ori and acts like a helicase to facilitate the transcription of the late coding 

region. LT is also a key regulatory molecule driving the host cell to S phase of the 

cell cycle by binding to the tumor suppressor proteins Rb, p107, p130, and p53 

(16). ST is involved in viral replication, cell cycle progression, and transformation 

(15, 16).

Figure 2. Schematic representation of the BK polyomavirus genome made up of circular dsDNA 
(adopted from (4)). Regions that code for the indicated gene products are shown in colour. The 
agnoprotein-encoding gene is not found in every human polyomavirus genome.
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The late region on the distal side of the ori encodes the three structural or viral 

capsid proteins, (VP1, VP2, and VP3) involved in viral packaging and the non-

structural agnoprotein. The late region is expressed after the onset of viral DNA 

replication. The capsid proteins are produced in the cytoplasm and are recruited 

into the nucleus by use of nuclear localization signals attached to them. Once the 

capsid proteins enter the nucleus, viral assembly occurs and the viral progenies 

accumulate in the nucleus. The agnoprotein is involved in virus release from host 

cells (17-19).

The NCCR contains the ori and a bidirectional promoter-enhancer region contain-

ing several transcription factor binding sites. As such, this region directs early and 

late transcription and replication of the genome. The NCCR has been arbitrarily 

divided into five sequence blocks denoted O143, P68, Q39, R63 and S63 where 

the numbers indicate the number of base pairs. The NCCR may have deletions, 

insertions or duplications of complete or partial blocks and is than generally 

referred to as a rearranged NCCR (re-NCCR). The nonrearranged NCCR, or NCCR 

from the archetype strain, is most frequently found in urine and the archetype 

strain is regarded as the transmissible virus. In contrast to the archetype, the 

re-NCCR have been detected after serial passage in tissue, culture and by direct-

PCR amplification and sequencing, typically from nonurinary specimens (20). It 

is believed that these re-NCCR increase LT transcription and enhance the virus 

replication rate or ‘viral fitness’ in the respective host-cell environment (21-23). 

The full PyV replication cycle is shown in Figure 3.

Taxonomy of the Polyomaviridae

From 2011 to 2016 the Polyomavirus genus was divided into three genera, Ortho-

polyomavirus, Wukipolyomavirus and Avipolyomavirus (7), with the first two genera 

containing mammalian species and the latter only avian species. The Polyomaviri-

dae Study Group of the International Committee on Taxonomy of Viruses (ICTV) 

in addition proposed a demarcation criterion for new polyomavirus species, 

with a whole genome sequence identity defined to be less than 81% compared to 

members of known species.

After the identification of dozens of new PyVs our group assembled and published 

a new tentative PyV phylogenetic tree based on the alignment of concatenated 

VP1, VP2 and LT (4). An updated version of this tree is shown in Figure 4. This tree 

proposed to subdivide the Orthopolyomavirus genus in two lineages, Orthopolyoma-

virus-I and –II, and add a fifth genus called Malawipolyomavirus. The human PyVs 

(HPyVs) in Figure 4 are shown in red and do not form a monophyletic cluster, 
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but are unevenly distributed among four of the suggested five genera. Whether 

the HPyV distribution among the different genera should be considered as the 

result of crossing the species barrier by zoonotic viruses instead of virus-host 

coevolution, the most popular model of PyV evolution until a few years ago (24, 

25), is unknown.

In 2016 and 2017, in the 9th and 10th report of the Polyomaviridae Study Group, the 

international Committee on Taxonomy of Viruses (ICTV) updated the phylogenetic 

Figure 3. Model of the PyV life cycle. 

PyV infection begins with binding of virions to the specific receptors and/or N-linked glycoproteins 
containing α(2,3)-linked sialic acid, at the cell surface [1]. This is followed by internalization potentially 
through a caveola-mediated endocytosis step within the first 4 h after adsorption [2]. The virus subse-
quently traffics from the late endosomes to the endoplasmic reticulum (ER), where it arrives approxi-
mately 10 h post-infection [3]. In the ER, virions benefit from chaperones, disulphide isomerases and 
reductases to facilitate the partial capsid uncoating. This creates a hydrophobic surface exposing VP2/
VP3 that binds to and integrates into the ER membrane, leading to the release of partially uncoated 
viruses into the cytosol [4]. The viral genome is then transported into the nucleus via the nuclear pore 
complex [5]. Expression of early genes occurs approximately 24 h post-infection [6]. Early proteins are 
translocated into the nucleus where they serve to initiate viral DNA replication [7]. Late genes are then 
expressed [8]. VP1, VP2 and VP3 are translocated into the nucleus where they self-assemble to form 
capsids into which newly synthetized double stranded viral DNA is packaged [9]. Progeny virions are 
mainly released from infected cells after cell lysis [10]. However, a small fraction of progeny virions 
may also be released into the extracellular environment through a non-lytic egress that depends on the 
cellular secretion pathway [11].
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relationships among polyomaviruses, based on the amino acid sequence of LT (5). 

This resulted in the delineation of four genera: Alphapolyomavirus, Betapolyomavi-

rus, Gammapolyomavirus and Deltapolyomavirus (Figure 5) (5, 13). Which coincide 

with the Orthopolyomavirus-I, -II, Avipolyomavirus and Malawipolyomavirus 

clades shown in Figure 4. LT amino acid sequences were used instead of whole 

genome analyses, in order to avoid the confounding effect of recombination that 

has occurred between early and late regions of the genome in some mammalian 

lineages.

Seroprevalence and antigenicity of human polyomaviruses

HPyVs are ubiquitous with varying seroprevalence rates (Table 2).Typically, pri-

mary infection occurs during early childhood and seroprevalence increases with 

age (26-30). Most seroepidemiological studies have been performed using VP1-

directed IgG seroresponses, as VP1 is the immunodominant major capsid protein 

Figure 4. The unrooted phylogenetic tree consists of all (putative) polyomavirus species known 
until June 2014 and is based the alignment of concatenated VP1, VP2, and LT amino acid sequenc-
es. The obtained branching pattern (topology) of basal nodes in the tree matches that proposed 
by Johne and colleagues (7). One distinct clade designated the Avipolyomavirus contains only the 
bird PyV types. The other four clades, Orthopolyomavirus-I and –II, Wukipolyomavirus and Malawipoly-
omavirus consist of mammalian species. HPyVs are shown in red. The bar indicates the number of 
substitutions per site. Numbers at branching events represent probability support values ranging 
from 0 (no support) to 1 (best support). Only probability support values lower than 1 are shown.
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Figure 5. Phylogenetic relationships of polyomaviruses based on conserved amino acid blocks of 
the LTAg coding sequence. PyVs are denoted by species names and Genbank accession numbers, 
and their genome sizes are given on the right-hand side of the fi gure. They are grouped into 
genera by colouring. For phylogenetic analyses, the recommendations were followed that have 
been published previously (13). Bayesian Monte Carlo Markov chain analyses were performed to 
generate a maximum clade credibility tree whose topology was essentially similar to the topol-
ogy of the maximum likelihood tree presented in this fi gure. Grey branches are relatively weakly 
supported, with Shimodaira-Hasegawa-like approximate likelihood ratio test (SH-like aLRT) val-
ues <0.95 and/or posterior probability <0.95.
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(14). VP1 is the main viral protein exposed on the outside of the virion. Therefore 

it determines the antigenicity and is responsible for attachment of the virus to 

host cell receptors that aid in entry into the host cell (Figure 3).

Coinfection with multiple HPyVs is common (26). For example, a healthy Dutch 

blood donor is persistently infected with an average of nine HPyVs (31). Cross-

reactivity between HPyV capsid and nonstructural proteins seems likely due to 

the high amino acid sequence similarity between the different HPyVs, but only 

occurs between HpyV6 and HpyV7 (27, 30-33). VP1 shows extended and structur-

ally variable surface loops that emanate from a conserved b-sheet core structure. 

These surfaces loops are referred to as the BC-, DE-, EF-, GH and HI-loop (34). 

The surface-exposed BC-loop is highly antigenic, and it is markedly divergent in 

the VP1 proteins of PyVs, which may explain why little or no serological cross-

reactivity is observed.

Most seroepidemiological studies have been conducted with recombinant VP1 

expressed as (GST-fusion) protein forming monomers, pentamers or virus-like 

particles (VLPs). Two of the most commonly used methods to express VP1 an-

tigens are based on generation of glutathione-S-transferase (GST)-HPyV VP1 fu-

sion proteins or VP1 VLPs (4, 32, 35). Both antigen preparations can be bound to 

Luminex beads or ELISA plates (26, 27, 29, 30, 36). The assays may also be used to 

discriminate genotypes of a particular HPyV species, as has been shown for BK 

polyomavirus (BKPyV) and Merkel cell polyomavirus (MCPyV) antigenic variants 

that are also designated serotypes (27, 37-39).

Human polyomaviruses and disease

It is remarkable that the first isolations of the two HPyVs were reported simul-

taneously in The Lancet with the work of each group, unknown to the other (40, 

41). Both viruses were discovered in 1971, and the names of the viruses were 

derived from the initials of the patients were they originated from, B.K. and J.C. 

respectively. BKPyV and JCPyV are both associated with severe disease in immu-

nocompromised patients. The role of BKPyV in BKPyV-associated nephropathy 

(BKPyVAN) in patients after kidney transplantation (KTx) and hemorrhagic cystitis 

in patients after hematopoietic stem cell transplantation, and the role of JCPyV 

in progressive multifocal leukoencephalopathy in AIDS patients and in patients 

treated with the monoclonal antibody nataluzimab for multiple sclerosis, is well 

documented (20, 28, 42-47). BKPyV has also been suggested to drive tumorigenesis 

in a small subset of bladder cancers (48). The other disease associations of BKPyV 

and JCPyV (Table 2) are less common and lack convincing evidence (42, 47, 49).
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BKPyV and JCPyV were the only two known HPyVs for a few decades, but since 

2007 large scale molecular screening techniques have led to the identification of 

eleven new HPyVs (4, 11, 31).

In 2007, two new HPyVs were reported that were both recovered from respiratory 

tract samples from subjects with (acute) respiratory tract disease (64, 70). They 

were named after the institute were they were isolated, namely Karolinska In-

stitute polyomavirus (KIPyV) and Washington University polyomavirus (WUPyV). 

Their pathogenicity remains unclear, although some reports showed evidence 

for KIPyV and WUPyV as causative agents of respiratory infections (64, 66, 68, 

70). After 2017 more HPyVs were discovered and implicated with disease, such 

as the trichodysplasia spinulosa polyomavirus (TSPyV) with a dysplastic hair fol-

licle disorder; and Merkel cell polyomavirus (MCPyV) with Merkel cell carcinoma, 

a highly aggressive neuroendocrine skin tumour (30, 72, 101, 102). HPyV6 and 

HPyV7 have been associated with pruritic and dyskeratotic dermatosis (77), and 

HPyV7 might be involved in thymomagenesis (81, 103). Other HPyVs like HPyV9, 

Malawi polyomavirus (MWPyV), St. Louis polyomavirus (STLPyV) and HPyV12 

have not yet been associated with disease (87, 91, 95, 98). The thirteenth HPyV 

described in 2014 in a pancreatic transplant recipient who had been evacuated 

through floodwaters during superstorm Sandy, was New Jersey polyomavirus 

(NJPyV) that has been associated with vasculitic myositis and retinal blindness 

(100). However, it is questionable if NJPyV really represents a HPyV or is rather 

a zoonotic PyV that was introduced into man under exceptional conditions, as 

indicated by the lack of detectable human seroresponses (31).

Despite their name, indicating a role in tumorigenesis, only one other (nonhu-

man) polyomavirus than MCPyV, raccoon PyV, causes cancer in its natural host 

(104). However some HPyVs, like BKPyV and JCPyV have been suggested to be 

involved in development of human cancer (48, 56, 58, 60, 105-107).

Although HPyV infection is widespread and the associated pathology diverse, 

symptomatic or manifest HPyV infections are usually limited to the immunocom-

promised and the elderly. The following thesis will focus on BKPyV-associated 

disease in KTx recipients (KTRs).

Kidney transplantation

The history of KTx began in Vienna in 1902, when the Austrian surgeon Emerich 

Ullman, successfully performed an experimental auto-transplantation of a dog 

kidney from its normal position to the vessels of the neck (108, 109). The organ 
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produced urine for a  couple of days until the dog died. In 1933, after several 

years of experimentation, the Ukrainian surgeon Yurii Voronoy performed the 

first human deceased donor KTx in a young woman who had acute renal failure 

due to mercury poisoning, by anastomosing the renal vessels to the right femoral 

vessels. However, due to a blood group mismatch the kidney never functioned, 

and the recipient died after two days (108, 109).

The first temporarily successful human KTx was performed in 1953 in Paris by 

surgeon Jean Hamburger, where a 16-year old boy received a living donor trans-

plantation from his mother that was rejected after three weeks. The real milestone 

of KTx history however, took place at the Peter Bent Brigham Hospital in Boston, 

Massachusetts, in 1954. Joseph Murray (Figure 6) transplanted a kidney between 

two monozygotic twin brothers, and the recipient and its allograft survived for 

eight years (108, 109). In 1990, Murray was honored with the Nobel Prize for this 

important contribution to the field of organ transplantation.

In the Netherlands, the first successful KTx was performed in Leiden in 1966 by 

surgeon Hans Terpstra together with the help of immunologist Jon van Rood 

(Figure 6) (110). Jon van Rood later established Eurotransplant, a nonprofit orga-

nization that facilitates patient-orientated allocation and cross-border exchange 

of deceased donor-organs between eight European countries (110). The process of 

KTx has been revolutionized since then, and the introduction of immunosuppres-

sive medication, among other things, has made renal allografts a viable clinical 

option (111).

Figure 6. Joseph Murray (left), Hans Terpstra (middle), and Jon van Rood (right).
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However, despite the progress made during the last decades, the KTx process 

still has many challenges. For instance, the KTR population continues to increase 

and a growing number of patients with kidney failure are on the waiting list to 

receive a donor kidney (Figure 7) (109, 112-114).

For patients with end-stage renal disease, KTx is often the best treatment option 

because it improves quality of life, prolongs survival and is cost-effective (113). 

However, the shortage of (registered) organ donors combined with the exponen-

tial increase in the number of patients with kidney failure in need of a donated 

organ (Figure 7), has led to deaths of patients on the KTx waiting list (109). To 

address the shortage of (deceased) organ donations in the Netherlands a new 

law is expected to be implemented in 2020 that would make all adults in the 

Netherlands organ donors, unless they opt out of the system.

Currently, ~75.000 KTx are performed per year worldwide. In the Netherlands 

during the past 25 years, the number of kidney transplantations increased from 

about 400 to around 1000 per year. During this period the number of KTx from 

deceased donors remained stable and therefore the increase is primarily due to 

an increase in KTx from living donors. Currently in the Netherlands, in contrast 

to most other European countries, >50% of KTx are from living donors. This is 

important as the source of a KTx greatly affects long-term graft survival (115). The 

outcome of a living KTx is superior with a life expectancy of the allograft of 20-25 

year versus around 10 years in the case of a deceased donor KTx (115). Another 

Figure 7. Dynamics of the Eurotransplant kidney waiting list and transplants between 1969 
and 2017. The eight countries cooperating with Eurotransplant are Austria, Belgium, Croatia, 
Germany, Hungary, Luxembourg, the Netherlands and Slovenia.
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important advantage of KTx is that the quality of life of a patient after KTx is 

better than during dialysis (115-117).

However, when the kidney allograft stops functioning, a patient will be depen-

dent from dialysis again and needs to be replaced on the KTx waiting list. There-

fore, besides the problem of a shortage in donated kidney organs, it is of utmost 

importance to improve the life expectancy of the available donated kidneys that 

are essential for the KTRs quality of life and their life expectancy.

The main challenges for extending the life expectancy of the kidney allograft and 

its recipient are the management of chronic and acute immune-mediated rejec-

tion, nephrotoxicity from immunosuppressants and other drugs, the elevated 

risk for malignancies and heart and vascular disease after KTx, and the control of 

opportunistic infections. Currently, the most challenging opportunistic infection 

in the KTR population is caused by BKPyV, and BKPyVAN represents one of the 

major causes of graft dysfunction and loss in KTRs (10, 15, 20, 28, 46, 47, 118-120).

BK polyomavirus; discovery and epidemiology

BKPyV was first isolated in 1971 from a Sudanese KTR who had received a KTx 

from his brother (40). The patient urine was investigated due to an ureteric 

obstruction and the containment of many inclusion-bearing cells. Electron micro-

scopic examination from the high speed urine pellet showed very large numbers 

of papovavirus-like particles. Ultrathin sectioning of the cells in a subsequent 

sample showed many virus particles within enlarged nuclei (121). The virus was 

named after the initials of the patient (B.K.) and the ICTV later designated the 

virus as BK polyomavirus, abbreviated as BKPyV (5, 40).

Many aspects of the epidemiology of BKPyV in the general population, such as the 

source of infectious virus, the route of natural transmission, and the site of initial 

virus replication are still unknown (20, 122). The tonsils have been indicated as 

site of initial replication due to the presence of BKPyV DNA in tonsillar tissue, but 

there have been conflicting reports and other routes of transmission have also 

been suggested (10, 20, 123-126).

BKPyV causes asymptomatic infection early in life (15, 20), reaching a serop-

revalence of ~90% in adults. During primary infection a period of viremia has to 

occur as the virus thereafter persists in the urothelium and renal tubular cells 

for life (127, 128). After primary infection, small amounts of viral progeny can be 
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temporarily detected in urine of 7-55% of healthy individuals, depending on the 

sampling frequency (50, 129, 130).

BK polyomavirus infection after kidney transplantation

In 1995, 24 years after the discovery of the virus, BKPyV was described as cause of 

nephropathy in a kidney allograft for the first time (102). BKPyV-DNA is detected 

in urine (viruria) or blood (viremia) in approximately 50% and 20-30% of all KTRs 

in the months following transplantation (10, 46, 120, 131-133). BKPyVAN gener-

ally develops in 1-10% of KTRs, usually in those with sustained viremia and viral 

DNA-loads above 104 genome copies/ml (15, 20, 46, 133, 134).

The kidney allograft has been suggested as the potential source of BKPyV infection 

as recipients of other solid organ transplants, HIV patients and hematopoietic 

stem cell transplantation recipients that often receive even higher immunosup-

pression hardly ever develop BKPyVAN (135, 136). Furthermore, in KTRs with 

BKPyVAN that undergone allograft nephrectomy, plasma BKPyV loads dropped 

rapidly indicating the allograft as the origin of viral replication (137).

BKPyVAN is now one of the major causes of graft dysfunction and loss in KTRs, 

and due to the continuous increase of the KTR population worldwide it is a serious 

problem in transplantation medicine. Despite the clinical need, BKPyV-specific 

antiviral drugs are not available, and reduction of immunosuppression is the only 

effective evidence-based treatment so far (133, 138-140).

To prevent BKPyVAN or progression of BKPyVAN, current guidelines recommend 

regular screening to detect BKPyV viremia of KTRs at least monthly for the first 

3-6 months after transplantation, then every 3 months until the end of the first 

post-transplant year, whenever there is an unexplained rise in serum creatinine, 

and after treatment for acute rejection (141). This regular screening for BKPyV 

viremia in KTRs is performed to guide timely reduction of immunosuppression if 

the BKPyV plasma load is greater than 10.000 copies/ml (46, 120, 133, 139, 141), 

which improves BKPyV immunity, but at the same time increases the risk of acute 

rejection (133, 139, 140). This paradox makes management of BKPyV infection 

challenging for transplantation physicians. Clinical guidelines for the treatment 

of KTRs (KDIGO) suggest the use of intensive immunosuppression during the ini-

tial stages of the process, followed by a diminished dose of immunosuppressants 

by 2-4 months after transplantation, if there are no signs of acute rejection (38). 

However, due to the delayed nature of the current pre-emptive BKPyV screening 

strategy in KTRs, which does not fully eliminate the risk of BKPyVAN and can 
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increase the risk of donor-specific antibodies (DSA), graft rejection, and death, 

there is an urgent need for reliable pretransplantation predictive markers that 

can identify KTRs at risk. Such a predictive marker could ideally be used to clini-

cally stratify and tailor the currently employed BKPyV screening and treatment 

strategies.

Risk factors for BK polyomavirus infection after kidney transplantation

The overall degree of immunosuppression is thought to be the largest factor 

promoting BKPyV infection after KTx. Immunosuppressive treatment with tacro-

limus and rejection-treatment with prednisolone have been shown to increase 

the risk of BKPyVAN (20, 46, 120, 142). Despite intensive study, pretransplanta-

tion risk factors for BKPyV viremia and BKPyVAN including age, gender, ethnicity, 

retransplantation, immunosuppressive regimen, ischemia-reperfusion injury, 

prior acute rejection episodes, corticosteroid therapy, percentage of panel reac-

tive antibodies (PRA), HLA mismatches, blood group incompatibility, underlying 

conditions and comorbidities have not been identified (20, 46, 120, 131, 132, 135, 

143). Also the role that individual BKPyV genotypes play in the risk and course 

of BKPyV infection and BKPyVAN after KTx is unknown. A number of studies, 

however, reported associations between recipient BKPyV infection and pretrans-

plantation BKPyV-serostatus (seropositive or seronegative) of kidney transplant 

donors and recipients (135, 144, 145).

Thus, it is evident that the degree of immunosuppression plays an important 

role in the pathogenesis of BKPyV infection after KTx. However, although several 

studies suggest a correlation between donor and/or recipient serostatus and the 

development of BKPyV viremia, other specific risk factors for BKPyV related 

complications, either viral, donor, recipient or transplantation related, remain 

to be established.

Outline of this thesis

The aim of the research described in this thesis was to obtain more insight in 

the risk factors of BKPyV infection after KTx, with special emphasis on pretrans-

plantation related risk factors. Both donor and recipient factors, such as BKPyV 

serostatus, BKPyV seroreactivity or HLA composition, as well as viral factors, 

including BKPyV genotype were investigated. The ultimate goal was to identify 

reliable predictive markers of BKPyV infection after KTx, thereby providing op-

portunities to optimize and ideally personalize the currently recommended 

suboptimal BKPyV screening strategy.
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In Chapter Two the correlation between pretransplantation donor-recipient pair 

seroreactivity against BKPyV and development of BKPyV viremia and BKPyVAN 

after KTx is described.

In Chapter Three the stability of BKPyV seroreactivity in KTRs and healthy blood 

donors, and the correlation of BKPyV seroreactivity with preceding viremia in 

KTRs is described.

In Chapter Four the reduced risk of BKPyV infection in HLA-B51 positive recipi-

ents after KTx is described.

Chapter Five describes the development and evaluation of a Luminex bead-based 

multiplex immunoassay for BKPyV serotyping.

In Chapter Six the application of the Luminex bead-based multiplex immunoas-

say for BKPyV serotyping is described in a cohort of KTx donor-recipient pairs.

In the General Discussion implications for prediction of BKPyV infections in 

recipients after KTx, as well as suggestions for further research are described.
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Abstract

Kidney transplant donors are currently not implicated in predicting BK polyoma-

virus (BKPyV) infection in kidney transplant recipients. It has been postulated, 

however, that BKPyV infection originates from the kidney allograft. Because BK-

PyV seroreactivity correlates with BKPyV replication and, therefore, might mirror 

the infectious load, we investigated whether BKPyV seroreactivity of the donor 

predicts viremia and BKPyV-associated nephropathy (BKPyVAN) in the recipient. 

In a retrospective cohort of 407 living kidney donor-recipient pairs pretransplan-

tation donor and recipient sera were tested for BKPyV IgG-levels and correlated 

with the occurrence of recipient BKPyV viremia and BKPyVAN within one year 

posttransplantation. Donor BKPyV IgG-level was strongly associated with BKPyV 

viremia and BKPyVAN (p < 0.001), while recipient BKPyV seroreactivity showed 

a nonsignificant inverse trend. Pairing of high-BKPyV-seroreactive donors with 

low-seroreactive recipients resulted in a 10-fold increased risk of BKPyV viremia 

(hazard ratio 10.1, 95% CI 3.5-29.0, p < 0.001). In multivariate analysis, donor 

BKPyV seroreactivity was the strongest pretransplantation factor associated with 

viremia (p < 0.001) and BKPyVAN (p = 0.007). The proportional relation between 

donor BKPyV seroreactivity and recipient infection suggests that donor BKPyV 

seroreactivity reflects the infectious load of the kidney allograft, and calls for 

the use of pretransplantation BKPyV serological testing of (potential) donors and 

recipients.
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Introduction

Solid organ transplant recipients require immunosuppression to prevent al-

lograft rejection. This renders them vulnerable to exogenous and endogenous 

viral infections (reactivation). In the latter, particularly the ubiquitous herpes- 

and polyomaviruses are involved. Currently, no method exists to reliably predict 

these infectious complications, and therefore general and frequent blood viral 

load monitoring in recipients after transplantation is recommended.

BK polyomavirus (BKPyV) causes asymptomatic infection early in life (1,2), reach-

ing a seroprevalence of ~90% in adults (3,4). After primary infection, BKPyV latently 

persists in the urothelium and renal tubular cells (5,6), and small amounts of viral 

progeny can be temporarily detected in urine of 7-55% of healthy individuals, 

depending on the sampling frequency (7-9).

In immunocompromised patients, BKPyV infections can cause manifest disease, 

such as hemorrhagic cystitis in hematopoietic stem cell transplant recipients 

and BKPyV-associated nephropathy (BKPyVAN) in kidney transplant recipients 

(1,2,10). Reduction of immunosuppressive therapy is the only effective evidence-

based treatment so far (11,12).

BKPyV infection is observed in approximately half of kidney transplant recipients 

by detection of BKPyV-DNA in urine (viruria) (10,12-15). In a subset of viruric 

recipients, 15-30% of the total number of recipients, viral DNA is detected in 

the circulation (viremia), of which a small proportion, 1-10% of total, develops 

BKPyVAN ultimately causing allograft failure (10,12-16). Sustained viremia and 

BKPyV-loads above 104 genome copies/ml (c/ml) are associated with BKPyVAN 

development (1,2,10). In order to identify this subgroup of recipients at risk that 

require tapering of immunosuppression (14,17), currently in most kidney trans-

plantation centers recipients are regularly evaluated for detectable BKPyV-DNA 

in blood (10-12,16).

Immunosuppressive treatment with tacrolimus and rejection-treatment with 

prednisolone have been shown to increase the risk of BKPyVAN (2,10,14,18). De-

spite intensive study, pretransplantation risk factors for BKPyV viremia and BKPy-

VAN including age, gender, ethnicity, retransplantation, immunosuppressive regi-

men, ischemia-reperfusion injury, prior acute rejection episodes, corticosteroid 

therapy, percentage of panel reactive antibodies (PRA), HLA mismatches, blood 

group incompatibility, underlying conditions and comorbidities have not been 
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identified (2,10,13-15,19,20). A number of studies, however, reported associations 

between recipient BKPyV infection and pretransplantation BKPyV-serostatus (se-

ropositive or seronegative) of kidney transplant donors and recipients (19,21,22). 

We considered the donor of particular interest in this regard, since BKPyV infec-

tion in recipients is thought to originate from the kidney allograft (19,23).

Based on previous studies suggesting that BKPyV seroreactivity is associated with 

BKPyV-replication (21,24,25), we hypothesized that the level of donor BKPyV sero-

reactivity reflects the BKPyV infectious load of the allograft, and thereby predicts 

BKPyV viremia and BKPyVAN in the recipient. To investigate this hypothesis, liv-

ing kidney allograft donor-recipient pairs were analyzed for BKPyV seroreactivity 

pretransplantation. Measured pretransplantation levels of BKPyV IgG of donors 

and recipients were correlated with the incidence of BKPyV viremia and BKPy-

VAN, and compared with other potentially relevant baseline donor, recipient and 

transplant-related characteristics.

Materials and Methods

Study population and sample collection

To ensure availability of pretransplantation donor and recipient sera, only living 

kidney allograft donor-recipient pairs were included. All adult (> 18 years of age) 

living donor-recipient pairs transplanted at the Leiden University Medical Center 

(LUMC) between 2003 and 2013 were eligible for this retrospective cohort study. 

In total, 519 living donor-recipient pairs were identified. Fifty-three pairs were 

excluded because no baseline serum sample was available from either donor or 

recipient; another 59 because less than two recipient plasma samples collected 

after transplantation were available for analysis (Figure S1). The remaining 407 

donor-recipient pairs were included in the study.

Baseline donor and recipient sera were collected at a mean period of 5.5 months 

(range 0.7-26.8) and 0.2 months (range 0-3.7) pretransplantation, respectively. 

Recipient plasmas screened for BKPyV-DNA were collected at five regular time-

points posttransplantation (Figure 1). The mean follow-up was 9.1 months and 

80%, 95%, 87%, 63% and 36% of the recipient serum samples were available at time 

point 1, 2, 3, 4 and 5, respectively. The median number of time-points analyzed 

per recipient was 3.6. All samples were originally collected for routine serological 

and molecular virus-screening and stored at -20˚C. The study protocol was submit-

ted to the Medical Ethical Committee of the LUMC that decided formal approval 
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was not needed, due to the retrospective study design and the use of previously 

collected and anonymized samples.

Detection of BKPyV viremia and assessment of BKPyVAN

To measure the presence of BKPyV-DNA in blood, blood plasma was analyzed 

by quantitative BKPyV real-time polymerase chain reaction (PCR). Using the 

primers 440BKVs 5’-GAAAAGGAGAGTGTCCAGGG-3’ and 441BKVas 5’-GAACTTC-

TACTCCTCCTTTTATTAGT-3’ and a Taqman (Thermo Fisher Scientifi c, Waltham, 

MA) probe 576BKV-TQ-FAM FAM 5’-CCAAAAAGCCAAAGGAACCC-3’-BHQ1, a 90-bp 

fragment within the BKPyV VP1 gene is amplifi ed. Simultaneous isolation, ampli-

fi cation, and detection of a standard amount of phocid herpesvirus were used for 

internal control of inhibition (26).

Routine recipient BKPyV-load screening at 1.5, 3 and 6 months posttransplanta-

tion was implemented in May 2007. In case of clinical suspicion of BKPyV infec-

tion, BKPyV-loads were also determined later than 6 months posttransplantation. 

Figure 1. Characteristics of BKPyV viremia in viremic recipients (n = 111).
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Figure 1. Characteristics of BKPyV viremia in viremic recipients (n = 111). 

 

The time-points (ranges) of first detection of BKPyV viremia after kidney transplantation are indicated in months after 

transplantation, as well as the height of the measured BKPyV-loads in copies/ml. BKPyV, BK polyomavirus; c/ml, 

copies/ml. 
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The targeted 12-hour area under the curve (AUC) of the CNI in the first weeks after 
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In samples obtained before 2007 and in samples obtained after 2007 that had not 

been routinely analyzed, BKPyV-loads were determined in retrospect.

Sustained BKPyV viremia was defined as ≥ 2 consecutive BKPyV-positive samples 

spanning ≥ 3 weeks. Peak viral load was defined as the highest BKPyV-DNA plasma 

load measured in a viremic subject during follow-up.

A kidney biopsy was performed if clinically indicated in the view of the treating 

physician. BKPyVAN was diagnosed based on immunohistological examination 

of allograft biopsy specimens showing characteristic pathological features, such 

as intranuclear viral inclusions in tubular epithelial cells, cell enlargement with 

polymorphic nuclei, interstitial inflammation and tubular atrophy or fibrosis. 

BKPyVAN diagnosis was confirmed by immunohistochemical staining with a PyV-

cross-reacting mouse monoclonal antibody (PAb416, Calbiochem) raised against 

large T antigen of SV40 polyomavirus (SV40).

BKPyV serology

Pretransplantation serum samples obtained from 407 donor-recipient pairs, 

814 in total, were analyzed by an in-house Luminex immunoassay detecting 

IgG-reactivity against the BKPyV-genotype Ib1 major viral capsid protein 1 (VP1), 

according to a published protocol (4,27). This protocol has been used to analyze 

seroresponses against various human polyomaviruses (4). In brief, 1:100 diluted 

serum samples were mixed with affinity purified glutathione S-transferase (GST) 

BKPyV VP1 fusion protein or with GST alone coupled with fluorescent, unique 

colored polystyrene beads (Bio-Rad). VP1-bound antibodies were detected with 

biotinylated goat antihuman IgG (H+L; Jackson Immuno Research, West Grove, 

PA, USA) and streptavidin-R-phycoerythrin (Invitrogen). The bead colors and the 

phycoerythrin signal were analyzed in a Bio-plex 100 Analyzer (Bio-Rad) and 

expressed as median fluorescent intensity (MFI). MFI values obtained with GST 

alone were subtracted to obtain BKPyV VP1 specific signals. The cut-off value to 

determine BKPyV-seropositivity was based on sera of healthy children aged 10-15 

months old, as described (4,27).

A serially diluted control serum was included on each plate to control for in-

terplate (n = 10) test variance. A high agreement was observed between the test 

plates (r 0.963 – 0.999, p < 0.001). Good intertest reproducibility of the assay 

was previously shown for trichodysplasia spinulosa-associated polyomavirus in 

a group of 80 kidney transplant recipients (28), and was also calculated in these 

recipients for BKPyV (r 0.891, p < 0.001).
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Of the 407 donor samples included in the current study, 396 (97.3%) were in-

dependently reanalyzed for serological confirmation with BKPyV VP1 virus-like 

particles (VLP) by enzyme-linked immunosorbent assay (ELISA), as described (29-

31). The VP1 antigen of this assay was obtained from BKPyV-genotype Ib2 (29-31), 

that differs by five amino acids from Ib1 (data not shown).

Immunosuppression, rejection treatment and management of BKPyV 
infection

Induction treatment consisted of basiliximab (93%) or alemtuzumab (7%), and 

the standard maintenance immunosuppressive regimen included a calcineurin-

inhibitor (CNI), tacrolimus (76%) or cyclosporin A (24%), combined with cortico-

steroids (100%) and mycophenolate mofetil (MMF) (99.5%), azathioprine (0.25%), 

or everolimus (0.25%).

The targeted 12-hour area under the curve (AUC) of the CNI in the first weeks 

after transplantation was 160-200 µg*h/l for tacrolimus and 4500-5500 µg*h/l for 

cyclosporin A. The dose of the CNI was tapered 6 weeks after transplantation 

to targeted 12-hours AUCs of 80-100 µg*h/l and 3000-3500 µg*h/l, respectively. 

Rejection treatment consisted of methylprednisolone 1000 mg intravenously 

once daily for 3 days.

In case of a positive BKPyV-load, since 2007, a monthly screening interval was 

implemented until the BKPyV-PCR was negative. In case of a BKPyV-load < 104 c/

ml, MMF was reduced by 50% and CNI serum levels were evaluated and if needed 

adjusted accordingly. If tacrolimus was used, prednisolone was lowered to 5 mg/

day and in the case of cyclosporin A, prednisolone was lowered to 7.5 mg/day. 

Detection of a BKPyV-load ≥ 104 c/ml prompted adjustment of the immunosup-

pressive regimen by 50% reduction of the CNI, reduction of m-TOR inhibitor, and 

50% reduction or cessation of MMF.

Statistical analyses

Data were analyzed with IBM SPSS Statistics software version 20. Descriptive 

analyses were used to report cohort characteristics. Differences between viremic 

and non-viremic recipients and viremic recipients with or without BKPyVAN were 

assessed using the Chi-Square test, Fisher’s exact test, Student’s t-test or Mann-

Whitney U test as appropriate. To indicate onset of recipient BKPyV viremia, 

separate Kaplan-Meier curves were generated according to donor and recipient 
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BKPyV seroreactivity groups, measured pretransplantation. Association between 

baseline donor and recipient BKPyV seroreactivity groups and the combination of 

both with onset of posttransplantation recipient BKPyV viremia was determined 

by Cox regression. Uni- and multivariate Cox regressions were performed to 

determine which additional baseline covariates affected development of BKPyV 

viremia and BKPyVAN. Chi-Square test, Fisher’s Exact test or Mann-Whitney U test 

were used for evaluating differences of BKPyV viremia characteristics between 

viremic recipients with and without BKPyVAN. For all performed tests a p-value < 

0·05 in a two-sided test was considered statistically significant.

Results

In total, 111 of 407 recipients (27%) became viremic during follow-up (Table 1, 

Figure S1), the majority within 6 months posttransplantation (Figure 1), 87 of 

them (79%) with sustained viremia (Figure S1). The median peak viral load was 

6.9 x 103 c/ml (interquartile range 8.8 x 102 - 4.2 x 105 c/ml). Peak viral loads > 104 

c/ml were particularly prevalent among recipients that developed viremia within 

the first 6 months after transplantation (Figure 1).

BKPyVAN was diagnosed in only 12 subjects (3%) (Table 1, Figure S1), probably 

because tapering of immunosuppression was installed upon detection of viremia. 

All recipients diagnosed with BKPyVAN had peak BKPyV-loads ≥ 104 c/ml (Table 

S1), and both peak BKPyV-load and AUC of BKPyV-load during follow-up were 

significantly associated with development of BKPyVAN (p < 0.001) (Table S1).

The incidence of BKPyV viremia and BKPyVAN during follow-up was compared 

with specific donor, recipient, and transplantation characteristics (Table 1). No 

significant differences were observed between viremic and non-viremic recipi-

ents with regard to any of the listed donor or recipient baseline characteristics, 

including underlying condition, immunosuppressive regime and PRA immuniza-

tion. With respect to type of transplantation, BKPyV viremia was more common 

among recipients from unrelated donors (60% vs. 49%, p = 0.035). Blood group 

compatibility and HLA matching were not significantly different between viremic 

and non-viremic recipients. As anticipated, the use of tacrolimus (Table 1) and 

rejection treatment with prednisolone (Tables 1 and 5) were associated with 

development of BKPyVAN in our cohort.
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Table 1. Donor, recipient and transplantation characteristics sorted for BKPyV viremia and BKPy-
VAN among 407 kidney transplantation recipients in the first year after kidney transplantation.

All recipients (n = 407) Viremic recipients (n = 111)

No BKPyV
viremia
(n = 296)

BKPyV
viremia
(n = 111)

p-value1 No
BKPyVAN
(n = 99)

BKPyVAN
(n = 12)

p-value1

Donor

Age (years) 53 (11.7) 54 (11.5) 0.354  54 (11.7) 57 (9.6) 0.386 

Gender        

Male 119 (40%) 42 (38%) 0.664  37 (37%) 5 (42%) 0.763 

Recipient        

Age (years) 50 (13.5) 53 (14.2) 0.080  53 (14.1) 53 (16.1) 0.790 

Gender        

Male 177 (60%) 73 (66%) 0.271  65 (66%) 8 (67%) 1.000 

Underlying condition2        

Inherited 72 (24%) 26 (23%) 0.239  22 (22%) 4 (33%) 0.411 

Glomerular 80 (27%) 26 (23%)   23 (23%) 3 (25%)  

Vascular 55 (19%) 32 (29%)   31 (31%) 1 (8%)  

Obstructive 27 (9%) 7 (6%)   6 (6%) 1 (8%)  

Other 62 (21%) 20 (18%)   17 (17%) 3 (25%)  

Dialysis pretransplantation 182 (62%) 64 (58%) 0.482  57 (58%) 7 (58%) 1.000 

Duration dialysis (months) 12 (18.4) 9 (12.1) 0.106  9 (11.6) 12 (15.9) 0.730 

PRA pretransplantation        

Non-immunized3 284 (96%) 108 (97%) 0.768  97 (98%) 11 (92%) 0.293 

Monoclonal antibody        

Basiliximab 277 (94%) 103 (93%) 0.776  92 (93%) 11 (92%) 1.000 

Alemtuzumab 19 (6%) 8 (7%)   7 (7%) 1 (8%)  

Calcineurin inhibitor        

Cyclosporin A 70 (24%) 27 (24%) 0.887  27 (27%) 0 (0%) 0.037 

Tacrolimus 226 (76%) 84 (76%)   72 (73%) 12 (100%)  

Proliferation inhibitor        

Azathioprine 0 (0%) 1 (<1%) 0.273  1 (1%)  1.000 

Everolimus 1 (<1%) 0 (0%) 1.000  0 (0%) 0 (0|%) n.p. 

Mycophenolate mofetil 295 (100%) 110 (99%) 0.472  98 (99%) 0 (0%) 1.000 

Corticosteroids 296 (100%) 111 (100%) n.p.  99 (100%) 12 (100%) n.p. 

Rejection treatment4 61 (21%) 31 (28%) 0.116  22 (22%) 9 (75%) <0.001 

Transplantation

Retransplantation 25 (8%) 11 (10%) 0.650  9 (9%) 2 (17%) 0.339 

Year of transplantation        

Before 2007 43 (15%) 18 (16%) 0.671  18 (18%) 0 (0%) 0.209 

2007 to 2013 253 (85%) 93 (84%)   81 (82%) 12 (100%)  

Unrelated donor 144 (49%) 67 (60%) 0.035  58 (59%) 9 (75%) 0.357 
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To investigate the association between BKPyV seroreactivity, BKPyV viremia and 

BKPyVAN during follow-up, baseline BKPyV VP1 IgG seroresponses were measured 

in both donors and recipients (Figure S2). In total, 389 (96%) of the donors, and 

385 (95%) of the recipients were BKPyV-seropositive (Table 2). In line with the 

high seroprevalence in both groups, BKPyV-serostatus was not associated with 

BKPyV viremia and BKPyVAN, nor were specific donor-recipient serostatus com-

binations (Table 2). However, when the height of donor and recipient BKPyV IgG 

seroresponses were analyzed, either as a continuous variable or categorized in 

quartiles (Q1-Q4) (Figure S2), statistically significant associations were observed 

Table 1. (continued)

All recipients (n = 407) Viremic recipients (n = 111)

No BKPyV
viremia
(n = 296)

BKPyV
viremia
(n = 111)

p-value1 No
BKPyVAN
(n = 99)

BKPyVAN
(n = 12)

p-value1

Blood group        

Compatible5 283 (96%) 104 (94%) 0.341  92 (93%) 12 (100%) 1.000 

HLA mismatched        

A, B and DR loci6        

0 17 (6%) 6 (5%) 0.888  6 (6%) 0 (0%) 0.437 

1-3 143 (48%) 51 (46%)  47 (48%) 4 (33%)  

4-6 136 (46%) 54 (49%)  46 (46%) 8 (67%)  

Data are shown as mean (SD) or n (%).
BKPyV, BK polyomavirus; BKPyVAN, BK polyomavirus-associated nephropathy; n.p; not possible; PRA, 
panel reactive antibody.
1The p-values were calculated using the Chi-Square test, Fisher’s exact test or Student’s t-test. A p-value 
<0.05 was considered statistically significant.
2Inherited diseases include autosomal dominant polycystic kidney disease, medullary cystic disease, 
cystic kidney disease not otherwise specified, arteriovenous malformation due to Klippel-Trénaunay-
Weber syndrome, familiar erythrocyturia, Alport syndrome, familiar focal segmental glomerulo-
sclerosis by NPHS2-mutation, familiar haemolytic uremic syndrome, and kidney dys- and agenesis; 
Glomerular diseases include membranous nephropathy, IgA nephropathy, systemic lupus erythema-
tosus, proliferative glomerulonephritis, membranoproliferative glomerulonephritis, focal segmental 
glomerulosclerosis, pauci-immune crescentic glomerulonephritis, Morbus Wegener, ANCA-associated 
vasculitis, anti-glomerular basement membrane nephritis, global glomerulosclerosis, and immunotac-
toid glomerulonephritis; Vascular diseases include diabetes mellitus type I and II, hypertension, neph-
rosclerosis, haemolytic uremic syndrome, arteria renalis stenosis, and thrombotic microangiopathy; 
Obstructive diseases include reflux nephropathy, urethral valves, nephrolithiasis, obstructive uropathy, 
and prostate hypertrophy; Other include chronic pyelonephritis, acute tubular necrosis, tubulointer-
stitial nephritis, lithium nephropathy, urate and analgesic nephropathy, iatrogenic, and unknown un-
derlying condition.
3Panel reactive antibody (PRA) immunization: non-immunized = PRA 0-5%, immunized = PRA 6-99%. 
4Rejection treatment consisted of methylprednisolone 1000 mg intravenously once daily for three days. 
5Blood group data of 1 donor-recipient pair is missing, the recipient was BKPyV viremia negative.
6HLA mismatched (A, B and DR loci) arranged in groups with no mismatches (completely matched), 
1-3 mismatches (haplotype mismatched), and 4 or more mismatches (more than haplotype mismatch).
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between pretransplantation donor seroreactivity and posttransplantation recipi-

ent BKPyV viremia (p < 0.001 and p < 0.001, respectively) (Table 2) and BKPyVAN 

(p < 0.001 and p = 0.013, respectively) (Table 2). To illustrate, only 9 (8%) of the 

viremic recipients had a low seroreactive donor (Q1), whereas 51 (46%) had a 

high seroreactive donor (Q4) (Table 2). The same statistically significant trend was 

observed for BKPyVAN, just one (8%) occurred in recipients with an (intermediate) 

low seroreactive donor (Q1-Q2), while the majority (11 out of 12, 92%) developed 

Table 2. Pretransplantation BKPyV-seropositivity and seroreactivity among kidney allograft do-
nors and recipients, related to posttransplantation recipient BKPyV viremia and BKPyVAN.

Recipients (n = 407) Viremic recipients (n = 111)

No BKPyV
viremia
(n = 296)

BKPyV
viremia
(n = 111)

p-value1 No
BKPyVAN
(n = 99)

BKPyVAN
(n = 12)

p-value1

Donor

BKPyV seropositive 281 (95%) 108 (97%) 0.420  377 (95%) 12 (100%) 0.670 

BKPyV seroreactivity 11511 (7371) 17200 (6605) <0.001  12883 (7609) 18988 (4199) <0.001 

Seroreactivity quartile groups2       

Low (Q1) 93 (31%) 9 (8%) <0.001  102 (26%) 0 (0%) 0.013 

Low intermediate (Q2) 82 (28%) 21 (19%)   102 (26%) 1 (8%) 

High intermediate (Q3) 71 (24%) 30 (27%)   95 (24%) 6 (50%) 

High (Q40 50 (17%) 51 (46%)   96 (24%) 5 (42%) 

Recipient        

BKPyV seropositive 283 (96%) 102 (92%) 0.140  374 (95%) 11 (92%) 1.000 

BKPyV seroreactivity 13774 (7834) 12342 (7956) 0.103  13422 (7901) 12119 (7492) 0.573 

Seroreactivity quartile groups2       

Low (Q1) 68 (23%) 34 (31%) 0.219  98 (25%) 4 (33%) 0.977 

Low intermediate (Q2) 76 (26%) 26 (23%)  99 (25%) 3 (25%) 

High intermediate (Q3) 72 (24%) 30 (27%)  99 (25%) 3 (25%) 

High (Q4) 80 (27%) 21 (19%)  99 (25%) 2 (17%) 

Donor/recipient pair

BKPyV serostatus        

+/+ 268 (91%) 100 (90%) 0.107  357 (90%) 11 (92%) 0.707 

+/- 13 (4%) 8 (7%)  20 (5%) 1 (8%) 

-/+ 15 (5%) 2 (2%)  17 (4%) 0 (0%) 

-/- 0 (0%) 1 (<1%)  1 (<1%) 0 (0%) 

Data are shown as mean (SD) or n (%).
+, BKPyV seropositive; -, BKPyV seronegative; BKPyV, BK polyomavirus; BKPyVAN, BK polyomavirus-
associated nephropathy; Q, quartile.
1The p-values were calculated using the Chi-Square test, Fisher’s exact test or Student’s t-test. A p-value 
<0.05 was considered statistically significant.
2MFI distributions of the donor and recipient seroreactivity quartile groups can be found in the legend 
of Figure S2.



52

in recipients with an (intermediate) high seroreactive donor (Q3-Q4) (Table 2). In 

contrast, pretransplantation BKPyV seroreactivity of the recipient was not associ-

ated with viremia or BKPyVAN (Table 2). To confi rm the associations observed for 

BKPyV seroreactivity, donor BKPyV IgG-levels were reassessed with ELISA by a 

different lab that generated comparable results (Figures S3A and B).

To further substantiate the observed association between pretransplantation 

donor BKPyV IgG-levels and posttransplantation recipient viremia, Kaplan-Meier 

curves were generated to compare the onset of BKPyV viremia stratifi ed for base-

line BKPyV seroreactivity quartiles of donors and recipients. Again a strong and 

highly signifi cant correlation was observed between recipient viremia and donor 

BKPyV seroreactivity (p < 0.001) (Figure 2). The Kaplan-Meier curves based on 

the donor BKPyV seroreactivity results of the conformational ELISA showed the 

same effect (p < 0.001) (Figure 2, inset). For recipient BKPyV seroreactivity, a non-

signifi cant reverse trend was found (Figure S4A).

To estimate the risk indicated by baseline BKPyV seroreactivity, the hazard ratio 

(HR) for recipient viremia was calculated. With every 5000 MFI unit increase of 

donor seroreactivity, the HR increased with 1.59 (95% confi dence interval [CI] 

1.38-1.84, p < 0.001) (Table 3). In recipients from high BKPyV-seroreactive donors 

the HR was 6.92 (95% CI 3.41-14.06, p < 0.001) (Table 3). In high seroreactive 

recipients the risk of viremia tended to decrease (HR 0.57, 95% CI 0.33-0.98, p = 

0.041) (Table 3).

Because opposite trends were observed for donor and recipient baseline BKPyV-

seroreactivity, the interplay between these potentially predictive factors of post-

transplantation BKPyV viremia was analyzed by calculating the BKPyV viremia 

risk for donor BKPyV-seroreactivity stratifi ed by recipient seroreactivity. As shown 

in Figure S4B, a combination of these factors resulted in a substantially increased 

risk of BKPyV viremia in low BKPyV-seroreactive recipients receiving an allograft 

from high seroreactive donors (HR 10.07, 95% CI 3.50-28.96, p < 0.001) (Table 3).

Finally, Cox regression analyses were performed for the risk to develop BKPyV 

viremia after transplantation related to the identifi ed serological risk factors and 

the cohort characteristics presented in Table 1. In the univariate analysis (Table 

4), apart from donor BKPyV seroreactivity (HR 1.59, 95% CI 1.38-1.84, p < 0.001), 

only unrelatedness of the living donor (HR 1.49, 95% CI 1.02-2.17, p = 0.042) and 

rejection treatment (HR 1.54, 95% CI 1.02-2.34, p = 0.040) were associated with BK-

PyV viremia. Recipient BKPyV seroreactivity did not reach statistical signifi cance 
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(HR 0.90, 95% CI 0.80-1.02, p = 0.088). In line with the stratifi ed analysis above, the 

multivariate analysis showed a signifi cant protective effect of recipient BKPyV-

seroreactivity (HR 0.84, 95% CI 0.75-0.95, p = 0.006) (Table 4). The effect of the 

unrelated donor (HR 1.35, 95% CI 0.79-2.31, p = 0.268) and rejection treatment (HR 

1.53, 95% CI 0.97-2.40, p = 0.066) were lost in the multivariate analysis, whereas 

donor BKPyV seroreactivity remained a highly signifi cant risk factor for BKPyV 

viremia (HR 1.61, 95% CI 1.39-1.88, p < 0.001).

Despite the low number of BKPyVAN cases (n = 12), univariate analysis for BKPy-

VAN (Table 5) showed an association with donor BKPyV IgG-levels (HR 1.95, 95% 

CI 1.15-3.32, p = 0.013). These associations were also observed in the multivariate 

analysis (HR 2.89, 95% CI 1.33-6.29, p = 0.007, and HR 23.52, 95% CI 4.57-120.99, 

p < 0.001, respectively). Recipient seroreactivity showed a reverse, but not sta-

Figure 2. Proportion of BKPyV viremia detected in the fi rst year after kidney transplantation ac-
cording to BKPyV-seroreactivity determined in donors.

|Chapter 2 
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Figure 2. Proportion of BKPyV viremia detected in the first year after kidney transplantation according to BKPyV-

seroreactivity determined in donors. 

 

 

 

Kaplan-Meier (1 - survival function) curves for proportion of BKPyV viremia observed in the recipients according to 

donor BKPyV seroreactivity quartile groups (shown in Figure S2). The inset shows the Kaplan-Meier (1 - survival 

function) curves for proportion of BKPyV viremia observed in the recipients according to donor BKPyV seroreactivity 

quartile groups determined with ELISA (Log Rank [Mantel Cox] p < 0.001). MFI distributions of the donor 

seroreactivity quartile groups are described in the legend of Figure S2. Tick marks represent censored recipients. 

Groups from the inset are divided by optical density values seroreactivity quartiles. Q1, low: 0 – 0.0150; Q2, low 

intermediate: 0.151 – 0.6105; Q3, high intermediate: 0.6106 – 1.2225; Q4, high: 1.2226 – 3.1180. Tick marks represent 

censored recipients. BKPyV, BK polyomavirus; Q, quartile. 
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Kaplan-Meier (1 - survival function) curves for proportion of BKPyV viremia observed in the recipients 
according to donor BKPyV seroreactivity quartile groups (shown in Figure S2). The inset shows the 
Kaplan-Meier (1 - survival function) curves for proportion of BKPyV viremia observed in the recipients 
according to donor BKPyV seroreactivity quartile groups determined with ELISA (Log Rank [Mantel Cox] 
p < 0.001). MFI distributions of the donor seroreactivity quartile groups are described in the legend of 
Figure S2. Tick marks represent censored recipients. Groups from the inset are divided by optical den-
sity values seroreactivity quartiles. Q1, low: 0 – 0.0150; Q2, low intermediate: 0.151 – 0.6105; Q3, high 
intermediate: 0.6106 – 1.2225; Q4, high: 1.2226 – 3.1180. Tick marks represent censored recipients. 
BKPyV, BK polyomavirus; Q, quartile.
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tistically significant protective trend in the univariate and multivariate analysis 

(HR 0.91, 95% CI 0.64-1.30, p = 0.609, and HR 0.69, 95% CI 0.46-1.04, p = 0.075, 

respectively). In a subanalysis for BKPyVAN among viremic recipients, in which 

recipients of donors with high IgG levels are overrepresented, no additional as-

sociations were found in either the uni- or multivariate analysis (Table S2).

Table 3. Risk of recipient BKPyV viremia after kidney transplantation according to BKPyV-sero-
reactivity measured pretransplantation in the donor, the recipients, and in the donor-recipient 
pair by stratified analysis.

HR 95%-CI p-value1

Donor

BKPyV-seroreactivity2  1.59 1.38 – 1.84 <0.001 

Seroreactivity quartile groups3     

Low (Q1)  1.0  <0.001 

Low intermediate (Q2)  2.34 1.07 – 5.11 0.033 

High intermediate (Q3)  3.82 1.82 – 8.06 <0.001 

High (Q4)  6.92 3.41 – 14.06 <0.001 

Recipient

BKPyV-seroreactivity2  0.90 0.80 – 1.02 0.088 

Seroreactivity quartile groups3     

Low (Q1)  1.0  0.221 

Low intermediate (Q2)  0.74 0.47 – 1.24 0.257 

High intermediate (Q3)  0.85 0.52 – 1.39 0.509 

High (Q4)  0.57 0.33 – 0.98 0.041 

Donor-recipient pair

Donor seroreactivity3 Recipient seroreactivity3    

Low (Q1) High (Q3-Q4) 1.00  <0.001 

 Low (Q1-Q2) 0.90 0.24 – 3.36 0.879 

Intermediate low (Q2) High (Q3-Q4) 1.84 0.55 – 6.12 0.319 

 Low (Q1-Q2) 2.52 0.82 – 7.72 0.106 

Intermediate high (Q3) High (Q3-Q4) 2.99 0.97 – 9.16 0.056 

 Low (Q1-Q2) 4.31 1.45 – 12.82 0.009 

High (Q4) High (Q3-Q4) 4.89 1.71 – 14.01 0.003 

 Low (Q1-Q2) 10.07 3.50 – 28.96 <0.001 

BKPyV, BK polyomavirus; CI, confidence interval; HR, hazard ratio; MFI, mean fluorescence intensity; 
Q, quartile.
1The p-values, HRs and 95% CIs were calculated with Cox regression analysis. A p-value <0.05 was con-
sidered statistically significant.
2Donor and recipient seroreactivity per 5000 increasing MFI.
3MFI distributions of the donor and recipient seroreactivity quartile groups can be found in the legend 
of Figure S2.
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Table 4. Uni- and multivariate Cox regression analysis for risk factors of BKPyV viremia develop-
ment among 407kidney transplantation recipients in the first year after transplantation.

Covariate Univariate analysis Multivariate analysis

HR 95%-CI p-value1 HR 95%-CI p-value1

Age recipient (years) 1.01 1.00 – 1.03 0.138 1.00 0.99 – 1.02 0.665

Age donor (years) 1.01 0.99 – 1.02 0.498  1.00 0.98 – 1.02 0.858 

Gender recipient 1.21 0.82 – 1.80 0.340  1.04 0.68 – 1.60 0.842 

Gender donor 0.90 0.62 – 1.33 0.603  0.94 0.61 – 1.44 0.765 

Underlying condition2

Inherited 1.00  0.359  1.00  0.476 

Glomerular 0.97 0.56 – 1.66 0.903  1.14 0.64 – 2.04 0.657 

Vascular 1.45 0.86 – 2.43 0.163  1.62 0.94 – 2.77 0.081 

Obstructive 0.78 0.34 – 1.79 0.554  1.04 0.43 – 2.51 0.939 

Other 0.94 0.52 – 1.67 0.820  1.18 0.64 – 2.17 0.601 

Dialysis pretransplantation 0.85 0.59 – 1.24 0.405  0.89 0.55 – 1.41 0.608 

Duration dialysis (months) 0.90 0.77 – 1.04 0.156  0.99 0.98 – 1.01 0.219 

Unrelated donor 1.49 1.02 – 2.17 0.042  1.35 0.79 – 2.31 0.268 

Retransplantation 1.23 0.66 – 2.30 0.513  1.36 0.68 – 2.68 0.384 

PRA immunization pretransplantation 0.72 0.23 – 2.26 0.570  0.72 0.22 – 2.41 0.598 

Blood group compatibility 1.43 0.67 – 3.08 0.359  1.22 0.44 – 3.42 0.701 

HLA mismatched A, B and DR loci3        

0 1.00  0.832  1.00  0.746 

1-3 1.08 0.46 – 2.52 0.859  0.82 0.34 – 2.01 0.668 

4-6 1.20 0.51 – 2.78 0.678  0.71 0.27 – 1.89 0.495 

Basiliximab vs. alemtuzumab 1.04 0.51 – 2.13 0.921  0.99 0.38 – 2.58 0.988 

Tacrolimus vs cyclosporin A 0.89 0.58 – 1.37 0.599  0.76 0.48 – 1.23 0.264 

Donor BKPyV-seroreactivity4 1.59 1.38 – 1.84 <0.001  1.61 1.39 – 1.88 <0.001 

Recipient BKPyV-seroreactivity4 0.90 0.80 – 1.02 0.088  0.84 0.75 – 0.95 0.006 

Rejection treatment5 1.54 1.02 – 2.34 0.040  1.53 0.97 – 2.40 0.066 

BKPyV, BK polyomavirus; CI, confidence interval; HLA, human leukocyte antigen; HR, hazard ratio; 
MFI, mean fluorescence intensity; PRA, panel reactive antibody.
1The p-values, HRs, and 95% CIs were calculated with uni- and multivariate Cox regression analysis. A 
p-value <0.05 was considered statistically significant.
2Describes the HR of viremia in recipients with each underlying condition group compared to the in-
herited disease group, the clarification of the categories can be found in the legend of Table 1.
3Describes the onset of viremia in recipients with each group of number of HLA mismatches on loci A, 
B, and DR compared to the group with no HLA mismatches.
4Donor and recipient seroreactivity per 5000 increasing MFI.
5Rejection treatment consisted of methylprednisolone 1000 mg intravenously once daily for three days.
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Discussion

BKPyV-associated disease is a major problem in the care for kidney transplant 

recipients for which no antiviral treatment is available (1,2,10,32). As timely 

reduction of immunosuppression is the only effective treatment so far (11,12), 

currently all recipients are screened for BKPyV viremia on a regular basis after 

transplantation (10-12,16). Only a subset of recipients, however, is at risk of de-

Table 5. Uni- and multivariate Cox regression analysis for risk of BKPyVAN development among 
recipients (n = 407) in the first year after kidney transplantation.

Covariate1 Univariate analysis Multivariate analysis

HR 95%-CI p-value2 HR 95%-CI p-value2

Age Recipient (years) 1.01 0.97 – 1.05 0.638 0.98 0.92 – 1.03 0.424

Age donor (years 1.03 0.98 – 1.08 0.284  1.06 0.98 – 1.14 0.136 

Gender recipient 1.26 0.38 – 4.20 0.702  1.23 0.29 – 4.38 0.864 

Gender donor 1.08 0.34 – 3.41 0.893  0.82 0.21 - 3.25 0.779 

Underlying condition3

 Inherited 1.00  0.838  1.00  0.350 

 Glomerular 0.68 0.15 – 3.05 0.618  0.49 0.08 – 2.83 0.422 

 Vascular 0.28 0.03 – 2.46 0.248  0.25 0.02 – 2.54 0.240 

 Obstructive 0.73 0.08 – 6.56 0.781  3.03 0.23 – 40.27 0.402 

 Other 0.88 0.20 – 3.94 0.868  2.60 0.42 – 15.91 0.302 

Dialysis pretransplantation 0.92 0.29 – 2.90 0.883  0.35 0.07 – 1.75 0.198 

Duration dialysis (months) 1.03 0.70 – 1.50 0.894  1.01 0.97 – 1.05 0.657 

Unrelated donor 2.90 0.79 – 10.71 0.110  1.58 0.30 – 8.33 0.593 

Retransplantation 2.06 0.45 – 9.41 0.350  2.94 0.36 – 24.14 0.316 

PRA immunization pretransplantation 2.58 0.33 – 20.00 0.364  3.05 0.22 – 42.12 0.405 

Basiliximab vs. alemtuzumab 1.21 0.16 – 9.35 0.857  3.59 0.35 – 37.16 0.283 

Donor BKPyV-seroreactivity**** 1.95 1.15 – 3.32 0.013  2.89 1.33 – 6.29 0.007 

Recipient BKPyV-seroreactivity**** 0.91 0.64 – 1.30 0.609  0.69 0.46 – 1.04 0.075 

Rejection treatment***** 11.60 3.14 – 42.86 <0.001  23.52 4.57 – 120.99 <0.001 

BKPyV, BK polyomavirus, BKPyVAN, BK polyomavirus-associated nephropathy; CI, confidence interval; 
HR, hazard ratio; PRA, panel reactive antibody.
1Covariates blood group compatibility, HLA mismatches, and tacrolimus vs. cyclosporin A, as shown in 
Table 1, could not be added to this Cox model due to the low number of BKPyVAN cases in our cohort 
and the distribution of these baseline characteristics among the recipient groups with and without 
BKPyVAN (Table 1).
2The p-values, HRs, 95% CIs were calculated with uni- and multivariate Cox regression analysis. A p-
value <0.05 was considered statistically significant.
3Describes the HR of BKPyVAN in recipients with each underlying condition group compared to the 
inherited disease group, the clarification of the categories can be found in the legend of Table 1.
4Donor and recipient seroreactivity per 5000 increasing MFI.
5Rejection treatment consisted of methylprednisolone 1000 mg intravenously once daily for three days.
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veloping BKPyV viremia (15-30%) and subsequently BKPyVAN (1-10%) (10,12-16). 

Apart from rejection treatment following transplantation, pretransplantation 

risk factors for BKPyV viremia and BKPyVAN have not been identified thus far 

and, therefore, no markers are available to predict which recipients are actually 

at risk. The observed strong positive correlation between donor BKPyV IgG-levels 

and development of BKPyV viremia and BKPyVAN in recipients could fill this gap.

The kidney allograft plays a key role in the development of BKPyVAN, either be-

cause it serves as a transmitting vehicle for BKPyV to the recipient, as suggested by 

a number of previous reports (19,23), or because of increased renal vulnerability 

to infection, for example resulting from kidney injury related to transplantation 

(10,33). Our findings that show strong associations between donor BKPyV sero-

reactivity, and BKPyV viremia and BKPyVAN provide strong support for the first 

explanation, indicating that manifest BKPyV infection in recipients originates 

from the kidney allograft.

The strength of the observed association between donor BKPyV seroreactivity and 

recipient BKPyV infection, and the height of the calculated hazards are remark-

able. As far as we know, previous studies have not compared donor BKPyV sero-

reactivity with recipient viremia and BKPyVAN. In general, studies that compared 

recipient BKPyV infection with BKPyV-related virological and immunological 

characteristics are rare, probably because BKPyV serology was considered not 

useful in this regard; BKPyV serostatus was shown to be positive in almost all 

cases, donors as well as recipients. One study compared donor BKPyV IgG levels 

and recipient BKPyV viruria and noted a correlation, in line with our findings (19). 

Unfortunately, urine samples could not be analyzed in the present cohort, since 

they were not routinely archived. Despite this and some other limitations of the 

study (see below), our findings indicate that BKPyV seroreactivity is the strongest 

(donor-related) pretransplant factor identified so far, predicting manifest BKPyV 

infection in kidney allograft recipients.

The predictive value of high donor BKPyV IgG levels for recipient BKPyV infec-

tion makes one wonder about the role of humoral BKPyV immunity in BKPyV 

infection. Obviously it is not donor-derived BKPyV-directed antibodies that confer 

infection, but the virus itself. Therefore, we assume that the intensity of mea-

sured donor BKPyV seroreactivity reflects the amount or virulence of infectious 

BKPyV present in the persistently infected kidney allograft. Since we are unaware 

of documented differences in virulence among BKPyV genotypes, it is most likely 

that BKPyV IgG levels reflect the BKPyV kidney load, as such correlating with 
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the risk of BKPyV infection in recipients. It should be noted, however, that so 

far BKPyV genotyping is skewed towards virus isolates obtained from recipients 

with BKPyV infection, and therefore may not represent the distribution of BKPyV 

genotypes circulating in the general population including potential donors.

Because BKPyV seroreactivity likely reflects the BKPyV load of infected kidneys, 

it is important to consider the role that serum IgG antibodies play in the con-

trol of persistent BKPyV infection. As previous studies have shown that BKPyV 

IgG seroresponses increase upon BKPyV DNA detection (21,24,25), and in line 

with observations suggesting an inverse relationship between recipient BKPyV 

IgG levels and BKPyV infection (19,21,22), BKPyV-directed antibodies might be 

directly involved in containment of BKPyV infection. Indeed recent studies by 

Rhandawa and Buck have provided evidence of efficient BKPyV neutralization by 

BKPyV-directed serum antibodies (34,35), and proposed the possibility of offering 

recipients intravenous immunoglobulins (IVIG) in the posttransplantation period. 

Involvement of BKPyV-specific antibodies in controlling BKPyV infection can also 

be inferred from the increased risk of BKPyV viremia observed in serologically low 

responding recipients. Alternatively, especially in the recipients, the measured 

BKPyV seroresponses may be a marker of another relevant component of the im-

mune system, for example BKPyV-specific T cells that are essential in controlling 

BKPyV infection after transplantation (21,36). This possibility is underscored by 

a recent study of Sester and Hirsch that reports a strong correlation in recipients 

with BKPyV replication between BKPyV IgG levels and the percentage of BKPyV-

reactive CD4 T cells (37).

Taken together it is important to realize that, in the context of transplantation 

and prediction of BKPyVAN, BKPyV seroreactivity might actually reflect both the 

BKPyV kidney load and BKPyV T cell immunity. In donors, as depicted above, BK-

PyV seroreactivity likely reflects BKPyV graft load. In recipients, however, BKPyV 

seroreactivity might primarily be regarded as a reflection of the overall immunity 

against BKPyV, including T cells. Both high donor BKPyV-specific antibody titers 

and low (or absent) recipient BKPyV-specific antibody titers are mentioned as 

risk factors for BKPyVAN in the most recent American Society of Transplanta-

tion, Infectious Disease Community of Practice guideline (38). The added value of 

our study particularly lies in the integrated evaluation of this serological marker 

among donor-recipient pairs, which provides leads for future algorithms to pre-

dict BKPyV-related disease posttransplantation.
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Possible limitations of our study include the single-center design, and the fact 

that not all recipients were sampled on every time point after transplantation. 

However, we are not aware of geographic variability regarding BKPyV seroreactiv-

ity, and have no indication that completion of the sample set would have changed 

the overall conclusions. The fact that not all recipients with a BKPyV viremia ≥104 

c/ml were biopsy screened could have caused underrecognition of the number 

of BKPyVAN cases. Therefore statistics performed to calculate the BKPyVAN risk 

must be interpreted with caution. Nevertheless, even with this small number, 

statistically significant results were obtained regarding the association between 

recipient BKPyVAN and donor BKPyV seroreactivity. Due to the inclusion of living 

donor-recipient pairs only, it remains uncertain whether these results also apply 

to deceased donor-recipient pairs. A borderline increased risk of BKPyV viremia 

was observed in recipients that received a kidney allograft from an unrelated 

donor compared to recipients from related donors. However, it is not expected 

that this factor influences the observed associations between donor BKPyV sero-

reactivity, and BKPyV viremia and BKPyVAN. In general both the incidence and 

load of viremic episodes observed in the present study population are in line with 

comparable kidney transplantation cohorts reported in the literature, including 

cohorts with deceased donors (10,14,16,25).

Despite its possible limitations, this study identified a serological marker that 

indicates the risk of BKPyV infection after kidney transplantation. The results 

suggest that a single, pretransplantation BKPyV IgG measurement could be used 

to assess the risk of BKPyV infection posttransplantation. Since our data show that 

recipient BKPyV seroreactivity modulates the risk determined by donor BKPyV 

seroreactivity, it appears most useful to determine BKPyV seroreactivity before 

transplantation in both the allograft donor and recipient. Subsequent studies are 

needed to reveal whether a pretransplantation serological BKPyV risk assessment 

could provide a basis for personalized BKPyV load-monitoring strategies aimed at 

early identification of BKPyV viremic patients, in order to increase the efficiency 

of BKPyV screening. Furthermore it might be worthwhile to consider the additive 

value of donor-recipient BKPyV seroreactivity matching (high seroreactive donor 

calls for high seroreactive recipient), in order to lower the BKPyV infection risk. 

Passive immunization of recipients at high risk could also be considered an op-

tion, based on the protective effect of high IgG levels in recipients. The relevance 

of the present findings for other (reactivating) viral infections after solid organ 

transplantation merits further study.
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By studying BKPyV seroresponses a strong correlation was identified between 

baseline BKPyV IgG levels and posttransplantation BKPyV infection. Use of BKPyV 

seroreactivity as a practical predictive disease marker could be of great value 

in the management of BKPyV-associated disease. Moreover, these findings call 

for further study into approaches aimed at improving humoral BKPyV immunity 

posttransplantation, such as the administration of (BKPyV-specific) IVIG and BK-

PyV vaccination.
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Supporting Information

Table S1. Characteristics of BKPyV viremia among recipients that did or did not develop BKPy-
VAN.

Viremic recipients (n = 111)

No BKPyVAN
(n = 99)

BKPyVAN
(n = 12)

p-value1

First BKPyV-positive sample after transplantation (months) 4.1 (2.2 – 6.0) 2.8 (1.9 – 3.7) 0.100

Peak BKPyV-load after transplantation (months) 4.8 (3.4 – 6.7) 3.3 (2.8 – 5.6) 0.114 

Load of first BKPyV-positive sample (c/ml) 1400
(292 – 10000) 

19795
(406 – 81225) 

0.063 

BKPyV load ≥ 103 c/ml 70 (71%) 12 (100%) 0.034 

BKPyV load ≥ 104 c/ml 40 (40%) 12 (100%) <0.001 

BKPyV load ≥ 105 c/ml 12 (12%) 5 (42%) 0.019 

BKPyV load ≥ 106 c/ml 0 (0%) 1 (8%) 0.108 

Peak BKPyV-load (c/ml 4244
(682 – 26000) 

65650
(29590 – 729250) 

<0.001 

BKPyV-load AUC during one year after transplantation (c/ml) 8977
(1382 – 46296) 

120750
(27293 – 341225) 

<0.001 

Number of time-points collected 4 (4 – 5) 5 (4 – 5) 0.031 

Number of BKPyV-positive time-points 2 (1 – 3) 2 (2 – 3.8) 0.083 

Number of BKPyV-positive time-points ≥ 103 c/ml 1 (0 – 1) 1 (0.3 – 1.8) 0.446 

Number of BKPyV-positive time-points ≥ 104 c/ml 0 (0 – 1) 0.5 (0 – 1) 0.132 

Number of BKPyV-positive time-points ≥ 105 c/ml 0 (0 – 0) 0 (0 – 0.8) 0.041 

Number of consecutive BKPyV-positive time-points 1 (1 – 2) 2 (1 – 1.8) 0.684 

Number of consecutive BKPyV-positive time-points ≥ 103 c/ml 1 (0 – 1) 1 (0.3 – 1.8) 0.413 

Number of consecutive BKPyV-positive time-points ≥ 104 c/ml 0 (0 – 1) 1 (0 – 1) 0.036 

Number of consecutive BKPyV-positive time-points ≥ 105 c/ml 0 (0 – 0) 0 (0 – 0.8) 0.041 

Data are shown as median number and interquartile range (IQR) or n (%).
AUC, area under the curve; BKPyV, BK polyomavirus; BKPyVAN, BK polyomavirus-associated nephropa-
thy; c/ml, copies/ml; IQR, interquartile range.
1The p-values were calculated with Mann-Whitney U test, Chi-Square test or Fisher’s Exact test. A p-
value <0.05 was considered statistically significant.
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Table S2. Uni- and multivariate Cox regression analysis for risk of development of BKPyVAN 
among BKPyV viremic recipients (n = 111) during the first year after kidney transplantation.

Covariate1 Univariate analysis Multivariate analysis

HR 95%-CI p-value2 HR 95%-CI p-value2

Age Recipient (years) 1.00 0.96 – 1.04 0.938 0.98 0.92 – 1.04 0.422

Age donor (years 1.02 0.97 – 1.08 0.393  1.03 0.96 – 1.11 0.350 

Gender recipient 1.08 0.32 – 3.58 0.903  1.53 0.33 – 7.16 0.589 

Gender donor 1.18 0.38 – 3.73 0.774  0.87 0.20 – 3.72 0.848 

Underlying condition3

Inherited 1.00  0.681  1.00  0.584 

Glomerular 0.75 0.17 – 3.33 0.700  0.63 0.09 – 4.36 0.639 

Vascular 0.20 0.02 – 1.76 0.146  0.24 0.02 – 2.48 0.231 

Obstructive 0.98 0.11 – 8.78 0.986  1.48 0.12 – 18.18 0.759 

Other 0.94 0.21 – 4.18 0.931  1.84 0.29 – 11.60 0.516 

Dialysis pretransplantation 1.03 0.33 – 3.25 0.959  0.62 0.10 – 3.64 0.593 

Duration dialysis (months) 1.02 0.98 – 1.06 0.417  1.04 0.97 – 1.10 0.270 

Unrelated donor 1.99 0.54 – 7.35 0.303  2.06 0.35 – 11.97 0.422 

Retransplantation 1.73 0.38 – 7.88 0.481  2.52 0.35 – 17.94 0.356 

PRA immunization pretransplantation 3.35 0.43 – 25.97 0.248  1.55 0.11 – 28.36 0.751 

Basiliximab vs. alemtuzumab 1.08 0.14 – 8.40 0.938  1.01 0.10 – 9.97 0.996 

Donor BKPyV-seroreactivity4 1.27 0.76 – 2.12 0.362  1.64 0.84 – 3.20 0.147 

Recipient BKPyV-seroreactivity4 0.98 0.68 – 1.40 0.895  0.84 0.52 – 1.36 0.476 

Rejection treatment5 2.07 0.45 – 9.44 0.349  1.54 0.23 – 10.24 0.653 

BKPyV, BK polyomavirus; BKPyVAN, BK polyomavirus-associated nephropathy; CI, confidence interval; 
HR, hazard ratio; MFI, mean fluorescence intensity; PRA, panel reactive antibody.
1Covariates blood group compatibility, HLA mismatches, and tacrolimus vs. cyclosporin A, as shown in 
Table 1, could not be added to the Cox model due to the low number of BKPyVAN cases in our cohort 
and the distribution of these baseline characteristics among the recipient groups with and without 
BKPyVAN (Table 1).
2 The p-values, HRs, and 95% CIs were calculated with uni- and multivariate Cox regression analysis. A 
p-value <0.05 was considered statistically significant.
3Describes the HR of BKPyVAN in recipients with each underlying condition group compared to the 
inherited disease group, the clarification of the categories is described in the legend of Table 1.
4Donor and recipient seroreactivity per 5000 increasing MFI.
5Rejection treatment within 3 months before occurrence of BKPyV viremia was used instead of rejec-
tion treatment overall as occurrence of BKPyV viremia always precedes BKPyVAN. Rejection treatment 
consisted of methylprednisolone 1000 mg intravenously once daily for three days.
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Figure S1. Study population, inclusion of kidney transplantation donor–recipient pairs, and de-
velopment of BKPyV viremia and BKPyVAN divided by donor and recipient pretransplantation 
BKPyV serostatus.

 

 

 

 

 

 

 

 

 

 

515 adult living kidney transplant patients 
transplanted between 2003 - 2012 

4 patients transplanted 2x with different 
donors 

519 kidney transplant donor-recipient pairs 

407 donor-recipient 
pairs 

368 D+R+ (90.4%) 21 D+R- (5.2%) 17 D-R+ (4.2%) 1 D-R- (0.2%) 

100 BKPyV viremia (24.6%) 8 BKPyV viremia (2.0%) 2 BKPyV viremia (0.5%) 1 BKPyV viremia (0.2%) 

77 sustained BKPyV viremia 
(18.9%) 

45 BKPyV viremia ≥ 104 
c/ml (11%) 

6 BKPyV viremia ≥ 104  
c/ml (1.5%) 

1 BKPyV viremia ≥ 104 
c/ml (0.2%) 

0 BKPyV viremia ≥ 104  
c/ml (0%) 

7 sustained BKPyV viremia 
(1.7%) 

2 sustained BKPyV viremia 
(0.5%) 

 

1 sustained BKPyV viremia 
(0.2%) 

11 biopsy proven BKPyVAN 
(2.7%) 

 

1 biopsy proven BKPyVAN 
(0.2%) 

0 biopsy proven BKPyVAN 
(0%) 

 

0 biopsy proven BKPyVAN 
(0%) 

 

112  Excluded    
- 53  No pre-KTx serum sample available 
- 59  < 2 plasma samples available 

Inclusion and exclusion criteria and distribution of BKPyV viremia (p = 0.107), sustained BKPyV vire-
mia (p = 0.107), BKPyV viremia of log ≥4(p= 0.155), and BKPyVAN (p = 0.707) in the different BKPyV 
serostatus pretransplantation donor–recipient pair combinations. The p-values were calculated using 
the Fisher exact test. A p-value <0.05 was considered statistically significant. +, BKPyV seropositive; -, 
BKPyV seronegative; BKPyV, BK polyomavirus; BKPyVAN, BK polyomavirus-associated nephropathy; c/
mL, copies per milliliter; D, donor; pre-KTx, pre–kidney transplant; R, recipient.
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Figure S2. Pretransplantation IgG seroreactivity of 407 kidney transplantation donors and recipi-
ents against the BKPyV VP1 antigen.

 

Pretransplantation IgG seroreactivity of 407 kidney transplantation donors and recipients against the 
BKPyV VP1 antigen. Each dot represents the pretransplantation BKPyV VP1 IgG seroreactivity of indi-
vidual donors (left) and recipients (right), tested by a Luminex assay. The measured BKPyV VP1 IgG se-
roreactivity of donors and recipients is categorized in quartile groups according to the measured mean 
fluorescence intensity (MFI) values, with quartile 1 (Q1) containing the lowest seroreactive participants 
and Q4 the highest. The black lines represent the borders between the quartile groups, and the dashed 
line represents the cutoff value that was used to calculate the percentage of BKPyV seropositivity. MFI 
ranges for donor seroreactivity quartiles: Q1, low: -1001 to 6169; Q2, low intermediate: 6170–13 842; 
Q3, high intermediate: 13 843–20 251; Q4, high: 20 252–24 120. MFI ranges for recipient seroreactivity 
quartiles: Q1, low: -510 to 6178; Q2, low intermediate: 6179–13 490; Q3, high intermediate: 13 491–21 
043; Q4, high: 21 043–24 207.
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Figure S3. Baseline donor BKPyV seroreactivity comparison between data generated with the 
Luminex BKPyV GST–VP1 fusion protein assay and the BKPyV VP1 VLP ELISA.
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A) Overall, 396 of 407 (97.3%) pretransplantation donor sera were analyzed by both the Luminex BKPyV 
GST-VP1 fusion protein assay and the BKPyV VP1 VLP ELISA. The correlation is shown between the MFI 
values determined by Luminex and the OD values determined by ELISA.
B) The Spearman correlation coefficient was calculated between the MFI and OD values obtained with 
Luminex and ELISA. A strong positive monotonic correlation was observed between the two variables: 
r = 0.823, n = 396, p < 0.001. BKPyV, BK polyomavirus; ELISA, enzyme-linked immunosorbent assay; 
GST, glutathione S-transferase; MFI, mean fluorescence intensity; OD, optical density; VLP, virus like 
particle; VP1, viral capsid protein 1
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Figure S4. Proportion of BKPyV viremia detected in the first year after kidney transplantation 
according to BKPyV seroreactivity determined in recipients and in donor–recipient pairs.

A      B 

    

Q1 Q1
 

Q2 Q3 Q4 Q4
 

Q1/Q2 Q3/Q4  
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Donor BKPyV-
seroreactivity Recipient BKPyV-seroreactivity 

A) Kaplan–Meier (1 – survival function) curves for proportion of BKPyV viremia observed in the re-
cipients according to recipient BKPyV seroreactivity quartile groups (shown in Figure S2). Mean 
fluorescence intensity distributions of the recipient seroreactivity quartile groups can be found in the 
legend of Figure S2. Tick marks represent censored recipients.
B) Incidence of recipient BKPyV viremia during follow-up according to donor BKPyV seroreactivity quar-
tile groups stratified for recipient BKPyV seroreactivity measured before transplantation. The overall 
percentages of BKPyV viremic recipients are shown within each donor-recipient seroreactivity quartile 
combination. BKPyV, BK polyomavirus; OD, optical density; Q, quartile.
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Abstract

Background

Recently we showed that the level of BK polyomavirus (BKPyV) IgG seroreactivity 

in kidney donors predicted viremia and BKPyV-associated nephropathy in kidney 

transplant recipients (KTRs). This observation could be explained by assuming 

a direct association between BKPyV seroreactivity and the amount of persistent 

infectious virus in the renal allograft.

Objectives

Since the renal BKPyV reservoir is probably sowed by viremia during primary 

BKPyV infection, we systematically analysed the dynamics of BKPyV IgG serore-

activity in relation to preceding BKPyV viremia in KTRs and healthy individuals.

Study design

A cohort of 85 KTRs consisting of BKPyV viremic and nonviremic subjects was 

analysed for BKPyV IgG seroreactivity at five fixed time points until one year after 

transplantation. A cohort of 87 healthy blood donors (HBDs) was used as controls.

Result

Baseline BKPyV seropositivity was high in both KTRs and HBDs, and the baseline 

mean BKPyV IgG level comparable. BKPyV IgG levels in nonviremic KTRs and 

HBDs remained stable during follow-up, while a considerable increase was ob-

served in viremic KTRs (p = 0.015). The increase of BKPyV seroreactivity in viremic 

KTRs was associated with the duration and peak level of BKPyV viremia.

Conclusion

BKPyV IgG seroreactivity was stable over time in immunocompetent subjects, 

which enables the use of this potential pretransplantation biomarker in kidney 

donors. The observed dose-dependent relationship of BKPyV IgG seroreactivity 

with preceding BKPyV replication is in agreement with the assumption that BK-

PyV seroreactivity reflects past BKPyV activity and correlates with the amount of 

latent BKPyV residing within a kidney allograft.
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Background

BK polyomavirus (BKPyV) is a ubiquitous small, double-stranded DNA virus that 

infects ~90% of the human population (1,2). Primary infection is asymptomatic 

and usually occurs in early childhood (3,4). During primary infection BKPyV rep-

licates, disseminates probably via the bloodstream and infects the kidneys. After 

establishment of host immunity, BKPyV remains latent in the urothelium and 

renal tubular cells to cause a low-level persistent infection (5,6). From time to 

time small amounts of viral progeny can be detected in urine of healthy indi-

viduals (7-9). Under immunosuppression, however, BKPyV can freely replicate 

again (reactivate) and cause manifest disease, such as hemorrhagic cystitis in 

hematopoietic stem cell transplant recipients and BKPyV-associated nephropathy 

(BKPyVAN) in kidney transplant recipients (KTRs) (3,4,10). The latter condition 

constitutes a serious problem, since BKPyVAN endangers the allograft function in 

5-10% of KTRs and hampers the overall success of kidney transplantation (10-15).

To date, no pretransplantation biomarker exists to reliably predict which KTRs 

are at risk of developing BKPyVAN, which usually develops within the first year 

after transplantation (16). Specific antiviral therapy is not available and timely 

reduction of immunosuppressive therapy is the only effective evidence-based 

treatment so far (15,17,18). Therefore, frequent blood viral load monitoring of 

KTRs is recommended to detect BKPyV replication (10,12,15,17). Presence of BK-

PyV-DNA in blood (viremia), most notably of sustained viremia with loads above 

104 genome copies/ml (c/ml), is associated with BKPyVAN development (3,4,10).

To understand BKPyV reactivation and optimize and personalize BKPyV moni-

toring strategies, we recently conducted a large kidney donor-recipient pair 

study into risk factors of BKPyV viremia and BKPyVAN. We identified a strong 

association between pretransplantation donor BKPyV IgG seroreactivity and 

the incidence of BKPyV viremia and BKPyVAN in KTRs posttransplantation (16). 

The strength of this association surpassed other pretransplantation risk factors 

including HLA-mismatch and unrelated donor-status. This finding indicated a key 

role for the donor organ in the development of BKPyV-associated disease, most 

likely by acting as the transmitting vehicle of infectious BKPyV from donor to 

recipient, as previously suggested (19,20). Moreover, this finding suggested that 

the level of BKPyV IgG seroreactivity measured in the donor reflects the amount 

of latent infectious BKPyV present in the allograft (16).
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Objectives

In light of this finding and of the potential use of this parameter as a pretrans-

plantation predictive biomarker of manifest BKPyV infection in KTRs, the present 

study focused on the relationship between BKPyV IgG seroreactivity and preced-

ing BKPyV replication, as indicated by viremia.

Study design

Study population

Two study populations were defined, one immunosuppressed KTR population 

and one matched immunocompetent healthy blood donor (HBD) population.

The KTR group was part of a larger prospective European multicenter study 

designed to investigate the role of human papillomavirus infection in the devel-

opment of skin cancer in solid-organ transplant patients (21). The study adhered 

to the Declaration of Helsinki Principles. The medical ethical committee of the 

Leiden University Medical Center (LUMC) approved the study design and all par-

ticipants gave written informed consent.

Adult (>18 years of age) KTRs transplanted at the LUMC between 2002 and 2004 

were eligible for this cohort as described previously (22). In total, 101 KTRs were 

identified. Sixteen were excluded because either baseline or follow-up samples 

were not available for analysis (Figure 1). The remaining 85 KTRs were included 

in the study.

KTR serum and plasma samples were collected at five regular time-points (T1 - 

T5), approximately 0, 3, 6, 9 and 12 months after transplantation (Table 1). The 

median number of time points analysed per KTR was 5 (range 4 – 5). T1 sera were 

collected with a mean of 11 days (range 2 – 36) after transplantation. For 68 KTRs 

(80%) all time points were available for BKPyV DNA detection. The remaining 16 

KTRs lacked either the T2, T3 or T4 time point.

To obtain a healthy control population, we randomly selected anonymized serum 

samples from 87 unpaid HBDs, who were matched for age and sex with the KTR 

study population (Table 1). For each blood donor, two serum samples were studied, 

collected 1 year apart in 2011 and 2012 (22). For BKPyV DNA analysis only the latter 

sample was available. BKPyV IgG seroreactivity was determined in both samples.
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BKPyV serology

To detect IgG seroresponses against the major viral capsid protein 1 (VP1) of 

BKPyV, an antibody-binding assay using Luminex xMAP technology (23) was 

performed, as previously described (24). Briefly, the assay measures IgG seroreac-

tivity against BKPyV VP1-GST fusion protein bound to glutathione casein-coated 

fluorescent polystyrene beads (Bio-Rad). Serum samples were tested in a 1:100 

dilution and results expressed as median fluorescent intensity (MFI). For back-

ground correction, MFI values measured against glutathione S-transferase alone 

Figure 1. Kidney transplantation recipient

 

 

 

 

 

 

 

101 transplant patients transplanted  
between 2002 - 2004 

85 transplant recipients 

17 BKPyV nonviremic 68 BKPyV viremic 

16  Excluded   
2    Only time point 1 serum available 
14  Time point 1 or 5 not available 

BKPyV, BK polyomavirus.

Table 1. Baseline characteristics and sampling of kidney transplantation recipients and healthy 
blood donors.

Blood donors Recipients

Total
(n = 87)

Total
(n = 85)

Age, mean in years (range) 52 (29 - 68) 47 (21 - 74)

Gender, n (% male) 56 (64%)  58 (68%) 

Time points analysed1    

T1: baseline 87 (100%)  85 (100%) 

T2: 3 months after baseline NC  84 (99%) 

T3: 6 months after baseline NC  83 (98%) 

T4: 9 months after baseline NC  71 (84%) 

T5: 12 months after baseline 87 (100%)  85 (100%) 

Number of time points, median (range) 2 (2)  5 (4 - 5) 

NC, not collected; T, time point.
1In the kidney transplant recipients, baseline refers to around date of transplantation.
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were subtracted to obtain the BKPyV VP1-specific signals. Quality control was 

performed on each plate with a serum pool consisting of 4 serum samples that 

had been analyzed in a 1:4 serial dilution, starting with a dilution of 1:100 up to 

1:409,600. The observed interplate variance was small (r 0.963 – 0.999, p < 0.001).

The cut-off value was defined based on a group of healthy children 0.5 – 2 years of 

age and determined as described by van der Meijden et al. (24).

Detection of BKPyV viremia

Total nucleic acids were extracted from 200 µL serum/plasma using the MagNA 

Pure LC Total Nucleic Acid Isolation Kit–High Performance and MagNA Pure LC 

Instrument (Roche Diagnostics, Indianapolis, IN, USA). To monitor the quality of 

DNA extraction and potential PCR inhibition, we added low concentrations of 

phocine herpesvirus (25) to the lysis buffer. DNA was eluted in a final volume of 

100 µL elution buffer, of which 10 µL was used as input for real-time quantitative 

PCR (qPCR). Using the primers 440BKVs 5’-GAAAAGGAGAGTGTCCAGGG-3’ and 

441BKVas 5’-GAACTTCTACTCCTCCTTTTATTAGT-3’ and a Taqman probe 576BKV-

TQ-FAM FAM 5’-CCAAAAAGCCAAAGGAACCC-3’-BHQ1, a 90-bp fragment within 

the BKPyV VP1 gene was amplified. The BKPyV qPCR and phocine herpesvirus 

PCR were duplexed for DNA quality and potential PCR inhibition monitoring. 

Furthermore, the BKPyV qPCR was validated to detect BKPyV genotypes I–IV.

qPCR reactions were performed in a total volume of 50 µL, containing 25 µL Hot-

StarTaq Master Mix (QIAGEN, Hilden, Germany), 0.5 µmol/L of each primer, 0.35 

µmol/L BKPyV probe, and 3.5 mmol/L MgCl2. Reactions were performed using a 

CFX96 real-time detection system (Bio-Rad, Hercules, CA, USA) with the following 

cycle conditions: 15 min at 95°C followed by 45 cycles of amplification (30 s at 

95°C; 30 s at 55°C; 30 s at 72°C). For quantification, a standard of a quantified 

BKPyV-positive urine sample was used. Analytical sensitivity of the BKPyV qPCR 

was ~10 copies/mL. On each plate, 3 negative controls were included; these con-

trols tested negative in all PCR assays. PCR results with a cycle threshold ≥ 40 

were considered negative.

Statistical analyses

Data were analyzed with IBM SPSS Statistics software version 23. Descriptive 

analyses were used to report cohort characteristics. Differences between KTRs 

and HBDs or between nonviremic and viremic KTRs were assessed using the 
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Chi-Square test, Fisher’s exact test, Student’s t-test or Mann-Whitney U test as ap-

propriate. Student’s t-test was used to analyze differences over a one year period. 

The course of KTRs BKPyV IgG seroreactivity (based on 5 time points), and of 

HBDs (based on 2 time points), over a one-year period, was calculated with mixed 

model analyses. The calculation of Δ BKPyV IgG for the viremic KTRs grouped 

according to peak viral load was also performed with mixed model analyses. For 

all performed tests a p-value < 0.05 in a two-sided test was considered statistically 

significant.

Results

The BKPyV seroprevalence determined at baseline was high in both groups; 95% 

in the HBDs and 93% in the KTRs (Table 2). The mean baseline BKPyV seroreactiv-

ity of both groups was also comparable (Table 2; 12676 and 12472, p = 0.819). 

After one year of follow-up the mean BKPyV seroreactivity remained stable in the 

HBDs, while it increased considerably in the KTRs (Table 2; 12162 and 15558, p = 

0.007).

To investigate the BKPyV seroresponse in relation to BKPyV replication, we deter-

mined the presence and degree of viremia by detecting BKPyV DNA in blood of 

both groups. In total, 68 of 85 KTRs (80%) became viremic during follow-up (Table 

Table 2. BKPyV IgG seroreactivity and BKPyV viremia among kidney transplantation recipients 
and healthy blood donors.

Blood donors
(n = 87)

Recipients
(n = 85)

p-value1 Recipients p-value1

BKPyV
nonviremic

(n = 17)

BKPyV
viremic
(n = 68)

BKPyV seropositivity at 
baseline2, n (%)

83 (95%) 79 (93%) 0.533 16 (94%) 63 (93%) 1.000

BKPyV seroreactivity, mean 
MFI (SD)

T1: at baseline 12676 (8104) 12472 (8785) 0.819 14090 (8659) 12067 (8833) 0.399 

T5: 12 months after baseline 12162 (7849) 15558 (8454) 0.007 14874 (8156) 15728 (8578) 0.712 

Δ T1-T5 -605 (4323) 3086 (6971) <0.001 784 (5481) 3661 (7216) 0.129 

BKPyV, BK polyomavirus; MFI, mean fluorescence intensity; T1, time point 1; T5, time point 5. Δ Delta 
indicates the difference between MFI values measured at T1 and T5.
1The p-values were calculated using the Chi-Square test, Fisher’s exact test or Student’s t-test. A p-value 
<0.05 was considered statistically significant.
2In the recipients baseline refers to around date of kidney transplantation.
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2) and one HBD. Of the viremic KTRs 23 (34%) had a peak load below 100 c/ml, 

30 (44%) between 100 – 999 c/ml, 13 (19%) between 1000 – 9999 c/ml, and 2 (3%) 

of more than 10000 c/ml. The median peak viral load was 420 c/ml (interquartile 

range 83 – 1154 c/ml). The single positive HBD had a load of 190 c/ml. The dura-

tion of viremia expressed as the number of BKPyV-positive time points ranged 

from one to five time points with a mean of three. For the HBD case with viremia 

the duration could not be established, because only T5 samples of HBDs were 

analysed for BKPyV DNA.

Evaluation among the KTRs showed that the mean BKPyV seroreactivity was lower 

at time of transplantation and higher after follow-up in viremic compared to non-

viremic subjects, but overall these differences were not statistically significant 

(Table 2; p = 0.399 and p = 0.712, respectively). However, a clear increase in the 

mean BKPyV seroreactivity between baseline and end of study was only observed 

in the viremic KTRs (Figure 2; p = 0.015). Stratified analysis for the duration of 

viremia showed the median BKPyV IgG level in viremic KTRs remained stable in 

those with one BKPyV DNA positive time point, slightly increased if two or three 

Figure 2. Mean BKPyV IgG seroreactivity in healthy blood donors (n = 87) and kidney transplanta-
tion recipients (n = 85) during of follow-up.

 

BKPyV IgG levels determined in blood donors (blue), BKPyV nonviremic recipients (green), and BKPyV 
viremic recipients (red), at baseline (dots) and after one year of follow-up (squares). For the kidney 
transplant recipients, baseline indicates time of transplantation. In the right part of the graph, viremic 
recipients were subdivided in groups according to the number of BKPyV-positive time points. The dots 
and squares represent the mean BKPyV IgG seroreactivity and the horizontal lines above and below 
represent the 95% CI.
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time points were positive (p = 0.111), and significantly increased with four or five 

positive time points (Figure 2; p = 0.007).

To further investigate a potential dose-dependent correlation between BKPyV 

seroreactivity and BKPyV replication, we evaluated the course of the BKPyV IgG 

seroresponses measured on all available time points per subject, using mixed 

Figure 3. Course of BKPyV IgG seroreactivity in healthy blood donors (n = 87) and kidney trans-
plantation recipients (n = 85) during follow-up evaluated with mixed model analyses.

A 

B 

BKPyV, BK polyomavirus; c/ml, copies/milliliter; MFI, mean fluorescence intensity.
A) Mixed model analysis based on the course of the BKPyV IgG seroreactivity, expressed in MFI, per 
recipient on time point 1-5, in BKPyV nonviremic (green), and BKPyV viremic (red) transplantation re-
cipients during 12 months after transplantation, and in healthy blood donors (blue) based on the course 
of the BKPyV IgG seroreactivity per blood donor over a 1-year period (time point 1 and 5).
B) The difference (Δ) in BKPyV IgG seroreactivity, expressed in MFI, in BKPyV viremic kidney transplan-
tation recipients during 12 months after transplantation. The BKPyV viremic recipients are divided in 
groups according to the peak viral load in c/ml.
The p-values were calculated using the Student’s t-test or with mixed model analyses. A p-value <0.05 
was considered statistically significant.
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model analyses. This analysis showed BKPyV IgG seroreactivity of both HBDs and 

nonviremic KTRs remained stable during follow-up, while in the viremic KTRs a 

substantial increase in BKPyV seroreactivity was observed (Figure 3A; p < 0.001).

Stratified analysis for the peak level of viremia during follow-up, showed that 

viremic KTRs with a peak load below 100 c/ml virtually did not increase in serore-

activity (Figure 3B; p = 0.141), while KTRs with a peak load between 100 – 999 c/

ml or 1000 – 9999 c/ml did show a significant increase in BKPyV seroreactivity (p 

< 0.001 and p = 0.007 respectively). The highest increase of BKPyV seroreactivity 

was observed in KTRs with a peak load of more than 10000 c/ml (p = 0.024).

Discussion

Donor BKPyV IgG seroreactivity potentially represents a timely and practical 

predictive biomarker of manifest BKPyV infection in KTRs (16). To understand 

this parameter in more detail, the stability of BKPyV IgG seroresponses over time 

and its dependence on preceding BKPyV replication was investigated. The latter 

is important since it could explain why donor BKPyV seroreactivity predicts KTR 

infection (16), as the level of BKPyV IgG might reflect the amount of infectious 

BKPyV seeded in a donor kidney during previous viremic episodes of BKPyV rep-

lication including primary infection.

Our analysis of BKPyV replication in both immunocompromised and immuno-

competent individuals showed a significant dose-dependent correlation between 

BKPyV IgG seroreactivity and preceding viremia. Increasing seroreactivity was 

only observed in individuals with a recent episode of viremia, while in individu-

als without viremia the BKPyV IgG levels remained stable. Previous longitudinal 

studies that analysed BKPyV seroresponses in either of these groups reported 

comparable findings (26-30). As far as we know there have been no studies that 

correlated BKPyV seroreactivity and detection of viremia during primary infec-

tion in immunocompetent individuals, for example in children. Despite this gap 

of knowledge and the relatively small size of our cohorts, based on the observed 

dose-dependent relationship between BKPyV seroreactivity and viremia, we 

assume that BKPyV seroreactivity measured in immunocompetent individuals 

could reflect the level of viremia experienced during primary infection.

In the HBDs a slight decline in mean BKPyV seroreactivity during follow-up was 

observed, which fits with the earlier observations that BKPyV seroresponses wane 
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with ageing, and might be explained by immunosenescence or diminished boost-

ing by less virus exposure (1,2). The subtle increase in mean BKPyV IgG observed 

in the nonviremic KTRs might be explained by the presence of undetected low-

level BKPyV viremia that still marginally boosted the BKPyV seroresponse.

To our surprise one of the tested HBDs showed low-level BKPyV viremia. Detec-

tion of BKPyV DNA in blood of immunocompetent individuals has been reported 

before in a healthy kidney donor (31), but a cohort of 400 HBDs tested by Egli et 

al. was found negative (7). Apparently BKPyV viremia can occur in persistently 

infected healthy individuals, albeit in a frequency much lower than viruria seen 

in approximately 7-55% of healthy people (7-9). The clinical relevance of such 

viremic episodes in healthy individuals is unknown. Since viremia in the HBD 

was assessed in the T5 samples only, we could not follow-up the BKPyV-IgG sero-

response in this individual. The difference in measured seroreactivity between T1 

and T5 was not statistically significant (not shown).

In conclusion, we showed that BKPyV IgG seroreactivity is influenced by preced-

ing BKPyV replication in a dose-dependent manner and is generally stable in 

immunocompetent individuals. The latter lends support for the tentative use of 

BKPyV IgG seroreactivity as a possible valuable and reproducible pretransplanta-

tion biomarker in donors to predict BKPyV infection and related complications 

after transplantation in KTRs. The biological relevance of this marker could be its 

reflection of the amount of latent infectious BKPyV sowed in a donor kidney dur-

ing previous viremic episodes. Future studies should be directed at establishing 

this relation by comparing the viral kidney load with seroreactivity, which could 

further support the development of a useful biomarker that could improve the 

management and prevention of BKPyV-associated disease in KTRs.

Acknowledgements

The study cohort was part of a larger prospective European multicenter study 

designed to investigate the role of human papillomavirus infection in the de-

velopment of skin cancer in solid-organ transplant patients. We want to thank 

dr. Jan Nico Bouwes Bavinck from the department of Dermatology in the Leiden 

University Medical Center, Leiden, the Netherlands for assembling the cohort.

Funding

This work was supported by the Dutch Kidney Foundation, grant 13A1D302.



82

Role of the funding source

The Dutch kidney Foundation who supported this study had no role in study 

design;

collection, analysis, and interpretation of data; writing of the report; or in the 

decision to submit the paper for publication.

Declaration of interests

We declare that we have no conflicts of interest.

Contributors

HFW, EvdM and MCWF initiated and designed the study. EvdM and CSvdB-dB 

gathered the experimental data. HFW and EvdM analysed the data. EWvZ pro-

vided statistical support. HFW, EvdM, HZL, ACMK, JIR, and MCWF interpreted the 

data. HFW and MCWF drafted the manuscript, including figures and tables. All 

authors reviewed and approved the final report.



83

BKPyV IgG stability and correlation with viremia

References

 1. Kean, J. M., S. Rao, M. Wang, and R. 

L. Garcea. 2009. Seroepidemiology of 

human polyomaviruses. PLoS.Pathog. 

5:e1000363.

 2. van der Meijden, E., S. Bialasiewicz, R. J. 

Rockett, S. J. Tozer, T. P. Sloots, and M. 

C. Feltkamp. 2013. Different serologic 

behavior of MCPyV, TSPyV, HPyV6, 

HPyV7 and HPyV9 polyomaviruses 

found on the skin. PLoS.One. 8:e81078.

 3. Hirsch, H. H. and J. Steiger. 2003. 

Polyomavirus BK. Lancet Infect.Dis. 

3:611-623.].

 4. Rinaldo, C. H., G. D. Tylden, and B. N. 

Sharma. 2013. The human polyomavi-

rus BK (BKPyV): virological background 

and clinical implications. APMIS 

121:728-745..

 5. Boldorini, R., C. Veggiani, D. Barco, and 

G. Monga. 2005. Kidney and urinary 

tract polyomavirus infection and distri-

bution: molecular biology investigation 

of 10 consecutive autopsies. Arch.

Pathol.Lab Med. 129:69-73.

 6. Chesters, P. M., J. Heritage, and D. J. 

McCance. 1983. Persistence of DNA 

sequences of BK virus and JC virus in 

normal human tissues and in diseased 

tissues. J.Infect.Dis. 147:676-684.

 7. Egli, A., L. Infanti, A. Dumoulin, A. 

Buser, J. Samaridis, C. Stebler, R. Gos-

ert, and H. H. Hirsch. 2009. Prevalence 

of polyomavirus BK and JC infection 

and replication in 400 healthy blood 

donors. J.Infect.Dis. 199:837-846.

 8. Kling, C. L., A. T. Wright, S. E. Katz, G. 

B. McClure, J. S. Gardner, J. T. Williams, 

N. M. Meinerz, R. L. Garcea, and J. A. 

Vanchiere. 2012. Dynamics of urinary 

polyomavirus shedding in healthy adult 

women. J.Med.Virol. 84:1459-1463.

 9. Zhong, S., H. Y. Zheng, M. Suzuki, Q. 

Chen, H. Ikegaya, N. Aoki, S. Usuku, 

N. Kobayashi, S. Nukuzuma, Y. Yasuda, 

N. Kuniyoshi, Y. Yogo, and T. Kitamura. 

2007. Age-related urinary excretion of 

BK polyomavirus by nonimmunocom-

promised individuals. J.Clin.Microbiol. 

45:193-198.

 10. Hirsch, H. H., C. B. Drachenberg, J. Stei-

ger, and E. Ramos. 2006. Polyomavirus-

associated nephropathy in renal trans-

plantation: critical issues of screening 

and management. Adv.Exp.Med.Biol. 

577:160-173..

 11. Borni-Duval, C., S. Caillard, J. Olagne, P. 

Perrin, L. Braun-Parvez, F. Heibel, and B. 

Moulin. 2013. Risk factors for BK virus 

infection in the era of therapeutic drug 

monitoring. Transplantation 95:1498-

1505.

 12. Elfadawy, N., S. M. Flechner, J. D. 

Schold, T. R. Srinivas, E. Poggio, R. 

Fatica, R. Avery, and S. B. Mossad. 2014. 

Transient versus persistent BK viremia 

and long-term outcomes after kidney 

and kidney-pancreas transplantation. 

Clin.J.Am.Soc.Nephrol. 9:553-561.

 13. Hirsch, H. H., W. Knowles, M. Dick-

enmann, J. Passweg, T. Klimkait, 

M. J. Mihatsch, and J. Steiger. 2002. 

Prospective study of polyomavirus 

type BK replication and nephropa-

thy in renal-transplant recipients. 

N.Engl.J.Med. 347:488-496. doi:10.1056/

NEJMoa020439 [doi];347/7/488 [pii].

 14. Huang, G., L. Zhang, X. Liang, J. Qiu, 

R. Deng, J. Li, G. Chen, Y. Dong, and 

L. Chen. 2014. Risk factors for BK 

virus infection and BK virus-associated 

nephropathy under the impact of 

intensive monitoring and pre-emptive 

immunosuppression reduction. Trans-

plant.Proc. 46:3448-3454.

 15. Sood, P., S. Senanayake, K. Sujeet, R. 

Medipalli, Y. R. Zhu, C. P. Johnson, 

and S. Hariharan. 2012. Management 

and outcome of BK viremia in renal 



84

transplant recipients: a prospective 

single-center study. Transplantation 

94:814-821.

 16. Wunderink, H. F., E. van der Meijden, 

van der Blij-de Brouwer CS, M. J. Mallat, 

G. W. Haasnoot, E. W. van Zwet, E. C. 

Claas, J. W. de Fijter, A. C. Kroes, F. Ar-

nold, A. Touze, F. H. Claas, J. I. Rotmans, 

and M. C. Feltkamp. 2016. Pretransplan-

tation Donor-Recipient Pair Seroreac-

tivity Against BK Polyomavirus Predicts 

Viremia and Nephropathy After Kidney 

Transplantation. Am.J.Transplant.

 17. Hardinger, K. L., M. J. Koch, D. J. Bohl, 

G. A. Storch, and D. C. Brennan. 2010. 

BK-virus and the impact of pre-emptive 

immunosuppression reduction: 5-year 

results. Am.J.Transplant. 10:407-415.

 18. Seifert, M. E., M. Gunasekaran, T. A. 

Horwedel, R. Daloul, G. A. Storch, T. 

Mohanakumar, and D. C. Brennan. 

2016. Polyomavirus Reactivation and 

Immune Responses to Kidney-Specific 

Self-Antigens in Transplantation. J.Am.

Soc.Nephrol.

 19. Bohl, D. L., G. A. Storch, C. Ryschke-

witsch, M. Gaudreault-Keener, M. A. 

Schnitzler, E. O. Major, and D. C. Bren-

nan. 2005. Donor origin of BK virus in 

renal transplantation and role of HLA 

C7 in susceptibility to sustained BK 

viremia. Am.J.Transplant. 5:2213-2221.

 20. Schmitt, C., L. Raggub, S. Linnenweber-

Held, O. Adams, A. Schwarz, and A. 

Heim. 2014. Donor origin of BKV rep-

lication after kidney transplantation. 

J.Clin.Virol. 59:120-125.

 21. Antonsson, A., T. Waterboer, J. N. Bou-

wes Bavinck, D. Abeni, K. M. de, S. Euv-

rard, M. C. Feltkamp, A. C. Green, C. A. 

Harwood, L. Naldi, I. Nindl, H. J. Pfister, 

C. M. Proby, W. G. Quint, E. Stockfleth, 

S. J. Weissenborn, M. Pawlita, and R. 

E. Neale. 2013. Longitudinal study of 

seroprevalence and serostability of 

34 human papillomavirus types in 

European organ transplant recipients. 

Virology 436:91-99.

 22. van der Meijden, E., H. F. Wunderink, 

van der Blij-de Brouwer CS, H. L. Zaai-

jer, J. I. Rotmans, J. N. Bavinck, and M. 

C. Feltkamp. 2014. Human polyoma-

virus 9 infection in kidney transplant 

patients. Emerg.Infect.Dis. 20:991-999.

 23. Waterboer, T., P. Sehr, K. M. Michael, S. 

Franceschi, J. D. Nieland, T. O. Joos, M. 

F. Templin, and M. Pawlita. 2005. Mul-

tiplex human papillomavirus serology 

based on in situ-purified glutathione s-

transferase fusion proteins. Clin.Chem. 

51:1845-1853.

 24. van der Meijden, E., S. Bialasiewicz, R. J. 

Rockett, S. J. Tozer, T. P. Sloots, and M. 

C. Feltkamp. 2013. Different serologic 

behavior of MCPyV, TSPyV, HPyV6, 

HPyV7 and HPyV9 polyomaviruses 

found on the skin. PLoS.One. 8:e81078.

 25. Niesters, H. G. 2001. Quantitation of 

viral load using real-time amplification 

techniques. Methods 25:419-429.

 26. Antonsson, A., A. C. Green, K. A. Mallitt, 

P. K. O’Rourke, M. Pawlita, T. Water-

boer, and R. E. Neale. 2010. Prevalence 

and stability of antibodies to the BK and 

JC polyomaviruses: a long-term longitu-

dinal study of Australians. J.Gen.Virol. 

91:1849-1853.

 27. Stolt, A., K. Sasnauskas, P. Koskela, M. 

Lehtinen, and J. Dillner. 2003. Sero-

epidemiology of the human polyomavi-

ruses. J.Gen.Virol. 84:1499-1504.

 28. Bohl, D. L., D. C. Brennan, C. Ryschke-

witsch, M. Gaudreault-Keener, E. O. 

Major, and G. A. Storch. 2008. BK virus 

antibody titers and intensity of infec-

tions after renal transplantation. J.Clin.

Virol. 43:184-189.

 29. Hariharan, S., E. P. Cohen, B. Vasudev, 

R. Orentas, R. P. Viscidi, J. Kakela, and 

B. DuChateau. 2005. BK virus-specific 

antibodies and BKV DNA in renal trans-



85

BKPyV IgG stability and correlation with viremia

plant recipients with BKV nephritis. 

Am.J.Transplant. 5:2719-2724.

 30. Randhawa, P., D. Bohl, D. Brennan, K. 

Ruppert, B. Ramaswami, G. Storch, 

J. March, R. Shapiro, and R. Viscidi. 

2008. longitudinal analysis of levels 

of immunoglobulins against BK virus 

capsid proteins in kidney transplant 

recipients. Clin.Vaccine Immunol. 

15:1564-1571.

 31. Schwarz, A., S. Linnenweber-Held, A. 

Heim, T. Framke, H. Haller, and C. 

Schmitt. 2016. Viral Origin, Clinical 

Course, and Renal Outcomes in Pa-

tients With BK Virus Infection After 

Living-Donor Renal Transplantation. 

Transplantation 100:844-853.





Chapter 4
Reduced risk of BK polyomavirus 
infection in HLA-B51 positive kidney 
transplant recipients

Herman. F. Wunderink1,#, Geert W. Haasnoot2, Caroline S. de Brouwer1, 
Erik W. van Zwet3, Aloysius C. M. Kroes1, Johan W. de Fijter4, Joris I. 
Rotmans4, Frans H. J. Claas2, Mariet C. W. Feltkamp1

1Department of Medical Microbiology, Leiden University Medical Center, Leiden, the 

Netherlands
2Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 

Leiden, the Netherlands
3Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 

Leiden, the Netherlands
4Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
#Present address: Department of Medical Microbiology, University Medical Center Utrecht, 

Utrecht, the Netherlands

Transplantation 2019; 103(3): 604-612



88

Abstract

Background

Identification of specific HLA alleles and T cell epitopes that influence the course 

of BK polyomavirus (BKPyV) infection after kidney transplantation (KTx), includ-

ing development of BKPyV-associated nephropathy (BKPyVAN), can be useful for 

patient risk stratification and possibly vaccine development.

Methods

In a retrospective cohort of 407 living kidney donor-recipient pairs, donor and 

recipient HLA class I and II status were correlated with the occurrence of recipi-

ent BKPyV viremia and BKPyVAN in the first year after KTx. Relevant HLA alleles 

were systematically analyzed for candidate peptide epitopes in silico.

Results

While none of the 78 HLA alleles analyzed increased the risk of BKPyV viremia 

and BKPyVAN, a considerable reduction of BKPyV viremia and BKPyVAN cases 

was observed in HLA-B51 positive KTx recipients. Multivariate analysis showed 

that HLA-B51-positivity, found in 36 recipients (9%), reduced the risk of viremia 

approximately five-fold (HR 0.18, 95% CI: 0.04 – 0.73, p = 0.017).

Four HLA-B51-restricted putative cytotoxic T lymphocyte epitopes were identi-

fied, including a previously described HLA-B supermotif-containing peptide 

(LPLMRKAYL), encoded by two relevant T-antigens (Small T and Large T) and 

previously shown to be highly immunogenic.

Conclusions

In conclusion, HLA-B51-positive kidney transplant recipients were less suscep-

tible to BKPyV infection, which might be explained by efficient presentation of a 

particular BKPyV-derived immunogenic peptide.
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Introduction

BK polyomavirus-associated nephropathy (BKPyVAN) represents a major burden 

for kidney transplant recipients (KTRs). After transplantation, BKPyV-DNA is 

detected in urine (viruria) of at least 50% of KTRs. Progression to viremia (BKPyV-

DNA in the circulation) is seen in 20-30% (131, 146-149). A small proportion of 

viremic KTRs, 1-10% of total, develops BKPyVAN, which has a significant impact 

on morbidity and graft survival (150-153).

Currently, no BKPyV-specific antiviral drugs are available. Reduction of immu-

nosuppression, with the aim of reconstituting BKPyV immune responses, is the 

only effective evidence-based treatment (149, 154-157). As sustained viremia and 

BKPyV-loads above 104 genome copies/ml (c/ml) increase the risk of BKPyVAN, 

KTRs are regularly evaluated for BKPyV viremia to guide timely reduction of 

immunosuppression, halt BKPyV infection and prevent BKPyVAN (146, 147, 149, 

154, 158, 159).

Obviously reducing immunosuppression, resulting in clearance of BKPyV viremia 

in 80 – 100% of viremic KTRs (149, 151, 155-157), increases the risk of allograft 

rejection (149, 151, 154, 155, 157). Therefore, the care of KTRs and the overall 

success of transplantation could improve if current pre-emptive strategies to 

control BKPyV infection would include BKPyV predictive and preventive strate-

gies (160). With this in mind, we recently put together a cohort of 407 living 

kidney donor-recipient pairs to identify donor and recipient-related risk factors 

of BKPyV viremia and BKPyVAN that could be used for pre-KTx risk stratification. 

In this cohort, we showed that donor BKPyV-directed IgG seroreactivity measured 

pre-KTx, is a strong determinant of BKPyV infection increasing the risk of KTR 

viremia up to 10-fold (161). Here, analyzing the same donor-recipient pairs, we 

investigated the role of individual donor and recipient HLA compositions regard-

ing development of BKPyV infection after KTx.

HLA molecules play essential roles in presenting (viral) antigens to various T cell 

subsets and at the same time serve as allo-antigens in the context of allogeneic 

KTx (162). Identification of specific HLA alleles among donors and recipients that 

influence the risk of BKPyV infection could contribute to personalized BKPyV 

risk stratification for KTRs. A number of studies have reported certain donor and 

recipient HLA alleles that seemed to influence development of BKPyV infection 

after KTx (162-165). For instance (sustained) viremia was found more often in 

HLA-C7 negative donors and recipients (163), and in HLA-A28 and A68 positive re-
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cipients, while recipient HLA-A2 and donor HLA-A9 increased the risk of BKPyVAN 

(165). Here, we correlated the donor and recipient HLA class I (A, B, C) and class 

II (DQ and DR) make-up with the development of BKPyV viremia and BKPyVAN in 

the recipients of our living kidney donor-recipient pair cohort (161). HLA alleles 

significantly associated with BKPyV infection and BKPyVAN after correction for 

multiple testing (166), were probed in silico for their expected efficiency to present 

BKPyV-derived peptides, to identify putatively relevant T cell epitopes.

Materials and Methods

Study population and sample collection

The study population includes 407 adult (> 18 years of age) living donor-recipient 

pairs transplanted at the Leiden University Medical Center (LUMC) between 2003 

and 2013, as described previously (161). In brief, donor and recipient sera were 

collected pre-KTx and recipient plasmas screened for BKPyV-DNA were collected 

during one year of follow-up at five regular time-points post-KTx. The mean 

follow-up was 9.1 months and 80%, 95%, 87%, 63% and 36% of the recipient serum 

samples were available at time point 1, 2, 3, 4 and 5, respectively. The median 

number of time-points analyzed per recipient was 3.6 and the minimum number 

was 2 time-points. All samples were originally collected for routine serological 

and molecular virus-screening and stored at -20˚C. The study protocol was submit-

ted to the Medical Ethical Committee of the LUMC that decided formal approval 

was not needed, due to the retrospective study design and the use of previously 

collected and anonymized samples..

BKPyV seroreactivity, detection of BKPyV viremia and assessment of 
BKPyVAN

Pre-KTx serum samples were analyzed by an in-house Luminex immunoassay 

detecting IgG-reactivity against the BKPyV-genotype Ib1 major viral capsid pro-

tein 1 (VP1), as described (161, 167, 168). For detection of BKPyV-DNA in blood, 

quantitative BKPyV real-time polymerase chain reaction (PCR) was used to ana-

lyze blood plasma. Using the primers 440BKVs 5’-GAAAAGGAGAGTGTCCAGGG-3’ 

and 441BKVas 5’-GAACTTCTACTCCTCCTTTTATTAGT-3’ and a Taqman probe 

576BKV-TQ-FAM FAM 5’-CCAAAAAGCCAAAGGAACCC-3’-BHQ1, a 90-bp fragment 

within the BKPyV VP1 gene is amplified. Simultaneous isolation, amplification, 

and detection of a standard amount of phocid herpesvirus were used for internal 

control of inhibition.
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Routine recipient BKPyV-load screening at 1.5, 3 and 6 months posttransplanta-

tion was implemented in May 2007. In case of clinical suspicion of BKPyV infec-

tion, BKPyV-loads were also determined later than 6 months posttransplantation. 

In samples obtained before 2007 and in samples obtained after 2007 that had not 

been routinely analyzed, BKPyV-loads were determined in retrospect.

A kidney biopsy was performed if indicated in the view of the treating physician, 

and BKPyVAN was diagnosed was diagnosed based on immunohistological exami-

nation of allograft biopsy specimens showing characteristic pathological features, 

such as intranuclear viral inclusions in tubular epithelial cells, cell enlargement 

with polymorphic nuclei, interstitial inflammation and tubular atrophy or fibro-

sis. BKPyVAN diagnosis was confirmed by immunohistochemical staining with 

a PyV-cross-reacting mouse monoclonal antibody (PAb416, Calbiochem) raised 

against large T antigen of SV40 polyomavirus (SV40).

HLA genotyping

HLA class I A, B and C typing was performed with a PCR-based reversed sequence 

specific bead hybridization assay (Lifecodes HLA-SSO Typing Immucor Norcross, 

Georgia), which involves PCR amplification of targeted regions within the major 

histocompatibility complex (MHC)  class I  regions with group specific primers, 

followed by a process of probing the amplicon with Luminex beads, each coated 

with sequence specific oligonucleotide probes to identify the presence or absence 

of specific alleles. The assignment of the HLA allele is then based on the reaction 

pattern observed, compared to patterns associated with published sequences 

(Lifecodes HLA-SSO Typing  Immucor Norcross, Georgia). HLA class II DR and 

DQ typing was performed with a reversed approach of the PCR/SSOP technique 

described previously (169). Briefly, using Biotin-labelled generic primers the poly-

morphic regions of the HLA genes were amplified by PCR. After amplification, 

the PCR fragments were hybridized under stringent conditions to HLA specific 

probes. Signals to discriminate for positive and negative probe hybridization were 

achieved by adding horseradish peroxidase streptavidin followed by a luminogen 

(Amersham ECL Kit, GE Healthcare Biosciences Pittsburgh, USA. HLA assignment 

was done by locally developed HLA allele assignment software.

HLA-B51 epitope prediction

The major structural (VP1, VP2, VP3) and non-structural (agnoprotein, small and 

large T-antigens) proteins encoded by the BKPyV Dunlop strain (genotype Ia, 

NCBI Reference Sequence NC_001538.1), were analyzed for containing HLA-B51 
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presentable, putative CD8+ T cell peptide epitopes using the web-based T cell 

epitope prediction tool SYFPEITHI (170, 171).

HLA-B51 preferentially binds 9mer peptides, with a stringent requirement for 

proline in position 2, and enhanced binding by a dominant hydrophobic residue 

like leucine, isoleucine or valine at position 9 and another hydrophobic residue 

like leucine or valine at position 3 or 4 (172, 173). As HLA-B51 preferentially binds 

9mer peptides, no other peptide lengths were included in the analysis.

HLA-B51 specificity of the predicted T cell epitopes was evaluated by a parallel 

analysis of the closely related HLA-B52 molecule using the Immune Epitope 

Database (IEDB) analysis resource Consensus tool (174) which combines predic-

tions from artificial neural network (ANN) aka NetMHC (4.0) (175-177), stabilized 

matrix method (SMM) (178) and combinatorial peptide libraries (CombLib) (179).

Statistical analyses

Data were analyzed with IBM SPSS Statistics software version 23. Descriptive 

analyses were used to report cohort characteristics. The association between 

HLA alleles of donors and recipients with development of viremia in KTRs were 

analyzed by two-sided Fisher’s exact test. Correction of p-values for multiple 

comparisons was performed according to the Šidák method, which has a bit more 

power than the Bonferroni correction, to prevent type I errors due to multiple 

testing for multi-HLA-alleles.(166) The corrected p-values were calculated using 

the formula 1-(1-p)^N, where p is the obtained p-value and N the number of al-

leles tested (180-182). P-values were corrected in two ways; by the number of 

HLA alleles within each locus, and by the total number of tested HLA alleles. The 

Woolf Haldane test was used to calculate the odds ratios and corresponding 95% 

confidence intervals (CI) (183, 184). Differences between HLA-B51 negative and 

HLA-B51 positive recipients and donors were assessed using the Chi-Square test, 

Fisher’s exact test, Student’s t-test or Mann-Whitney U test as appropriate. To 

indicate onset of recipient BKPyV viremia in association with the HLA-B51 status 

of the recipient, Kaplan-Meier curves were generated according to the recipient 

HLA-B51 status and the Log Rank (Mantel Cox) test was performed. Uni- and mul-

tivariate Cox regression were performed to determine if the effect of HLA-B51 on 

BKPyV viremia was significant if tested alone and together with other covariates. 

For all performed tests a p-value < 0.05 in a two-sided test was considered statisti-

cally significant.



93

Reduced risk of BKPyV infection in HLA-B51 positive KTRs

Results

As described previously (161), 111 of 407 KTRs (27%) developed BKPyV viremia 

within one year after KTx. BKPyVAN was diagnosed in 12 (3%) KTRs (Table 1). An 

overview of all previously analyzed potential risk factors of BKPyV infection can 

be found in Tables 4 and 5 in our previous report on this cohort (161).

To investigate the association between BKPyV infection in KTRs and the MHC class 

I and II background of donors and recipients, their HLA typing information includ-

ing HLA-A, B, C, DQ and DR was retrieved (Tables S1 and S2). The distribution of dif-

ferent HLA alleles across the cohort reflected that of the Dutch general population 

(182), and did not differ between donors and recipients. Data comparison showed 

that some donor HLA alleles were less (for example HLA-B27) and some were 

more frequently (HLA-B56) found among KTRs with BKPyV viremia respectively, 

but after correction for multiple testing using the Šidák method (166), no specific 

donor HLA allele was associated with viremia (Table S1). Comparable associations 

were found for a number of recipient HLA alleles. For example, recipient HLA-C7 

and HLA-DR12 were associated with a higher risk of viremia, whereas recipient 

HLA-A30, B13, B51, C15 and DR13 were associated with a lower risk of viremia 

(Table S2). After correction for multiple testing within the respective HLA loci, 

recipient HLA-B51 remained significantly associated with a reduced risk of viremia 

(p = 0.035, Table S2). Correction for multiple testing within the total number of 

HLA alleles tested resulted in borderline significant associations (Table S1 and S2). 

The association found for recipient HLA-B51 was studied in more detail.

Table 1. Basic donor and recipient population characteristics sorted for development of BKPyV 
viremia and BKPyVAN within the first year after kidney transplantation.

All recipients (n = 407) Viremic recipients (n = 111)

No BKPyV
viremia
(n = 296)

BKPyV
viremia
(n = 111)

p-value1 No BKPyVAN
(n = 99)

BKPyVAN
(n = 12)

p-value1

Donor

Age (years) 53 (11.7) 54 (11.5) 0.354  54 (11.7) 57 (9.6) 0.386 

Gender (male) 119 (40%) 42 (38%) 0.664  37 (37%) 5 (42%) 0.763 

Recipient

Age (years) 50 (13.5) 53 (14.2) 0.080  53 (14.1) 53 (16.1) 0.790 

Gender (male) 177 (60%) 73 (66%) 0.271  65 (66%) 8 (67%) 1.000 

Data are shown as mean (SD) or n (%).
BKPyV, BK polyomavirus; BKPyVAN, BK polyomavirus-associated nephropathy.
1The p-values were calculated using the Chi-Square test, Fisher’s exact test or Student’s t-test. A p-value 
<0.05 was considered statistically significant.
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In total, 11% of donors (n = 44) and 9% of recipients (n = 36) were HLA-B51 posi-

tive. Of 111 viremic recipients, only 2 (2%) were HLA-B51 positive compared to 

34 (11%) of 296 nonviremic recipients (p = 0.002, Table 2). The HLA-B51 donor 

status did not affect incidence of viremia (p = 0.720, Table 2). To substantiate the 

observed association between the recipient HLA-B51 status and BKPyV viremia, a 

Kaplan-Meier curve was generated to plot the onset of viremia during follow-up 

stratified for the HLA-B51 status of recipients. A strong and significant correlation 

was observed between recipient viremia and HLA-B51 status (p = 0.005, Figure 1).

Comparable to the observed protective effect of HLA-B51 against viremia, BKPy-

VAN was not diagnosed in any of the HLA-B51 positive recipients, compared to 

12 cases of BKPyVAN in the HLA-B51 negative recipients (Table 2). This difference 

was not statistically significant, possibly related to the low number of BKPyVAN 

cases in our cohort.

Figure 1. Proportion of BKPyV viremia detected in the first year after kidney transplantation ac-
cording to HLA-B51 status of the recipient.

 
Kaplan-Meier (1 - survival function) curves for proportion of BKPyV viremia observed in the 371 HLA-
B51 negative and 36 HLA-B51 positive recipients. The numbers at risk below the X-axis indicate the 
number of recipients still at risk for developing BKPyV viremia. Tick marks represent censored recipi-
ents. BKPyV, BK polyomavirus; HLA, human leukocyte antigen.
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We also analyzed the effect of donor-recipient HLA-B51 matching on the develop-

ment of BKPyV viremia and BKPyVAN after KTx. BKPyV viremia nor BKPyVAN 

occurred in the 14 HLA-B51 +/+ matched pairs (Table 2). In HLA-B51 discrepant 

(-/+ and +/-, n = 52) donor-recipient pairs, 29% viremia was observed, of which the 

majority (13 of 15 viremic cases) developed among HLA-B51-negative recipients. 

A comparable percentage of viremia (28%) was observed among HLA-B51 double 

negative pairs, which were also the only pairs in which BKPyVAN occurred.

Previous analyses of our cohort revealed a strong association between high donor 

BKPyV seroreactivity and development of KTR viremia, and a weak inverse associa-

tion for recipient BKPyV seroreactivity (161). To investigate a possible association 

(confounding) between BKPyV seroreactivity and HLA-B51 status, the previously 

determined pre-KTx donor and recipient BKPyV seroresponses were evaluated 

according to the HLA-B51 status of donors and recipients. No difference in BKPyV 

seroreactivity among HLA-B51 positive and negative donors and recipients was 

observed (Figure S1). However, among BKPyV viremic recipients, the mean BKPyV 

seroreactivity was clearly lower in HLA-B51 positive recipients, which reached 

statistical significance despite the low number of relevant subjects (p < 0.001, 

Table 2. Incidence of BKPyV viremia and BKPyVAN in 407 KTRs sorted for HLA-B51 status of 
themselves and of their donors, and sorted by HLA-B51 matching.

Recipients (n = 407) Viremic recipients (n = 111)

No BKPyV
viremia
(n = 296)

BKPyV
viremia
(n = 111)

p-value1 No
BKPyVAN
(n = 99)

BKPyVAN
(n = 12)

p-value1

Donor HLA-B51 status

Negative 265 (90%) 98 (88%) 0.720  86 (87%) 12 (100%) 0.354 

Positive 31 (10%) 13 (12%)   13 (13%) 0 (0%)  

Recipient HLA-B51 status        

Negative 262 (89%) 109 (98%) 0.002  97 (98%) 12 (100%) 1.000 

Positive 34 (11%) 2 (2%)   2 (2%) 0 (0%)  

Donor/recipient pair HLA-B51 status        

+ / + 14 (5%) 0 (0%) 0.511  0 (0%) 0 (0%) n.p. 

- / + 20 (7%) 2 (2%)   2 (2%) 0 (0%)  

        

+ / - 17 (6%) 13 (12%) 0.095  13 (13%) 0 (0%) 0.353 

- / - 245 (83%) 96 (86%)  84 (85%) 12 (100%)  

Data are shown as n (%).
BKPyV, BK polyomavirus; BKPyVAN, BK polyomavirus associated nephropathy; HLA, human leukocyte 
antigen; n.p., not possible.
1The p-values were calculated using the chi-square test or Fisher exact test. A p-value <0.05 was consid-
ered statistically significant.
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Table 3). When BKPyV seroreactivity was evaluated in HLA-B51 positive recipients 

only, nonviremic HLA-B51 positive recipients (n = 34) were more seroreactive 

than their viremic equivalents (n = 2, p < 0.001, Table 3).

To correct for possible BKPyV viremia confounding between BKPyV seroreactivity 

and HLA-B51 status, we performed a multivariate analysis and included previ-

ously analyzed donor and recipient-related risk factors in the analysis (161), such 

as unrelatedness between donor and recipient, use of tacrolimus, and rejection 

treatment consisting of methylprednisolone 1000 mg intravenously once daily 

for 3 subsequent days. This analysis showed that the risk of viremia in a HLA-B51 

positive recipient was approximately 5-fold lower compared to a HLA-B51 nega-

tive recipient (HR 0.17; 95% CI: 0.04 – 0.69; p = 0.013; Table 4). For donor HLA-B51 

positivity a nonsignificant reverse trend was found (HR1.72; 95% CI: 0.94 – 3.15; p 

= 0.079; Table 4). As reported previously (161), donor BKPyV seroreactivity was the 

strongest risk factor for BKPyV viremia identified in our cohort.

Since we observed a significant protective effect of HLA-B51 in KTRs, that might 

be explained by efficient BKPyV antigen presentation and T cell immunity in 

HLA-B51 positive subjects, we screened common BKPyV proteins including the 

T-antigens for containing potentially HLA-B51 presentable peptides using the 

web-based T cell epitope prediction tool SYFPEITHI (170). This analysis resulted 

in the identification of four 9mer peptides that fulfilled the HLA-B51 primary and 

secondary anchor specificities explained in the Material and Methods and there-

fore might represent putative CTL-epitopes (Table 5). Three of them are found 

within the major capsid protein VP1 and one, LPLMRKAYL, within the N-terminal 

part of both the Small and the Large T-antigen expressed by alternative splicing 

from the same exon (152, 153). As a HLA-B51- pecificity check, a parallel analysis 

Table 3. Pretransplantation donor and recipient BKPyV seroreactivity of HLA-B51 positive recipi-
ents (n = 36) and association with BKPyV viremia and of BKPyV viremic recipients (n = 111) and 
association with HLA-B51 status.

BKPyV viremic recipients (n = 111) HLA-B51 positive recipients (n = 36)

HLA-B51
negative
(n = 109)

HLA-B51
positive
(n = 2)

p-value1 No BKPyV
viremia
(n = 34)

BKPyV
viremia
(n = 2)

p-value1

Donor BKPyV seroreactivity 17140 (6644) 20467 (3044) 0.483 11287 (7593) 20467 (3044) 0.102

Recipient BKPyV seroreactivity 12511 (7928) 3125 (614) <0.001  14866 (7535) 3125 (614) <0.001 

Data are shown as mean (SD).
BKPyV, BK polyomavirus.
1The p-values were calculated using the Student t-test. A p-value <0.05 was considered statistically 
significant.
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Table 4. Uni- and multivariate Cox regression analysis for risk factors of BKPyV viremia develop-
ment among 407 kidney transplant recipients in the first year after transplantation.

Covariate Univariate analysis Multivariate analysis

HR 95%-CI p-value1 HR 95%-CI p-value1

Age donor (years) 1.01 0.99 – 1.02 0.498 1.01 0.99 – 1.03 0.608

Age recipient (years) 1.01 1.00 – 1.03 0.138  1.00 0.99 – 1.02 0.774 

Gender donor 0.90 0.62 – 1.33 0.603  1.07 0.69 – 1.64 0.777 

Gender recipient 1.21 0.82 – 1.80 0.340  1.05 0.69 – 1.61 0.811 

Underlying condition2

Inherited 1.00  0.359  1.00  0.410 

Glomerular 0.97 0.56 – 1.66 0.903  1.05 0.59 – 1.87 0.874 

Vascular 1.45 0.86 – 2.43 0.163  1.61 0.94 – 2.77 0.083 

Obstructive 0.78 0.34 – 1.79 0.554  1.00 0.41 – 2.42 0.997 

Other 0.94 0.52 – 1.67 0.820  1.17 0.63 – 2.18 0.627 

Dialysis pretransplantation 0.85 0.59 – 1.24 0.405  0.96 0.60 – 1.53 0.861 

Duration dialysis (months) 0.90 0.77 – 1.04 0.156  0.99 0.97 – 1.00 0.176 

Unrelated donor 1.49 1.02 – 2.17 0.042  1.18 0.76 – 1.85 0.459 

Retransplantation 1.23 0.66 – 2.30 0.513  1.26 0.63 – 2.52 0.510 

PRA immunization pretransplantation 0.72 0.23 – 2.26 0.570  0.77 0.23 – 2.58 0.669 

Blood group compatibility 1.43 0.67 – 3.08 0.359  1.28 0.48 – 3.42 0.622 

Donor HLA-B51 positivity 1.17 0.66 – 2.08 0.599  1.72 0.94 – 3.15 0.079 

Recipient HLA-B51 positivity 0.17 0.04 – 0.69 0.013  0.18 0.04 – 0.73 0.017 

Basiliximab vs. alemtuzumab 1.04 0.51 – 2.13 0.921  1.06 0.43 – 2.60 0.902 

Tacrolimus vs cyclosporin A 0.89 0.58 – 1.37 0.599  0.79 0.49 – 1.26 0.317 

Donor BKPyV seroreactivity3 1.59 1.38 – 1.84 < 0.001  1.61 1.38 – 1.88 < 0.001 

Recipient BKPyV seroreactivity3 0.90 0.80 – 1.02 0.088  0.85 0.75 – 0.95 0.006 

Rejection treatment4 1.54 1.02 – 2.34 0.040  1.51 0.96 – 2.37 0.073 

BKPyV, BK polyomavirus; CI, confidence interval; HLA, human leukocyte antigen; HR, hazard ratio; 
PRA, panel reactive antibodies.
1The p-values, HRs, and 95% CIs were calculated with uni- and multivariate Cox regression analysis. A 
p-value <0.05 was considered statistically significant.
2Describes the HR of viremia in recipients with each underlying condition group compared to the 
inherited disease group; Inherited diseases include autosomal dominant polycystic kidney disease, 
medullary cystic disease, cystic kidney disease not otherwise specified, arteriovenous malformation 
due to Klippel-Trénaunay-Weber syndrome, familiar erythrocyturia, Alport syndrome, familiar focal 
segmental glomerulosclerosis by NPHS2-mutation, familiar haemolytic uremic syndrome, and kidney 
dys- and agenesis; Glomerular diseases include membranous nephropathy, IgA nephropathy, systemic 
lupus erythematosus, proliferative glomerulonephritis, membranoproliferative glomerulonephritis, 
focal segmental glomerulosclerosis, pauci-immune crescentic glomerulonephritis, Morbus Wegener, 
ANCA-associated vasculitis, anti-glomerular basement membrane nephritis, global glomerulosclero-
sis, and immunotactoid glomerulonephritis; Vascular diseases include diabetes mellitus type I and II, 
hypertension, nephrosclerosis, haemolytic uremic syndrome, arteria renalis stenosis, and thrombotic 
microangiopathy; Obstructive diseases include reflux nephropathy, urethral valves, nephrolithiasis, ob-
structive uropathy, and prostate hypertrophy; Other include chronic pyelonephritis, acute tubular ne-
crosis, tubulointerstitial nephritis, lithium nephropathy, urate and analgesic nephropathy, iatrogenic, 
and unknown underlying condition.
3Donor and recipient seroreactivity per 5000 increasing mean fluorescence intensity.
4Rejection treatment consisted of methylprednisolone 1000 mg intravenously once daily for 3 days.
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for the closely related HLA-B52 molecule was performed for the predicted BKPyV 

T cell epitopes using the IEDB analysis resource Consensus tool (174). This analysis 

showed that HLA-B51 had a much higher predicted affinity for all of the predicted 

epitopes than the closely related HLA-B52 (Table S3).

Discussion

We systematically analysed the effect of specific HLA alleles on the occurrence of 

BKPyV viremia and BKPyVAN among donors and recipients post-KTx. HLA mol-

ecules are expressed on all nucleated cells and play an essential role in activation 

of the immune response and control of infection, for example in case of BKPyV 

(185). They induce adaptive immunity by presenting pathogen-derived peptides to 

T cells and innate immunity by activation of natural killer (NK) cells via ligation to 

killer-cell immunoglobulin-like receptors (KIRs). The recognition of HLA-peptide 

complexes by a peptide-specific T cell receptor leads to activation of specific CD8+ 

cytotoxic T cells through HLA class I-peptide interaction or CD4+ T helper cells 

through HLA class II. Activation of virus-specific CD8+ cytotoxic T cells results in 

specific killing of infected cells, whereas activation of virus-specific CD4+ T cells 

supports the generation of effector T cells that provide help to CD8+ T cells and 

augment generation of B cells for production of virus-specific antibodies.

Table 5. Potential HLA-B51 presented nonamer epitopes encoded by the major BKPyV proteins, 
predicted with the web based tool SYFPHEITHI by use of the whole BKPyV genome (Dunlop 
strain).

BKPyV protein1 Amino acid position Amino acid sequence BKPyV 
Dunlop strain

SYFPHEITHI score2

VP1 20 E P V Q V P K L L 20

VP1 158 E P L E M Q G V L 24 

VP1 252 G P L C K A D S L 20 
    

Large T3 27 L P L M R K A Y L 20 
    

Small T3 27 L P L M R K A Y L 20 

BKPyV, BK polyomavirus; HLA, human leukocyte antigen.
1The following viral proteins were analysed: small T-antigen, large T-antigen, VP1, VP2 and VP3.
2The SYFPHEITHI score ranges from 0 to 25, the higher the score the higher the probability that the 
peptide is being processed and presented to T cells.
3The first exon of the Large T and Small T antigen where the identified peptide LPLMRKAYL is located 
is shared.
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For some viruses, such as hepatitis C virus and the human immunodeficiency 

virus (HIV), it has been shown that certain HLA alleles are significantly associated 

with viral clearance or slow progression of disease (186, 187). Often it is unknown 

why these HLA alleles provide a host advantage during viral infection, but 

sometimes it can be explained by the preferential presentation of epitopes from 

highly conserved viral proteins by these alleles (187). In this study, we observed a 

reduced risk of BKPyV viremia and BKPyVAN in HLA-B51 positive KTRs, also when 

corrected for multiple testing within the respective HLA loci. When corrected 

for the total number of HLA alleles, statistical significance was lost, indicating a 

false-positive finding due to a type I error cannot be excluded. However, in the ex-

ploratory context of our research, we argue that such a stringent multiple testing 

correction is overly conservative and could preclude any interesting discoveries. 

Moreover, we note that the association we found is biologically plausible as the 

particular HLA-B allele has been previously reported by independent laboratories 

in conjunction with protection against other viruses (see below). We believe that 

the combination of statistical and biological evidence makes our finding interest-

ing and merits further research, despite the risk of a type I error.

HLA-B51 is a prevalent HLA allele in Europe, North America and the Far and 

Middle East (151, 188, 189), and relevant in the course of other infectious diseases. 

For example, HLA-B51 positive KTRs have lower risk of developing CMV viremia 

(190). The protective effect of HLA-B51 was also seen with reduced progression 

of HIV and development of adequate antibody responses to the measles vaccine 

(191-193). On the other hand, a higher risk of post-transplant lymphoprolifera-

tive disorder due to Epstein-Barr virus was reported, as well as increased CMV 

interstitial pneumonia after bone marrow transplantation, CMV retinitis and en-

cephalitis in HIV patients (194-197). Finally, HLA-B51 is clearly associated with the 

non-infectious disorder Behçet’s disease (188). The etiology and pathogenesis of 

this systemic vasculitis are unclear but the general accepted hypothesis includes 

an intense inflammatory reaction elicited by an infectious agent in HLA-B51 posi-

tive subjects (188, 198-201).

The basis behind the clinical associations with HLA-B51 is not known. Since BKPyV 

peptide presentation by HLA-B51 and CD8+ cytotoxic T cell recognition may play 

a crucial role (151, 202, 203) in the association found in our study, we looked for 

BKPyV-derived peptides that meet the primary and secondary anchor specificities 

defined for HLA-B51. Interestingly, a previous study by Li et al. showed that the 

BKPyV T antigen-derived 9mer LPLMRKAYL, one of the HLA-B51 candidate epitopes 

that we identified, is recognized by T cells from healthy donors in the context of 
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HLA-B7 and HLA-B8, and induces interferon-γ production by CD8+ T cells (203). 

Another study used a bioinformatics approach to characterize potential BKPyV-

specific CD8+ T cell epitopes for 14 common HLAs in Europe and North America 

(151), and identified the same 9mer peptide as a promising BKPyV epitope, which 

was confirmed by inducing interferon-γ production by CD8+ T cells in HLA-B7 and 

HLA-B8 BKPyV-seropositive individuals.

Both studies cited above indicate that LPLMRKAYL is a HLA-B7 and HLA-B8 restricted 

BKPyV epitope (151, 203). As our study indicates that this particular 9mer could 

also be a HLA-B51-restricted epitope, this peptide might comply with the BKPyV 

‘supermotif’ and bind to several HLA-B molecules (173, 204, 205). In line with our 

observation, Leboeuf et al. showed that LPLMRKAYL, named 9m127 in their study, 

bound to HLA-B7, B8 and B51, and to HLA-A2 (202). Moreover, LPLMRKAYL-specific 

T cell responses measured by interferon-γ production increased significantly in 

KTRs that cleared BKPyV viremia, and LPLMRKAYL showed the highest frequency 

of BKPyV-specific T cell responses in expanded T cells from 97 KTRs. Another 9mer 

peptide that we identified (EPLEMQGVL) was shown to bind to HLA-B51 as well (202).

In general, identification of BKPyV ‘supermotif’ epitopes that can bind to a fam-

ily of HLA molecules broadly represented in the worldwide population could be 

worthwhile for developing BKPyV-specific T cell response monitoring strategies, 

adoptive T cell transfer for prophylaxis and therapy, and for the design of BKPyV 

peptide vaccines. Why HLA-B alleles such as HLA-B7 and B8, that should be able to 

present LPLMRKAYL, were not found associated with BKPyV infection in our study 

is unclear. Possibly this is related to subtle differences in preferential peptide 

(amino acid) binding, or perhaps to higher interferon-ɣ production by T-cells 

elicited by HLA-B51 than by other HLA alleles (202).

Another explanation for the association between HLA-B51 and BKPyV infection 

could be the interaction between certain KIRs and HLA-B51. KIRs expressed on 

NK cells can transmit inhibitory or activating signals upon engagement with 

specific HLA class I ligands. The balance between these signals is considered to 

initiate or suppress NK cell activation (185, 206). For CMV infection for example, 

it was shown that the number of activating KIR genes inversely correlates with 

CMV infection after KTx (207, 208). Although one study did not find a KIR-linked 

protective effect for BKPyV infection after KTx, two other studies reported effects 

of activating KIRs on BKPyV infection (206, 207, 209). Unfortunately, KIR typing 

was not performed in our cohort.
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It is generally assumed that HLA mismatching of the donor-recipient pair reduces 

the efficacy of eliminating virus infected donor cells, and increases the risk of 

alloimmune responses and therefore the need for immunosuppression (210). In 

line with this assumption, BKPyV viremia did not occur in HLA-B51 matched (+/+) 

donor-recipient pairs compared to 29% of viremia in HLA-B51 mismatched pairs 

(-/+ and +/-). It should be mentioned that we did not observe a statistically signifi-

cant association between overall HLA-matching and BKPyV viremia, as shown and 

discussed in our previous article dealing with this cohort population (161).

In conclusion, the role of specific HLA alleles and HLA allele matching in develop-

ment of BKPyV infection is still poorly understood. By analyzing a large cohort of 

living kidney donor-recipient pairs, we demonstrated a negative (protective) asso-

ciation between HLA-B51 positivity in KTRs and development of BKPyV infectious 

complications. This might be potentially useful for BKPyV risk stratification, for 

example to customize viral load screening (reduced frequency for HLA-B51 posi-

tive KTRs) and prevent unnecessary tapering of immunosuppression in HLA-B51 

positive viremic KTRs. Furthermore, identification and further study of (potential) 

BKPyV-derived T cell epitopes can be useful to prevent or treat BKPyV infection 

and associated diseases in the future. The T-antigen derived 9mer LPLMRKAYL 

seems a promising candidate in this regard, and further investigations into the 

role of this peptide in developing immunity against BKPyV seem warranted. Con-

sidering the possible risk for a type I error, validation of the association between 

HLA-B51 positivity of KTRs and a reduced risk of BKPyV infection, preferably in 

larger, independent cohorts is needed.

Authorship

The author’s specific contributions are as follows: HFW and MCWF initiated the 

study. HFW, ACMK, JWdF, JIR, FHJC and MCWF designed the study. HFW, CSdB, 

GWH and JIR collected the samples and gathered the data. CSdB performed the 

serological tests and the PCR assays. HFW analysed the data. EWvZ and GWH 

provided statistical support. HFW, ACMK, JWdF, JIR, FHJC, and MCWF interpreted 

the data. HFW and MCWF drafted the manuscript, and designed the figures and 

tables. All authors reviewed and approved the final report.

Disclosure

The authors declare no conflicts of interest

Funding

This study was supported by the Dutch Kidney Foundation, grant 13A1D302.



102

References

 1. Borni-Duval C, Caillard S, Olagne J, et 

al. Risk factors for BK virus infection in 

the era of therapeutic drug monitoring. 

Transplantation. 2013;95(12):1498-505.

 2. Hirsch HH, Knowles W, Dickenmann M, 

et al. Prospective study of polyomavirus 

type BK replication and nephropathy 

in renal-transplant recipients. N Engl J 

Med. 2002;347(7):488-96.

 3. Hirsch HH, Drachenberg CB, Steiger 

J, Ramos E. Polyomavirus-associated 

nephropathy in renal transplantation: 

critical issues of screening and manage-

ment. Adv Exp Med Biol. 2006;577:160-

73.

 4. Huang G, Zhang L, Liang X, et al. Risk 

factors for BK virus infection and BK 

virus-associated nephropathy under 

the impact of intensive monitoring 

and pre-emptive immunosuppres-

sion reduction. Transplant Proc. 

2014;46(10):3448-54.

 5. Sood P, Senanayake S, Sujeet K, et 

al. Management and outcome of BK 

viremia in renal transplant recipients: 

a prospective single-center study. Trans-

plantation. 2012;94(8):814-21.

 6. Ambalathingal GR, Francis RS, Smyth 

MJ, Smith C, Khanna R. BK Polyomavi-

rus: Clinical Aspects, Immune Regula-

tion, and Emerging Therapies. Clin 

Microbiol Rev. 2017;30(2):503-28.

 7. Cioni M, Leboeuf C, Comoli P, Ginevri 

F, Hirsch HH. Characterization of 

Immunodominant BK Polyomavirus 

9mer Epitope T Cell Responses. Am J 

Transplant. 2016;16(4):1193-206.

 8. Hirsch HH, Steiger J. Polyomavirus BK. 

Lancet Infect Dis. 2003;3(10):611-23.

 9. Rinaldo CH, Tylden GD, Sharma BN. 

The human polyomavirus BK (BKPyV): 

virological background and clinical im-

plications. APMIS. 2013;121(8):728-45.

 10. Hardinger KL, Koch MJ, Bohl DJ, Storch 

GA, Brennan DC. BK-virus and the 

impact of pre-emptive immunosup-

pression reduction: 5-year results. Am J 

Transplant. 2010;10(2):407-15.

 11. Schaub S, Hirsch HH, Dickenmann M, 

et al. Reducing immunosuppression 

preserves allograft function in pre-

sumptive and definitive polyomavirus-

associated nephropathy. Am J Trans-

plant. 2010;10(12):2615-23.

 12. Brennan DC, Agha I, Bohl DL, et al. 

Incidence of BK with tacrolimus versus 

cyclosporine and impact of preemptive 

immunosuppression reduction. Am J 

Transplant. 2005;5(3):582-94.

 13. Ginevri F, Azzi A, Hirsch HH, et al. 

Prospective monitoring of polyoma-

virus BK replication and impact of 

pre-emptive intervention in pediatric 

kidney recipients. Am J Transplant. 

2007;7(12):2727-35.

 14. Elfadawy N, Flechner SM, Schold 

JD, et al. Transient versus persistent 

BK viremia and long-term outcomes 

after kidney and kidney-pancreas 

transplantation. Clin J Am Soc Nephrol. 

2014;9(3):553-61.

 15. Hirsch HH, Brennan DC, Drachenberg 

CB, et al. Polyomavirus-associated 

nephropathy in renal transplanta-

tion: interdisciplinary analyses and 

recommendations. Transplantation. 

2005;79(10):1277-86.

 16. Wojciechowski D, Chandran S. BK Virus 

Infection After Kidney Transplantation: 

The Data Are Mounting for a Person-

alized Approach. Transplantation. 

2016;100(4):703-4.

 17. Wunderink HF, van der Meijden E, van 

der Blij-de Brouwer, et al. Pretransplan-

tation Donor-Recipient Pair Seroreac-

tivity Against BK Polyomavirus Predicts 

Viremia and Nephropathy After Kidney 



103

Reduced risk of BKPyV infection in HLA-B51 positive KTRs

Transplantation. Am J Transplant. 

2017;17(1):161-72.

 18. Lamarche C, Orio J, Collette S, et al. 

BK Polyomavirus and the Transplanted 

Kidney: Immunopathology and Thera-

peutic Approaches. Transplantation. 

2016;100(11):2276-87.

 19. Bohl DL, Storch GA, Ryschkewitsch C, 

et al. Donor origin of BK virus in renal 

transplantation and role of HLA C7 in 

susceptibility to sustained BK viremia. 

Am J Transplant. 2005;5(9):2213-21.

 20. Masutani K, Ninomiya T, Randhawa 

P. HLA-A2, HLA-B44 and HLA-DR15 

are associated with lower risk of BK 

viremia. Nephrol Dial Transplant. 

2013;28(12):3119-26.

 21. Teutsch K, Schweitzer F, Knops E, et al. 

Early identification of renal transplant 

recipients with high risk of polyomavi-

rus-associated nephropathy. Med Micro-

biol Immunol. 2015;204(6):657-64.

 22. Sidak Z. Rectangular Confidence 

Regions for the Means of Multivari-

ate Normal Distribuitions. Journal of 

the American Statistical Association. 

1967;318:626-33.

 23. van der Meijden E, Bialasiewicz S, Rock-

ett RJ, Tozer SJ, Sloots TP, Feltkamp MC. 

Different serologic behavior of MCPyV, 

TSPyV, HPyV6, HPyV7 and HPyV9 poly-

omaviruses found on the skin. PLoS 

One. 2013;8(11):e81078.

 24. van der Meijden E, Wunderink HF, 

van der Blij-de Brouwer, et al. Human 

polyomavirus 9 infection in kidney 

transplant patients. Emerg Infect Dis. 

2014;20(6):991-9.

 25. Verduyn W, Doxiadis II, Anholts J, et 

al. Biotinylated DRB sequence-specific 

oligonucleotides. Comparison to sero-

logic HLA-DR typing of organ donors 

in eurotransplant. Hum Immunol. 

1993;37(1):59-67.

 26. Schuler MM, Nastke MD, Stevanovikc S. 

SYFPEITHI: database for searching and 

T-cell epitope prediction. Methods Mol 

Biol. 2007;409:75-93.

 27. Seif I, Khoury G, Dhar R. The genome 

of human papovavirus BKV. Cell. 

1979;18(4):963-77.

 28. Connan F, Hlavac F, Hoebeke J, Guil-

let JG, Choppin J. A simple assay for 

detection of peptides promoting the 

assembly of HLA class I molecules. Eur J 

Immunol. 1994;24(3):777-80.

 29. Sidney J, Southwood S, del Guercio MF, 

et al. Specificity and degeneracy in pep-

tide binding to HLA-B7-like class I mol-

ecules. J Immunol. 1996;157(8):3480-90.

 30. Kim Y, Ponomarenko J, Zhu Z, et al. 

Immune epitope database analysis re-

source. Nucleic Acids Res. 2012;40(Web 

Server issue):W525-30.

 31. Andreatta M, Nielsen M. Gapped 

sequence alignment using artificial 

neural networks: application to the 

MHC class I system. Bioinformatics. 

2016;32(4):511-7.

 32. Lundegaard C, Lamberth K, Harndahl M, 

Buus S, Lund O, Nielsen M. NetMHC-3.0: 

accurate web accessible predictions of 

human, mouse and monkey MHC class 

I affinities for peptides of length 8-11. 

Nucleic Acids Res. 2008;36(Web Server 

issue):W509-12.

 33. Nielsen M, Lundegaard C, Worning P, et 

al. Reliable prediction of T-cell epitopes 

using neural networks with novel 

sequence representations. Protein Sci. 

2003;12(5):1007-17.

 34. Peters B, Sette A. Generating quantita-

tive models describing the sequence 

specificity of biological processes with 

the stabilized matrix method. BMC 

Bioinformatics. 2005;6:132.

 35. Sidney J, Assarsson E, Moore C, et al. 

Quantitative peptide binding motifs 

for 19 human and mouse MHC class 

I molecules derived using positional 

scanning combinatorial peptide librar-

ies. Immunome Res. 2008;4:2.



104

 36. van der Heide A, Verduijn W, Haas-

noot GW, Drabbels JJ, Lammers GJ, 

Claas FH. HLA dosage effect in narco-

lepsy with cataplexy. Immunogenetics. 

2015;67(1):1-6.

 37. van Rooijen DE, Roelen DL, Verduijn 

W, et al. Genetic HLA associations in 

complex regional pain syndrome 

with and without dystonia. J Pain. 

2012;13(8):784-9.

 38. van Sonderen A, Roelen DL, Stoop JA, et 

al. Anti-LGI1 encephalitis is strongly as-

sociated with HLA-DR7 and HLA-DRB4. 

Ann Neurol. 2017;81(2):193-8.

 39. Haldane JB. The estimation and 

significance of the logarithm of a 

ratio of frequencies. Ann Hum Genet. 

1956;20(4):309-11.

 40. Woolf B. On estimating the relation 

between blood group and disease. Ann 

Hum Genet. 1955;19(4):251-3.

 41. de Wit J, Borghans JA, Kesmir C, van 

Baarle D. Editorial: Role of HLA and 

KIR in Viral Infections. Front Immunol. 

2016;7:286.

 42. Mina MM, Luciani F, Cameron B, et 

al. Resistance to hepatitis C virus: 

potential genetic and immunologi-

cal determinants. Lancet Infect Dis. 

2015;15(4):451-60.

 43. Rao X, Hoof I, van Baarle D, Kesmir C, 

Textor J. HLA Preferences for Conserved 

Epitopes: A Potential Mechanism for 

Hepatitis C Clearance. Front Immunol. 

2015;6:552.

 44. Wallace GR. HLA-B*51 the primary risk 

in Behcet disease. Proc Natl Acad Sci U 

S A. 2014;111(24):8706-7.

 45. Verity DH, Marr JE, Ohno S, Wallace GR, 

Stanford MR. Behcet’s disease, the Silk 

Road and HLA-B51: historical and geo-

graphical perspectives. Tissue Antigens. 

1999;54(3):213-20.

 46. Bal Z, Uyar ME, Tutal E, et al. Cytomega-

lovirus infection in renal transplant 

recipients: one center’s experience. 

Transplant Proc. 2013;45(10):3520-3.

 47. Jacobson RM, Poland GA, Vierkant 

RA, et al. The association of class I 

HLA alleles and antibody levels after 

a single dose of measles vaccine. Hum 

Immunol. 2003;64(1):103-9.

 48. Zhang Y, Peng Y, Yan H, et al. 

Multilayered defense in HLA-B51-

associated HIV viral control. J Immunol. 

2011;187(2):684-91.

 49. Tomiyama H, Sakaguchi T, Miwa K, et 

al. Identification of multiple HIV-1 CTL 

epitopes presented by HLA-B*5101 mol-

ecules. Hum Immunol. 1999;60(3):177-

86.

 50. Keynan Y, Rueda ZV, Bresler K, Becker 

M, Kasper K. HLA B51 is associated with 

faster AIDS progression among newly 

diagnosed HIV-infected individuals in 

Manitoba, Canada. Int J Immunogenet. 

2015;42(5):336-40.

 51. Gorzer I, Puchhammer-Stockl E, van 

Esser JW, Niesters HG, Cornelissen JJ. 

Associations among Epstein-Barr virus 

subtypes, human leukocyte antigen 

class I alleles, and the development 

of posttransplantation lymphopro-

liferative disorder in bone marrow 

transplant recipients. Clin Infect Dis. 

2007;44(5):693-5.

 52. Schrier RD, Freeman WR, Wiley CA, 

McCutchan JA. CMV-specific immune 

responses and HLA phenotypes of AIDS 

patients who develop CMV retinitis. 

HNRC Group. HIV Neurobehavioral 

Research Center. Adv Neuroimmunol. 

1994;4(3):327-36.

 53. Yamada S, Takatsuka H, Takemoto Y, 

et al. Association of cytomegalovirus 

interstitial pneumonitis with HLA-type 

following allogeneic bone marrow 

transplantation. Bone Marrow Trans-

plant. 2000;25(8):861-5.

 54. de Menthon M, Lavalley MP, Mal-

dini C, Guillevin L, Mahr A. HLA-B51/



105

Reduced risk of BKPyV infection in HLA-B51 positive KTRs

B5 and the risk of Behcet’s disease: a 

systematic review and meta-analysis of 

case-control genetic association studies. 

Arthritis Rheum. 2009;61(10):1287-96.

 55. Guasp P, Barnea E, Gonzalez-Escribano 

MF, et al. The Behcet’s disease-asso-

ciated variant of the aminopeptidase 

ERAP1 shapes a low-affinity HLA-B*51 

peptidome by differential subpep-

tidome processing. J Biol Chem. 

2017;292(23):9680-9.

 56. Salmaninejad A, Gowhari A, Hosseini S, 

et al. Genetics and immunodysfunction 

underlying Behcet’s disease and im-

munomodulant treatment approaches. 

J Immunotoxicol. 2017;14(1):137-51.

 57. Pay S, Simsek I, Erdem H, Dinc A. Im-

munopathogenesis of Behcet’s disease 

with special emphasize on the possible 

role of antigen presenting cells. Rheu-

matol Int. 2007;27(5):417-24.

 58. Leboeuf C, Wilk S, Achermann R, et al. 

BK Polyomavirus-Specific 9mer CD8 T 

Cell Responses Correlate With Clear-

ance of BK Viremia in Kidney Trans-

plant Recipients: First Report From the 

Swiss Transplant Cohort Study. Am J 

Transplant. 2017.

 59. Li J, Melenhorst J, Hensel N, et al. T-cell 

responses to peptide fragments of the 

BK virus T antigen: implications for 

cross-reactivity of immune response 

to JC virus. J Gen Virol. 2006;87(Pt 

10):2951-60.

 60. Sidney J, del Guercio MF, Southwood S, 

et al. Several HLA alleles share overlap-

ping peptide specificities. J Immunol. 

1995;154(1):247-59.

 61. Lund O, Nielsen M, Kesmir C, et al. Defi-

nition of supertypes for HLA molecules 

using clustering of specificity matrices. 

Immunogenetics. 2004;55(12):797-810.

 62. Trydzenskaya H, Juerchott K, Lachmann 

N, et al. The genetic predisposition of 

natural killer cell to BK virus-associated 

nephropathy in renal transplant pa-

tients. Kidney Int. 2013;84(2):359-65.

 63. Stern M, Elsasser H, Honger G, Steiger 

J, Schaub S, Hess C. The number of ac-

tivating KIR genes inversely correlates 

with the rate of CMV infection/reactiva-

tion in kidney transplant recipients. 

Am J Transplant. 2008;8(6):1312-7.

 64. Stern M, Hadaya K, Honger G, et al. 

Telomeric rather than centromeric 

activating KIR genes protect from 

cytomegalovirus infection after kidney 

transplantation. Am J Transplant. 

2011;11(6):1302-7.

 65. Brochot E, Desoutter J, Presne C, et 

al. The association between killer-cell 

immunoglobulin-like receptor (KIR) 

and KIR ligand genotypes and the 

likelihood of BK virus replication after 

kidney transplantation. Transpl Int. 

2016;29(11):1168-75.

 66. Sester M, Leboeuf C, Schmidt T, Hirsch 

HH. The “ABC” of Virus-Specific T Cell 

Immunity in Solid Organ Transplanta-

tion. Am J Transplant. 2016;16(6):1697-

706.



106

Supporting Information

Table S1. Distribution of HLA genotypes among donors of 407 BKPyV nonviremic and viremic KTRs

HLA 
type1

Donors 
(n=407)

No BKPyV 
viremia 
(n=296)

BKPyV 
viremia 
(n=111)

OR2 95% CI2 p-value3 
crude

p-value4 
HLA-locus 
adjusted

p-value5 
HLA total 
adjusted

A*01 138 (34%) 93 (31%) 45 (41%) 1.49 0.95 – 2.34 0.100 0.849 1.000

A*02 199 (49%) 149 (50%) 50 (45%) 0.81 0.52 – 1.25 0.374 1.000 1.000

A*03 113 (28%) 78 (26%) 35 (32%) 1.29 0.80 – 2.08 0.321 0.999 1.000

A*11 50 (12%) 37 (13%) 13 (12%) 0.95 0.49 – 1.84 1.00 1.000 1.000

A*23 13 (3%) 11 (45) 2 (2%) 0.57 0.14 – 2.27 0.528 1.000 1.000

A*24 58 (14%) 40 (14%) 18 (16%) 1.25 0.69 – 2.28 0.525 1.000 1.000

A*25 6 (1%) 3 (1%) 3 (3%) 2.71 0.61 – 12.10 0.352 1.000 1.000

A*26 16 (4%) 13 (4%) 3 (3%) 0.68 0.21 – 2.24 0.573 1.000 1.000

A*29 22 (5%) 17 (6%) 5 (5%) 0.83 0.31 – 2.21 0.807 1.000 1.000

A*30 20 (5%) 12 (4%) 8 (7%) 1.87 0.76 – 4.60 0.202 0.983 1.000

A*31 25 (6%) 19 (6%) 6 (5%) 0.88 0.35 – 2.19 0.820 1.000 1.000

A*32 25 (6%) 21 (7%) 4 (4%) 0.54 0.19 – 1.52 0.249 0.994 1.000

A*33 11 (3%) 10 (3%) 1 (<1%) 0.37 0.07 – 2.08 0.302 0.998 1.000

A*34 3 (1%) 2 (<1%) 1 (<1%) 1.60 0.21 – 12.25 1.000 1.000 1.000

A*36 1 (<1%) 0 (0%) 1 (<1%) 8.05 0.33 – 199.09 0.273 0.997 1.000

A*66 1 (<1%) 1 (<1%) 0 (0%) 0.83 0.04 – 21.85 1.000 1.000 1.000

A*68 32 (8%) 27 (9%) 5 (5%) 0.51 0.20 – 1.30 0.150 0.946 1.000

A*80 1 (<1%) 1 (<1%) 0 (0%) 0.88 0. 04 – 21.85 1.000 1.000 1.000

B*07 101 (25%) 69 (23%) 32 (29%) 1.34 0.82 – 2.18 0.250 1.000 1.000

B*08 105 (26%) 71 (24%) 34 (31%) 1.40 0.87 – 2.27 0.203 0.999 1.000

B*13 12 (3%) 7 (2%) 5 (5%) 1.99 0.65 – 6.13 0.322 1.000 1.000

B*14 13 (3%) 7 (2%) 6 (5%) 2.38 0.81 – 6.96 0.126 0.980 1.000

B*15 74 (18%) 51 (17%) 23 (21%) 1.27 0.73 – 2.18 0.471 1.000 1.000

B*18 40 (10%) 33 (11%) 7 (6%) 0.57 0.25 – 1.29 0.190 0.998 1.000

B*27 21 (5%) 19 (6%) 2 (2%) 0.33 0.09 – 1.24 0.077 0.902 0.998

B*35 70 (17%) 53 (18%) 17 (15%) 0.84 0.47 – 1.52 0.658 1.000 1.000

B*37 12 (3%) 8 (3%) 4 (4%) 1.42 0.44 – 4.55 0.742 1.000 1.000

B*38 14 (3%) 10 (3%) 4 (4%) 1.14 0.37 – 3.52 1.000 1.000 1.000

B*39 9 (2%) 7 (2%) 2 (2%) 0.88 0.21 – 3.75 1.000 1.000 1.000

B*40 58 (14%) 47 (16%) 11 (10%) 0.60 0.30 – 1.19 0.152 0.992 0.992

B*41 3 (1%) 2 (<1%) 1 (<1%) 1.60 0.21 – 12.25 1.000 1.000 1.000

B*42 1 (<1%) 0 (0%) 1 (<1%) 8.05 0.33 – 199.09 0.273 1.000 1.000

B*44 82 (20%) 62 (21%) 20 (18%) 0.84 0.48 – 1.46 0.580 1.000 1.000

B*45 13 (3%) 9 (3%) 4 (4%) 1.27 0.40 – 3.97 0.757 1.000 1.000

B*46 2 (<1%) 2 (<1%) 0 (0%) 0.53 0.03 – 11.09 1.000 1.000 1.000

B*47 5 (1%) 4 (1%) 1 (<1%) 0.88 0.14 – 5.67 1.000 1.000 1.000
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Table S1. (continued)

HLA 
type1

Donors 
(n=407)

No BKPyV 
viremia 
(n=296)

BKPyV 
viremia 
(n=111)

OR2 95% CI2 p-value3 
crude

p-value4 
HLA-locus 
adjusted

p-value5 
HLA total 
adjusted

B*48 2 (<1%) 2 (<1%) 0 (0%) 0.53 0.03 – 11.09 1.000 1.000 1.000

B*49 8 (2%) 7 (2%) 1 (<1%) 0.52 0.09 – 3.07 0.689 1.000 1.000

B*50 13 (3%) 9 (3%) 4 (4%) 1.27 0.40 – 3.97 0.757 1.000 1.000

B*51 44 (11%) 31 (11%) 13 (12%) 1.16 0.59 – 2.28 0.722 1.000 1.000

B*52 8 (2%) 8 (3%) 0 (0%) 0.15 0.01 – 2.66 0.114 0.970 1.000

B*53 5 (1%) 2 (1%) 3 (3%) 3.80 0.74 – 19.55 0.128 0.981 1.000

B*55 24 (6%) 19 (6%) 5 (5%) 0.74 0.28 – 1.94 0.637 1.000 1.000

B*56 3 (1%) 0 (0%) 3 (3%) 19.13 0.98 – 373.38 0.020 0.442 0.791

B*57 28 (7%) 17 (6%) 11 (10%) 1.83 0.84 – 3.98 0.185 0.997 1.000

B*58 9 (2%) 8 (3%) 1 (<1%) 0.46 0.08 – 2.65 0.454 1.000 1.000

B*73 1 (<1%) 1 (<1%) 0 (0%) 0.88 0.04 – 21.85 1.000 1.000 1.000

C*01 24 (6%) 18 (6%) 6 (6%) 0.95 0.38 – 2.39 1.000 1.000 1.000

C*02 22 (5%) 17 (6%) 5 (5%) 0.85 0.32 – 2.26 0.807 1.000 1.000

C*03 130 (32%) 100 (34%) 30 (28%) 0.75 0.47 – 1.22 0.278 0.986 1.000

C*04 81 (20%) 62 (21%) 19 (18%) 0.81 0.46 – 1.43 0.485 1.000 1.000

C*05 58 (14%) 46 (16%) 12 (11%) 0.69 0.36 – 1.35 0.336 0.995 1.000

C*06 76 (19%) 49 (17%) 26 (24%) 1.60 0.94 – 2.73 0.111 0.783 1.000

C*07 219 (54%) 154 (53%) 65 (61%) 1.38 0.88 – 2.17 0.173 0.916 1.000

C*08 18 (4%) 11 (4%) 7 (7%) 1.83 0.71 – 4.71 0.276 0.985 1.000

C*12 37 (9%) 25 (9%) 12 (11%) 1.37 0.67 – 2.81 0.438 0.999 1.000

C*14 12 (3%) 9 (3%) 3 (3%) 1.00 0.29 – 3.47 1.000 1.000 1.000

C*15 24 (6%) 17 (6%) 7 (7%) 1.18 0.49 – 2.85 0.813 1.000 1.000

C*16 23 (6%) 17 (6%) 6 (6%) 1.01 0.40 – 2.55 1.000 1.000 1.000

C*17 6 (1%) 4 (1%) 2 (2%) 1.52 0.32 – 7.25 0.661 1.000 1.000

DQB1*02 157 (39%) 112 (38%) 45 (41%) 1.12 0.72 – 1.75 0.648 0.995 1.000

DQB1*03 230 (57%) 168 (57%) 62 (56%) 0.96 0.62 – 1.49 0.911 1.000 1.000

DQB1*04 28 (7%) 19 (6%) 9 (8%) 1.32 0.59 – 2.96 0.518 0.974 1.000

DQB1*05 118 (29%) 89 (30%) 29 (26%) 0.83 0.51 – 1.35 0.464 0.96 1.000

DQB1*06 181 (44%) 136 (46%) 45 (41%) 0.81 0.52 – 1.25 0.371 0.901 1.000

DRB1*01 75 (18%) 57 (19%) 18 (16%) 0.82 0.46 – 1.47 0.566 1.000 1.000

DRB1*03 116 (29%) 79 (27%) 37 (33%) 1.38 0.86 – 2.20 0.218 0.959 1.000

DRB1*04 117 (29%) 84 (28%) 33 (30%) 1.07 0.67 – 1.73 0.806 1.000 1.000

DRB1*07 76 (19%) 58 (20%) 18 (16%) 0.81 0.45 – 1.43 0.478 1.000 1.000

DRB1*08 28 (7%) 18 (6%) 10 (9%) 1.56 0.71 – 3.43 0.378 0.998 1.000

DRB1*09 12 (3%) 10 (3%) 2 (2%) 0.62 0.15 – 2.52 0.525 1.000 1.000

DRB1*10 18 (4%) 12 (4%) 6 (5%) 1.40 0.53 – 3.71 0.590 1.000 1.000
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Table S1. (continued)

HLA 
type1

Donors 
(n=407)

No BKPyV 
viremia 
(n=296)

BKPyV 
viremia 
(n=111)

OR2 95% CI2 p-value3 
crude

p-value4 
HLA-locus 
adjusted

p-value5 
HLA total 
adjusted

DRB1*11 71 (17%) 50 (17%) 21 (19%) 1.16 0.66 – 2.03 0.661 1.000 1.000

DRB1*12 19 (5%) 15 (5%) 4 (4%) 0.76 0.26 – 2.22 0.792 1.000 1.000

DRB1*13 106 (26%) 83 (28%) 23 (21%) 0.68 0.40 – 1.14 0.163 0.901 1.000

DRB1*14 26 (6%) 21 (7%) 5 (5%) 0.66 0.25 – 1.73 0.495 1.000 1.000

DRB1*15 100 (25%) 74 (25%) 26 (23%) 0.93 0.56 – 1.54 0.797 1.000 1.000

DRB1*16 8 (2%) 7 (2%) 1 (<1%) 0.52 0.09 – 3.07 0.689 1.000 1.000

Data are shown as n (%).
BKPyV, BK polyomavirus; CI, confidence interval; HLA, human leukocyte antigen; OR, odds ratio.
1From all donors the complete information of HLA A, B, DQ and DR were available, HLA C was missing 
in 8 donor cases.
2Odds ratios and corresponding 95% CI were calculated with the Woolf Haldane test.
3The p-values were calculated using the two-sided Fisher’s exact test.
4The p-values were corrected for multiple testing according to the Šidàk method (Šidàk 1967). The 
formula of the Šidàk correction is 1-(1-p)^N, were N is the number of antigens (comparisons) per locus.
5The p-values were corrected for multiple testing according to the Šidàk method (Šidàk 1967). The 
formula of the Šidàk correction is 1-(1-p)^N, were N is the number of HLA alleles tested, which is 78 
for donors.
A p-value <0.05 was considered statistically significant.
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Table S2. Distribution of HLA genotypes among 407 BKPyV nonviremic and viremic KTRs

HLA 
type1

Recipients 
(n = 407)

No BKPyV 
viremia (n = 

296)

BKPyV 
viremia (n = 

111)

OR2 95% CI2 p-value3 
crude

p-value4 
HLA 
locus 

adjusted

p-value5 
HLA total 
adjusted

A*01 115 (28%) 80 (27%) 35 (32%) 1.24 0.77 – 1.99 0.389 1.000 1.000

A*02 213 (52%) 151 (51%) 62 (56%) 1.20 0.78 – 1.86 0.436 1.000 1.000

A*03 111 (27%) 83 (28%) 28 (25%) 0.87 0.53 – 1.43 0.618 1.000 1.000

A*11 48 (12%) 31(11%) 17(15%) 1.56 0.83 – 2.92 0.226 0.984 1.000

A*23 16 (4%) 12 (4%) 4 (4%) 0.95 0.32 – 2.85 1.000 1.000 1.000

A*24 57 (14%) 45 (15%) 12 (11%) 0.69 0.36 – 1.35 0.336 0.999 1.000

A*25 10 (2%) 8 (3%) 2 (2%) 0.77 0.19 – 3.22 0.734 1.000 1.000

A*26 23 (6%) 15 (5%) 8 (7%) 1.49 0.63 – 3.54 0.470 1.000 1.000

A*29 12 (3%) 10 (3%) 2 (2%) 0.62 0.15 – 2.51 0.525 1.000 1.000

A*30 15 (4%) 15 (5%) 0 (0%) 0.08 0.01 – 1.37 0.014 0.208 0.660

A*31 27 (7%) 18 (6%) 9 (8%) 1.39 0.62 – 3.14 0.504 1.00 1.000

A*32 22 (5%) 16 (5%) 6 (5%) 1.04 0.41 – 2.66 1.000 1.000 1.000

A*33 15 (4%) 12 (4%) 3 (3%) 0.73 0.22 – 2.44 0.768 1.000 1.000

A*34 5 (1%) 4 (1%) 1 (<1%) 0.88 0.14 – 5.65 1.000 1.000 1.000

A*66 2 (<1%) 1 (<1%) 1 (<1%) 2.67 0.27 – 25.89 0.473 1.000 1.000

A*68 39 (10%) 31 (11%) 8 (7%) 0.69 0.31 – 1.52 0.352 0.999 1.000

B*07 89 (21%) 63 (21%) 26 (23%) 1.14 0.68 – 1.91 0.687 1.000 1.000

B*08 93 (23%) 66 (22%) 27 (24%) 1.13 0.68 – 1.88 0.692 1.000 1.000

B*13 13 (3%) 13 (4%) 0 (0%) 0.09 0.01 – 1.60 0.024 0.477 0.831

B*14 17 (4%) 15 (5%) 2 (2%) 0.42 0.11 – 1.61 0.173 0.994 1.000

B*15 79 (19%) 54 (18%) 25 (23%) 1.31 0.77 – 2.23 0.328 1.000 1.000

B*18 33 (8%) 22 (7%) 11 (10%) 1.40 0.66 – 2.95 0.419 1.000 1.000

B*27 27 (7%) 20 (7%) 7 (6%) 0.97 0.41 – 2.30 1.000 1.000 1.000

B*35 70 (17%) 53 (18%) 17 (15%) 0.84 0.47 – 1.52 0.658 1.000 1.000

B*37 15 (4%) 9 (3%) 6 (5%) 1.87 0.67 – 5.18 0.252 1.000 1.000

B*38 18 (4%) 13 (4%) 5 (5%) 1.09 0.39 – 3.00 1.000 1.000 1.000

B*39 20 (5%) 17 (6%) 3 (3%) 0.52 0.16 – 1.66 0.303 1.000 1.000

B*40 64 (16%) 46 (16%) 18 (16%) 1.07 0.59 – 1.92 0.879 1.000 1.000

B*41 8 (2%) 5 (2%) 3 (3%) 1.71 0.44 – 6.65 0.455 1.000 1.000

B*42 3 (1%) 2 (<1%) 1 (<1%) 1.60 0.21 – 12.25 1.000 1.000 1.000

B*44 92 (23%) 64 (22%) 28 (25%) 1.23 0.74 – 2.04 0.429 1.000 1.000

B*45 5 (1%) 3 (1%) 2 (2%) 1.92 0.37 – 9.85 0.617 1.000 1.000

B*47 3 (1%) 2 (<1%) 1 (<1%) 1.60 0.21 – 12.25 1.000 1.000 1.000

B*49 9 (2%) 7 (2%) 2 (2%) 0.88 0.21 – 3.75 1.000 1.000 1.000

B*50 13 (3%) 9 (3%) 4 (4%) 1.27 0.40 – 3.97 0.757 1.000 1.000

B*51 36 (9%) 34 (12%) 2 (2%) 0.17 0.05 – 0.64 0.001 0.035 0.093
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Table S2. (continued)

HLA 
type1

Recipients 
(n = 407)

No BKPyV 
viremia (n = 

296)

BKPyV 
viremia (n = 

111)

OR2 95% CI2 p-value3 
crude

p-value4 
HLA 
locus 

adjusted

p-value5 
HLA total 
adjusted

B*52 10 (2%) 8 (3%) 2 (2%) 0.78 0.19 – 3.23 0.735 1.000 1.000

B*53 3 (1%) 2 (<1%) 1 (<1%) 1.60 0.21 – 12.25 1.000 1.000 1.000

B*55 21 (5%) 14 (5%) 7 (6%) 1.40 0.56 – 3.47 0.615 1.000 1.000

B*56 5 (1%) 2 (<1%) 3 (3%) 3.80 0.74 – 19.55 0.128 0.975 1.000

B*57 31 (8%) 21 (7%) 10 (9%) 1.33 0.61 – 2.87 0.532 1.000 1.000

B*58 5 (1%) 5 (2%) 0 (0%) 0.24 0.01 – 4.33 0.329 1.000 1.000

B*73 1 (<1%) 1 (<1%) 0 (0%) 0.88 0.04 – 21.85 1.000 1.000 1.000

C*01 24 (6%) 20 (7%) 4 (4%) 0.56 0.20 – 1.59 0.344 0.996 1.000

C*02 41 (10%) 27 (9%) 14 (13%) 1.45 0.73 – 2.85 0.356 0.997 1.000

C*03 123 (30%) 85 (29%) 38 (35%) 1.28 0.81 – 2.04 0.332 0.995 1.000

C*04 70 (17%) 54 (19%) 16 (15%) 0.76 0.42 – 1.39 0.380 0.998 1.000

C*05 48 (12%) 34 (12%) 14 (13%) 1.12 0.58 – 2.16 0.863 1.000 1.000

C*06 70 (17%) 50 (17%) 20 (18%) 1.08 0.61 – 1.91 0.883 1.000 1.000

C*07 222 (55%) 153 (53%) 69 (63%) 1.51 0.97 – 2.37 0.073 0.624 0.996

C*08 21 (5%) 16 (6%) 5 (5%) 0.87 0.32 – 2.34 0.806 1.000 1.000

C*12 51 (13%) 41 (14%) 10 (9%) 0.63 0.31 – 1.29 0.239 0.971 1.000

C*14 9 (2%) 8 (3%) 1 (<1%) 0.46 0.08 – 2.63 0.454 1.000 1.000

C*15 27 (7%) 25 (9%) 2 (2%) 0.24 0.07 – 0.90 0.013 0.162 0.633

C*16 13 (3%) 10 (3%) 3 (3%) 0.87 0.26 – 2.99 1.000 1.000 1.000

C*17 12 (3%) 8 (3%) 4 (4%) 1.41 0.44 – 4.51 0.743 1.000 1.000

DQB1*02 150 (37%) 110 (37%) 40 (36%) 0.96 0.61 – 1.50 0.908 1.000 1.000

DQB1*03 223 (47%) 156 (53%) 67 (60%) 1.36 0.88 – 2.12 0.181 0.631 1.000

DQB1*04 27 (7%) 21 (7%) 6 (5%) 0.79 0.32 – 1.95 0.658 0.995 1.000

DQB1*05 138 (34%) 104 (35%) 34 (31%) 0.82 0.51 – 1.31 0.413 0.930 1.000

DQB1*06 176 (43%) 134 (45%) 42 (38%) 0.74 0.47 – 1.15 0.216 0.705 1.000

DRB1*01 89 (21%) 71 (24%) 18 (16%) 0.62 0.36 – 1.10 0.106 0.768 1.000

DRB1*03 112 (28%) 79 (27%) 33 (30%) 1.17 0.72 – 1.89 0.536 1.000 1.000

DRB1*04 123 (30%) 88 (30%) 35 (32%) 1.09 0.68 – 1.75 0.718 1.000 1.000

DRB1*07 65 (16%) 50 (17%) 15 (14%) 0.78 0.42 – 1.45 0.451 1.000 1.000

DRB1*08 25 (6%) 20 (7%) 5 (5%) 0.70 0.27 – 1.83 0.492 1.000 1.000

DRB1*09 10 (2%) 6 (2%) 4 (4%) 1.87 0.55 – 6.35 0.471 1.000 1.000

DRB1*10 15 (4%) 10 (3%) 5 (5%) 1.41 0.49 – 4.05 0.565 1.000 1.000

DRB1*11 69 (17%) 50 (17%) 19 (17%) 1.03 0.58 – 1.83 1.000 1.000 1.000

DRB1*12 15 (4%) 7 (2%) 8 (7%) 3.17 1.16 – 8.68 0.034 0.364 0.924
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Table S2. (continued)

HLA 
type1

Recipients 
(n = 407)

No BKPyV 
viremia (n = 

296)

BKPyV 
viremia (n = 

111)

OR2 95% CI2 p-value3 
crude

p-value4 
HLA 
locus 

adjusted

p-value5 
HLA total 
adjusted

DRB1*13 104 (26%) 85 (29%) 19 (17%) 0.52 0.30 – 0.90 0.021 0.243 0.795

DRB1*14 18 (4%) 13 (4%) 5 (5%) 1.09 0.39 – 3.00 1.000 1.000 1.000

DRB1*15 98 (24%) 68 (23%) 30 (27%) 1.25 0.76 – 2.05 0.435 0.999 1.000

DRB1*16 14 (3%) 10 (3%) 4 (4%) 1.14 0.37 – 3.52 1.000 1.000 1.000

Data are shown as n (%).
BKPyV, BK polyomavirus; CI, confidence interval; HLA, human leukocyte antigen; OR, odds ratio.
1From all recipients the complete information of HLA B, DQ and DR were available, whereas HLA A and 
C were missing in 1 and 6 recipient cases.
2Odds ratios and corresponding 95% CI were calculated with the Woolf Haldane test.
3The p-values were calculated using the two-sided Fisher’s exact test. A p-value <0.05 was considered 
statistically significant.
4The p-values were corrected for multiple testing according to the Šidàk method (Šidàk 1967). The 
formula of the Šidàk correction is 1-(1-p)^N, were N is the number of antigens (comparisons per locus).
5The p-values were corrected for multiple testing according to the Šidàk method (Šidàk 1967). The 
formula of the Šidàk correction is 1-(1-p)^N, were N is the number of HLA alleles tested, which is 74 
for recipients.
A p-value <0.05 was considered statistically significant.
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Table S3. Potential HLA-B51 presented nonamer epitopes encoded by the major BKPyV proteins, 
predicted with the IEDB analysis resource Consensus tool by use of the whole BKPyV genome 
(Dunlop strain)

HLA allele BKPyV protein1 Amino acid 
position

Amino acid sequence 
BKPyV Dunlop strain

IEDB analysis 
Percentile rank2

B51 VP1 20 E P V Q V P K L L 3.1 

B52 VP1 20 E P V Q V P K L L 42 

     

B51 VP1 158 E P L E M Q G V L 1.5 

B52 VP1 158 E P L E M Q G V L 36 

     

B51 VP1 252 G P L C K A D S L 4.3 

B52 VP1 252 G P L C K A D S L 30 

     

B51 Large T3 27 L P L M R K A Y L 0.9 

B52 Large T3 27 L P L M R K A Y L 18 

     

B51 Small T3 27 L P L M R K A Y L 0.9 

B52 Small T3 27 L P L M R K A Y L 18 

BKPyV, BK polyomavirus; HLA, human leukocyte antigen.
1The following viral proteins were analysed: small T-antigen, large T-antigen, VP1, VP2 and VP3.
2The IEDB analysis percentile rank ranges from 0 to 100, the lower the score the higher the probability 
that the peptide is being processed and presented to T cells.
3The first exon of the Large T and Small T antigen where the identified peptide LPLMRKAYL is located 
is shared.
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Reduced risk of BKPyV infection in HLA-B51 positive KTRs

Figure S1. Pretransplantation IgG seroreactivity against BKPyV among 407 kidney transplant 
recipients and donors sorted for HLA-B51 status.
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Pretransplantation IgG seroreactivity of 407 kidney transplant recipients and donors against the BKPyV 
VP1 antigen. Each dot represents the pretransplantation BKPyV VP1 IgG seroreactivity of individual 
recipients (left) and each triangle represents the pretransplantation BKPyV VP1 IgG seroreactivity of 
individual donors (right), tested by Luminex. The BKPyV VP1 IgG seroreactivities of recipients and do-
nors are divided in two columns based on their HLA-B51 status; HLA-B51- negative (blue) and HLA-B51-
positive (green). The horizontal lines represent the mean and 95% CI. P-values were calculated using the 
Student’s t-test. A p-value < 0.05 was considered statistically significant. BKPyV, BK polyomavirus; CI, 
confidence interval; HLA, human leukocyte antigen; VP1, viral capsid protein 1.
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Abstract

Background

The BK polyomavirus (BKPyV) is subdivided into four genotypes. The consequences 

of each genotype and of donor-recipient genotype (mis)match for BKPyV-associat-

ed nephropathy (BKPyVAN) in kidney transplant recipients (KTRs) are unknown.

Objectives

To develop and evaluate a genotype-specific IgG antibody-based BKPyV serotyping 

assay, in order to classify kidney transplant donors and recipients accordingly.

Study design

VP1 antigens of six BKPyV variants (Ib1, Ib2, Ic, II, III and IV) were expressed as 

recombinant glutathione-s-transferase-fusion proteins and coupled to fluorescent 

Luminex beads. Sera from 87 healthy blood donors and 39 KTRs were used to 

analyze seroreactivity and serospecificity against the different BKPyV genotypes. 

Six sera with marked BKPyV serotype profiles were analyzed further for genotype-

specific BKPyV pseudovirus neutralizing capacity.

Results

Seroreactivity was observed against all genotypes, with seropositivity rates above 

77% comparable for KTRs and blood donors. Strong cross-reactivity (r > 0.8) was 

observed among genotype I subtypes, and among genotypes II, III and IV. Sero-

responses against genotypes I and IV seemed genuine, while those against II and 

III could be out(cross)competed. GMT (Luminex) and IC50 (neutralization assay) 

values showed good agreement in determining the genotype with the strongest 

seroresponse within an individual.

Conclusions

Despite some degree of cross-reactivity, this serotyping assay seems a useful tool 

to identify the main infecting BKPyV genotype within a given individual. This 

information, which cannot be obtained otherwise from nonviremic/nonviruric 

individuals,could provide valuable information regarding the prevalent BKPyV 

genotype in kidney donors and recipients and warrants further study.
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Background

BK polyomavirus-associated nephropathy (BKPyVAN) is one of the major causes of 

graft dysfunction and loss in kidney transplant recipients (KTRs). BKPyV DNA is 

detected in urine and blood in 50-70% and 20-30% of KTRs after transplantation, 

respectively (1-6). BKPyVAN generally develops in 1-10% of KTRs, usually in those 

with sustained viremia and viral DNA-loads above 104 genome copies/ml (3, 6-8). 

Unfortunately, the burden of BKPyVAN continues to increase, as the population 

of KTRs is still growing (9-12).

Despite the clinical need, BKPyV-specific antiviral drugs are not available, and 

reduction of immunosuppression is the only effective evidence-based treatment 

(6, 13-15). Therefore, current guidelines recommend regular screening of KTRs to 

detect BKPyV viremia and guide timely reduction of immunosuppression (3, 4, 

6, 14), which improves BKPyV immunity, but at the same time increases the risk 

of acute rejection (6, 14, 15). This makes management of BKPyV infection chal-

lenging for transplantation physicians and calls for reliable pretransplantation 

predictive markers that identify KTRs at risk. Such markers could, for example, 

guide physicians toward more frequent monitoring of BKPyV viremia or use of a 

lower viremia threshold for at-risk patients.

The overall seroprevalence for BKPyV exceeds 90% (16, 17), and it is believed that 

nearly all adults are persistently infected with at least one BKPyV genotype (18, 

19). Recently, we provided compelling evidence that the level of BKPyV-directed 

IgG seroreactivity measured before kidney transplantation (KTx), especially in 

donors, predicts the risk of BKPyV infection, in KTRs after transplantation (20). In 

line with previous studies that showed associations between donor and recipient 

seroreactivity and recipient BKPyV infection risk (21-23), our results showed that 

strongly BKPyV-seroreactive kidney donors conferred an approximately 10-fold 

increased risk of viremia to their recipients. In the prior study, BKPyV genotype 

Ib1 VP1 antigen was used to analyze seroresponses. To learn more about the speci-

ficity of BKPyV-directed seroresponses and to investigate the impact of BKPyV 

genotype disparity between donors and recipients (9), we set out to complement 

our BKPyV-immunoassay with the most common circulating BKPyV subtypes. 

The availability of a high-throughput BKPyV serotyping assay could overcome the 

limitation of BKPyV genotyping, requiring a certain amount of viral DNA, which 

is usually not detectable in healthy donors without viruria and viremia.
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BKPyV is classified into four genotypes based on single nucleotide polymorphisms 

(SNPs) (24, 25). Genotype I is the most prevalent and widespread BKPyV genotype 

worldwide, genotype IV accounts for most of the remaining subjects, while geno-

types II and III are rarely detected in all geographic regions (26, 27). Phylogenetic 

sequence analysis has been used to classify BKPyV strains, resulting in further 

subdivision of genotypes I and IV into subtypes Ia, Ib1, Ib2, Ic, and IVa1, IVa2, 

IVb1, IVb2, IVc1, and IVc2, respectively (26-29). Ia is most prevalent in Africa, Ib1 

in Southeast Asia, Ib2 in Europe, America and West Asia, and Ic in Northeast Asia 

(26, 27, 30, 31). All subtypes of genotypes IV except IVc2, are prevalent in East 

Asian populations, with subtype IVc2 occurring mainly in Europe, America and 

Northeast Asia (32).

It is generally believed that each BKPyV genotype represents a distinct serotype, 

which fits with the majority of SNPs being located in the VP1 capsid protein (9, 

33, 34). Genotype-specific vaccination studies in mice have confirmed this (34), 

and indicated antibody-mediated genotype-specific BKPyV neutralization. Fur-

thermore, it was shown that subtypes Ib1 and Ib2 can behave as distinct serotypes 

in some individuals, while Ib2 and Ic seem to represent a single serotype, as are 

all subtypes of genotype IV (33, 34).

Objectives

The aim of this study was to develop and evaluate a serological BKPyV IgG geno-

typing assay with the help of separate cohorts of healthy blood donors and KTRs, 

that detects BKPyV genotype-specific IgG antibody responses. This could be useful 

to detect pretransplantation BKPyV genotype-specific IgG antibody responses in 

kidney transplant donors and recipients. Availability of such a serotyping system 

could shed light on previously reported, sometimes conflicting results regarding 

associations between specific BKPyV genotypes and pathogenic replication (28, 

35-39). Furthermore, BKPyV serotyping could reveal whether the current BKPyV 

genotype distribution pattern deduced from viremic KTRs reflects that of asymp-

tomatic immunocompetent people. Finally, if BKPyV serotyping can reliably dif-

ferentiate between genotypes, this method could be used to analyze and predict 

the clinical impact of BKPyV genotype mismatch between donor and recipient.
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Study design

Study population

For evaluation of the BKPyV multiplex serotyping immunoassay, anonymized 

serum samples from a cohort of 87 adult Dutch HBDs (40, 41), and a cohort of 

39 adult Dutch KTRs (42, 43) were tested. Basic demographic details, such as age, 

sex and year of collection can be found in the references. The study adhered to 

the Declaration of Helsinki Principles and all participants gave informed consent.

BKPyV VP1 bead-based immunoassay

To detect IgG seroresponses against the BKPyV major viral capsid protein (VP1), 

an antibody-binding assay using Luminex xMAP technology (44) was previously 

developed, equipped with the VP1 antigen of BKPyV subtype Ib1 as described 

(16, 20). The assay showed a good intra (r 0.963 – 0.999, p < 0.001) and intertest 

variability (r 0.891, p < 0.001) (20). To detect seroresponses against other BKPyV 

genotypes, synthetic VP1 gene fragments (gBlocks, IDT, San Jose, CA, USA) of BK-

PyV Ib2, Ic, II, III and IVb1, were cloned into pGEX-5x-3 vectors (GE Healthcare Life 

Sciences, Chicago, IL, USA) and expressed as GST-VP1.tag fusion proteins in BL21 

Rosetta bacteria. The synthetic gene fragments used in this study were reported 

previously (45); BKV-Ib2 (PittVR2; DQ989796), BKV-Ic (RYU-2; AB211377), BKV-II 

(GBR-12; AB263920), BKV-III (KOM-3; AB211386), and BKV-IVb1 (THK-8; AB211390). 

The different GST-VP1 fusion proteins were individually coupled to differently co-

loured Luminex bead sets. BKPyV Ia was not included in the antigen set, because 

BKPyV Ia and Ib1 differ by only three synonymous SNPs in VP1, and are identical 

in their amino acids (46). Only one genotype IV VP1 antigen was included in the 

analyses, BKPyV IVb1, since all BKPyV genotype IV subtypes are thought to belong 

to one serotype (33, 34).

Serostatus (positive or negative) was identified and interpreted according to the 

calculated cut-off values, Ib1 763 MFI, Ib2 515 MFI, Ic 475 MFI, II 446 MFI, III 366 

MFI and IV 298 MFI, as described in the supplemental information.

A high agreement was observed between test plates for all 6 BKPyV variants 

as described in supplementary information together with further information 

regarding the previously described BKPyV VP1 bead-based immunoassay.

Serum competition analysis

To study the cross-reactivity between the different BKPyV serotypes, VP1 antigen 

competition experiments were performed, where a fixed amount of unbound 



120

competitor VP1 antigen is added to a serum dilution series, in addition to the 

bead-bound targeted VP1 antigen, as described previously (16, 42). Selected serum 

samples were diluted from 1:100 up to 1:409.600 and incubated with regular 

blocking buffer containing either GST or GST-VP1 fusion proteins (~2 mg/ml).

BKPyV Neutralization assay

Of the 39 KTR samples, six were independently analyzed for serological confir-

mation with a BKPyV genotype-specific pseudovirion based neutralization assay 

(PVNA) (dilution 1:100 to 1:39.062.500), as described (45). The neutralization titer 

was defined as the half maximal inhibitory concentration (IC50) and was calcu-

lated using Prism Software (Graphpad) by fitting a variable-slope sigmoidal dose-

response curve for each serum dilution series. The IC50 values of the PVNA were 

compared with the geometric mean titers (GMT) determined on seroreactivities of 

the six serum samples measured in the BKPyV serotyping multiplex immunoassay.

Seroreactivities against BKPyV serotype specific VP1 antigens were measured in 

healthy blood donors (HBDs, n = 87, panel A) and in kidney transplant recipients 

(KTRs, n = 39, panel B). Results are depicted as mean fluorescence intensity (MFI), 

and are shown in box plots. The bottom and top of the boxes represent the first and 

third quartiles, the band inside the boxes represents the median, and the end of the 

whiskers represents the minimum and maximum seroreactivities. The differences 

between the seroreactivities against BKPyV genotype-specific VP1 antigens were 

statistically significant: BKPyV Ib1 HBDs mean 10976 MFI, standard deviation 7586 

MFI and KTRs mean 19163 MFI, standard deviation 7019 MFI, p < 0.001; BKPyV Ib2 

HBDs mean 7631 MFI, standard deviation 6419 MFI and KTRs mean 14996 MFI, 

standard deviation 8468 MFI, p < 0.001; BKPyV Ic HBDs mean 8201 MFI, standard 

deviation 6615 MFI and KTRs mean 15850 MFI, standard deviation 8016 MFI, p < 

0.001; BKPyV II HBDs mean 4428 MFI, standard deviation 4768 MFI and KTRs mean 

10867 MFI, standard deviation 7307 MFI, p < 0.001; BKPyV III HBDs mean 2543 MFI, 

standard deviation 3028 MFI and KTRs mean 8859 MFI, standard deviation 7649 

MFI, p < 0.001; BKPyV IV: HBDs mean 2961 MFI, standard deviation 3209 MFI and 

KTRs mean 10370 MFI, standard deviation 7365 MFI, p < 0.001.

Statistical analysis

Data were analyzed with IBM SPSS Statistics software version 21. Differences 

between HBDs and KTRs were assessed using the chi-square test, Fisher exact test 

or Student t-test, as appropriate. Pearson correlation coefficients were calculated 

to determine intertest reliability. Correlation between assessed BKPyV serotypes 

was further examined by calculating Spearman rank correlation coefficients.
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Results

BKPyV genotype-directed seroreactivity

VP1 antigens of the common BKPyV subtypes, Ib1, Ib2, Ic, II, III and IVb1 were 

analysed for seroreactivity BKPyV Ia was not included in the antigen set, because 

BKPyV Ia and Ib1 VP1 are identical (46). Only one genotype IV antigen was in-

cluded in the analyses, BKPyV IVb1, since all BKPyV genotype IV subtypes are 

thought to belong to one serotype (33, 34).

Each selected VP1 was analyzed for antigenicity using serum samples from 87 

immunocompetent (blood donors) and 39 immunocompromised (immunosup-

pressed KTRs) individuals. Figure 1 shows boxplots of the measured MFI values 

obtained for each BKPyV genotype at 1:100 dilution. The seroreactivity measured 

against any BKPyV genotype was significantly stronger in KTRs compared to 

HBDs (p < 0.001), indicated by higher median MFI values, probably as the result 

of boosted seroresponses by replicating virus under immunosuppression, as we 

have shown previously (41). The highest median seroreactivities in HBDs and 

KTRs, were observed for BKPyV subtypes belonging to genotype I. The seropositiv-

ity rate was high for all BKPyV serotypes, ranging from 91-100% for genotype I, 

86-90% for genotype II, 77-87% for genotype III and 80-95% for genotype IV, and 

comparable between HBDs and KTRs (Table 1). On average, both HBDs and KTRs 

were seropositive against at least five of the six BKPyV subtypes and three of the 

four genotypes (Table 1).

Figure 1. Seroreactivity against BKPyV genotype-specific VP1 antigens measured by the Luminex 
multiplex immunoassay in healthy blood donors (A) and kidney transplant recipients (B)

A            B 
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Correlation between seroresponses against individual BKPyV variants

To learn about crossreactivity between the different BKPyV genotypes and 

subtypes analyzed in our assay, a correlation matrix of the serotype-specific 

seroresponses was generated for the HBDs and KTRs (Figure 2A). Spearman rank 

correlation coefficients were calculated for each BKPyV serotype combination 

(Figure 2B). Strong correlations were observed between BKPyV subtypes belong-

ing to genotype I, and between genotypes II, III and IV. Between the seroresponses 

against genotype I and genotypes II–IV, moderately strong correlations were 

generally observed. The observed cross-reactivity pattern matched with the VP1 

amino acid sequence similarity between the genotypes, with strong correlations 

among BKPyV genotypes with ≥95% similarity (data not shown).

Cross-reactivity of seroresponses against BKPyV

To explore the BKPyV crossreactivity in more detail, six serum samples with a 

high seroreactivity (> 15.000 MFI) to at least one of the genotypes were selected, 

diluted and tested against each VP1 antigen to calculate their GMT for each geno-

type (Table 2A). Furthermore, soluble, competing heterologous VP1-antigens were 

added to the serum titration series, while assaying seroreactivity against bead-

bound VP1 antigen of the relevant BKPyV variants. Figure 3 shows a selection of 

these analyses for each analyzed genotype, while a comprehensive overview of 

the VP1-antigen inhibition experiments can be found in supplementary Figure S2.

Although each serum sample proved different in these analyses, seroresponses 

against BKPyV genotype Ib1 were only efficiently blocked by the homologous Ib1 

VP1 antigen. Pre-incubation with other genotype I subtype VP1 antigens caused 

only a slight reduction in seroreactivity, comparable to the inhibition caused 

Table 1. Seropositivity against BKPyV geno(sub)types measured in sera from 87 healthy blood 
donors and 39 kidney transplant recipients

BKPyV genotype HBDs
n (%)

KTRs
n (%)

I, subtype b1 81 (93%) 39 (100%)

I, subtype b2 79 (91%) 37 (95%) 

I, subtype c 81 (93%) 38 (97%) 

II 75 (86%) 35 (90%) 

III 67 (77%) 34 (87%) 

IV 70 (80%) 37 (95%) 

Mean number of seropositive geno(sub)types per individual 5.24 (1.50) 5.64 (1.01) 

Mean number of seropositive genotypes per individual 3.41 (1.08) 3.72 (0.79) 

BKPyV, BK polyomavirus; HBDs, healthy blood donors; KTRs, kidney transplant recipients.
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by the more distant genotypes II, III and IV (Figure 3A). Seroresponses against 

genotype Ib2 and Ic, in most of the cases could be inhibited by any genotype I 

VP1 antigen, but not by the other genotypes (Figure 3B-C). Seroresponses against 

Figure 2. Cross-reactivity matrices (A) and Spearman rank correlation coefficients (B) between 
the VP1 antigens from different BKPyV genotypes and subtypes in serum samples of HBDs and 
KTRs
A

 
B

Spearman correlation serotiters of KTRs (n = 39)

Ib1 Ib2 Ic II III IV

Spearman 
correlation 
serotiters of 

HBDs (n = 87)

Ib1 0.850 0.911 0.618 0.621 0.615

Ib2 0.893 0.940 0.742 0.854 0.766

Ic 0.926 0.953 0.682 0.746 0.700

II 0.630 0.740 0.678 0.819 0.912

III 0.601 0.734 0.680 0.823 0.826

IV 0.612 0.745 0.711 0.831 0.858

In panel A correlation graphs are shown as scatter plots for the healthy blood donor population (lower 
left part, n = 87) and for the kidney transplant recipients (upper right part, n = 39), with each circle 
representing one serum sample. In panel B, the numbers in the lower left part of the Table show the 
Spearman correlation coefficients calculated between seroresponses measured against VP1 of the BK-
PyV genotypes and subtypes tested in the healthy blood donor population and the upper right part of 
the kidney transplant recipients. The color of the cells represents the degree of correlation between the 
different BKPyV variants; red = high correlation (r ≥ 0.8), yellow = moderate correlation (r = 0.6 - 0.8).
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BKPyV VP1 of genotypes II and III were inhibited by all of the heterologous VP1 

antigens (Figure 3D-E), whereas responses against genotype IV VP1 were not 

inhibited by the heterologous VP1 antigens (Figure 3F). Altogether, these data 

Figure 3. Cross-reactivity analysis of BKPyV serotype seroresponses by VP1-specific competition

A      B  

         
C      D 

          
 

E      F      

          
Titrated serum samples were pre-incubated with crude bacterial extract containing GST only (in black), 
or containing GST-VP1 of the autologous BKPyV geno(sub)type (target subtype shown on top of each 
graph) or non-target heterologous BKPyV geno(sub)types. Results are depicted as median fluorescence 
intensity (MFI) and are shown for the seroresponses to Ib1 (A), Ib2 (B), Ic (C), II (D), III (E) and IV (F) mea-
sured in each serum sample.
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indicate that the immunoassay detects seroreactivity against BKPyV genotype I 

subtypes, especially Ib1, and genotype IV with little chance of cross-reactivity, 

Table 2. Comparison between results obtained with the BKPyV Luminex multiplex serotyping 
immunoassay and the pseudovirion based neutralization assay for six selected sera
A

Test method BKPyV serotypes

Serum sample Ib1 Ib2 Ic II III IV

Luminex assay 101 17717 8433 8376 20434 5985 22321

(MFI values) 150 24875 24009 24443 20532 22753 22109 

 256 24853 23334 24084 19259 20531 19804 

 258 12994 4464 7780 14526 7726 17326 

 278 25243 24143 22973 20414 21081 20017 

 312 17318 170 1876 -243 -385 1087 

        

Luminex assay 101 187 58 55 624 32 1403 

(GMT values) 150 2233 1265 1848 302 434 511 

 256 1225 929 1265 459 568 526 

 258 490 125 186 487 144 887 

 278 5874 2667 2602 1834 1602 1722 

 312 476 2 8 1 1 2 

Neutralization assay 101 4825 195 333 20939 497 36516

(PVNA IC50 values) 150 73673 27286 21557 24346 20477 10942 

 256 20672 2925 5856 8921 5580 2894 

 258 5452 260 683 20407 4810 14587 

 278 26768 925 1051 5513 896 311 

 312 4974 0 0 237 0 O 

B

Luminex assay
(MFI value)

Luminex assay
(GMT value)

Neutralization assay
(IC50 value)

Main genotype serum samples

101 IV IV IV 

150 I I I 

256 I I I 

258 IV IV II 

278 I I I 

312 I I I 

Panel A shows the MFI values of six serum samples with a 1:100 dilution from kidney transplantation 
recipients, the geometric mean values of the serial dilutions (1:100 up to 1:409.600) of these six serum 
samples, and the IC50 values of the serial dilutions (1:100 up to 1:39.062.500) of six selected serum sam-
ples. The highest values per serum sample are depicted in bold. Panel B shows for each serum sample 
the BKPyV genotype that reached the highest MFI, GMT and IC50 value determined in the Luminex and 
the neutralization assay, respectively.
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while seroresponses against genotypes II and III often seemed to lack specificity 

as they were completely inhibited by the heterologous VP1 antigens.

Virus neutralization by BKPyV genotype VP1-specific sera identified in 
the bead-based assay

To further evaluate the performance of the BKPyV serotyping immunoassay with 

regard to specificity and capacity to detect seroresponses with neutralizing activ-

ity, the selected serum samples were also tested in a previously described BKPyV 

PVNA (33, 34). The PVNA IC50 values obtained for each BKPyV genotype and each 

serum are shown in Table 2A, in comparison with the Luminex-obtained MFI and 

GMT values mentioned above.

For comparison, in Table 2B we show for each selected serum the BKPyV genotype 

that generated the highest MFI, GMT and IC50 value in each test method. Geno-

type ranking based on MFI and GMT Luminex values showed a 100% concordance. 

Comparing MFI/GMT ranking values with the PVNA IC50 value ranking, revealed 

one discrepant result (serum 258), since Luminex indicated the highest MFI/

GMT values for genotype IV, while the PVNA indicated genotype II. In both cases, 

however, the obtained MFI, GMT, and IC50 values were rather close to each other, 

and the second-best response for the relevant serum was directed against the 

reciprocal genotype, being IV with PVNA, and II with Luminex (Table 2).

Discussion

Little is known about the distribution of BKPyV genotypes among kidney donors 

and recipients and their association with the risk, course and severity of BKPyV 

infection and complications after KTx. Studies assessing this association in KTRs 

have reported conflicting results. These studies were mainly focused on isolates 

obtained from recipients with manifest BKPyV infection (viremia or viruria) and 

thus may not represent the distribution of BKPyV genotypes circulating in the 

general population, including kidney donors (28, 35-39).

Current BKPyV genotyping mainly relies on sequencing of BKPyV DNA in clinical 

samples. In healthy subjects however, BKPyV DNA is seldom detectable in sufficient 

amounts to allow sequence analysis (24, 25, 46-48). This makes BKPyV genotyping 

of donor-recipient pairs before KTx almost impossible. Serum neutralization as-

says to detect infecting BKPyV genotypes have been described using pseudovirion 

systems (9, 33, 34), but these are not suitable for routine use, as they are laborious 
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in terms of production of the infectious pseudovirus and in the conduct of the neu-

tralization assays. The BKPyV serotyping Luminex immunoassay could potentially 

fill this gap, as it creates the possibility of a fast and efficient high-throughput 

assay detecting multiple BKPyV genotype-specific VP1 antigens at the same time 

in only a small amount of sample, eventually saving time and costs. A previous 

comparison between BKPyV GST-VP1 antigen presented on a bead and BKPyV VP1 

VLP antigen showed good agreement between the two (20, 42).

Based on our results with this new serotyping assay, the prevalence of BKPyV 

genotype I infections was high (> 90%) in both blood donors and KTRs, which is in 

accordance with literature (16, 17). The measured seroprevalence of serotypes II 

and III ranged between 77-90% in both groups. These percentages are higher than 

generally reported in the literature (9, 26, 27, 45). However, as most serotype II 

and III seroresponses were completely inhibited by heterologous VP1 antigens, 

we believe the high serotype II and III seroprevalence could be a reflection of 

the cross-reactivity with heterologous serotypes and should be interpreted with 

extreme caution. Whether this caution applies as well to BKPyV genotype II and 

III seroprevalences obtained in other studies we do not know. Since genotype IV-

directed seroresponses could not be inhibited by other VP1 antigens, we consider 

the prevalence of infections with this genotype to be genuinely high.

The cross-reactivity analysis showed high correlations between the seroreactivi-

ties against subtypes belonging to genotype I, and between genotypes II, III and 

IV, indicating that cross-reactivity with these two groups is likely. The antigen 

competition experiments, on the other hand, showed that the immunoassay 

detects seroreactivity against BKPyV genotypes I and IV with little chance of cross-

reactivity, as the responses to the VP1 of these genotypes were not inhibited by 

the heterologous VP1 antigens. As genotypes I and IV are the most prevalent 

and widespread BKPyV genotypes worldwide and BKPyV genotypes II and III are 

only rarely detected in all geographic regions (26, 27), BKPyV I and IV serotyping 

based on this method could be of potential interest to explore the risk of BKPyV 

(genotype-specific) infection in KTRs. Ideally, further study in that direction 

should include a direct comparison between serotyping and genotyping results, 

and therefore can only be performed in viruric or viremic subjects.

Comparison between the MFI and GMT values of the Luminex immunoassay with 

the IC50 values of the neutralization assay showed good agreement in determi-

nation of the main genotype. A previous study also showed a good correlation 

between BKPyV-VLP and BKPyV VP1 antibody responses (49). The only possible 
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disagreement was a type IV in the Luminex compared to type II with the neutral-

ization assay, which, if interpreted as a discrepancy although MFI and IC50 values 

for both genotypes were rather similar, can be explained by cross-reactivity 

between these serotypes in the neutralization assay (34). Based on this limited 

comparison, we assume that serum samples that show high seroreactivity in the 

Luminex assay have BKPyV neutralizing activity, as shown in the PVNA.

To conclude, we described the development and evaluation of a BKPyV genotype-

specific VP1 directed IgG immunoassay. The results indicate that this immunoas-

say is a potentially useful tool for the detection of BKPyV infection with the most 

prevalent genotypes I and IV, in individuals without detectable viral DNA avail-

able. Whether the assay can detect and discriminate genotype II and III-specific 

seroresponses remains unclear and should be further evaluated with sera from 

individuals with molecularly proven genotype-specific BKPyV infections.
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Supporting Information

BKPyV VP1 bead-based immunoassay

Expression and coupling to the corresponding Luminex bead set of each GST-VP1 

fusion protein was performed and checked (Figure S1), as previously described 

for other human polyomaviruses (16, 39). To detect seroreactivity against the 

different BKPyV genotypes, serum samples were incubated for 1h in blocking 

buffer (1 mg/ml casein, 0,5% polyvinylalcohol, 0,8% polyvinylpyrrolidone, 2,5% 

Super ChemiBlock (Chemicon International, Billerica, MA, USA) and 2 mg/ml GST 

bacterial lysate in PBS) to suppress potential non-specific binding to the beads or 

to GST (41, 47). Of each serum sample, a 10-fold diluted series was tested (1:100 

to 1:100.000). In the meantime, the GST-BKPyV VP1 fusion proteins for the dif-

ferent serotypes were coupled to glutathione-casein linked polystyrene beads 

and the serum samples were subsequently incubated with the mixture of GST-

BKPyV VP1 beads (one hour in the dark at room temperature). For detection of a 

VP1-directed human IgG response, biotinylated goat-α-human IgG (H+L) (1:1000 

Jackson ImmunoResearch Laboratories Inc., West Grove, PA, USA) followed by 

streptavidine-R-phycoerythrin (SAPE) (1:1000 Invitrogen, Waltham, MA, USA), 

were used, incubated for 30 minutes each in the dark at room temperature.

A serially diluted (1:100 up to 1:409.600) mixture of 4 serum samples with known 

seroreactivity against BKPyV was included in each run (n = 34), to control for 

interplate test variance. High agreement was observed between test plates for 

all serotypes (Ib1 r = 0.942 – 1.000, Ib2 r = 0.915 – 1.000, Ic r = 0.873 – 1.000, II r = 

0.965 – 1.000, III r = 0.950 – 1.000, and IV r = 0.979 – 1.000, p <0.001).

Seropositivity cut-off values were calculated with the help of a group of immuno-

competent children aged 7–24 months (n  =  63), as described (16). The following 

mean fluorescence intensity (MFI) cut-off values were obtained: Ib1 763, Ib2 515, 

Ic 475, II 446, III 366, and IV 298 MFI.
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Figure S1. Expression of BKPyV geno(sub)type GST-VP1 proteins

Coomassie blot showing glutathione-purified GST-VP1 bacterial lysates of BKPyV serotypes Ib1, Ib2, Ic, 
II, III, and IV. The molecular mass of BKPyV GST-VP1 fusion proteins = 45 + 25 = 71 kilodalton (kDa). 
Molecular mass in kDa of the pageruler prestained protein ladder (Thermofisher Scientific, Waltham, 
MA, USA) is indicated on the right.
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Figure S2. Cross-reactivity analysis of BKPyV serotype seroresponses by VP1-specific competition
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Titrated serum samples were pre-incubated with crude bacterial extract containing GST only (in black), 
or containing GST-VP1 of the autologous BKPyV subtype (target subtype shown on top of each graph) 
or non-target heterologous BKPyV subtypes. Results are depicted as median fluorescence intensity (MFI) 
and shown for the seroresponses to Ib1 (A1-6), Ib2 (B1-6), Ic (C1-6), II (D1-5), III (E1-5) and IV (F1-5) mea-
sured in each serum sample. The graphs displaying results for serum 258 lack inhibition data for BKPyV 
genotype II, which antigen unfortunately was not added to the analysis.
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Abstract

Background

BK polyomavirus-associated nephropathy (BKPyVAN) is a major threat for kidney 

transplant recipients. The role of specific BKPyV genotypes/serotypes in develop-

ment of BKPyVAN is poorly understood. Pretransplantation serotyping of kidney 

donors and recipients and posttransplantation genotyping of viremic recipients, 

could reveal the clinical relevance of specific BKPyV variants.

Methods

A retrospective cohort of 386 living kidney donor-recipient pairs was serotyped 

before transplantation against BKPyV genotype I-IV specific VP1 antigen using a 

novel BKPyV serotyping assay. Replicating BKPyV isolates in viremic recipients 

after transplantation were genotyped by real-time PCR and confirmed by se-

quencing. BKPyV serotype and genotype data were used to determine the source 

of infection and analyse the risk of viremia and BKPyVAN.

Results

Donor and recipient BKPyV genotype and serotype distribution was dominated 

by genotype I (>80%), especially Ib, over II, III and IV. Donor serotype was signifi-

cantly correlated with the replicating genotype in viremic recipients (p < 0.001). 

Individual donor and recipient serotype, serotype (mis)matching and the recipi-

ent replicating BKPyV genotype were not associated with development of viremia 

or BKPyVAN after transplantation.

Conclusions

BKPyV donor and recipient serotyping and genotyping indicates donor-origin of 

replicating BKPyV in viremic kidney transplantation recipients, but provides no 

evidence for BKPyV genotype-specific virulence.
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Introduction

BK polyomavirus (BKPyV) causes asymptomatic infection early in life (1, 2), reach-

ing a seroprevalence of ~90% in adults (3, 4). Thereafter, BKPyV latently persists in 

the urothelium and renal tubular cells (5, 6). In immunocompromised patients, 

BKPyV infections can cause manifest disease, such as BK polyomavirus-associated 

nephropathy (BKPyVAN) in kidney transplant recipients (KTRs) (1, 2). BKPyVAN 

represents a major problem for KTRs (7-9), causing graft dysfunction and graft 

loss in 1-10% of recipients (10-13). Currently, reduction of immunosuppressive 

therapy is the only effective evidence-based treatment with the disadvantage of 

increasing the risk of allograft rejection (13, 14).

BKPyV is classified into four genotypes, I-IV (15-18), and several subtypes, Ia, Ib1, 

Ib2, Ic, IVa1, IVa2, IVb1, IVb2, IVc1, and IVc2 (19-22). The various genotypes and re-

spective subtypes show a different geographical distribution (19, 21-24). Genotype 

I is the most prevalent and widespread worldwide (~80%), followed by genotype 

IV (~15%) mainly found in Europe and East Asia. Genotypes II and III are rare in all 

geographic regions (~5%) (19, 21-27). Reported prevalence percentages are gener-

ally based on BKPyV isolates from viruric and viremic (immunocompromised) 

individuals, and therefore may not represent the BKPyV genotype distribution in 

the general (immunocompetent) population. Coinfection of a dominant genotype 

with other BKPyV genotypes/subtypes (quasispecies) is common (24, 28, 29).

Little is known about the association between specific BKPyV genotypes and the 

risk, course and severity of BKPyV-associated infection after kidney transplan-

tation (KTx). It has been shown that genotype I replicates more efficient than 

genotype IV in human renal epithelial cells in vitro (30), possibly suggesting more 

efficient infection in vivo. Some studies reported associations between BKPyVAN 

and especially genotypes I and IV (16, 31-34). However, these studies were all 

performed in regions where I and IV are the most prevalent genotypes, thereby 

introducing a potential bias (16, 31-35). A recent report investigating BKPyV 

genotype-specific neutralizing antibody profiles of KTRs, showed that the absence 

of antibodies specifically neutralizing the replicating genotype rather than the 

genotype itself increased the risk of BKPyV viremia (36).

Altogether, these studies provide conflicting evidence for BKPyV genotype-specific 

associations with BKPyV-associated disease. To solve a number of these issues, we 

recently developed a BKPyV serotyping assay based on Luminex technology (37). 

This assay enables simultaneous detection of seroresponses against the major 
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viral capsid protein 1 (VP1) of BKPyV genotypes I, II, III and IV, and its main sub-

types. With the help of this assay, by calling the genotype that elicits the strongest 

seroresponse the serotype, each seropositive individual can be BKPyV-serotyped. 

Based on validation of this approach by mutual comparison of measured sero-

reactivity against individual BKPyV genotypes, we found this assay to reliably 

serotype infections with the common BKPyV genotypes I and IV, while infections 

with genotypes II and III were hard to detect and distinguish serologically (37).

Here, with the help of this new method, we serotyped a large retrospective 

cohort of KTRs and their donors prior to transplantation (37). These data were 

mutually compared and compared with the replicating BKPyV genotype identi-

fied in recipients that developed viremia and BKPyVAN after transplantation. In 

this way we could determine the origin (donor or recipient) of the replicating 

BKPyV strain, the presence of genotype-specific associations with development of 

viremia and BKPyVAN, and the relevance of donor-recipient pair BKPyV genotype 

(mis)matching for developing viremia and BKPyVAN.

Materials and Methods

Study population and sample collection

The study cohort was extensively described previously (38), and initially included 

407 living donor-recipient pairs transplanted at the Leiden University Medical 

Center (LUMC) between 2003 and 2013. For the current study, twenty-one pairs 

were excluded, because not enough serum was available from either donor or 

recipient for determination of BKPyV genotype IgG-levels. The remaining 386 

donor-recipient pairs were included in the study (Figure S1). Donor and recipient 

sera were collected at a median of 125 and 6 days pretransplantation, respec-

tively, and recipient blood plasmas were collected posttransplantation at five 

regular time-points, during one year of follow-up with a mean follow-up of 9.1 

months. The study protocol was submitted to the Medical Ethical Committee of 

the LUMC that decided formal approval was not needed, due to the retrospective 

study design and the use of previously collected anonymized samples.

BKPyV serotyping

Serum samples were analyzed by a lab-developed Luminex immunoassay detect-

ing IgG-reactivity against VP1 of BKPyV Ia/Ib1, Ib2, Ic, II, III and IVb1, as described 

recently (37). As BKPyV variants Ia and Ib1 have a 100% VP1 amino acid sequence 

similarity, they represent one serotype (37, 39). Since BKPyV genotype IV subtypes 
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belong to one serotype (39), IVb1 included in this analysis accounts for all IV 

subtypes.

BKPyV serotype-specific immunoassay cut-off values were based on immuno-

competent children aged 7–24 months (n = 36), as described (4, 37). The following 

serotype-specific mean fluorescence intensity (MFI) cut-off values were obtained: 

Ib1 478, Ib2 1013, Ic 1451, II 792, III 758, and IV 356 MFI. The geometric mean 

titers (GMT) of all BKPyV serotypes were determined for donors and recipients, 

as described (37), by testing serum dilution series of 1:100; 1:1000; 1:10.000 and 

1:100.000.

Detection of BKPyV viremia and assessment of BKPyVAN

Viremia was detected by quantitative BKPyV PCR analysis of blood plasma, as 

described previously (38, 40). All BKPyVAN cases included in our analysis were 

biopsy-confirmed. A kidney biopsy was performed if indicated in the view of the 

treating physician, and BKPyVAN was diagnosed based on the criteria described 

(38).

BKPyV genotyping

Total nucleic acid extracted from recipient BKPyV DNA-containing plasma 

samples was analyzed to determine the infecting genotype with the help of a 

BKPyV genotype-specific real-time PCR assay and VP1 sequencing.

The BKPyV genotype-specific real-time PCR assay was performed according to a 

published protocol (28). In brief, the BKPyV genotype-specific real time PCR as-

say consists of four BKPyV genotype-specific real-time PCRs targeted to the most 

conserved region of the VP1 gene for each genotype. Primers and probes were 

designed in a region of the VP1 gene with low variability between the subtypes of 

a genotype, but with high variability between the genotypes.

For VP1 sequencing, serum samples with a BKPyV load ≥10.000 copies/ml were 

selected. Primers (sense primer 5’-CCTCAATGGATGTTGCCTTT-3’, antisense 

primer 5’-ACCACCCCCAAAATAACACA-3’) were chosen just outside the VP1 gene 

(BKPyV Dunlop strain, Genbank:V01108) with the help of Primer3 (http://primer3.

sourceforge.net/). The BKPyV genotype was determined by Sanger sequencing of 

the generated PCR products, using the selected and four additional PCR primers 

(sense primer 5’-CTAACCTGTGGAAATCTACT-3’, antisense primer 5’-TACWGTYA-

CAGCCTCCCACA-3’, sense primer 5’-CAGCTACCACAGTGTTGCT-3’, antisense 

primer 5’-CCCCACACCCTGTTCATC-3’).
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Statistical analyses

Data were analyzed with IBM SPSS Statistics software version 21. Differences be-

tween viremic and non-viremic recipients and viremic recipients with or without 

BKPyVAN were assessed using the Chi-Square test or Fisher’s exact test. The GMT 

and MFI values of the Luminex immunoassay were compared and assessed by 

Cohen’s kappa agreement analysis. For all performed tests a p-value < 0.05 in a 

two-sided test was considered statistically significant.

Results

BKPyV serotyping of donors and recipients

To serotype all donors and recipients, seroreactivity against six common BKPyV 

genotypes/subtypes (Ia/Ib1, Ib2, Ic, II, III, and IVb1) was determined in the serum 

samples collected pretransplantation. Both the MFI-value measured at 1:100 

serum dilution and the calculated GMT based on a 10-fold serum dilution series 

(1:100 - 1:100.000) were recorded. Comparable to what we reported before (37), 

among both donors and recipients strong agreement was observed between 

the BKPyV genotype with the highest seroreactivity expressed as MFI value or 

expressed as GMT (Kappa > 0.8; Tables S1 A-B). In the remainder of this article, 

we will use the MFI values obtained with the 1:100 serum dilution for further 

analyses.

Overall, seroresponses were observed against all of the analysed genotypes, and 

measured MFI values did not differ between donors and recipients (Figure 1). The 

seropositivity rate of all BKPyV variants in donors and recipients was high (>80%). 

The highest mean seroreactivity was measured for BKPyV genotype I subtypes, 

followed by genotypes II, III and IV, respectively. Ranking of seroresponses ac-

cording to the BKPyV genotype VP1 antigen that obtained the highest MFI value 

within a subject indicated that most donors and recipients were seroresponsive 

to BKPyV belonging to genotype I, primarily Ib1, followed by II, IV and III, re-

spectively (Table 1), suggesting that most subjects were primarily infected with 

genotype I.

BKPyV genotyping of viremic recipients

In total, 103 of the 386 recipients (27%) developed viremia during one-year of 

follow-up after KTx. To identify the replicating BKPyV genotype, DNA isolated 

from each recipient with a viral load exceeding 103 genome c/ml (n = 92) was 

analysed by genotype-specific real-time PCR. This analysis revealed 76 replicat-
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ing infections with BKPyV genotype I (87%), six with genotype IV (7%), five with 

genotype II (6%) and none with genotype III (Table 2). In five recipients genotyp-

ing failed, probably because the DNA load was close to the detection limit. VP1 

sequencing and subsequent genotyping, which required a higher concentration 

of input DNA of at least 105 genome c/ml, succeeded in 45 of the 92 recipients. 

The obtained sequences showed complete agreement with the genotype-specific 

PCR results (Table S2).

Figure 1. Seroreactivity against BKPyV genotype-specific VP1 antigens in kidney transplantation 
donors and recipients
A B

Seroreactivity against BKPyV genotype-specific VP1 antigens was measured in serum samples collected 
before transplantation from kidney transplantation donors (panel A) and recipients (panel B). Results 
are depicted as the mean fluorescence intensity (MFI) obtained at a 1:100 serum dilution. The bottom 
and top of each box represent the first and third quartiles. The band inside each box represents the 
median, and the end of the whiskers include the minimum and maximum recorded seroreactivities. 
The percentage shown above each box represents the seroprevalence of each BKPyV genotype/subtype.

Table 1. BKPyV serotype distribution among 386 kidney transplant donors and recipients

BKPyV serotype

I
Ib1 Ib2 Ic

II III IV

Donors 331 (86%) 45 (12%) 3 (1%) 7 (2%)

 223 (58%) 19 (5%) 89 (23%) 

Recipients 331 (86%) 38 (10%) 11 (3%) 6 (2%)

223 (58%) 22 (6%) 86 (22%) 

Data are shown as n (%). BKPyV, BK polyomavirus.
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Correlation between replicating BKPyV genotype and donor serotype

The BKPyV serotype distribution among donors and recipients was comparable 

to the distribution of replicating genotypes among viremic recipients, with a 

predominance of sero/genotype I in all groups (Table 2). We compared the BKPyV 

genotyping results obtained from viremic recipients after KTx with the donor and 

recipient BKPyV serotyping results obtained before KTx, to assess the source of 

the replicating virus in the recipient. A strong association was observed between 

the recipient replicating genotype and the donor serotype (p < 0.001) (Table 2), 

suggesting similarity between the donor BKPyV and the virus replicating in the 

recipient.

Lack of association between viremia and BKPyVAN development and 
BKPyV serotype

Next we looked for associations between the donor and recipient BKPyV serotype 

and development of viremia and BKPyVAN after KTx. In this regard, no significant 

differences were observed between viremic and non-viremic recipients, and be-

tween viremic recipients with and without BKPyVAN (Table 3). Moreover, donor-

recipient pair BKPyV serotype (mis)matching showed no difference in incidence 

of viremia and BKPyVAN (Tables 3 and S3).

Table 2. Association between donor and recipient BKPyV serotype determined pretransplanta-
tion and the BKPyV genotype replicating after transplantation

BKPyV serotype Genotype of replicating BKPyV strain in 87 viremic 
recipients

I (n = 76) II (n = 5) III (n = 0) IV (n = 6) p-values*

Donor I (n = 79) 75 (99%) 1 (20%) 0 (0%) 3 (50%) < 0.001

 II (n = 6) 1 (1%) 4 (80%) 0 (0%) 1 (17%)  

 III (n = 0) 0 (0%) 0 (0%) 0 (0%) 0 (0%)  

 IV (n= 2) 0 (0%) 0 (0%) 0 (0%) 2 (33%)  

 Recipient I (n = 77) 69 (91%) 4 (80%) 0 (0%) 4 (67%) 0.082 

 II (n = 8) 6 (8%) 1 (20%) 0 (0%) 1 (17%)  

 III (n = 1) 1 (1%) 0 (0%) 0 (0%) 0 (0%)  

 IV (n= 1) 0 (0%) 0 (0%) 0 (0%) 1 (17%)  

Data are shown as n (%). *P-values were calculated using the Fisher’s exact test. P-values < 0.05 were 
considered statistically significant. BKPyV, BK polyomavirus.
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Discussion

By serotyping and genotyping of a retrospective cohort of KTx donor-recipient 

pairs, we aimed to determine the source (donor or recipient) of the replicating 

BKPyV strain, evaluate BKPyV genotype-specific associations with BKPyV infection 

after KTx, and determine the role of donor-recipient BKPyV genotype matching in 

development of viremia and BKPyVAN.

The observed seropositivity rate of all analysed BKPyV variants in both donors 

and recipients was high (>80%). The rates were higher than expected for BKPyV 

genotypes II, III, and IV, which could mean that genotypes II, III, and IV circulate 

more often in the general population than expected based on BKPyV-viremic KTx 

patient screening only (36, 41), and that mixed infection with different BKPyV 

variants is common. Three previous studies also reported the occurrence and de-

tection of mixed BKPyV infections in healthy and immunocompromised patients 

(24, 28, 29). Although we believe that BKPyV genotyping generally underestimates 

the prevalence of different BKPyV genotypes among study populations, we think 

Table 3. Association of donor and recipient BKPyV serotype with development of viremia and 
BKPyVAN in the recipients during follow-up

Recipients (n = 386) Viremic recipients (n = 103)

No BKPyV
viremia
(n = 283)

BKPyV
viremia
(n =103)

p-values* No
BKPyVAN
(n = 92)

BKPyVAN
(n = 11)

p-values*

Donor BKPyV serotype

I 238 (84%) 93 (90%) 0.419  82 (89%) 11 (100%) 0.676 

II 37 (13%) 8 (8%)   8 (9%) 0 (0%)  

III 3 (1%) 0 (0%)   0 (0%) 0 (0%)  

IV 5 (2%) 2 (2%)   2 (2%) 0 (0%)  

Recipient BKPyV serotype

I 243 (86%) 88 (85%) 0.877 78 (85%) 10 (91%) 1.000 

II 27 (10%) 11 (11%) 10 (11%) 1 (9%) 

III 9 (3%) 2 (2%) 2 (2%) 0 (0%) 

IV 4 (1%) 2 (2%) 2 (2%) 0 (0%) 

Donor-recipient pair       

BKPyV serotype matching       

Matched 205 (72%) 79 (77%) 0.401 71 (77%) 8 (73%) 0.715 

Mismatched 78 (28%) 24 (23%)  21 (23%) 3 (27%)  

Data are shown as n (%). *P-values were calculated using the Chi-Square or Fisher’s exact test. P-values 
< 0.05 were considered statistically significant. BKPyV, BK polyomavirus.
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the seropositivity rates of genotypes II and III are generally overrated, because of 

a substantial amount of cross-reactivity with especially genotype IV (37).

To determine the main infecting BKPyV genotype by serotyping, we ranked the 

genotype-specific seroresponses according to the BKPyV genotype VP1 antigen 

that obtained the highest MFI and GMT values. We recently showed good agree-

ment between these measures and the presence of neutralizing antibodies 

against the relevant BKPyV genotype (37). Our serotyping results suggest that 

most subjects, donors as well as recipients, are primarily infected with BKPyV 

genotypes belonging to serotype I (86%), especially Ib1 (58%), while some individu-

als seem primarily infected with II (10-12%), IV (2%) and III (1-3%), respectively. 

This serotype distribution is somewhat different from what has been reported 

elsewhere in Europe with genotype Ib2 as most prevalent subtype (~75%), and 

genotype IV accounting for most of the remaining subjects (15%), respectively (22, 

26). Geographic differences in genotype distribution may account for these differ-

ences, however, it should be kept in mind, that both serotyping and genotyping 

have their limitations and their data may be difficult to compare.

Overall, the distribution of BKPyV genotypes among viremic KTRs in our co-

hort was comparable with the serotype distribution obtained from donors and 

recipients pretransplantation, likely representing the distribution of the BKPyV 

genotypes present in the general population (19, 22, 26). The observed agreement 

between the genotype and serotype distributions suggests that serotyping repre-

sents a useful surrogate method for genotyping, especially in (immunocompetent) 

populations that do not shed (sufficient amounts of) BKPyV for genotyping.

Since BKPyV infection in recipients is thought to originate from the kidney al-

lograft (38, 42-45), we analyzed if the serotype of donors and recipients, deter-

mined before transplantation, was correlated with the BKPyV genotype found in 

viremic KTRs. The replicating BKPyV genotype in viremic KTRs was significantly 

correlated with the serotype of the donor and not of the recipient, indicating that 

BKPyV infection after KTx is indeed donor-derived.

For some viruses, for example hepatitis C virus, it is known that the different 

genotypes influence the course, treatment response and outcome of disease (46). 

For BKPyV we found no indication that the genotype is relevant to any of the 

analyzed aspects of BKPyV infection. Furthermore, we observed no differences 

in virological and clinical outcome between BKPyV genotype-matched and mis-

matched donor-recipient pairs. Specific associations between BKPyVAN develop-
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ment and genotype I and IV infection, as described in other studies (16, 31-34), 

were not confirmed by this study.

To conclude, donor and recipient serotyping shows that BKPyV genotype I infec-

tions dominate the picture and that replicating BKPyV strains in KTRs are donor-

derived. Furthermore, no direct effect of specific BKPyV genotypes or genotype 

(mis)matching was shown for development of viremia or BKPyVAN in our study.
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Supporting Information

Figure S1. Study population, inclusion of kidney transplantation donor-recipient pairs, and de-
velopment of BKPyV viremia and BKPyVAN divided by pretransplantation BKPyV donor-recipient 
pair genotype matching

 

 

 

 

 

 

 

 

 

515 adult living kidney transplant patients 
transplanted between 2003 - 2012

4 patients transplanted 2x with different donors

519 kidney transplant donor-recipient pairs

407 donor-recipient pairs

79 BKPyV viremia (20.5%) 24 BKPyV viremia (6.2%)

284 BKPyV genotype 
matched (73.6%)

34 BKPyV viremia ≥ 104 c/ml
(8.8%)

13 BKPyV viremia ≥ 104 c/ml
(3.4%)

8 biopsy proven BKPyVAN
(2%)

 

3 biopsy proven BKPyVAN
(0.8%)

 

112  Excluded
- 53 No pre-KTx serum sample available
- 59  < 2 plasma samples available

21  Excluded
- No serum sample available for BKPyV-
      serotyping

386 donor-recipient pairs

102 BKPyV genotype 
mismatched (26.4%)

Inclusion and exclusion criteria and distribution of BKPyV viremia (p = 0.401), BKPyV viremia ≥ log 4 
(p = 0.338), and BKPyVAN (p = 0.715) in the pretransplantation donor-recipient pair genotype matched 
and mismatched group. P-values were calculated using the Chi-Square or Fisher’s exact test. P-values 
< 0.05 were considered statistically significant. BKPyV, BK polyomavirus; BKPyVAN, BK polyomavirus-
associated nephropathy; c/ml, copies/ml; pre-KTx, pre-kidney transplantation.
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Table S1. Agreement within an individual between the BKPyV genotype that induced the highest 
seroresponses expressed as MFI values obtained at 1:100 serum dilution and the genotype that 
induced the highest geometric mean titer in donors and recipients
A

Donor BKPyV genotype with highest 1:100 MFI value (n = 386)

I (n = 331) II (n = 45) III (n = 3) IV (n = 7)

BKPyV genotype with highest geometric mean titer

I 323 (97%) 3 (7%) 0 (0%) 0 (0%) 

II 5 (2%) 40 (89%) 0 (0%) 0 (0%) 

III 3 (1%) 0 (0%) 3 (100%) 0 (0%) 

IV 1 (<1%) 2 (4%) 0 (0%) 7 (100%) 

Observed agreement 97%

Expected agreement 74% 

Kappa coefficient 0.871 

95% CI 0.80 – 0.94 

P value < 0.001 

Classification Strong 

B

Recipient BKPyV genotype with highest 1:100 MFI value (n = 386)

I (n = 331) II (n = 38) III (n = 11) IV (n = 6)

BKPyV genotype with highest geometric mean titer

I 319 (96%) 1 (3%) 1 (9%) 0 (0%) 

II 9 (3%) 33 (87%) 3 (27%) 0 (0%) 

III 3 (1%) 0 (0%) 7 (64%) 0 (0%) 

IV 0 (0%) 4 (10%) 0 (0%) 6 (100%) 

Observed agreement 95%

Expected agreement 73% 

Kappa coefficient 0.802 

95% CI 0.72 – 0.88 

P value < 0.001 

Classification Strong 

Panel A shows the observed agreement and Cohen’s kappa analysis between highest BKPyV genotype 
titers of 1:100 MFI values and geometric mean titers in donors and panel B in recipients.



159

Source and relevance of BKPyV genotype after KTx

Table S2. Association between BKPyV genotyping by real-time PCR and sequencing

Recipient replicative BKPyV genotype
Real-time PCR (n = 45)

I (n = 38) II (n = 2) III (n = 0) IV (n = 5) p-values*

Recipient replicative BKPyV genotype Sequencing (n = 45)

I 38 (100%) 0 (0%) 0 (0%) 0 (0%) < 0.001 

II 0 (0%) 2 (100%) 0 (0%) 0 (0%)  

III 0 (0%) 0 (0%) 0 (0%) 0 (0%)  

IV 0 (0%) 0 (0%) 0 (0%) 5 (100%)  

Data are shown as n (%). *The p-value was calculated using the Fisher’s exact test. A p-value < 0.05 was 
considered statistically significant. BKPyV, BK polyomavirus.

Table S3. Lack of association between BKPyVAN and replicating BKPyV genotype of the recipient 
after transplantation determined by sequencing (A) and real-time PCR (B)
A

Viremic recipients (n = 46)

No BKPyVAN (n 
= 36)

BKPyVAN (n 
= 10)

p-values*

Recipient replicative BKPyV genotype

Sequencing    

I 30 (83%) 9 (90%) 1.000 

II 2 (6%) 0 (0%)  

III 0 (0%) 0 (0%)  

IV 4 (11%) 1 (10%)  

B

Viremic recipients (n = 87)

No BKPyVAN
(n = 76)

BKPyVAN
(n = 11)

p-values*

Recipient replicative BKPyV genotype

Real-time PCR    

I 66 (87%) 10 (91%) 1.000 

II 5 (7%) 0 (0%) 

III 0 (0%) 0 (0%) 

IV 5 (7%) 1 (9%) 

Data are shown as n (%). *The p-value was calculated using the Fisher’s exact test. A p-value < 0.05 was 
considered statistically significant. BKPyV, BK polyomavirus.
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BKPyV infection after KTx; current challenges

BKPyV infection remains a major threat for KTRs and is regarded as the most 

challenging opportunistic infection after KTx (1, 2). BKPyVAN represents one of 

the major causes of graft dysfunction and loss in KTRs (3-11), and despite the 

clinical need, BKPyV-specific antiviral drugs are not available.

Although the process of KTx has been revolutionized during the last decades (12, 

13), the ever expanding waiting list and the worldwide shortage of kidney organ 

donors (14, 15), call for further damage prevention and outcome improvement of 

the available kidney grafts. One way to reach this goal, is to better understand, 

prevent and manage BKPyV infections occurring after KTx.

BKPyV infection after KTx can only be prevented if the source of infection, either 

donor or recipient-derived, is identified. Furthermore, identification of risk fac-

tors that predict KTRs at risk for developing BKPyV-related complications, will 

be essential to optimize the current BKPyV screening strategy employed after 

KTx (6, 16). This strategy is aimed at early identification of viremic KTRs, because 

sustained viremia and BKPyV-loads above 104 genome c/ml are associated with 

development of BKPyVAN (6, 8, 11). In this way, early identification of viremic 

KTRs ensures that timely reduction of immunosuppression, which is the only 

effective evidence-based treatment thus far, is possible to prevent or halt progres-

sion of BKPyVAN.

But why then is optimization of the BKPyV screening strategy necessary? At this 

moment in most centers, BKPyV screening includes all KTRs, while only 20-30% 

of them develop viremia and only 1-10% BKPyVAN (6, 7, 17-20). Therefore, the 

current screening strategy including all KTRs seems overtly abundant. Further-

more, the current pre-emptive BKPyV screening strategy, which does not prevent 

viremia but identifies KTRs that already show replication, does not fully elimi-

nate the risk of BKPyVAN and also increases the risk of donor-specific antibodies, 

rejection, graft loss and death. The Kidney Disease Improving Global Outcomes 

(KDIGO) guideline therefore already noted in 2010, that studies to determine the 

most cost-effective strategies for BKPyV screening are needed (16).

Optimization of the current strategy could be accomplished by identification of 

risk factors that correlate with the risk of developing BKPyV viremia or BKPyVAN. 

The most valuable risk factors will be the ones that can be used as biomarkers that 

timely predict BKPyV infection, for instance already before transplantation. This 

would allow treating physicians to take the identified risk for BKPyV infection 
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into account, while deciding on (immunosuppressive) treatment of the respective 

recipients in the posttransplantation period.

Identification of pretransplantation predictive markers of BKPyV 
infection after KTx

To address the above-mentioned issues we assembled a large retrospective cohort 

of 407 living kidney transplantation donor-recipient pairs, called the PAIR cohort. 

With the help of the PAIR cohort we identified a predictive pretransplantation 

serological biomarker of BKPyV viremia and BKPyVAN in KTRs, described in Chap-

ters 2 and 3. At the same time, we provided compelling evidence for the kidney 

allograft as source of BKPyV infection after KTx in Chapter 2 and 6. In Chapter 4, 

we described the protective effect of a recipient HLA-B51 positive status against 

development of BKPyV viremia after KTx, and identified four potential cytotoxic 

T cell epitopes, including a previously described highly immunogenic peptide 

(LPLMRKAYL) that induces interferon-γ production by CD8+ T cells. Furthermore, 

in Chapter 5 we described the development of a BKPyV serotyping method that, 

despite its shortcomings, reliably detects infections of the two most prevalent 

BKPyV genotypes worldwide, namely BKPyV genotype I and IV. In Chapter 6, with 

the help of this method, we showed the absence of BKPyV genotype specific as-

sociations with BKPyV viremia and BKPyVAN in KTRs.

Implications and future directions

What do the results of this thesis contribute to the current knowledge about 

BKPyV infection after KTx, what are the implications, and which questions still 

remain? Both high donor BKPyV-specific antibody titers and low (or absent) 

recipient BKPyV-specific antibody titers were already mentioned as risk factors 

for BKPyVAN in the American Society of Transplantation Infectious Disease 

Community of Practice guideline of 2013 (21). However, due to the high BKPyV 

seroprevalence in the general population and the shortage of organ donors (22, 

23), (high) BKPyV seroreactive donors cannot be excluded from kidney donation.

The added value of our findings in Chapter 2, particularly lie in the integrated 

evaluation of the BKPyV seroreactivity among donor-recipient pairs, providing 

leads for future algorithms to predict BKPyV-related disease after transplanta-

tion. The use of donor-recipient pair BKPyV seroreactivity as a practical, single 

determination, easy to perform, low-cost and early predictive disease marker 

could be of great value in the prevention and management of BKPyV-associated 

disease. The identification and use of this potential predictive disease marker 

raises several questions related to a number of areas:
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I. Clinical management-related questions

a. can the current BKPyV screening strategy after KTx be optimized/personal-

ized by the use of pretransplantation BKPyV serological testing of (potential) 

donors and recipients, and is BKPyV seroreactivity matching, low seroreactive 

recipient calls for low seroreactive donor and vice versa, clinically feasible and 

will it lead to a better outcome of the allograft?

b. can the use of a pretransplantation BKPyV seroreactivity risk assessment guide 

treating physicians in deciding on (immunosuppressive) treatment of KTRs in 

the posttransplantation period?

c. is measurement of the seroreactivity against genotype I alone, sufficient for 

the prediction of BKPyV infection after KTx, or does the seroreactivity against 

the three other genotypes contribute to a better prediction model?

II. Scientific questions

a. is BKPyV seroreactivity a reflection of the BKPyV viral kidney load?

b. how important is humoral immunity to control BKPyV infection and should 

we explore approaches aimed at improving humoral BKPyV immunity post-

transplantation, such as the administration of (BKPyV-specific) IVIG and BKPyV 

vaccination, to improve the outcome of available kidney grafts?

Ia

BKPyV seroreactivity matching and optimization of the current BKPyV 
screening strategy

Subsequent studies are needed to reveal whether a pretransplantation serological 

BKPyV risk assessment could provide a basis for personalized BKPyV load-moni-

toring strategies aimed at early identification of BKPyV viremic patients and im-

proving the efficiency of the current BKPyV screening strategy. A well designed, 

preferably randomized controlled, prospective (multi-center) trial is needed to 

evaluate the potential benefits of BKPyV seroreactivity matching and the use of a 

BKPyV serological risk assessment (Figure 1). Such a trial will hopefully refine the 

interpretation of the serological values, and reduce or discard the need for fre-

quent blood sampling and BKPyV load monitoring in a certain percentage of KTRs 

with very little risk of BKPyV infection. For example by determination of bottom 

threshold values below which recipients get reduced or do not need frequent 

BKPyV load monitoring. On the other hand, upper threshold values for donors 

could be established, above which recipients need more frequent monitoring of 

BKPyV viremia. An example of such a serological stratification strategy is cur-
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rently recommended in multiple sclerosis patients being treated with or initiating 

natalizumab (24, 25). In these patients the risk of developing progressive multifo-

cal leukoencephalopathy and the frequency of MRI monitoring is determined by 

measuring the anti-JCV antibody index (24, 25). Therefore, the included recipients 

will need to be categorised according to their predicted risk of BKPyV infection 

by the pretransplantation donor-recipient pair seroreactivity, for example in low 

donor-high recipient (low risk), low donor-low recipient (intermediate low risk), 

high donor-high recipient (intermediate high risk), and high donor-low recipient 

(high risk) groups. On the basis of this categorisation and the resultant estimate 

of BKPyV infection, the frequency of BKPyV load monitoring can then be adjusted 

(Figure 1C). Mathematical modeling with the data generated from this prospec-

tive trial could hopefully lead to such refinement. The trial can possibly also lead 

to the use of a lower viremia threshold for reduction of immunosuppression in 

the subset of recipients at high risk of BKPyV infection after KTx.

Ib

BKPyV seroreactivity risk assessment and potential adjustment of 
immunosuppression

To prevent rejection of the allograft, KTRs receive both induction and mainte-

nance immunosuppression. The induction treatment with mono- or polyclonal 

antibodies that deplete host lymphocytes (thymoglobulin/ATG and alemtuzumab) 

or anti-CD25 monoclonal antibodies (basiliximab or dacluzimab), is very immu-

nosuppressive and administered early after KTx when the risk for acute rejection 

of the allograft is the highest. The maintenance treatment, with calcineurin 

inhibitors (CNI) (cyclosporine and tacrolimus), mTOR inhibitors (everolimus and 

sirolimus), antiproliferative agents (mycophenolate mofetil (MMF) and azathio-

prine), and corticosteroids, is needed throughout life to prevent chronic rejection 

and improve long-term allograft survival (3). The maintenance regimen for most 

KTRs consists of three agents, typically a CNI, an antiproliferative agent, and 

a corticosteroid. In some cases, the CNI is exchanged by an mTOR inhibitor to 

decrease the risk of allograft failure or CNI induced nephrotoxicity (26).

With the development of more potent immunosuppressive agents like the CNI, 

the reduction of allograft rejection was inversely correlated with an increased 

incidence of BKPyV infection (3, 27). Induction treatment with a lymphocyte 

depleting antibody has been shown to be associated with a higher rate and a 

longer duration of BKPyV viremia and a higher incidence of BKPyVAN than induc-
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Figure 1. Design of future prospective study investigating BKPyV infection after KTx

A 

 
B 
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 Outline of an optional future prospective study design. A) Donor sampling: Pretransplantation serum 
samples will be tested for HLA class I and class II status and with the Luminex BKPyV serotyping immu-
noassay for BKPyV serotype specific IgG levels. Pretransplantation urine samples, protocolled kidney 
biopsies taken at implantation and superfluous ureters removed at implantation will be tested for 
BKPyV DNA with a BKPyV genotype specific real-time PCR. B) Recipient sampling: Pretransplantation 
serum samples will be tested for HLA class I and class II status and with the Luminex BKPyV serotyping 
immunoassay for BKPyV serotype specific IgG levels. Pretransplantation urine samples will be tested 
for BKPyV DNA with a BKPyV genotype specific real-time PCR. Posttransplantation serum and urine 
samples will be taken at five different time-points after transplantation: 1.5, 3, 6, 9 and 12 months after 
transplantation, or more frequent if indicated by the treating physician. Posttransplantation serum 
samples will be tested with the Luminex BKPyV serotyping immunoassay for BKPyV serotype specific 
IgG levels and for BKPyV DNA with a BKPyV genotype specific real-time PCR. Posttransplantation urine 
samples will be tested for BKPyV DNA with a BKPyV genotype specific real-time PCR. C) Future option 
for recipient sampling according to pretransplantation donor or donor-recipient pair BKPyV serore-
activity if the prediction rules for seroreactivity levels are better defined. Pretransplantation serum 
samples will be tested for HLA class I and class II status and with the Luminex BKPyV serotyping im-
munoassay for BKPyV serotype specific IgG levels. Pretransplantation urine samples will be tested for 
BKPyV DNA with a BKPyV genotype specific real-time PCR. Recipients with a donor with a low pretrans-
plantation BKPyV seroreactivity (DQ1 and DQ2) will be sampled only if indicated by the treating physi-
cian and recipients with a donor with high pretransplantation BKPyV seroreactivity (DQ3 and DQ4 are 
tested more frequently at regular time-points.
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tion with anti-CD25 monoclonal antibodies (17, 28-31). When considering the 

maintenance immunosuppressive regimen, tacrolimus has been associated with 

a higher risk of BKPyV infection than cyclosporine (3, 7, 17, 21, 32-34). Tacrolimus 

with MMF and corticosteroids seems to confer the highest risk of BKPyV viremia 

(17, 35, 36), and a greater exposure to corticosteroids has also been associated 

with viremia (7, 21, 37). In comparison to the CNI, the mTOR inhibitors are con-

sidered less potent immunosuppressive agents and also seem to confer a lower 

risk of BKPyV viremia (28, 38, 39).

Thus, specific immunosuppressive agents or combinations thereof used as induc-

tion or maintenance treatment influence the risk of BKPyV infection after KTx. 

A pretransplantation BKPyV donor-recipient pair seroreactivity risk assessment 

could potentially help transplantation nephrologists in deciding which immuno-

suppressive agents compose the best immunosuppressive regimen for a particular 

KTR after KTx. For instance, when the risk for BKPyV infection is low or absent, a 

regimen of tacrolimus with MMF and corticosteroids can probably be chosen to 

optimally reduce the risk of rejection. However, when the risk of BKPyV infection 

is high it might be better to go for cyclosporine or an mTOR inhibitor instead 

of tacrolimus, and maybe lower the corticosteroid exposure. Further studies are 

needed to investigate if a BKPyV seroreactivity risk assessment can contribute to 

personalized treatment or the adjustment of the net degree of immunosuppres-

sion given to specific KTRs in the future.

Ic

Measuring BKPyV seroreactivity only against genotype I or against 
multiple genotypes

While BKPyV seroreactivity is common and detectable against all main geno-

types, the most prevalent and intense seroresponses are directed against BKPyV 

genotype I. In Chapter 6, we found no direct effect of a specific BKPyV genotype 

and of genotype donor-recipient (mis)matching on viremia and on BKPyVAN. This 

questions the relevance of BKPyV serotyping in the pretransplantation work-up 

and could indicate that measurement of the pretransplantation donor-recipient 

seroreactivity based on BKPyV genotype I, subtype Ib1 as described in Chapter 

2, is sufficient to predict the risk of BKPyV infection after transplantation. Solis 

et al. also showed no significant difference in the prevalence of the different 

BKPyV genotypes among KTRs with viruria, viremia, and BKPyVAN (40). However, 

they did show that a pretransplantation neutralization antibody titer <4 log10 of 
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the recipient against the donor strain was significantly associated with BKPyV 

replication after KTx and that donor-recipient genotype mismatching was associ-

ated with transition from viruria to viremia (40). This would imply that BKPyV 

genotype-specific neutralizing antibody titers may be a meaningful predictive 

marker allowing patient stratification by BKPyV disease risk before and after 

transplantation (40). Unfortunately, we did not have any viruria data available to 

evaluate the transition from viruria to viremia.

To evaluate if the seroresponse to the BKPyV genotypes other than genotype I, are 

relevant for the prediction of BKPyV infection after KTx, the pretransplantation 

donor-recipient pair seroreactivity against the respective BKPyV genotypes should 

be investigated. In Chapter 2 we analyzed the risk of BKPyV viremia and BKPyVAN 

by dividing the BKPyV Ib1 seroreactivity of donors and recipients in seroquartiles 

and calculated the hazard ratio of BKPyV infection according to the donor serore-

activity quartiles stratified by the recipient seroreactivity quartiles. To evaluate if 

the seroresponse to BKPyV genotypes other than genotype I, are relevant for the 

prediction of BKPyV infection after KTx, the pretransplantation donor-recipient 

pair seroreactivity against the respective BKPyV genotypes should be evaluated 

in the same way, especially in donor-recipient pairs of which the recipient shows 

posttransplantation replication of a BKPyV genotype other than genotype I.

Regarding the Luminex immunoassay developed in Chapter 5, the BKPyV geno-

type I and IV seroresponses seem genuine, but it remains unclear if the assay 

can detect and discriminate genotype II and III-specific seroresponses. Therefore, 

studies evaluating the detection of these serotypes are necessary. The fact that 

mixed BKPyV infections in healthy and immunocompromised patients occur 

frequently (41-43), but that their relevance is still unclear also demands further 

study. In conclusion, the added value of donor-recipient pair BKPyV sero/geno-

typing and the height of the respective seroresponses of donor-recipient pairs 

against the different BKPyV genotypes in the context of KTx and management of 

KTRs needs to be further evaluated (Figure 1).

IIa

BKPyV seroreactivity as reflection of the BKPyV viral kidney load

The observation in Chapter 2 that the pretransplantation donor-recipient pair 

seroreactivity against BKPyV, especially the BKPyV seroreactivity of the donor, is 

correlated with development of BKPyV viremia and BKPyVAN after KTx, is in line 



171

General Discussion

with the reported correlation between donor BKPyV IgG levels and the onset, 

duration and peak level of recipient BKPyV viruria (44). Obviously, it is the virus 

itself that is causing the infection after KTx, not the BKPyV-directed antibodies. 

This indicates that the donor BKPyV seroreactivity reflects the amount of latently 

persistent BKPyV present in the kidney allograft.

In Chapter 3, we showed that the increase of BKPyV seroreactivity is associated 

with the duration and peak level of preceding BKPyV viremia. The proportional 

relation between donor BKPyV seroreactivity and recipient viremia supports the 

postulation that donor BKPyV seroreactivity reflects the infectious load of the 

kidney allograft. Unfortunately, we could not confirm this hypothesis by detect-

ing BKPyV DNA in protocolled kidney allograft biopsies at implantation. Even if 

we had these biopsies available, the detection of BKPyV DNA would be hampered 

by the random (multi)focal nature of BKPyV infection, in which sporadically 

(latently) infected areas likely coexist with large areas of unaffected kidney pa-

renchyma (45).

Based on the observed dose-dependent relationship between BKPyV seroreactivity 

and preceding viremia in viremic KTRs, and the stability of BKPyV seroreactivity 

over time in immunocompetent subjects and nonviremic KTRs (Chapter 3), we 

assume that BKPyV seroreactivity measured in immunocompetent individuals, 

which also represents potential donors, reflects the level of viremia experienced 

during primary infection and possibly during re-exposures. Future studies should 

establish this relation by comparing the allograft load of an individual with its 

BKPyV seroreactivity. In this context, it is important to notice that BKPyV latently 

persists in the urothelium and renal tubular cells (46, 47), and autopsies from 

immunocompetent patients have shown that BKPyV DNA can also be detected 

in ureter and bladder samples (46). Therefore, to overcome the issues related to 

BKPyV DNA detection in protocolled kidney allograft biopsies at implantation, it 

would be worthwhile to investigate other urinary tract samples as well. Residual 

kidney allograft ureters that are superfluous after implantation could represent 

a good option (Figure 1A). Pretransplantation urinary sampling could also prove 

valuable in this regard (Figure 1), as it has been shown that small amounts of 

viral progeny can be temporarily detected in urine of 7-55% of healthy individu-

als, depending on the sampling frequency (48-50). The amount of BKPyV DNA in 

donor ureters or urine of donors and recipients could be compared to their BKPyV 

eroreactivity, and correlated with the posttransplantation replicative BKPyV DNA 

in viremic KTRs. The effect of pretransplantation urinary shedding of BKPyV in 

the recipient has been shown to increase the risk of posttransplantation viruria 
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but not of viremia and BKPyVAN (51). Pretransplantation BKPyV urinary shedding 

of the donor however, was associated with development of BKPyV viremia and 

BKPyVAN in KTRs after transplantation (52, 53)

IIb

Improving the outcome of KTx by improving the humoral immunity

The additive effect of a low BKPyV seroreactive recipient in combination with 

a high seroreactive donor to the risk of BKPyV infection after KTx, suggests 

that BKPyV-directed antibodies are directly involved in containment of BKPyV 

infection. This is supported by studies that show efficient BKPyV neutralization 

by BKPyV-directed serum antibodies (54, 55). Neutralization by BKPyV-directed 

antibodies, suggests that IVIG administration in the posttransplantation period 

could prove beneficial in viremic KTRs, especially in those that do not respond 

to adjustment of immunosuppression. This is supported by the demonstration 

that IVIG contains neutralizing antibodies against BKPyV (55, 56), and by several 

studies reporting the safe and successful clearance of BKPyV viremia after IVIG 

administration (33, 57, 58).

Besides reflecting humoral immunity, BKPyV seroreactivity could also be a reflec-

tion of the BKPyV-specific T cell immunity (59), which is generally considered 

essential for controlling BKPyV infection after KTx (60, 61). Therefore, in the 

context of KTx, BKPyV seroreactivity might actually reflect the BKPyV viral kidney 

load in donors and the overall BKPyV-specific immunity in KTRs. The observation 

in Chapter 4, that HLA-B51 positive recipients have a lower risk of developing 

BKPyV infection after KTx, and the identification of four putative BKPyV-specific 

cytotoxic T lymphocyte epitopes makes one wonder about possible interventions 

strategies like BKPyV vaccination and transfer of primed BKPyV-reactive T-cells to 

boost or restore the BKPyV-specific immunity in KTRs.

Validation of the association between recipient HLA-B51 positivity and a reduced 

risk of BKPyV infection is needed (Figure 1), as it might be potentially useful for 

BKPyV risk stratification, customization of viral load screening, and adjustment 

in tapering of immunosuppression. Furthermore, it has been shown that BKPyV-

specific T cell immunity is essential for controlling BKPyV infection after KTx 

(59-61). The identification of immunogenic BKPyV-specific peptides like the 9mer 

LPLMRKAYL derived from the LT and ST antigens, calls for analyses to compre-

hensively map T cell epitopes within all five antigenic proteins of BKPyV. It is also 
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important to expand the HLA restriction to all common HLA alleles worldwide, 

like Cioni et al. did by specifically mapping 39 BKPyV-specific T cell epitopes for 

14 major HLA class I alleles prevalent in Europe and North America (62). The 

identification of BKPyV-derived T cell epitopes could be useful for developing 

BKPyV-specific T cell response monitoring strategies, adoptive T cell transfer for 

prophylaxis and therapy, and for the design of BKPyV peptide vaccines.

Conclusion

To conclude, by identifying pretransplantation predictive markers and enabling a 

better donor-recipient match, this thesis provides a number of important leads to 

reduce the frequency and severity of BKPyV-induced infection and prevent graft 

loss due to BKPyVAN in KTRs. Moreover, we provided compelling evidence that 

BKPyV infection after KTx is derived from the kidney allograft, and that high 

BKPyV seroreactive donors confer the highest risk for both viremia and BKPyVAN. 

The risk caused by donor BKPyV seroreactivity is modulated by the BKPyV serore-

activity of the recipient, and the use of a pretransplantation BKPyV-seroreactivity 

risk assessment among donor-recipient pairs could identify KTRs at increased risk 

of BKPyV infection among those at low or absent risk.

Furthermore, we identified a protective association between recipient HLA-B51 

positivity and a reduced risk of BKPyV infection and suggest that potential 

BKPyV-derived T cell epitopes might be useful for developing BKPyV-specific T 

cell response monitoring strategies, adoptive T cell transfer for prophylaxis and 

therapy, and for the design of BKPyV peptide vaccines.

Finally, BKPyV serotyping provides an alternative method to genotyping for the 

two most common BKPyV genotypes (I and IV), bypassing the need for viral DNA 

required for genotyping.
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Ruim 1.7 miljoen mensen van de Nederlandse bevolking, ~10%, heeft last van 

chronische nierschade. Oorzaken voor chronische nierschade zijn o.a. hoge 

bloeddruk, diabetes, nierbekkenontsteking, ongezonde leefstijl (roken, over-

gewicht, hoge zoutinname) en erfelijke aandoeningen zoals cystenieren. Door 

het verhoogde risico op nierfalen en hart- en vaatziekten hebben mensen met 

chronische nierschade een levensverwachting die gemiddeld 7-12 jaar lager ligt 

dan die van mensen met een normale nierfunctie.

Veel mensen met nierfalen komen in aanmerking voor een nierfunctievervan-

gende behandeling. Een dergelijke behandeling vind over het algemeen plaats 

als de nier nog 15% van de normale nierfunctie overheeft. De twee opties voor 

nierfunctievervangende therapie zijn nierdialyse en niertransplantatie (NTx). Bij 

dialyse wordt de nierfunctie overgenomen door een kunstnier. Dialyse heeft vaak 

heftige bijwerkingen tot gevolg, zoals schommelingen in de bloedwaarden en het 

vochtgehalte van het lichaam, maar ook infecties. Dit zorgt o.a. voor chronische 

vermoeidheid en een ziektegevoel. Omdat dialysepatiënten vaak meerdere malen 

per week voor een langere aaneengesloten periode aan de kunstnier dienen te 

worden aangesloten zijn ze ook veel minder mobiel. De meeste patiënten ervaren 

dialyse dan ook als een enorme belasting en beperking van hun bewegingsvrijheid. 

Vanwege deze redenen heeft een NTx de voorkeur, waarbij een donornier, die 

afkomstig kan zijn van een levende of overleden donor, de nierfunctie overneemt

Om de donornier, lichaamsvreemd materiaal, niet af te stoten is langdurige 

afweer-onderdrukking noodzakelijk, m.n. als er geen goede match was tussen 

donor en ontvanger. Een onderdrukte afweer leidt echter tot een verhoogd 

risico op infecties. Ziekteverwekkers profiteren van deze situatie, waaronder ook 

virussen die bij mensen met een normale afweer geen ziekte kunnen veroorza-

ken. Een van deze virussen, het BK polyomavirus (BKPyV), kan na ongestoorde 

vermenigvuldiging bij een onderdrukte afweer, ernstige schade/infectie van de 

donornier veroorzaken. Dit ziektebeeld noemt men ook wel BK polyomavirus 

geassocieerde nefropathie (BKPyVAN).

Bij ongeveer de helft van de NTx patiënten gaat BKPyV zich vermenigvuldigen 

gedurende het eerste jaar na transplantatie. BKPyV DNA kan worden aangetoond 

in de urine (virurie) en bij ongeveer een kwart ook in de bloedcirculatie (viremie). 

Van deze viremische patienten zal een gedeelte (1-10%) BKPyVAN ontwikkelen, 

uiteindelijk leidend tot nierfalen en verlies van de donornier. Er zijn geen BKPyV-
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specifieke antivirale middelen beschikbaar en BKPyV infectie is momenteel 

alleen te behandelen door de afweerremmende medicijnen te verminderen en 

de afweer te herstellen. Het nadeel van het verminderen van de afweerrem-

mende medicijnen is echter dat de kans op afstoting (rejectie) van de donornier 

toeneemt. De behandeling van BKPyV stelt de niertransplantatie artsen derhalve 

voor een lastig dilemma, waarbij het risico op rejectie dient te worden afgewogen 

tegenover de complicaties van BKPyV infectie.

Aangezien er nog geen duidelijke risicofactoren voor het oplopen van een BK-

PyV infectie na NTx bekend zijn, hebben wij ons gebogen over de vraag welke 

NTx-patiënten de meeste kans hebben op het ontwikkelen van BKPyV infectie na 

transplantatie en of dit op basis van bepaalde risicofactoren al voor transplantatie 

te voorspellen is. Het uiteindelijke doel is om risicofactoren en voorspellende 

biomarkers te identificeren die in de toekomst te gebruiken zijn om BKPyV geas-

socieerde complicaties na NTx te voorspellen en te voorkomen, ten einde het 

huidige BKPyV test (screening) beleid na NTx meer af te stemmen op het risi-

coprofiel van de individuele NTx patiënt. Zoals genoemd worden momenteel alle 

NTx-ontvangers na transplantatie op gezette tijden getest op de aanwezigheid van 

BKPyV DNA in het bloed, terwijl maar 20-30% van de ontvangers BKPyV viremie 

ontwikkeld en 1-10% BKPyVAN. Het huidige BKPyV testbeleid na NTx zou dus vele 

malen efficiënter kunnen als we vooraf kunnen voorspellen welke ontvangers 

wel at risk zijn en welke ontvangers helemaal geen risico lopen op BKPyV infectie 

na NTx.

Pretransplantatie donor-ontvanger paar BKPyV seroreactiviteit

In hoofdstuk 2 hebben we alle NTx uitgevoerd in het LUMC tussen 2003 en 2012 

in kaart gebracht waarbij er een nier van een levende donor werd getransplant-

eerd. In totaal werden 407 donor-ontvanger paren onderzocht op aanwezigheid 

van BKPyV-antistoffen in bloed afgenomen voorafgaand aan de NTx en op het 

optreden van BKPyV viremie en nefropathie bij de ontvangers gedurende het 

eerste jaar na transplantatie. Deze data werd samen met vele andere klinische 

en laboratoriumgegevens geanalyseerd, en leverde aan aantal belangrijke 

bevindingen op. De meest relevante was de associatie tussen aanwezigheid van 

BKPyV-antistoffen bij de donor en in mindere mate de afwezigheid daarvan bij de 

ontvangers, welke een tot 10x verhoogd risico gaf op BKPyV viremie en BKPyVAN. 

Deze associatie was sterker dan die van alle anderen factoren die in deze studie 

werden geëvalueerd, waaronder de vorm van immuunsuppressie en de mate van 

HLA-matching tussen donor en ontvanger..
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Stabiliteit BKPyV seroreactiviteit en relatie met voorafgaande viremie

In hoofdstuk 3 lieten we zien dat toename van de BKPyV seroreactiviteit geas-

socieerd is met actieve BKPyV infectie, en afhankelijk is van de viremie duur en 

de piek-hoeveelheid virus in het bloed tijdens een viremie. Het niveau van BKPyV 

seroreactiviteit onder NTx-ontvangers zonder BKPyV viremie en onder gezonde 

volwassen bloed donoren bleek stabiel.

Verlaagd risico op BKPyV infectie bij HLA-B51 positieve NTx-ontvangers

In hoofdstuk 4 werd de relatie tussen de HLA klasse I en klasse II status van de 

nier donor en ontvanger en BKPyV viremie na NTx onderzocht. Er werd een aan-

zienlijke reductie van BKPyV viremie en BKPyVAN gevonden in HLA-B51 positieve 

NTx-ontvangers. Multivariate analyse liet een vijfvoudige reductie van BKPyV 

viremie zien. Het effect van HLA-B51 bleef ook behouden bij correctie voor meer-

voudige vergelijkingen binnen de respectievelijke HLA loci. In silico analyse naar 

mogelijke HLA-B51 restrictieve T-cel epitopen leverde vier potentiele cytotoxische 

T-cel epitopen op, waaronder LPLMRKAYL welke reeds eerder beschreven was als 

hoog immunogeen peptide dat CD8+ T-cellen aanzet tot interferon-γ productie.

BKPyV serotypering en relevantie van BKPyV genotypen en genotype 
mis(matching)

BK polyomavirus kan worden verdeeld in vier verschillende genotypen, I-IV, en 

een aantal subtypen. De betekenis van deze specifieke genotypen of van genotype 

(mis)matching tussen de donor en de ontvanger voor het risico op BKPyV infectie 

na NTx is niet bekend. Voor BKPyV genotypering is een bepaalde hoeveelheid 

BKPyV DNA nodig, die normaalgesproken niet detecteerbaar is bij latent BKPyV-

geïnfecteerde gezonde mensen.

Aangezien eerdere studies hebben laten zien dat elk BKPyV genotype een sero-

type vertegenwoordigt, zou BKPyV genotypering o.b.v. serotypering de noodzaak 

van detecteerbaar BKPyV DNA omzeilen. Dit was voor ons de reden om de in 

hoofdstuk 2 gebruikte serologische Luminex BKPyV IgG test gebaseerd op het 

BKPyV VP1 antigeen afkomstig van genotype Ib1, uit te breiden met de overige 

meest voorkomende BKPyV varianten; Ib2, Ic, II, III en IV. De ontwikkeling en 

validatie van deze BKPyV serotypering methode is beschreven in hoofdstuk 5. De 

resultaten laten zien dat deze test gebruikt kan worden voor het detecteren van 

de IgG seroresponsen tegen BKPyV genotype I en genotype IV, die weinig kruis-

reactiviteit tegen de andere genotypen lieten zien. Dit is van belang aangezien 

genotype I en IV wereldwijd de twee meest voorkomende genotypen zijn en 

samen 95% van de BKPyV infecties voor hun rekening nemen. De seroresponsen 
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tegen genotypen II en III blijken gevoelig voor kruisreactiviteit en dienen der-

halve voorzichtig geïnterpreteerd te worden.

BKPyV serotypering werd ontwikkeld met als doel de seroresponsen tegen de 

verschillende genotypen te kunnen bepalen in donoren en ontvangers vooraf-

gaand aan NTx, zodat het effect van de specifieke BKPyV genotypen bij donors 

en ontvangers op BKPyV infectie na NTx bepaald kon worden. In hoofdstuk 6 

werden de pretransplantatie BKPyV serotypering resultaten van de donoren en 

ontvangers vergeleken met die het replicerende BKPyV genotype in de ontvan-

gers na NTx, gebruikmakend van hetzelfde studie cohort als in hoofdstuk 2. Deze 

analyse toonde aan dat de meeste donoren en ontvangers geïnfecteerd waren 

met serotype I. Specifieke pretransplantatie donor of ontvanger serotypen lieten 

geen associatie zien met het ontstaan van BKPyV viremie of BKPyVAN. Donor-

ontvanger paar BKPyV genotype (mis)matching liet ook geen associatie zien met 

BKPyV infectie na NTx. Het pretransplantatie BKPyV serotype van de donor bleek 

significant gerelateerd te zijn aan het replicerende BKPyV genotype van de ont-

vangers na transplantatie.

Conclusie

Concluderend blijkt dat BKPyV infectie na NTx afkomstig is van de donornier 

en dat de pretransplantatie donor-ontvanger paar seroreactiviteit veruit de beste 

voorspeller is voor het risico op BKPyV infectie na transplantatie. Dit betekent 

dat er potentieel een simpele, eenmalige en goedkope biomarker voorhanden 

is, die voorafgaand aan transplantatie het risico op BKPyV infectie en complica-

ties kan voorspellen. Toekomstige prospectieve studies dienen de voorspellende 

waarde van deze biomarker te bevestigen en verder te verfijnen. Daarnaast dient 

onderzocht te worden of de bepaling van de pretransplantatie donor-ontvanger 

paar seroreactiviteit een plaats dient te krijgen in de pretransplantatie work-up 

procedure van NTx patienten, of donor-ontvanger paar BKPyV seroreactiviteit 

matching zinvol is en leidt tot minder BKPyV infecties na NTx, of de bepaling van 

de pretransplantatie donor-ontvanger paar BKPyV seroreactiviteit kan leiden tot 

een gepersonaliseerde BKPyV screening beleid na NTx en of aanpassing van het 

immunosuppressief regime o.b.v. deze biomarker mogelijk is.

Andere bijdragende factoren die aanvullend onderzoek vereisen t.a.v. hun mo-

gelijke rol bij het verlagen van het risico op BKPyV infectie na NTx, zijn (1) de 

HLA-B51 status van de NTx-ontvanger, (2) de relevantie van BKPyV specifieke T-cel 
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epitopen voor de monitoring van de BKPyV specifieke T-cel respons, adoptieve 

T-cel profylaxe en/of therapie en voor het samenstellen van een BKPyV vaccin, 

en als laatste (3) de beoordeling van het belang van de donor-ontvanger paar 

seroreactiviteit tegen de verschillende BKPyV genotypen.
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