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Abstract 

Facial performance capture (or face capture), a process of reconstructing, tracking 

and analysing the deformable geometry and appearance of the human face from 

visual input (e.g. RGB or RGB-D images), is a long-standing research topic in the 

fields of computer graphics and vision. Over the past two decades, the field of face 

capture has witnessed rapid progress, which has pushed the capture method’s 

accuracy, speed and ease of use to a new level, and benefited a wide range of 

applications such as personalized facial avatar generation, face identification and 

facial animation. Nevertheless, it remains an open problem of improving the 

method’s capturing robustness while keeping the method compute and data-

efficient. Moreover, the emerging virtual reality (VR) technologies for immersive 

interactions have posed new challenges to facial performance capture. The VR 

head-mounted display (HMD) occludes a large portion of the user’s face, which 

makes conventional vision-based face capture methods less effective.  

Targeting at solving the aforementioned problems, this thesis first develops 

two novel face capture approaches for detecting sparse 2D facial landmarks and 

tracking dense 3D facial geometry respectively from a monocular RGB camera. 

Both approaches have been thoroughly evaluated on benchmark face image and 

video datasets. In comparison with the previous methods, they showcase improved 

capturing performance at very low data and computational cost. The proposed 

approaches have further been implemented into mobile and desktop facial tracking 

interfaces and validated on live video streams.  

For capturing the VR HMD user’s facial expression with high-fidelity, the 

thesis proposes to combine a classic monocular 3D face reconstruction algorithm 

with a pioneering facial biosensing technique – Faceteq, which uses advanced 

electromyographic (EMG) sensors to capture facial muscle activities. This extends 

the facial performance capture from the traditional visual scene to the novel VR 



Abstract 

iii 
 

context, thereby providing a practical solution to achieve face-to-face 

communication with compelling facial expressions in virtual environment.  

Besides developing robust facial performance capture approaches, this thesis 

explores a new direction for applying those approaches to solve real-world 

problems. Specifically, it identifies the problem of automated facial nerve function 

assessment from visual face capture for facial palsy management. By 

systematically reviewing the principal studies on related topics, the thesis points 

out the challenges in the field and indicates promising directions for future work. 

What’s more, it proposes a promising pathway to apply the face capture methods 

proposed in previous chapters onto automated facial nerve function assessment. 

To the best of my knowledge, this is the first review of its kind to be reported so 

far. Due to the interdisciplinary nature of the review, it can benefit multiple areas, 

including visual face capture, clinical facial palsy diagnosis and facial 

bioengineering.  
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Chapter 1 

Introduction 

1.1 Background 

The face occupies a central position in communicating social information such as 

identity, emotion and intent between humans. This has inspired a long-standing 

research topic in computer graphics and vision communities, which focuses on 

developing technical solutions for reconstructing, tracking and analysing the 

deformable geometry of a human face as well as its texture from visual input (e.g. 

RGB or RGB-D images), a process typically referred to as facial performance 

capture (or face capture) (Zollhöfer et al., 2018). The application domain of facial 

performance capture is vast, ranging from facial recognition for intelligent human-

machine interface, personalized avatars for facial virtual reality in entertainment 

and social media, facial modification (e.g. touch-up, completion and reenactment) 

for visual effects in high-end productions such as movies and computer games, all 

the way to facial biometrics for medicine and healthcare.  

A fundamental step in facial performance capture is to detect sparse 2D facial 

landmarks (see Fig. 1.1) given an image. This process is normally called as face 

alignment (Xiong & De la Torre, 2013). The detected 2D landmarks explicitly 

outline the 2D facial shape, hence can facilitate tasks such as facial expression 

recognition in near-frontal poses and provide good priors to constrain the ill-posed 

monocular 3D face reconstruction problem. However, the 2D facial representation 

is limited in depicting the out-of-plane rotation and the unseen facial texture when 

there exists a head pose. Recovering the dense models (Thies, Zollhofer, et al., 

2016) of 3D facial geometry and appearance (see Fig. 1.1) from visual data is thus 

the key technology required in the vast majority of applications. On the sensor side, 

there are various setups can be employed based on the target application and the 

available resources, such as the multi-camera setup with controlled lights, the  
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Figure 1.1: 2D facial landmarks and 3D facial geometry and appearance. 

 

depth camera or a single commodity RGB camera. Fuelled by the increasing 

demand for consumer face technologies and even the professional face related 

tasks in content creation pipelines which are still highly manual and laborious at 

this stage, face capture with a ubiquitous monocular RGB camera has become the 

major research interest in recent years (Zollhöfer et al., 2018). The thesis is 

motivated by this important tendency, centred on developing robust 2D and 3D 

facial performance capture solutions with the most lightweight capture setup – a 

single monocular RGB camera.   

1.2 Problems and Challenges 

In the past two decades, the field of facial performance capture from monocular 

RGB input has witnessed remarkable progress with a series of novel and powerful 

methods proposed (Zollhöfer et al., 2018). However, it remains challenging to 

attain a promising capturing result with a small training set (e.g. the training 

image amount is less than 5K), or when trying to achieve low computational 

complexity for making the capture method more applicable to consumer 

applications (e.g. mobile applications). Existing methods that cope with the 

challenging cases such as big head pose and poor illumination, normally rely on 

either a large-scale training set (Y. Guo, Zhang, Cai, Jiang, et al., 2018) or a highly-  

Face Image with Landmarks 
(Red Points) 

3D Facial Geometry and Appearance 
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Figure 1.2: VR HMD user and Faceteq (Mavridou et al., 2017). 

 

complicated photo-geometric fitting process (Thies, Zollhofer, et al., 2016). They 

hence can hardly be applied to scenarios where the labelled training data is difficult 

to acquire or the target platform’s computing resource is limited. On the contrary, 

the methods (C. Cao et al., 2014; Huber et al., 2016) that pursue the training or 

run-time efficiency always produce compromised reconstruction and tracking 

results. What’s more, the traditional way of harvesting labelled training data 

is expensive and laborious, which severely hinders the development of capture 

approaches. In 3D face capture, this is particularly problematic as the 3D label is 

normally obtained by multi-view stereo (Laine et al., 2017), photometric (Y. Guo, 

Zhang, Cai, Jiang, et al., 2018) or 2D landmark-based (C. Cao et al., 2014) 

reconstruction which requires either complicated and expensive multi-camera 

setups or laborious manual annotations. Thus, a more economic and efficient data 

collection way such as synthesizing training imagery is highly needed.  

In virtual reality (VR), which provides distinctive immersive interaction and is 

turning into a next-generation communication platform, the vision-based capture 

approaches will become less effective as the user’s face is severely occluded by 

the VR head-mounted display (HMD, see Fig. 1.2a). This makes the face capture 

for VR HMD users very challenging and hinders the users to communicate 

     a. VR HMD User   

Faceteq 

EMG  
Sensor 

Facial Muscle 
EMG Signals 

     b. Faceteq for Detecting Facial Muscle Activity   
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face-to-face with compelling facial expressions and emotions in virtual 

environments. Despite its importance, the problem has drawn little attention in 

research communities, resulting in no valid solutions that can be applied to general 

VR settings have been proposed yet.   

Along with the necessity of developing novel technical solutions for improving 

facial performance capture in a broader range of scenarios, exploring new 

avenues to apply these technological outcomes is also crucial but always being 

neglected. There are plenty of applications on smart human-machine interface and 

the content creation for entertainment purpose such as movies and gaming, while 

only a small portion of applications are designed for facial biometrics on medicine 

and heath, especially the physical health aspect.   

1.3 Contributions and Outline 

With the primary goal of tackling the aforementioned problems and challenges, 

the rest of this thesis is unfolded into five chapters and mainly makes the following 

contributions: 

• In Chapter 2 and Chapter 3, it develops two novel visual tracking algorithms 

for capturing 2D (Lou, Cai, et al., 2019) and 3D (Lou et al., 2020) facial 

motion respectively from the monocular RGB input. The developed 

algorithms are demonstrated to be not only resistant to adverse tracking 

conditions, but also compute and data-efficient. The two algorithms both 

adopt the framework of cascaded regression but with different emphasis: the 

former algorithm concentrates on regressing unimodal 2D facial landmarks 

from image features, while the latter one focuses on regressing multi-modal 

3D facial motion parameters. The 2D facial landmarks output from the first 

algorithm serve as the essential prior information when solving the problems 

of 3D facial tracking and reconstruction in Chapter 3 and Chapter 4.  

• For an improved data collection way, Chapter 3 also deeply investigates the 

effect of synthesized facial images in training the 3D facial motion regressor. 
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Synthesizing training imagery is purely automatic and highly efficient, hence 

providing a novel and valuable direction for collecting the training data.  

• Chapter 4 extends the facial performance capture from the traditional visual 

scene to the VR context that affords unique immersive interaction via the 

HMD. It proposes to combine a monocular 3D face reconstruction algorithm 

with, a pioneering biosensing technique – FaceteqTM (see Fig. 1.2b) 

(Mavridou et al., 2017) which employs electromyography (EMG) to detect 

facial muscle activities and can be seamlessly integrated into mainstream 

HMDs, to enable high-fidelity facial expression capture for VR HMD users 

(Lou, Wang, et al., 2019). The 3D face reconstruction algorithm applied in 

this chapter is an enhanced version as that used in Chapter 3. Chapter 3’s 

reconstruction algorithm utilizes only facial landmark information, while 

Chapter 4’s algorithm further incorporates image colour information into the 

optimization process for recovering high-fidelity facial texture. 

• Last but not least, Chapter 5 explores a novel application avenue – automated 

facial nerve function assessment from visual face capture for the methods 

proposed in previous chapters. Specifically, it systematically reviews the most 

relevant and important studies in the area, indicates challenges and new 

directions on utilizing face capture outcomes for more efficient and objective 

facial palsy management (Lou, Yu, et al., 2019).  

In the following, a more detailed abstract of each chapter is given: 

Chapter 2 - Robust 2D Face Alignment with Multi-subspace Supervised 

Descent Method:  

Supervised Descent Method (SDM) (Xiong 

& De la Torre, 2013) is a leading cascaded 

regression method for face alignment, which 

achieves the state-of-the-art performance and 

has a solid theoretical basis. However, SDM 

is prone to local optima and unable to handle 
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the optimization space of face alignment with conflicting descent maps. This limits 

SDM in unconstrained face alignment which deals with face images of various 

facial shapes and appearance. In this chapter, a novel two-step method called 

multi-subspace SDM (MS-SDM) is proposed to equip SDM with a stronger 

capability of coping with the unconstrained faces. MS-SDM first partitions the 

original optimization space of face alignment into several subspaces by applying 

k-means on facial appearance features. The generated subspaces show a clear 

semantic link to the head pose. Then, it learns an independent feature-shape 

regression for each subspace via SDM. During testing, the face image will be 

assigned into the correct subspace with a robust Naive Bayes classifier and the 

corresponding shape regression will be called to detect landmarks. MS-SDM has 

been evaluated on benchmark face datasets and live video streams with a mobile 

facial tracking implementation. It shows improved landmark detection 

performance comparing with SDM and its variant GSDM.  

Chapter 3 - Real-time 3D Facial Tracking via Cascaded Compositional 

Learning:  

This chapter proposes to learn a cascade of 

globally-optimized modular boosted ferns 

(GoMBF) to solve multi-modal facial motion 

regression for real-time 3D facial tracking 

from a monocular RGB camera. GoMBF is a 

deep composition of multiple regression 

models with each is a boosted ferns initially trained to predict partial motion 

parameters of the same modality, and then concatenated together via a global 

optimization step to form a singular strong boosted ferns that can effectively 

handle the whole regression target. It can explicitly cope with the modality variety 

in output variables, while manifesting increased fitting power and a faster learning 

speed comparing against the conventional boosted ferns. By further cascading a 

sequence of GoMBFs (GoMBF-Cascade) to regress facial motion parameters, it 

outputs competitive tracking performance on a variety of in-the-wild videos 
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comparing to the state-of-the-art methods, which require much more training data 

or have higher computational complexity. It provides a robust and highly elegant 

solution to real-time 3D facial tracking using a small set of training data and hence 

makes it more practical in real-world applications. 

Comparing with traditional manual collection, synthetic generation of training 

imagery provides a more economic and efficient data collection way. It offers a 

promising solution to mitigate the training data shortage in 3D facial tracking. 

However, it remains unclear to what extent the synthetic data has contributed to 

training the tracking model. To solve this problem, this chapter then deeply 

investigates the effect of synthesized facial images on training GoMBF-Cascade 

for 3D facial tracking. It applies three types synthetic images with various 

naturalness levels for training, and compares the performance of the tracking 

models trained on real data, on synthetic data and on a mixture of data. The 

experimental results indicate that, i) the model trained purely on synthetic facial 

imageries can hardly generalize well to unconstrained real-world data, ii) 

involving synthetic faces into training benefits tracking in some certain scenarios 

but degrades the tracking model’s generalization ability. These two insights could 

benefit a range of non-deep learning facial image analysis tasks where the labelled 

real data is difficult to acquire. 

Chapter 4 - Realistic 3D Facial Expression Reconstruction for VR HMD 

Users: 

This chapter develops a system for sensing 

and reconstructing facial expressions of 

the VR HMD user. The HMD occludes a 

large portion of the user’s face, which 

makes most existing facial performance 

capture techniques intractable. To tackle 

this problem, a novel hardware solution 

with EMG sensors being attached to the headset frame is applied to track facial 

muscle movements. For realistic facial expression recovery, the developed system 

User’s Image 

VR HMD Faceteq Reconstructed  
Expression 
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first reconstructs the user’s 3D face from a single image and generates the 

personalized blendshapes associated with seven facial action units (AUs) on the 

most emotionally salient facial parts (ESFPs). It then utilizes pre-processed EMG 

signals for measuring activations of AU-coded facial expressions to drive pre-built 

personalized blendshapes. Since facial expressions appear as important nonverbal 

cues of the subject’s internal emotional states, the system further investigates the 

relationship between six basic emotions - anger, disgust, fear, happiness, sadness 

and surprise, and the detected AUs using a fern classifier. Experiments show the 

proposed system can accurately sense and reconstruct high-fidelity common facial 

expressions while providing useful information regarding the emotional state of 

the HMD user. 

Chapter 5 - A Review on Automated Facial Nerve Function Assessment 

from Visual Face Capture: Assessing facial nerve function from visible facial 

signs such as resting asymmetry and symmetry of voluntary movement is an 

important means in clinical practice. By using image processing, computer vision 

and machine learning techniques, replacing the clinician with a machine to do 

assessment from ubiquitous visual face capture is progressing more closely to 

reality. This approach can do assessment in a purely automated manner, hence 

opens a promising direction for future development in this field. Many studies 

gathered around this interesting topic with a variety of solutions proposed in recent 

years. However, to date, none of these solutions have gained a widespread clinical 

use. This chapter provides a comprehensive review of the most relevant and 

representative studies in automated facial nerve function assessment from visual 

face capture. It deeply discusses the challenges and directions in developing the 

assessment method. Specially, it identifies the significance and potential of 

monocular face capture approaches in achieving fully automated, objective and 

accurate facial nerve function assessment. This introduces a promising avenue to 

apply and improve the face capture approaches proposed in previous chapters. At 

the end of the chapter, a pathway to implement such an application is proposed. 

To the best of my knowledge, this is the first study of its kind to be reported so far. 
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It can benefit multiple groups of people, ranging from visual face capture 

researchers to clinical practitioners.  

Chapter 6 – Summary and Outlook: This chapter summarises the thesis with 

an in-depth discussion on its contributions and the future work.  
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Chapter 2 

Robust 2D Face Alignment with Multi-subspace 

Supervised Descent Method 

Foreword 

This chapter develops a novel 2D face alignment method for detecting facial 

landmarks given an unconstrained face image. Face alignment is a fundamental 

task in facial performance capture. Its outcomes provide critical prior information 

to the challenging monocular 3D facial tracking and reconstruction problems 

which will be studied in the subsequent chapters of this thesis. The proposed 

method is based on the classic Supervised Descent Method which is a 

representative cascaded regression method.     

The chapter is based on a published journal paper: 

- Lou, J., Cai, X., Wang, Y., Yu, H., & Canavan, S. (2019). Multi-subspace 

supervised descent method for robust face alignment. Multimedia Tools 

and Applications, 78(24), 35455-35469. 

in which I proposed the multi-subspace supervised descent method, conducted the 

experimental validation of the proposed method, implemented the mobile 2D 

facial tracking application and wrote up the paper.  
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2.1 Introduction 

Face alignment aims to locate facial landmarks which outline the 2D shapes of key 

facial parts such as the eyebrows, the eyes and the mouth in a face image. It is a 

fundamental step in many face-related tasks like 3D face modelling (C. Cao et al., 

2014; Jiang et al., 2018), face frontalization (Y. Wang et al., 2016, 2017), and 

facial attributes prediction (Jian & Lam, 2015; Xia et al., 2018). The field of face 

alignment has witnessed rapid progress in recent years, especially after the advent 

of the cascaded regression method (X. Cao et al., 2014; Xiong & De la Torre, 2013; 

X. Zhu et al., 2016). Generally, the cascaded regression method learns a sequence 

of shape (a set of landmarks) increment from facial appearance features to 

progressively update the initial facial shape towards the ground-truth shape. A 

variety of method variants have been proposed in this important research stream, 

in which SDM (Xiong & De la Torre, 2013) is a very popular one. SDM achieves 

the state-of-the-art landmark detection accuracy while is extremely efficient in 

both the training and testing phases. What’s more, it is theoretically sound to some 

extent based on a rigorous interpretation from the perspective of solving a 

nonlinear optimization problem with the Newton’s method.  

Despite its great success in face alignment, SDM has two main limitations: 1) 

It highly relies on the initialization and is prone to local optima. SDM is derived 

from the Newton’s method which inherently finds a local minimum of the 

optimization problem. Therefore, if the initial landmarks are far away from the 

target landmarks, SDM will be easily trapped into a poor local optimum (see Fig. 

2.1a). 2) It is unable to deal with the optimization problem that contains conflicting 

decent maps. To illustrate this problem, the feature extraction function applied in 

SDM is simply assumed to be ℎ(𝑥) = 𝑥−1. Supposing that our aim is to seek from 

a range of initial 𝑥(𝑥0) the optimal 𝑥(𝑥∗ = 3.5) that makes ℎ(𝑥) = 0.286 (please 

note that 𝑥 here has no specific meaning and 𝑥∗ can be set as any other values as 

you wish). In SDM, a generic descent map 𝑟 will be learned to update 𝑥0 towards 

𝑥∗ by calling the following equation: 
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Figure 2.1: The limitations of SDM. a. The failure cases of SDM due to poor initializations. Top 

row: initial landmarks, bottom row: updated landmarks after four iterations. Red points: predicted 

landmarks, green points: ground-truth landmarks. b. Initial points that have conflicting descent 

maps. 

 

 𝑥𝑘 = 𝑥𝑘−1 − 𝑟(ℎ(𝑥𝑘−1) − ℎ(𝑥∗)) (2.1) 

As shown in Fig. 2.1b, with 𝑟 = −7, all 𝑥0 ∈ [1: 0.2: 6] (0.2 is the interval) can be 

moved closer to 𝑥∗, while 𝑥0 < 0 (e.g. 𝑥0 = −1) will be moved farther away from 

𝑥∗. In theory, only if the initial data points are close to each other and target at the 

same destination, SDM would be able to learn a generic descent map that applies 

to all the data points. This prerequisite however can hardly be met in practical face 

alignment tasks, where the facial shape and appearance (feature) vary a lot across 

different face images due to the variety of head poses, facial expressions and 

lighting conditions.  

To tackle the limitations of SDM, this chapter develops an efficient and novel 

two-step method – multi-subspace SDM (MS-SDM, see Fig. 2.2). MS-SDM 

partitions the original optimization space of the face alignment problem into 

multiple subspaces with k-means. In each subspace, the faces exhibit similar 

shapes, thereby a valid generic descent map can be learned much more easily via 

SDM. During testing, a face image will be directed to the correct subspace with a 

pre-trained Naive Bayes classifier and the corresponding feature-shape regression 

will then be called to detect facial landmarks. The proposed MS-SDM has been 

a. b. 
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validated on challenging face datasets which cover a wide range of head poses, 

facial expressions and appearance. Experimental results show the superiority of 

MS-SDM over SDM and its variant – GSDM (Xiong & De la Torre, 2015). 

2.2 Related Work 

Existing face alignment methods can generally be divided into two main categories: 

generative approaches and discriminative approaches. Generative approaches, 

such as Active Appearance Models (Matthews & Baker, 2004) and Constrained 

Local Models (Cristinacce & Cootes, 2006), first construct the parametric facial 

shape and appearance models using Principal Component Analysis (PCA), then 

generate a model instance to fit with the face image via a nonlinear optimization 

step. This kind of method is normally compute-intensive and the expressive power 

of the parametric face model is supposed to be limited. Discriminative approaches 

directly learn a mapping (or regression) from image features to landmark locations. 

As a representative discriminative approach, cascaded regression (X. Cao et al., 

2014; Xiong & De la Torre, 2013; S. Zhu et al., 2015, 2016) has dominated the 

field of face alignment in recent years due to its high computational efficiency and 

landmark detection accuracy.  

2.2.1 Face Alignment with Cascaded Regression 

Starting with a coarse initial shape, the cascaded regression method gradually 

refines the shape by estimating a shape increment stage-by-stage with a sequence 

of regression functions. Cao et al. (X. Cao et al., 2014) applied the boosted ferns 

to learn the features and the nonlinear feature-shape mappings simultaneously, 

which delivered promising landmark detection results. Xiong et al. (Xiong & De 

la Torre, 2013) instead employed a much simpler linear regression and the hand-

crafted features to build the cascaded regression. Their method is named as 

Supervised Descent Method (SDM). Although built with a very simple setup, 

SDM achieved the state-of-the-art landmark detection performance. In more recent 
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studies (Saeed et al., 2018; X. Zhu et al., 2016), deep learning methods have 

become the major research interest. The strong feature learning ability and the end-

to-end learning mode enable the deep learning method to output remarkable face 

alignment results even on the most challenging face datasets. However, deep 

learning methods normally require a large-scale training set and bear a high 

computational complexity, thus are difficult to be deployed to devices (e.g. mobile 

phones) with limited computing resources. For a more comprehensive review of 

the mainstream cascaded regression methods, readers are directed to surveys 

(Chrysos et al., 2018; N. Wang et al., 2018). This chapter chooses SDM as the 

building block of the proposed face alignment algorithm because of its extremely 

high efficiency in both the training data and the runtime prediction. 

2.2.2 Face Alignment with SDM-based Approaches 

SDM gains the state-of-the-art face alignment performance with very low data and 

computational cost. It has become a benchmark cascaded regression method and 

motivated a number of new approaches in face alignment. As discussed above, for 

learning a valid generic descent map, SDM requires the initial facial shape to lie 

close to the target shape and the feature-shape relationships of different face 

images should be close to each other. However, this prerequisite can hardly be 

satisfied in practical face alignment tasks, as the facial shape and appearance could 

differ significantly among different face images.    

The issues above hinder SDM to cope with the unconstrained face alignment 

problem, which presumably occupies multiple optimization subspaces caused by 

the diversity of facial shape and appearance in face images, hence can hardly be 

addressed with a single optimization process as that employed in SDM. Xiong and 

De la Torre (Xiong & De la Torre, 2015) made a similar inference and proposed 

the global SDM – GSDM. GSDM first conducts domain partition in facial feature 

and shape PCA spaces, then applies the domain-specific SDM for more robust 2D 

facial tracking in a video. Nevertheless, GSDM requires the near ground-truth 

facial landmarks when selecting the domain, which prohibits it from dealing with 
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single image face alignment. The utilization of PCA also remains a big concern as 

it might cause an unestimated information loss. Zhang et al. (Y. Zhang et al., 2016) 

later improved the SDM by projecting both the facial shape and feature into a 

mutual sign-correlation subspace before performing the regression. Their method 

however has the same constraints as those found in GSDM. Alternatively, a few 

studies (Liu et al., 2015; X. Yu et al., 2016) resort to the multi-view solution - 

processing the face image with a view-specific shape regressor which was chosen 

based on the head pose estimation. This kind of method is capable of handling face 

images spanning a broad range of head poses. However, it neglects the non-rigid 

shape deformations caused by facial expressions and the rich appearance 

variations in face images.  

2.3 Methodology 

This section first recaps the SDM method and analyses its limitations. Then, it 

introduces the proposed MS-SDM. 

2.3.1 Supervised Descent Method 

Given a face image 𝐼 and the initial facial shape (landmarks) 𝐱0 ∈ ℝ
2𝐿 (𝐿 is the 

number of landmarks), face alignment can be framed as minimizing the following 

objective function over the shape increment ∆𝐱: 

 𝑓(𝐱0 + ∆𝐱) = ‖ℎ(𝐱0 + ∆𝐱, 𝐼) − ℎ(𝐱∗, 𝐼)‖2
2 (2.2) 

where ℎ(𝐱, 𝐼) ∈ ℝ128𝐿 represents the SIFT features (Lowe, 2004) extracted around 

the landmarks 𝐱 from image 𝐼. 𝐱∗ denotes the ground-truth landmark positions. 

Following the Newton’s method with a second-order Taylor expansion, Eq. 2.2 

can be rewritten as: 

 𝑓(𝐱0 + ∆𝐱) ≈ 𝑓(𝐱0) + 𝐉𝑓(𝐱0)
T∆𝐱 +

1

2
∆𝐱T𝐇𝑓(𝐱0)∆𝐱 (2.3) 
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where 𝐉𝑓(𝐱0) and 𝐇𝑓(𝐱0) are the Jacobian and Hessian matrices of 𝑓 evaluated at 

𝐱0. Differentiating Eq. 2.3 with respect to ∆𝐱 and setting it to zero, we can obtain: 

∆𝐱 = −𝐇𝑓(𝐱0)
−1𝐉𝑓(𝐱0) 

= −2𝐇𝑓(𝐱0)
−1𝐉ℎ

T(𝐱0)(ℎ(𝐱0, 𝐼) − ℎ(𝐱∗, 𝐼)) 

 = −2𝐇𝑓(𝐱0)
−1𝐉ℎ

T(𝐱0)ℎ(𝐱0, 𝐼) + 2𝐇𝑓(𝐱0)
−1𝐉ℎ

T(𝐱0)ℎ(𝐱∗, 𝐼) (2.4) 

According to Eq. 2.4, calculating the shape increment ∆𝐱 needs ℎ(𝐱, 𝐼) to be twice 

differentiable or the numerical approximations of the Jacobian and the Hessian can 

be calculated. However, these requirements are difficult to meet in practice: 1) 

SIFT or HOG features are non-differentiable image operators; 2) numerically 

estimating the Jacobian or the Hessian in Eq. 2.4 is computationally expensive. 

For example, calculating the inverse of Hessian matrix is with O(𝑝3)  time 

complexity and O(𝑝2) space complexity, where 𝑝  is the dimensionality of the 

parameters to estimate.   

To avoid computing the expensive Jacobian and Hessian matrices, SDM 

proposes to employ a generic descent map - 𝐑 ∈ ℝ2𝐿×128𝐿  and 𝐛 ∈ ℝ2𝐿  to 

represent all the face images’ −2𝐇𝑓
−1𝐉ℎ

T and −2𝐇𝑓
−1𝐉ℎ

Tℎ(𝐱∗, 𝐼). 𝐑 and 𝐛 define a 

linear mapping between ∆𝐱 and ℎ(𝐱0, 𝐼), which can be solved as follows: 

 argmin
𝐑,𝐛

∑ ‖∆𝐱∗
𝑖 − 𝐑ℎ(𝐱0

𝑖 , 𝐼𝑖) − 𝐛‖2
2𝑁

𝑖=1  (2.5) 

where 𝑁 is the number of training images and ∆𝐱∗
𝑖 = 𝐱∗

𝑖 − 𝐱0
𝑖 . Since it is difficult 

to approach the target shape with a single update step, a sequence of descent maps 

denoted as {𝐑𝑘} and {𝐛𝑘} are learned during training. Then, for a new face image, 

in each iteration 𝑘, the shape increment can be calculated as: 

 ∆𝐱𝑘 = 𝐑𝑘ℎ(𝐱𝑘−1, 𝐼) + 𝐛𝑘 (2.6) 

Using the simple but effective supervised setting mentioned above, SDM 

converts the nonlinear optimization problem of face alignment into a linear least  
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Figure 2.2: The workflow of MS-SDM. 

 

squares problem, which can be solved efficiently with a closed-form solution. 

However, like the Newton’s method, SDM is sensitive to the initial points and 

prone to local optima. It can also be found that the feature extraction function 

ℎ(𝐱, 𝐼) is parameterized not only by landmark positions 𝐱 but also by the face 

image 𝐼. Different face images’ −2𝐇𝑓
−1𝐉ℎ

T and −2𝐇𝑓
−1𝐉ℎ

Tℎ(𝐱∗, 𝐼) can thus hardly 

be represented with a generic descent map 𝐑 and 𝐛. As a result, one optimization 

process as shown with Eq. 2.5 is insufficient to address the unconstrained face 

alignment problem which covers a wide range of facial shapes and appearances. 

2.3.2 Multi-subspace SDM 

To tackle the limitations of SDM, I propose a novel two-step method – MS-SDM 

(see Fig. 2.2). MS-SDM first applies k-means to partition the original optimization 

space of face alignment (see Eq. 2.2) into different subspaces which show explicit 

semantic meanings. Then, for each subspace, an exclusive linear regression from 

facial appearance features to the shape increment is learned via SDM. In the testing 

phase, an image sample will first be assigned into the correct subspace with a  

Subspace-specific 

Cascaded Linear 

Regression 

Optimization Subspaces 

based on K-Means 

SIFT Feature 

Extraction around 

the Mean Shape 

Naive Bayes 

Classifier 

Cascaded Feature-shape Linear Regression 
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Figure 2.3: Comparison between the subspaces learned from ∆𝐱 and ∆ℎ. Each row represents a 

training subset which contains three example images and the mean shape of all the faces in the 

subset. The k-means cluster amount was set as 5. 

 

pre-trained Naive Bayes classifier. The corresponding feature-shape regression 

will later be called to predict the shape increment: 

 ∆𝐱𝑘 = 𝐑𝑘,𝑠ℎ(𝐱𝑘−1, 𝐼) + 𝐛𝑘,𝑠 (2.7) 

where 𝑠 represents the subspace label.     

1) Optimization Subspace Learning via K-means  

As shown in Eq. 2.4, data samples with a similar regression target ∆𝐱 will be more 

likely to fall inside the same optimization space and have compatible descent maps. 

I hence apply the classic clustering algorithm - k-means on all the training samples’ 

∆𝐱 to find out the principal facial shape variations and divide the original training 

set into several subsets. In order to leverage the useful shape information, the 

original ∆𝐱 of each training sample is used during the clustering process. As shown 

in Fig. 2.3a, the training subsets generated in this way show a high correlation with 

the head pose. Specifically, each subset relates to a particular head pose such as 

left-profile face, right-profile face, left-rolling face and right-rolling face.  

a. Subspaces learned from ∆𝐱 b. Subspaces learned from ∆ℎ 
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During the optimization process of face alignment, the target facial shape 

increment ∆𝐱  is predicted from the ground-truth feature deviation ∆ℎ =

ℎ(𝐱0, 𝐼) − ℎ(𝐱∗, 𝐼) (see Eq. 2.4). This indicates that data samples having similar 

∆ℎ will tend to share the same descent map 𝐑 and 𝐛. Inspired by this insight, I 

further apply k-means on the training samples’ ∆ℎ to partition the optimization 

space. Similar to the subspaces learned from ∆𝐱, the subspaces generated this time 

also show a clear semantic link to the head pose (see Fig. 2.3b). 

2) Robust Subspace Prediction with a Naive Bayes Classifier 

The subspace learning process proposed above depends on the ground-truth facial 

shape which is unknown during testing. The main challenge in shape prediction at 

the testing stage now turns into assigning an image sample into the corresponding 

subspace correctly. A straightforward solution of this problem is to apply a 

multiclass classifier (e.g. Random Forest, SVM or Naive Bayes) which learns the 

subspace label from the facial appearance feature. In this work, I adopt the Naive 

Bayes classifier as the subspace classifier since it inherently considers the relative 

proximity between the data sample and the subspace when making the prediction. 

Specifically, the Naive Bayes classifier predicts a class label 𝑦̂ = 𝐶𝑘  with the 

following optimization process: 

 𝑦̂ = argmax
𝑘∈{1,⋯,𝐾}

𝑝(𝐶𝑘)∏ 𝑝(𝑥𝑖|𝐶𝑘)
𝑛
𝑖=1  (2.8) 

where 𝑥1, ⋯ , 𝑥𝑛  represent the features of a data sample and are assumed to be 

conditionally independent from each other. 𝑝(𝐶𝑘) is the prior probability of class 

𝐶𝑘 , and 𝑝(𝑥𝑖|𝐶𝑘)  is formulated with a Gaussian distribution to represent the 

likelihood of observing feature 𝑥𝑖  with class label 𝐶𝑘 . The overall likelihood 

∏ 𝑝(𝑥𝑖|𝐶𝑘)
𝑛
𝑖=1  can be viewed as a measure of the distance between the data sample 

and the class centre. If the data sample is far away from the class centre, then 

∏ 𝑝(𝑥𝑖|𝐶𝑘)
𝑛
𝑖=1  is small, otherwise, ∏ 𝑝(𝑥𝑖|𝐶𝑘)

𝑛
𝑖=1  is large. Since ∏ 𝑝(𝑥𝑖|𝐶𝑘)

𝑛
𝑖=1  

directly contributes to the optimization process of predicting the subspace label, 
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the relative proximity between the sample and the subspace is then naturally 

embedded into the Naive Bayes Classifier. This can avoid assigning a sample into 

an incompatible subspace. 

In the testing phase, I first place a mean-shape into the face bounding box. 

Then I extract the SIFT feature around each landmark of the mean-shape from the 

face image (see Fig. 2.2) and concatenate all the features together to form an 

appearance feature vector to feed into the Naive Bayes classifier.  

2.4 Experiments 

Dataset. I evaluate the proposed MS-SDM on a widely-applied benchmark dataset 

– 300W (Sagonas et al., 2013) and the NTHU Drowsy Driver Detection (NTHU-

DDD) video dataset (C. H. Weng et al., 2016). 300W is a compilation of five 

challenging face image datasets, including AFW (X. Zhu & Ramanan, 2012), 

LFPW (Belhumeur et al., 2013), HELEN (Le et al., 2012), XM2VTS (Messer et 

al., 1999) and IBUG. The face images in 300W cover a wide range of head poses, 

facial expressions and appearance, and each image is provided with 68 hand-

annotated landmarks. To train the MS-SDM model, I use 3,148 images which are 

composed of the whole AFW set and the training sets of LFPW and HELEN. The 

full testing set contains 689 images in total and can be divided into two parts – a 

common set (554 images) and a challenging set (135 images). The common set is 

composed of the testing sets of LFPW and HELEN. Since IBUG mainly consists 

of face images with large head poses and extreme facial expressions, it is treated 

as the challenging set. To eliminate the face detection’s influence on the final 

results, I use the ground-truth face bounding boxes provided by 300W in the 

experiment.  

Evaluation Metric. The widely-accepted point-to-point root mean square error 

(normalised by the inter-pupil distance) between the detected facial landmarks and 

the ground-truth annotations is used to measure the face alignment error. For 

simplicity, the ‘%’ is omitted in the results presented below. 
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Implementation Details.  

a) I adopt the data augmentation method proposed in (Xiong & De la Torre, 

2013) to enlarge the training set and improve the landmark detection 

model’s generalization capability. Specifically, for each training image, I 

perturb its original face bounding box 10 times, each time applying a 

random translation and scale for perturbation.  

b) For learning the optimization subspaces, I empirically set the k-means 

cluster amount as 5, which produces promising results in my experiment.  

c) Instead of using a generic mean shape for initialization, I utilize the mean 

shape calculated from all the training samples falling inside the specific 

subspace to initialize the corresponding shape regression.  

d) When training the Naive Bayes classifier, I found that using the facial 

appearance features extracted with multiple initial shapes delivers a higher 

classification accuracy comparing to using the features extracted with a 

single initial shape. I hence feed the image features extracted with all the 

subspace-specific mean shapes into the Naive Bayes classifier.  

e) For fair comparison, I re-implement SDM (Xiong & De la Torre, 2013) 

and GSDM (Xiong & De la Torre, 2015) by myself, and train the 

corresponding face alignment models with the same data set as that used 

for training MS-SDM. My implementations achieve a similar landmark 

detection accuracy as that reported in other mainstream implementations 

(Z. Zhang et al., 2014). 

f) In my experiment, the training and testing sets are the same as those used 

in a benchmark test (Sagonas et al., 2013). The test has become a widely-

accepted standard for evaluating face alignment methods in the research 

community. To fairly compare the proposed MS-SDM with the other 

methods, I apply that benchmark test, train MS-SDM models on the 

aforementioned training set, and compute the alignment error on the three 

testing sets. In this way, it’s sufficient to evaluate the method’s robustness  
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Table 2.1: The landmark detection error of SDM, GSDM and MS-SDM on the testing set. 

 Common Set Challenging Set Full Set 

SDM 5.59 15.38 7.51 

GSDM 5.39 12.57 6.80 

MS-SDM 5.30 12.29 6.47 

 

 

Figure 2.4: Example visual results of MS-SDM on the testing set. 

 

/generalization ability, hence no other cross-validation approaches are 

applied. 

2.4.1 Comparison with SDM 

As shown in Table 2.1, the proposed MS-SDM outperforms SDM (Xiong & De la 

Torre, 2013) on all the testing sets, especially on the challenging set. The 

challenging set consists of faces with various head poses and facial expressions, 

which implies that multiple descent maps are needed for accurate facial landmark 

detection. However, SDM only learned a single generic descent map which is 

prone to generating mistaken descent directions for some face images in the 

challenging set, especially for those with extremely large head pose and facial 

expression. On the contrary, MS-SDM has learned multiple feature-shape 

regressions (or descent maps). With a correct subspace prediction, the face image  

will have a much bigger chance to be assigned with an appropriate descent map. 

To further demonstrate the robustness of the proposed MS-SDM, I present some 

of its visual results on the testing set in Fig. 2.4.  
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2.4.2 Comparison with GSDM 

As introduced in the Related Work section, GSDM (Xiong & De la Torre, 2015) 

develops a different optimization space (or domain) partition method for 

improving SDM, which has demonstrated its effectiveness in real-time 2D facial 

tracking in a video. For selecting the correct optimization subspace during testing, 

GSDM requires an estimation of the facial shape which should be very close to the 

ground-truth. This is infeasible in single image face alignment. To enable 

comparison between MS-SDM and GSDM, I assume that the ground-truth shape 

of each face image is known beforehand and utilize it to do the optimization 

subspace selection in GSDM. Following (Xiong & De la Torre, 2015), I partition 

the optimization space of the face alignment problem into eight subspaces for both 

MS-SDM and GSDM. Within each subspace, a linear feature-shape regression is 

learned via SDM using the face images falling inside the subspace. As shown in 

Table 2.1, MS-SDM delivers a higher landmark detection accuracy than GSDM 

on all the testing sets. It is also worth pointing out that MS-SDM can be applied to 

both the face alignment on a still image and the facial tracking in a video. 

2.4.3 Real-time 2D Facial Tracking Results 

I further test the proposed MS-SDM on real-time 2D facial tracking in a video. I 

train a tracking model of MS-SDM with the face images from 300W and Multi-

PIE (R. Gross et al., 2010), and test the model on a benchmark video set and live 

video streams. Fig. 2.5 shows some visual tracking results of the proposed MS-

SDM on the NTHU-DDD video dataset (C. H. Weng et al., 2016). The tracked 

facial landmarks can be used for analysing the driver’s physical status such as the 

drowsiness for safe driving alert. I also ported the tracking model to the mobile 

device for implementing an Android real-time facial tracking application. As 

shown in Fig. 2.6, the application can robustly track the user’s face spanning a 

wide range of head poses and facial expressions. It can be further incorporated into  
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Figure 2.5: Tracking results on the NTHU Drowsy Driver Detection (NTHU-DDD) video dataset. 

 

 

Figure 2.6: Screenshots of the MS-SDM-based facial tracking mobile application. 

 

a variety of mobile consumer applications such as those for automated face 

makeup and personalised emoji generation. The experimental results intuitively 

demonstrate the potential of MS-SDM in real-world facial tracking applications.  

2.5 Conclusion 

Even with a very elegant formulation, SDM achieves the state-of-the-art face 

alignment performance. However, SDM is a local algorithm and prone to 

generating mistaken descent directions for face images with large head pose and 

facial expression. To tackle the limitations of SDM, this chapter proposed a novel 

two-step method – MS-SDM, which can push SDM closer to unconstrained face 

 

User Interface Real-time 2D Facial Tracking 
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alignment. By applying k-means on facial appearance features, MS-SDM finds the 

optimization subspaces of face alignment which exhibit a clear semantic link to 

the head pose. For each subspace, MS-SDM learns an exclusive feature-shape 

regression via SDM. Then, with a robust Naive Bayes classifier, each testing 

sample can be allocated with an appropriate subspace shape regression, which 

reduces the risk of generating incorrect descent directions that severely degrade 

the landmark detection accuracy. The proposed MS-SDM has been tested on 

challenging face datasets and a mobile facial tracking application. It showed 

improved face alignment performance comparing against SDM and its variant - 

GSDM. However, it can be found that MS-SDM has not exploited the 

complementary information between different subspaces, which might limit its 

performance. As a future work, I will explore to combine subspace-specific shape 

regressions via compositional learning (S. Zhu et al., 2016) to further improve the 

facial landmark detection accuracy.  
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Chapter 3 

Real-time 3D Facial Tracking via Cascaded 

Compositional Learning 

Foreword 

This chapter extends the facial performance capture from sparse 2D facial shape 

to dense 3D facial geometry. Specifically, it develops a novel and robust facial 

motion regression method for real-time 3D facial tracking from a monocular RGB 

camera. The proposed method adopts a similar cascaded regression framework as 

that applied in the previous chapter, but extends the regression from unimodal 2D 

facial landmarks to multi-modal 3D facial motion parameters. It achieves the state-

of-the-art 3D facial tracking performance with very low data and computational 

cost, hence providing a highly elegant and practical solution for capturing the 3D 

face in real-world applications. The chapter also deeply investigates the effect of 

synthesized facial images on training the regression model. It opens up a new 

perspective of incorporating the synthetic data to train non-deep learning methods, 

which can benefit a variety of facial image analysis tasks where the labelled real 

data is difficult to acquire.  

The chapter is based on a journal paper that has been submitted to IEEE 

Transactions on Image Processing and is currently under review: 

- Lou, J., Cai, X., Dong, J., & Yu, H. (2020). Real-time 3D facial tracking 

via cascaded compositional learning. IEEE Transactions on Image 

Processing, under review.  

In the paper, I proposed the facial motion regression method, implemented the 

corresponding 3D facial tracking interface with C++, did the experimental 

validation and wrote up the paper.  
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3.1 Introduction 

Tracking 3D facial motion from a monocular RGB camera is a fundamental task 

which benefits a wide range of applications such as facial animation (C. Cao et al., 

2014, 2015; C. Cao, Weng, Lin, et al., 2013), facial reenactment (Thies, Zollhofer, 

et al., 2016) and emotion recognition (Chen et al., 2015). Over the past years, a 

number of novel tracking algorithms (Y. Guo, Zhang, Cai, Cai, et al., 2018; Y. 

Guo, Zhang, Cai, Jiang, et al., 2018; Laine et al., 2017; Ma & Deng, 2019; 

McDonagh et al., 2016; Saito et al., 2016; C. Wang et al., 2016; Yoon et al., 2019) 

have been proposed, which led to rapid progress in this area. In particular, machine 

learning-based approaches that directly learn a regression function from image 

features to motion parameters greatly improve the tracking performance in speed, 

robustness and ease of use by circumventing the compute-intensive online 

optimization steps and leveraging a high-quality training corpus. Whereas the 

current state-of-the-art can deliver impressive tracking results even for very 

challenging cases such as large facial pose (C. Cao et al., 2014; Y. Guo, Zhang, 

Cai, Jiang, et al., 2018) and severe occlusion (Saito et al., 2016), the regression 

algorithms they applied are still not effective in dealing with multi-modal motion 

parameters. 

Facial motion parameters such as those of head pose and expression vary 

significantly in scale and have different influences on facial geometry. Accurately 

regressing to multi-modal motion parameters from image features is a challenging 

task. Its learning process is prone to focusing more on parameters (e.g. 2D 

landmark displacements) with higher dimensionality and larger magnitude, while 

neglecting those (e.g. rotation angles) that impact heavily on facial geometry but 

with smaller magnitude. To solve this problem, previous methods either carefully 

chose weights to balance the parameter effects on feature selection when training 

a boosted ferns (McDonagh et al., 2016; Y. Weng et al., 2014) or minimized a 

more complicated photo-geometric difference loss instead of the parameter 

difference loss when training a convolutional neural network (Y. Guo, Zhang, Cai, 
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Cai, et al., 2018; Y. Guo, Zhang, Cai, Jiang, et al., 2018). For the first method, the 

process of finding appropriate weights is somewhat clumsy and it’s arguable if 

those empirical weights can correctly reflect the parameter’s significance. The 

latter method embeds parameter effects into the gradient of the loss function but 

at high computational cost.  

To tackle the aforementioned problems, this chapter adopts the compositional 

learning framework and proposes a novel boosting method that can efficiently 

cope with the modality variety in output variables. The proposed method first 

learns a modular boosted ferns (X. Cao et al., 2014) which is a shallow 

composition of several independent regression models with each is a boosted ferns 

trained targeting only partial output variables of the same modality. All fern leaves 

are then simultaneously optimized by minimizing a global loss function defined 

on all output variables, which can be solved efficiently with Ridge Regression 

(Hoerl & Kennard, 1970). The complementary information between the old biased 

ferns is thus injected into the refined fern leaves, producing a new boosted ferns 

which is a deep composition of the pre-learnt modality-specific regression models 

and has much stronger predictive power. The method is named as Globally-

optimized Modular Boosted Ferns - GoMBF. As in (X. Cao et al., 2014; Dollár et 

al., 2010), the chapter then builds facial motion regression with a cascade of 

GoMBFs (GoMBF-Cascade) which progressively update motion parameters from 

an initial state by calling GoMBF to estimate an increment stage-by-stage. 

Extensive experiments on in-the-wild videos demonstrate that GoMBF is superior 

in both the fitting power and the learning speed comparing against the traditional 

boosted ferns that has been widely applied in 2D/3D facial shape regression(C. 

Cao et al., 2014; C. Cao, Weng, Lin, et al., 2013; X. Cao et al., 2014). The resulting 

GoMBF-Cascade regression delivers competitive 3D facial tracking performance 

comparing to the state-of-the-art methods (Y. Guo, Zhang, Cai, Jiang, et al., 2018; 

Ma & Deng, 2019) which require much more training data or have a much higher 

computational complexity.  
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Along with a reliable regression algorithm, quality training data is another key 

factor to the tracking model’s robustness. For 3D facial tracking, the training data 

typically means facial images paired with the ground truth 3D geometry. Such data 

is normally acquired by multi-view stereo (Laine et al., 2017), photometric (Y. 

Guo, Zhang, Cai, Jiang, et al., 2018) or 2D landmark-based (C. Cao et al., 2014) 

reconstruction which requires either complicated and expensive multi-camera 

setups or laborious manual annotations. Alternatively, synthetic generation of 

training imagery provides a more economic and efficient data collection way. This 

approach has shown effectiveness on training deep convolutional neural networks 

for accurate 3D facial tracking and reconstruction in recent studies (Y. Guo, Zhang, 

Cai, Jiang, et al., 2018; Richardson et al., 2016, 2017). However, it remains unclear 

whether the synthetic data also works on training non-deep learning methods such 

as GoMBF-Cascade. This chapter explores this question via progressively 

adjusting the naturalness of synthetic images for training GoMBF-Cascade and 

comparing between tracking models that are trained on real data, on synthetic data 

and on a mixture of data. The experimental results show that the GoMBF-Cascade 

models trained purely on synthesized images have poor tracking performance on 

real videos and become more biased after incorporating the synthetic data into 

training.      

In summary, the main contributions of this chapter are as follows: 

i) Based on compositional learning, a novel boosting algorithm – GoMBF is 

developed. It deals effectively with the modality variety in output variables. 

GoMBF shows stronger fitting power and a faster learning speed when comparing 

with the conventional boosted ferns (C. Cao et al., 2014; C. Cao, Weng, Lin, et al., 

2013; X. Cao et al., 2014). It can be seamlessly adapted to any other multi-output 

regression tasks in theory. 

ii) By cascading GoMBFs for facial motion regression, it achieves a 

competitive 3D facial tracking performance compared with the state-of-the-art 

methods (Y. Guo, Zhang, Cai, Jiang, et al., 2018; Ma & Deng, 2019), which rely 
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on large-scale training data or bear much higher computational complexity. It thus 

offers a robust and very practical solution to real-time 3D facial tracking.  

iii) It carries out an in-depth investigation into the effect of synthetic data on 

training GoMBF-Cascade for 3D facial tracking, which provides a novel view of 

the synthetic data’s role in training non-deep learning method for facial image 

analysis where the real labelled data is difficult to obtain. 

3.2 Related Work 

Real-time 3D facial motion capture from a monocular RGB video has been 

extensively studied in computer graphics and vision communities. It is normally 

achieved by estimating a group of parameters which encode facial expression and 

head pose within a low-dimensional space from video frames. Generally, there are 

two types of approaches to estimate those parameters - optimization-based 

approach and learning-based approach, which divides the existing studies into two 

main streams. This section reviews the most relevant works from the two 

categories and also discusses how the synthetic data has been used in learning-

based approaches. For a more comprehensive review on related topics, interested 

readers are directed to (Zollhöfer et al., 2018). 

3.2.1 Optimization-based Approaches 

Optimization-based approach is built upon the idea of analysis-by-synthesis where 

a parametric face model is iteratively adapted until the synthesized face matches 

the target image. It is formulated as minimizing a highly non-linear objective 

function which typically enforces alignment on sparse/dense feature points (C. 

Cao, Weng, Lin, et al., 2013; Jeni et al., 2015; C. Wang et al., 2016) and pixel 

intensities (Ma & Deng, 2019; Thies, Zollhofer, et al., 2016) between the 

synthesized result and the input data, while regularizing the estimated shape 

parameters to lie within a valid range for generating a plausible face. Solving this 

optimization problem usually requires massive computing power such as GPU 
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acceleration to achieve real-time performance (Ma & Deng, 2019; Thies, Zollhofer, 

et al., 2016). This hinders the approach’s deployment to platforms with limited 

computing resources.  

3.2.2 Learning-based Approaches 

Learning-based approach bypasses the costly optimization step by estimating 

facial motion parameters from image features through a regression learned from a 

hand-picked training corpus. Cao et al. (C. Cao et al., 2014; Y. Weng et al., 2014) 

pioneered this area by employing a two-level boosted regression – Explicit Shape 

Regression (ESR) (X. Cao et al., 2014) to map facial appearance features to motion 

parameters. Their method was trained on public image datasets with estimated 3D 

facial data and achieved impressive tracking performance on in-the-wild videos. 

The work opened up a new era of learning-based 3D facial tracking and motivated 

a bunch of follow-ups (C. Cao et al., 2015; McDonagh et al., 2016; Saito et al., 

2016) which extended the tracking to more challenging cases such as capturing 

facial geometry details (e.g. wrinkles and dimples) (C. Cao et al., 2015) and 

tracking under severe occlusions (Saito et al., 2016). Despite the great success 

achieved by these works, the boosted ferns employed in ESR is deficient in 

handling the modality variety of motion parameters whose scale and influence on 

facial geometry differ a lot from each other. To mitigate this problem, a few studies 

(McDonagh et al., 2016; Y. Weng et al., 2014) applied a weighting-vector to 

balance the parameter effects on feature selection in fern learning. This intuitive 

strategy is moderately inefficient and it’s doubtful if those empirical weights can 

fully reflect the parameter’s significance. More recent studies (Y. Guo, Zhang, Cai, 

Cai, et al., 2018; Y. Guo, Zhang, Cai, Jiang, et al., 2018) instead employed a deep 

convolutional neural network coupled with a photo-geometric difference loss to 

learn the facial motion regression. This method inherently incorporates the motion 

parameter’s influence on facial geometry into the gradient of the loss function, 

which however bears a high computational complexity. Alternatively, the 

proposed GoMBF first learns an exclusive boosted ferns for each kind of motion 
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parameters and then optimizes all fern leaves towards the whole regression target 

with linear regression, which explicitly handles the output variable’s modality 

variety in a fairly efficient manner.  

3.2.3 Learning from Synthetic Data 

In contrast to traditional 3D facial data harvesting methods which need multi-

camera setups or manual annotations, synthetic generation of training imagery 

offers a highly efficient and economic data collection way. Learning from 

synthetic data is attracting more and more attention in 3D facial tracking and 

reconstruction (Y. Guo, Zhang, Cai, Jiang, et al., 2018; Richardson et al., 2016, 

2017). Richardson et al. (Richardson et al., 2016) proposed to render photo-

realistic 3D facial meshes and images using 3D Morphable Model (3DMM) 

(Paysan et al., 2009) and Phong illumination (Phong, 1975) for training a 

convolutional neural network (CNN) for 3D face reconstruction. Though the 

network was trained purely on synthetic data, it generalized well to real-world face 

images. Guo et al. (Y. Guo, Zhang, Cai, Jiang, et al., 2018) later used albedo and 

lighting coefficients inferred from real face images to render more natural-look 

faces for training the CNN. Their model achieved high-quality tracking results on 

in-the-wild videos. A more recent study (Kortylewski et al., 2018) shows that 

priming deep networks by pre-training them with synthetic faces is helpful, e.g. it 

can reduce the negative effects of the training data bias. Whereas there is 

continuous evidence manifesting that the synthesized faces favour deep learning 

methods, it remains unclear if such data also benefits non-deep learning methods. 

To my knowledge, only McDonagh and his colleagues (McDonagh et al., 2016) 

have succeeded in learning a boosted ferns from the synthesized faces for 

personalized 3D facial tracking. However, their synthetic generation of training 

imagery was based on a high-quality facial rig of the user’s face obtained from an 

offline capture system and a simulated illumination driven by light probe data 

acquired at the target environment. This process can hardly be adapted to 

unconstrained facial tracking where the target environment is unknown in the 
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training phase. This chapter provides a novel view of the synthetic data’s role in 

training non-deep learning methods by incorporating three kinds of synthetic data 

for training GoMBF-Cascade and comparing tracking models trained on real data, 

on synthetic data and on a mixture of data. 

3.3 Method Overview 

This section overviews the developed 3D facial tracking framework. It first 

introduces the parametric face model for representing the facial shape, then 

formulates the tracking workflow which is driven by the proposed GoMBF-

Cascade motion regression. 

3.3.1 Parametric Face Model 

A 3D facial mesh is typically formed with a vector of stacked vertex coordinates 

𝑆 = [𝑥1, 𝑦1, 𝑧1, … , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛]
𝑇  ( 𝑛 = 53,215  in this study) and a predefined 

connectivity. The lengthy coordinate vector can be calculated as a weighted sum 

of a few basis vectors, which leaves weights the only control parameters and 

generates a low-rank representation of the facial mesh: 

 𝑆 = 𝐵𝑖𝑑𝛂 + 𝐵𝑒𝑥𝑝𝛅 (3.1) 

As shown in Eq. 3.1, 𝐵𝑖𝑑 = [𝐛0
𝑖𝑑 , 𝐛1

𝑖𝑑 … , 𝐛𝑚𝑖𝑑
𝑖𝑑 ] is the linear basis for representing 

facial identity, in which 𝐛0
𝑖𝑑  is the mean face in neutral expression. 𝛂 =

[1, 𝛼1, … , 𝛼𝑚𝑖𝑑
]
𝑇

 denotes the relevant identity coefficients. 𝐵𝑒𝑥𝑝 =

[𝐛1
𝑒𝑥𝑝
, … , 𝐛𝑚𝑒𝑥𝑝

𝑒𝑥𝑝
]  is composed of delta blendshapes of the mean face 𝐛0

𝑖𝑑  for 

representing facial expression, whose coefficients - 𝛅 = [𝛿1, … , 𝛿𝑚𝑒𝑥𝑝
]
𝑇

 are 

bounded between 0 and 1. I get 𝐵𝑖𝑑  (𝑚𝑖𝑑 = 80  as only the first 80 principal 

components are used in this study) from the Basel Face Model (BFM) (Paysan et 

al., 2009) and generate 𝐵𝑒𝑥𝑝 (𝑚𝑒𝑥𝑝 = 46) from FaceWarehouse (C. Cao, Weng, 

Zhou, et al., 2013) using deformation transfer (Sumner & Popović, 2004).  
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To map 𝑆 which is measured in world space to image space, I apply an ideal 

pinhole camera model. Given a 3D point 𝐯 in 𝑆, the corresponding 2D image point 

𝐩 = [𝑝𝑥 , 𝑝𝑦]
𝑇
 can be obtained as: 

 𝐩 = 𝚷𝐐(𝐑𝐯 + 𝐭) (3.2) 

where 𝐑 is the rotation matrix parameterized by Euler angles (yaw, pitch and roll) 

𝛉 ∈ ℝ3, and 𝐭 ∈ ℝ3 is the translation vector. 𝚷𝐐 denotes a perspective projection 

operator parameterized by 𝐐 = [𝑓, 0, 𝑢0; 0, 𝑓, 𝑣0; 0,0,1]  in which 𝑓  is the focal 

length and (𝑢0, 𝑣0) is the image centre. In practice, the estimated 3D face - 𝑆 and 

the camera model - {𝐐, 𝐑, 𝐭} may not fully match the face image. To compensate 

for this discrepancy, I follow (C. Cao et al., 2014) by using a 2D landmark 

displacement vector 𝐃 ∈ ℝ132 to add onto the projected landmark coordinates to 

acquire 66 more accurate landmarks on the image. 

The combination of parameters - {𝛂, 𝛅, 𝐐, 𝛉, 𝐭, 𝐃}  provides a compact 

representation of both the 3D and 2D facial shapes. 𝛂 and 𝐐 are invariant across 

the whole video sequence for the same human subject. 𝛲 = [𝛅; 𝛉; 𝐭; 𝐃] ∈ ℝ184 

controls facial motion and changes frame by frame. 

3.3.2 Tracking Workflow 

Based on the parametric face model, 3D facial tracking from a monocular RGB 

video can be casted into regressing motion parameters 𝛲 from a video frame 𝐼 (see 

Fig. 3.1): 

 𝑃 = ℛ(𝐼, 𝛂, 𝐐, 𝛲0) (3.3) 

where ℛ(∙) is the regression function, 𝛲0 denotes the initial motion parameters 

generated from the previous frame’s estimation for enforcing temporal coherence. 

I build ℛ(∙) by learning a linear sequence of GoMBFs (GoMBF-Cascade) which 

gradually refines 𝑃 from 𝛲0 to fit with the current frame. 𝛂 and 𝐐 are estimated 

from the first frame and keep fixed for the remaining frames. 
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Figure 3.1: 3D facial tracking workflow. 

3.4 Facial Motion Regression with GoMBF-Cascade 

This section starts with introducing boosted ferns (X. Cao et al., 2014) which is a 

key building block of the whole facial motion regression method. Then it 

elaborates the proposed globally-optimized modular boosted ferns - GoMBF and 

GoMBF-Cascade regression. 

3.4.1 Boosted Ferns 

Prediction. Boosted ferns (X. Cao et al., 2014) is an ensemble of ferns, each fern 

addresses the residual of the regression target left by the preceding ferns. Its 

prediction is therefore the sum of all ferns’ outputs. Fern is a particular instance of 

decision tree, which applies an identical node-splitting test for all nodes at the same 

tree level. The prediction of a fern with 𝐹 + 1  levels can be formulated in a 

compact form: 

 𝐲 = 𝐰𝜙(𝐱) (3.4) 

where 𝐰  is a matrix of 2𝐹  columns with each column stores a leaf node’s 

prediction of output variables, 𝜙(∙) represents the fern’s structure (the learned 

node-splitting tests) which maps the data sample 𝐱 to a one-hot vector of 2𝐹 rows 

with each row indicating if 𝐱 falls inside a leaf node or not (1 for yes, 0 for no), 

and 𝐲 is the fern’s prediction of 𝐱. The prediction of a boosted ferns (see Fig. 3.2a) 

with 𝐾 ferns is thus: 

 𝐲 = ∑ 𝐰𝑖𝜙𝑖(𝐱)
𝐾
𝑖=1 = 𝑊Φ(𝐱) (3.5) 

Video Frame 

Motion 
Parameters 

Tracked 3D Face 

… 

Parametric Face Model 

Facial Motion 
Regression 

GoMBF-Cascade 
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where 𝑊 = [𝐰1, … ,𝐰𝐾] and Φ(𝐱) = [𝜙1(𝐱); … ; 𝜙𝐾(𝐱)] which is highly sparse. 

Training. Training a boosted ferns equals to progressively training a sequence 

of ferns, where each fern’s training loss is defined on the residual of the regression 

target. Specifically, a fern with 𝐹 + 1 levels is built in two consecutive steps:  

a) Learn the mapping function - 𝜙(∙). It is to learn a series of node-splitting 

tests, each for sending a data sample 𝐱 to the right child node if the test is satisfied 

or to the left child node if not. Typically, a node-splitting test is about selecting a 

feature from 𝐱 and comparing it to a threshold. As in (X. Cao et al., 2014), I 

calculate the differences (referring to image pixel differences in my case) between 

𝐱’s elements and select the one that has the highest Pearson Correlation with a 

random projection (generated from a Gaussian distribution) of the regression target 

as the feature for splitting the node. A threshold is then randomly sampled from a 

uniform distribution which is scaled by the selected feature’s maximum absolute 

value in the training set (X. Cao et al., 2014). After repeating the process of feature 

selection and threshold sampling 𝐹 times, the fern’s 𝜙(∙) can be obtained. 

b) Learn the leaf matrix - 𝐰. With the learned 𝜙(∙), all training samples can be 

sent level by level from the fern root all the way down to one of the 2𝐹 leaf nodes. 

For each leaf node, I acquire its prediction of output variables by averaging the 

regression targets of all training samples falling inside this node with a shrinkage 

to overcome overfitting (X. Cao et al., 2014) and save it into the corresponding 

column of 𝐰. 

3.4.2 Globally-optimized Modular Boosted Ferns 

Whereas boosted ferns has been successfully applied in 2D/3D shape regression 

(C. Cao et al., 2014; C. Cao, Weng, Lin, et al., 2013; X. Cao et al., 2014; 

McDonagh et al., 2016; Y. Weng et al., 2014), I found it has limitations when 

regressing to multi-modal output variables such as facial motion parameters 𝛲 =

[𝛅; 𝛉; 𝐭; 𝐃].  
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Figure 3.2: Illustration of the boosted ferns and the GoMBF built with compositional learning: (a) 

boosted ferns, (b) GoMBF. 

 

As shown above, the prediction of a boosted ferns relies heavily on the node-

splitting features. The aforementioned correlation-based feature selection method 

can efficiently learn good features when output variables are of a single modality. 

However, if output variables such as motion parameters contain multiple 

modalities, it is prone to selecting features that are more discriminative to output 

variables (e.g. 2D landmark displacements 𝐃) with higher dimensionality and 

larger magnitude, while less informative to those (e.g. rotation angles 𝛉) which are 

relatively negligible in numerical scale but significant in semantics. This severely 

degrades boosted fern’s fitting power. To solve the problem, I follow the 

compositional learning framework and propose a globally-optimized modular 

boosted ferns – GoMBF, which is built in two consecutive phases (see Fig. 3.2b): 

1) learn a modular boosted ferns in which each module regresses partial output 

variables of the same modality; 2) optimize all fern leaves towards the whole 

regression target by solving a linear regression. 

1) Learning a Modular Boosted Ferns 

A modular boosted ferns is a shallow composition of multiple regression models 

with each is also a boosted ferns trained independently for regressing partial output 

variables of the same modality, which refers to the increment of a kind of motion 

parameters in my case (the number of ferns is 𝐾𝛅, 𝐾𝛉, 𝐾𝐭, 𝐾𝐃 respectively): 
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{
 

 
[∆𝛅; 𝟎; 𝟎; 𝟎] = 𝑊𝛅Φ𝛅(𝐱)

[𝟎; ∆𝛉; 𝟎; 𝟎] = 𝑊𝛉Φ𝛉(𝐱)

[𝟎; 𝟎; ∆𝐭; 𝟎] = 𝑊𝐭Φ𝐭(𝐱)

[𝟎; 𝟎; 𝟎; ∆𝐃] = 𝑊𝐃Φ𝐃(𝐱)

 (3.6) 

where ∆𝛅, ∆𝛉, ∆𝐭 and ∆𝐃 denote the predictions of motion parameter increments, 

𝟎 represents the zero vector with variant rows for extending the left output vector 

to match 𝛲 ’s size.  𝑊𝛅 , 𝑊𝛉 , 𝑊𝐭 , 𝑊𝐃  represent the leaf matrices of motion 

parameters - 𝛅, 𝛉, 𝐭 and 𝐃 respectively, Φ𝛅 , Φ𝛉 , Φ𝐭 , Φ𝐃  are the corresponding 

mapping functions, and 𝐱 is the data sample. Equation 3.6 can be written in a more 

compact form: 

 ∆𝑃 = 𝑊𝑃Φ𝑃(𝐱) (3.7) 

where ∆𝑃 = [∆𝛅; ∆𝛉; ∆𝐭; ∆𝐃] , 𝑊𝑃 = [𝑊𝛅,𝑊𝛉,𝑊𝐭,𝑊𝐃] , Φ𝑃(𝐱) =

[Φ𝛅(𝐱);Φ𝛉(𝐱);Φ𝐭(𝐱);Φ𝐃(𝐱)], and the subscript 𝑃 denotes the composition of all 

motion parameters (for a detailed explanation of motion parameters, please refer 

to Section 3.3.1). The method reduces the original difficult regression task to four 

simpler sub-tasks which require a very small number of ferns for each sub-task 

and can be solved efficiently using parallel programming. This in turn avoids the 

interference from the output variable’s modality variety on feature selection during 

fern learning. 

2) Global Optimization 

Due to the nature of modular boosted ferns, each module learns features biased 

towards partial output variables of a specific modality. Those features are 

complementary to each other, e.g. the features that are discriminative in estimating 

facial expression 𝛅  could also benefit the estimation of 2D landmark 

displacements 𝐃 as both parameters encode non-rigid facial motion. However, 

such complementary information between inter-modular ferns has not been 

exploited when making prediction in Eq. 3.7. For example, 𝑊𝑃 ’s 𝑊𝛅  only 

contributes to predicting expression coefficients 𝛅, while remaining idle when 
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predicting the other three motion parameters. It makes the compositional 

regression model loosely articulated and less optimal. To this end, I propose to 

optimize all the pre-learnt fern leaves - 𝑊𝑃 by minimizing a common objective 

function defined on the whole regression target: 

 min
𝑊𝑝

∑ ‖𝑊𝑃Φ𝑃(𝐱𝑖) − ∆𝑃𝑖̂‖
2𝑁

𝑖=1  (3.8) 

where 𝑁 is the number of training samples, ∆𝑃𝑖̂ is the regression target of sample 

𝑖. Equation 3.8 is the well-known linear least squares problem which can be solved 

efficiently with Ridge Regression (Hoerl & Kennard, 1970). After updating Eq. 

3.7 with the new 𝑊𝑝 , I obtain a globally-optimized modular boosted ferns – 

GoMBF, which is a deep composition of the pre-learnt modality-specific 

regression models. In my 3D facial tracking experiments, GoMBF has shown 

stronger fitting power and a faster learning speed than the conventional boosted 

ferns (X. Cao et al., 2014). Moreover, it can be seamlessly applied to any other 

multi-output regression tasks in theory.  

It is worth pointing out that GoMBF has conceptual links with two existing 

methods to some degree, which were developed for face alignment (Ren et al., 

2014) and Random Forest refinement (Ren et al., 2015). However, GoMBF is 

fundamentally different from those two methods in the following two main aspects: 

i) GoMBF is designed to deal with the modality variety in regression output 

variables, while (Ren et al., 2014) is to learn discriminative local texture features 

for robust 2D landmark detection and (Ren et al., 2015) is to fill the gap between 

the training and the testing of Random Forest. ii) GoMBF is based on boosted ferns 

(boosting), while both (Ren et al., 2014) and (Ren et al., 2015) were based on 

Random Forest (bagging). 

3.4.3 GoMBF-Cascade Regression 

Following the basic idea of cascaded regression (X. Cao et al., 2014; Dollár et al., 

2010; Ren et al., 2014) which has shown robustness in various shape regression  
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Figure 3.3: The pipeline of GoMBF-Cascade facial motion regression. 

 

tasks, I frame the facial motion regression with a cascade of GoMBFs. The method 

is named as GoMBF-Cascade (see Fig. 3.3). For a video frame 𝐼, beginning with 

an initial motion vector 𝑃0 , GoMBF-Cascade gradually refines 𝑃  by calling 

GoMBF to estimate a motion increment ∆𝑃𝑡 stage-by-stage: 

 𝑃 = 𝑃0 + ∑ ∆𝑃𝑡𝑇
𝑡=1  (3.9) 

∆𝑃𝑡 = 𝑊𝑃
𝑡Φ𝑃

𝑡 (𝐱𝑡) 

𝐱𝑡 = ℱ𝑡(𝐼, 𝛂, 𝐐, 𝑃𝑡−1) 

where 𝑇 is the number of stages, 𝑊𝑃
𝑡 and Φ𝑃

𝑡 (∙) represent the GoMBF learned at 

stage 𝑡 . 𝐱𝑡  is a vector of pixel intensities extracted from image 𝐼  by ℱ𝑡(∙)  for 

representing the appearance of the facial shape - {𝛂, 𝐐, 𝑃𝑡−1} output from stage 

𝑡 − 1. It can be found that Eq. 3.9 is a detailed expansion of Eq. 3.3. In the 

following, I will explain in detail the training, runtime prediction and appearance 

vector extraction of the GoMBF-cascade regression. 

1) Training 

To train the regression, I first create guess-truth motion parameter pairs 

{𝑃̂𝑖 , 𝑃𝑖𝑗
0} for each training image 𝐼𝑖 . The guess-truth pairs simulate the runtime 

situation where facial motion between two adjacent video frames is assumed to be 

small. Specifically, given a facial image 𝐼𝑖  and its ground-truth facial motion 

parameters 𝑃̂𝑖, I set the initial 2D landmark displacements as zeros and perturb 

GoMBF 

Regression 
𝑊𝑃

𝑡 , 𝛷𝑝
𝑡(𝐱𝑡) 

ℱ𝑡(𝐼, 𝛂, 𝐐, 𝑃𝑡−1) 

𝐱𝑡 

Appearance Vector Extraction  

𝑃𝑡 = 𝑃𝑡−1 + ∆𝑃𝑡 

𝑡 < 𝑇 

𝑡 = 𝑡 + 1 
Yes No 

𝑃 = 𝑃𝑡 
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along 𝑃̂𝑖 ’s three other dimensions - 𝛅̂𝑖 , 𝛉̂𝑖 , 𝐭̂𝑖  with random noise to get several 

guesses {𝑃𝑖𝑗
0} of the initial motion parameters 𝑃𝑖

0: 

• Random Expression. 𝑃𝑖𝑗
0 = [𝛅𝑖𝑗

0 ; 𝛉̂𝑖; 𝐭̂𝑖; 𝟎] , where 𝛅𝑖𝑗
0 = 𝛅̂𝑖′  (𝑖

′ ≠ 𝑖 ) is the 

ground-truth expression coefficients of image 𝐼𝑖′ which is randomly chosen 

from the training set. 

• Random Rotation. 𝑃𝑖𝑗
0 = [𝛅̂𝑖; 𝛉𝑖𝑗

0 ; 𝐭̂𝑖; 𝟎] , where 𝛉𝑖𝑗
0 = 𝛉̂𝑖 + ∆𝛉𝑖𝑗 . ∆𝛉𝑖𝑗  is 

composed of random Euler angles sampled from three independent normal 

distributions. 

• Random Translation. 𝑃𝑖𝑗
0 = [𝛅̂𝑖; 𝛉̂𝑖; 𝐭𝑖𝑗

0 ; 𝟎], where 𝐭𝑖𝑗
0 = 𝐭̂𝑖 + ∆𝐭𝑖𝑗 . ∆𝐭𝑖𝑗  is a 

random translation vector whose elements are sampled from three 

independent normal distributions. 

To find the appropriate number of guess-truth pairs, I have tested different values 

and visually compared the tracking performance of the trained models. For the 

random expression category, 15, 20, 25, 30, 35, 40 are tested; for the random 

rotation and translation categories, 4, 6, 8, 10, 12, 14 are tested. The experiment 

shows that the tracking performance improves as the number of guess-truth pairs 

increases at the beginning, then seems to have little improvement after the pair 

amount reaches a certain value. After testing, for each training image, I found 

generating 30 guess-truth pairs for the random expression category and 8 pairs for 

each of the other two categories is adequate for training a reliable tracking model.   

After constructing the set of {𝐼𝑖 , 𝛂𝑖 , 𝐐𝑖 , 𝑃̂𝑖 , 𝑃𝑖𝑗
0}, the GoMBF-cascade regression 

is trained in 𝑇 stages. In each stage, I extract facial shape appearance vectors from 

all training images {𝐼𝑖} with a pre-built ℱ𝑡(∙) and learn a GoMBF - {𝑊𝑃
𝑡 , Φ𝑃

𝑡 (∙)} 

following the procedure explained in Section 3.4.1 and Section 3.4.2.   

2) Runtime Prediction 

For the first video frame, I locate the face using the Viola-Jones detector (Viola & 

Jones, 2004) and detect 66 landmarks with a pre-trained SDM (Xiong & De la 

Torre, 2013) model. Then, I predict its camera and facial shape parameters - 
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{𝛂, 𝐐, 𝑃} by fitting the aforementioned parametric face model to the detected 2D 

landmarks, which is achieved by minimizing the following energy with the 

coordinate-descent method:  

 𝐸 = 𝐸𝑙𝑎𝑛 + 𝐸𝑟𝑒𝑔 (3.10) 

 𝐸𝑙𝑎𝑛 = ∑ ‖𝚷𝐐 (𝐑(𝐵𝑖𝑑𝛂 + 𝐵𝑒𝑥𝑝𝛅)
(𝑙𝑘)

+ 𝐭) − 𝐩𝑑
(𝑘)
‖
2

66
𝑘=1   

 𝐸𝑟𝑒𝑔 = 𝑤1∑ (
𝛼𝑖

𝜎𝑖
)
2

80
𝑖=1 +𝑤2∑ |𝛿𝑖|

46
𝑖=1   

where 𝐸𝑙𝑎𝑛 represent the landmark fitting error and 𝐸𝑟𝑒𝑔 is the regularization term 

to enforce 𝛂 to stay statistically close to the mean and 𝛅 to be sparse. In 𝐸𝑙𝑎𝑛, 𝐩𝑑
(𝑘)

 

is the position of the 𝑘th detected 2D landmark and (𝐵𝑖𝑑𝛂 + 𝐵𝑒𝑥𝑝𝛅)
(𝑙𝑘)

 extracts 

the corresponding 𝑙𝑘th vertex on the 3D facial mesh. In 𝐸𝑟𝑒𝑔, 𝜎𝑖 is the standard 

deviation of 𝛼𝑖, 𝑤1 and 𝑤2 balance the two sub-objectives. I set 𝑤1 and 𝑤2 as 10 

and 1 respectively. For 𝐐, I set the focal length 𝑓 as 1,000 and the principal point 

as the image center. This simple strategy is proven to be effective in my experiment. 

I then solve for 𝛂 and 𝛅 by applying the L-BFGS-B solver (Byrd et al., 1995) to 

constrain 𝛅’s elements to lie within [0,1], and find the rigid facial motion {𝐑, 𝐭} 

using the POSIT algorithm (Dementhon & Davis, 1995). The energy converges in 

three iterations. After each iteration, I update the indices {𝑙𝑘} of contour landmarks 

on the facial mesh as in (X. Zhu et al., 2015). Once I had the estimations of 

{𝛂, 𝛅, 𝐐, 𝛉, 𝐭} , 𝐃  can be obtained by subtracting the projected 2D landmark 

positions as computed in Eq. 3.2 from the detected 2D landmark positions. 

For each subsequent frame, I initialize its motion parameter 𝑃 based on the 

estimation 𝑃𝑝𝑟𝑒𝑣 = [𝛅𝑝𝑟𝑒𝑣; 𝛉𝑝𝑟𝑒𝑣; 𝐭𝑝𝑟𝑒𝑣; 𝐃𝑝𝑟𝑒𝑣] of the previous frame and call the 

learned GoMBF-Cascade regression to update 𝑃 to align with the current facial 

shape. Specifically, I initialize 𝑃 with 𝛉𝑝𝑟𝑒𝑣 and 𝐭𝑝𝑟𝑒𝑣, and set it’s 𝐃 as zeros. For 

facial expression, I found that directly inheriting 𝛅𝑝𝑟𝑒𝑣 for initialization will lead 

to implausible expression estimation and the error will accumulate across frames. 

This is probably due to the non-rigid nature of facial expression which makes the 
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distribution of expression coefficients complex and difficult to be covered by the 

training set with limited samples. To solve the problem, I select from the training 

set the expression coefficients that are closest to 𝛅𝑝𝑟𝑒𝑣 to initialize 𝑃. The distance 

between two expression coefficient vectors is measured as the mean average 

distance of landmarks extracted from the corresponding 3D facial meshes. In 

practice, I apply multiple initial 𝑃s for regression and take the mean of all the 

outputs as the final prediction. Those initial 𝑃 s are generated with 𝛅𝑝𝑟𝑒𝑣 ’s 𝐿 

closest expression vectors in the training set. With the newly predicted facial 

motion parameters, I update the indices of contour landmarks on the facial mesh 

as in (X. Zhu et al., 2015). 

3) Appearance Vector Extraction 

As shown in Eq. 3.9, instead of directly sending the image into the regressor, a 

pixel intensity vector for representing facial shape appearance is extracted from 

the image by ℱ𝑡(∙) and fed to the stage GoMBF - {𝑊𝑃
𝑡 , Φ𝑃

𝑡 (∙)}. The extracted 

pixels should contain the discriminative information of facial motion and their 

locations should be invariant against similarity transform (scale, rotation and 

translation). To this end, I propose to generate the feature points by randomly 

sampling around the local regions of reference 2D landmarks (the mean of all 

training images’ 2D landmarks) and index them by the barycentric coordinates 

with respect to the closest Delaunay triangles formed by those landmarks as in (C. 

Cao et al., 2014). Before each stage regression, I first generate 𝑀 feature points 

and save the corresponding triangle indices and barycentric coordinates. Then, 

ℱ𝑡(∙) calculates 2D landmark positions from the previous facial shape estimation 

- {α, Q, 𝑃𝑡−1} and calls the saved indexing information to extract pixels from the 

image. 
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3.5 Experiments 

This section first validates the proposed GoMBF and GoMBF-Cascade regression 

in 3D facial tracking on in-the-wild videos. Then it deeply investigates the effect 

of various synthetic data on training GoMBF-Cascade for 3D facial tracking. 

Implementation. The number of fern levels - 𝐹 + 1 balances the fern’s fitting 

power in training and its generalization ability in testing. I follow the most 

common setup in previous studies (X. Cao et al., 2014) and set 𝐹 as 5, which 

generates promising results in my experiment. It can also be found that via 

increasing the number of stages – 𝑇, the number of ferns - 𝐾𝛅, 𝐾𝛉, 𝐾𝐭, 𝐾𝐃 and the 

number of feature points – 𝑀, the tracking accuracy increases, but the runtime 

speed slows down and the memory cost increases. For balancing between 

computational cost and accuracy, these parameters are empirically chosen as 𝑇 =

10 , 𝐾𝛅 = 𝐾𝛉 = 𝐾𝐭 = 𝐾𝐃 = 80  and 𝑀 = 600 . For the number of initial 

expressions - 𝐿 in runtime prediction, I tested four different values – 10, 20, 30, 40 

and found 20 produced a promising visual tracking result without introducing too 

much computational cost. Overall, the parameters of GoMBF-Cascade regression 

are set as follows: offline training - 𝑇 = 10, 𝐹 = 5, 𝐾𝛅 = 𝐾𝛉 = 𝐾𝐭 = 𝐾𝐃 = 80, 

𝑀 = 600; runtime prediction - 𝐿 = 20. This parameter configuration applies to all 

the following experiments without further specification. Since this work focuses 

on accurate facial motion regression, there is no post-processing and parametric 

face model adaption during online tracking as in previous studies (C. Cao et al., 

2014; Saito et al., 2016). The focal length 𝑓 is empirically set as 1,000 and the 

facial identity coefficients 𝛂 are estimated from the first video frame and keep 

fixed for the rest frames. Whereas the setup is somewhat rough and poses much 

bigger challenges on facial motion regression, GoMBF-Cascade is able to produce 

accurate and temporally-smooth tracking results. The tracking system is 

implemented using C++ with OpenMP parallelization, and tested on a laptop with 

a quad-core Intel Core i5 (2.30GHz) CPU and an integrated web camera producing 

640 x 480 video frames. The system achieves a 30fps performance. 
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3.5.1 GoMBF-Cascade Validation 

1) Datasets 

Training Data. Ideally, the proposed method requires an image dataset with 

accurate 2D landmark annotations and ground-truth 3D shape parameters that 

match the parametric face model for training. However, there is no such data 

available. As an alternative, I select images from three public face datasets and 

generate the corresponding 2D/3D labels by myself. The training images are from 

300W-3D (X. Zhu et al., 2016), FaceWarehouse (C. Cao, Weng, Zhou, et al., 2013) 

and Multi-PIE (R. Gross et al., 2010): 

300W-3D contains 3,837 in-the-wild face images, each being offered with 68 

hand-labelled landmarks (I discard the two points on the inner mouth corners in 

this work) and a reconstructed 3D facial mesh. For each image, I first estimate 

identity and expression coefficients -  {𝛂, 𝛅} by fitting the parametric face model 

to the provided 3D facial mesh based on landmark constraints. The fitting process 

resembles the one expressed in Eq. 3.10 with the only difference that 𝐸𝑙𝑎𝑛 

measures 3D landmark distances in world space this time. I then get 𝐐 by fixing 

the focal length 𝑓 to 1,000 and estimate the rotation and translation parameters - 

{𝛉, 𝐭} using the POSIT algorithm (Dementhon & Davis, 1995). Finally, 𝐃 can be 

easily calculated by comparing the 2D landmarks projected from the estimated 3D 

face to the hand-labelled landmarks. 

FaceWarehouse consists of 3,000 near-frontal face images captured from 150 

human subjects under controlled indoor environment. I choose 1,600 images of 80 

subjects to use in my experiment and detect 66 landmarks for each image using a 

pre-trained SDM model (Xiong & De la Torre, 2013). Since the algorithmic 

landmark detection is not accurate enough, I go through all the images and 

manually adjust the misaligned landmarks. I later follow the process explained in 

Eq. 3.10 to estimate 3D shape parameters from 2D landmark labels. To correct 

implausible facial expression estimations, I further manually tune the expression 

coefficients. The identity and head pose parameters are updated afterwards to align  
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Table 3.1: Training and testing datasets  

Training Set 

300W-3D  3,837 images, >500 subjects 

FaceWarehouse  1,600 images, 80 subjects 

Multi-PIE 1,024 images, 63 subjects 

Testing Set 

300VW 

004, 007, 009, 018, 019, 

028, 037, 044, 048, 119, 

143, 205, 208, 213, 223, 

224, 405, 524, 531, 558. 

Live Video Streams  

 

with the new facial expression coefficients using a similar fitting method as 

described above.        

Multi-PIE provides more than 4K indoor face images captured from 337 

subjects. The images cover various facial expressions, head poses and illumination 

conditions. Each image has been manually annotated with 68 landmarks. I select 

1,024 images of 63 subjects for training the facial motion regression. The 

corresponding 3D facial data is obtained with the same approach used for 

processing the FaceWarehouse data.  

Overall, I collected 6,461 images for training. Table 3.1 shows the basic 

information of the training set. Despite the relatively smaller size of training set, 

the proposed GoMBF-Cascade regression delivers tracking results competitive to 

the state-of-the-art method (Y. Guo, Zhang, Cai, Jiang, et al., 2018) that used much 

more training data.   

Testing Data. The tracking system has been evaluated on 20 challenging in-

the-wild videos from 300VW (Shen et al., 2015). Each video records the facial 

performance of a human subject in an unconstrained environment. The videos have 

been labelled with 68 2D landmarks frame by frame, providing a good benchmark 

to assess the proposed tracking system that also outputs 2D landmarks. After 

scrutinizing the videos, I discard those that cannot be tracked since the first frame 

and then randomly select 20 videos from the rest of 300VW. The corresponding 
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video information is listed in Table 3.1. In addition, the tracking system has also 

been tested on live video streams. 

2) Comparison with State-of-the-art Methods 

I first validate GoMBF by comparing GoMBF-Cascade with the Explicit Shape 

Regression (ESR) method (X. Cao et al., 2014). To the best of my knowledge, 

besides deep learning methods (Y. Guo, Zhang, Cai, Jiang, et al., 2018) which I 

have compared below, all the other state-of-the-art learning-based 3D facial 

tracking approaches (C. Cao et al., 2014; C. Cao, Weng, Lin, et al., 2013; 

McDonagh et al., 2016) use ESR to build the facial motion regression. What’s 

more, GoMBF-Cascade is closely connected with ESR. The main difference 

between them is that GoMBF-Cascade employs GoMBF instead of the 

conventional boosted ferns as the stage regressor. These make ESR a natural and 

good baseline for evaluating GoMBF and GoMBF-Cascade. For fair comparison, 

I implement ESR with the same appearance vector extraction function ℱ(∙) and 

other setups as that used in GoMBF-Cascade regression: training - 𝑇 = 10, 𝐹 = 5, 

𝐾 = 320, 𝑀 = 600; runtime prediction - 𝐿 = 20. ESR and GoMBF-Cascade are 

then trained on the same training set as introduced above. I test the two tracking 

models - GoMBF-Cascade and ESR on the selected 300VW videos. The tracking 

results are evaluated both quantitatively and visually. 

For quantitative comparison, I apply the widely-accepted point-to-point root 

mean square error (normalized by the face’s inter-ocular distance) between the 

tracked 2D landmarks and the ground-truth annotations (Shen et al., 2015). For 

each video, I report the error averaged over all landmarks and video frames. As 

shown in Fig. 3.4, GoMBF-Cascade delivers lower 2D landmark tracking error for 

most of the 300VW videos than ESR. The average tracking error across all 20 

videos is 0.0410 for GoMBF-Cascade and 0.0434 for ESR. Comparing against 

ESR, GoMBF-Cascade’s average tracking error declines about 5.53%. In addition 

to the improved runtime tracking performance, GoMBF-Cascade exhibits faster 

convergence than ESR during training (see Fig. 3.5, the error is measured as the  
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Figure 3.4: Comparison between GoMBF-Cascade and ESR on 2D landmark tracking. 

 

Figure 3.5: The training convergence curves of GoMBF-Cascade and ESR. 

 

RMSE between the 2D landmark annotations and predictions). I believe that this 

benefits from the mechanism of GoMBF which exploits the complementary 

information between inter-modular boosted ferns and refines fern leaves towards 

the final regression target. What’s more, GoMBF-Cascade enables parallel 

training when learning the modular boosted ferns. This significantly reduces the 

training time as compared to the traditional boosted ferns which has to be learned 

sequentially. In my experiment, it took about 3,532s to train a stage boosted ferns 

in ESR, while it only took 1,228s for GoMBF-Cascade, saving about 65.2% 

training time. I also visually compare GoMBF-Cascade and ESR by rendering out 

the tracked 3D faces. As shown in Fig. 3.6, GoMBF-Cascade is able to track facial 

expressions especially the mouth movements more precisely than ESR. GoMBF-

Cascade is also found to be much more resilient to occlusions than ESR (see Fig. 

3.7). In conclusion, both quantitative and visual results demonstrate that the  
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Figure 3.6: GoMBF-Cascade tracks facial expressions more accurately than ESR. 

 

Figure 3.7: GoMBF-Cascade shows higher resilience to occlusions than ESR. 

 

proposed GoMBF outperforms the conventional boosted ferns in fitting power and 

learning speed. 

 

              ESR                GoMBF-Cascade 

        ESR          GoMBF-Cascade 
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Figure 3.8: Comparison between GoMBF-Cascade and Ma et al. (Ma & Deng, 2019) and Guo et 

al. (Y. Guo, Zhang, Cai, Jiang, et al., 2018). Please note that the authors of (Ma & Deng, 2019) 

provided me the videos for testing and comparison. 

 

To further verify the robustness of GoMBF-Cascade regression, I compare its 

tracking results with those output from two state-of-the-art 3D facial tracking 

approaches - (Ma & Deng, 2019) and (Y. Guo, Zhang, Cai, Jiang, et al., 2018). 

(Ma & Deng, 2019) is a typical optimization-based method which casts the 

tracking process into minimizing a highly non-linear objective function that 

enforces alignment on sparse feature points and pixel intensities between the 

reconstructed 3D face and the input video frame. It relies on GPU computing to 

achieve real-time performance. (Y. Guo, Zhang, Cai, Jiang, et al., 2018) instead 

resorts to convolutional neural networks (CNN) to regress facial shape and 

appearance parameters from facial images. It used 80K facial images to train its 

tracking network. Please note that the authors of the aforementioned two 

approaches only provided me the visual tracking results of their approaches. I thus 

cannot quantitatively compare those two approaches with GoMBF-Cascade using 

the landmark-based metric. Alternatively, I report the visual comparison results in  

       Ma et al.        GoMBF-Cascade 
                 Guo et al.         GoMBF-Cascade 
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Figure 3.9: Tracking results of GoMBF-Cascade on live video streams. 

 

Fig. 3.8. It is worth pointing out that, due to its intuitive nature, visual comparison 

has also been frequently used for evaluating the method’s performance in the field 

of 3D facial tracking. As shown in Fig. 3.8, GoMBF-Cascade achieves competitive 

tracking performance against the two methods that either relied on an intricate 

photo-geometric fitting process (Ma & Deng, 2019) or was trained on a large-scale 

dataset (Y. Guo, Zhang, Cai, Jiang, et al., 2018). It does better on tracking eye 

closure and mouth movements than those two methods. Furthermore, tracking 

results on live video streams also demonstrate the robustness of GoMBF-Cascade 

(see Fig. 3.9). Please note that my tracking results are purely based on the proposed 

GoMBF-Cascade regression without any post-processing on the regressed 

expression and head pose parameters. As demonstrated, GoMBF-Cascade 

provides a robust and elegant solution to 3D facial tracking with a reasonably small 

set of training data. (For more tracking results, please refer to the supplementary 

video) 
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3.5.2 Training with Synthetic Data 

As described above, collecting facial images with accurate 3D geometry is tedious, 

which normally needs time-consuming human inspection and correction. As an 

alternative, synthesizing facial imagery for training is highly-efficient and 

provides fully accurate 3D labels. Whereas this novel data harvesting method has 

been successfully applied in 3D facial tracking and reconstruction using deep 

learning (Y. Guo, Zhang, Cai, Jiang, et al., 2018; Richardson et al., 2017, 2016), 

it remains unclear if the synthetic data also favours non-deep learning methods 

such as GoMBF-Cascade. This part investigates the largely unexplored problem 

by using three types of synthetic facial imagery with various naturalness levels to 

train GoMBF-Cascade. The tracking models trained on real data, on synthetic data 

and on a mixture of data are then compared with each other. 

1) Synthesizing Training Imagery 

In computer graphics, simulating real-world lighting and facial texture is crucial 

in rendering photo-realistic faces. Based on this insight, I apply three different 

lighting and texture models to synthesize facial imageries with various naturalness 

levels: 

At the first stage, I incorporate BFM’s texture components (Paysan et al., 2009) 

and Phong illumination (Phong, 1975) into the parametric face model to render 

new faces. To cover a wide range of facial shapes, poses and lighting conditions, 

I construct multiple groups of rendering parameters. Specifically, I generate 40 3D 

heads by randomly sampling shape and texture coefficients from the 

corresponding normal distributions provided by BFM. For each head, 30 samples 

in various poses are generated, including 10 with neutral expression and specified 

head poses, 10 in frontal pose but with specified expressions, and 10 with random 

head poses and expressions (head pose and expression coefficients are chosen from 

the pre-built 300W-3D dataset). To render each head sample, I randomly select 

four lighting conditions from a set consisting of 72 Phong illumination models  
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Figure 3.10: Synthesized facial images. 

 

which vary in components of direction, specular reflection, diffuse reflection, 

ambient reflection and shininess. In total, I synthesize 4,800 3D head samples. 

After defining a perfect pinhole camera model with a focal length of 1,000 and 

setting the image size to 450 x 450, all the 3D heads are rendered to images with 

a background filled with Gaussian noise (see Fig. 3.10a for examples). 

As BFM (Paysan et al., 2009) and Phong illumination (Phong, 1975) only 

simulate the facial texture and scene lighting in a coarse level, the synthetic faces 

from the first stage look rough and present clear artefacts. To improve the 

naturalness of the synthesized faces, I utilise a bundle of 20 high-quality head 

texture maps captured with a commercial photogrammetry rig1. The texture maps 

pair with two base meshes of an identical topology. Each texture occupies exactly 

the same UV and can be swapped out conveniently for a different texture, hence 

resulting in 40 different 3D heads. Since the base mesh is in repose, I generate its 

delta blendshapes using deformation transfer (Sumner & Popović, 2004) to enable 

facial expression modelling. For each base mesh, I also manually annotate 66 

landmarks which share the same semantic meaning as those used in my parametric  

 
1 https://www.3dscanstore.com/. 

c. SynData3 

b. SynData2 

a. SynData1 
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Figure 3.11: Materials for generating SynData2. Top row: high-quality texture map and textured 

3D facial mesh; middle row: HDR images; bottom row: the synthesized facial images. 

 

face model. With the matched 3D landmarks, I can easily estimate from the 

synthesized 3D head the required shape parameters using the approach mentioned 

in 300W-3D data processing. To realistically illuminate the head, I apply an 

image-based lighting technique in which high dynamic range (HDR) panoramic 

images are used to provide the environment lighting. The technique captures omni-

directional light information of a real-world scene and stores it into pixels of a 

HDR image which can be projected to a sphere simulating the surrounding space 

of the target object. I collect 12 HDR images (see Fig. 3.11) which were captured 

from common indoor and outdoor scenes such as train station, hotel room and 

misty pines. Following the procedure as described in the first stage, I generate 30 

samples in various poses for each 3D head. Each head sample is then rendered to 

450 x 450 images with four lighting conditions and the image’s background is set 

as the scene exhibited in the corresponding HDR image for more natural synthesis. 

I use the inbuilt Cycles path-tracing engine of Blender2 for rendering. As shown in 

Fig. 3.10b, highly photo-realistic facial images with fine texture features such as 

pores and wrinkles can be synthesized. 

 
2 https://www.blender.org/. 
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Table 3.2: Synthetic dataset 

SynData1 (4,800 images) 

- 40 3D heads randomly generated from BFM. 

- Each head is rendered with 30 different poses and 4 

Phong illumination conditions.  

SynData2 (4,800 images) 

- 40 3D heads with very high-quality texture. 

- Each head is rendered with 30 different poses and 4 

natural lighting conditions simulated with HDR images.  

SynData3 (9,300 images) 

- Selected from CoarseData which was built by applying 

lighting and texture estimated from in-the-wild facial 

images. 

 

Comparing to in-the-wild data, facial images synthesized in the first two stages 

still have pronounced artefacts, e.g. the lack of inner-mouth structure, limited 

variations in facial shape, lighting and background. In this stage, I turn to another 

kind of synthetic data (Y. Guo, Zhang, Cai, Jiang, et al., 2018) which is derived 

from using facial shape, texture and lighting estimated from real-world images for 

rendering. By further warping the background region of the source image to fit the 

new face, the synthetic image can look very similar to real-world counterpart. Guo 

et al. (Y. Guo, Zhang, Cai, Jiang, et al., 2018) have released such a dataset which 

was named CoarseData (see Fig. 3.10c). The dataset was generated from 3,131 

300W-3D images, with each image being augmented 30 times to cover more facial 

expressions and head poses. In my experiment, I randomly select 9,300 images 

(about 3 samples for each original 300W-3D image) from CoarseData and apply 

the same method used in processing the 300W-3D data to get the ground-truth 

shape parameters that fit the parametric face model. 

For convenience, I call the training set built in Section 3.5.1 as RealData, the 

three synthetic datasets as SynData1, SynData2 and SynData3 respectively. The 

corresponding information is listed in Table 3.2. 

2) Tracking Model Comparison 

Taking the GoMBF-Cascade regression trained on RealData as the baseline model, 

I evaluate the models trained purely on synthetic data or on a mixture of real and 

synthetic data in tracking 300VW videos. 
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Figure 3.12: Comparison between the tracking models trained purely on synthetic data and the 

baseline model (error ≫ 0.08 has been cut off). 

 

Training on synthetic data.  To introduce sufficient facial shape and 

appearance variations during regression learning, I train three GoMBF-Cascade 

models which are on the mixture of SynData1 and SynData2 (SynData1&2), on 

SynData3, and on all the synthesized facial images (SynData1&2&3) respectively. 

I follow the same setups as training with RealData. The three models are then 

tested on 300VW videos and compared to the baseline model by calculating the 

aforementioned 2D landmark tracking error. As shown in Fig. 3.12, the models 

trained purely with synthetic facial images output much bigger tracking errors than 

the baseline model, especially the model trained with SynData1&2 which 

completely lost the face in some videos such as video-044 (with an error of 110.47). 

Even for the models trained with SynData3 which comprises synthesized facial 

images looking very close to the real in-the-wild data, its tracking accuracy is still 

sharply lower than the baseline model’s accuracy. For those four tracking models, 

the average tracking error across all 300VW videos is 0.0410 (Baseline), 0.0525 

(SynData1&2&3), 0.0534 (SynData3) and 5.6954 (SynData1&2) respectively. 

Comparing with the baseline model, the models trained with synthetic data show 

different degrees of increase in tracking error: 28.05% (SynData1&2&3), 30.24% 

(SynData3), 13791.22% (SynData1&2). Their corresponding standard deviations 

- 0.0115 (SynData1&2&3), 0.0096 (SynData3) and 24.6656 (SynData1&2) are  
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Figure 3.13: Comparison between the tracking models trained on the mixture of data and the 

baseline model (error ≫ 0.08 has been cut off). 

 

also much higher than the baseline model’s one - 0.0073 (Baseline). These metrics 

further demonstrate that only using synthetic data for training does not introduce 

an overall improvement in tracking performance, but instead it makes the tracking 

model less stable.   

It is worth pointing out that McDonagh et al. (McDonagh et al., 2016) 

successfully learned an ESR-based facial motion regression for personalized 3D 

facial tracking from synthesized training imageries. However, their synthetic 

images were rendered from a high-quality facial rig (built from an offline facial 

capture system) that fits tightly with the user’s facial geometry and appearance, 

and an illumination model driven by light probe data acquired at the target 

environment. This can hardly be achieved in unconstrained facial tracking scenario 

where the target environment and user are unknown in the training phase.     

Training on mixed data. To further investigate the impact of synthesized facial 

images, I sequentially mix the synthetic data with the real data for training 

GoMBF-Cascade. As a result, I generate three tracking models. Fig. 3.13 presents 

the 2D landmark tracking errors of these three models on 300VW videos. As 

shown in the figure, for most videos, at least one of the three models trained on the 

mixed data exhibits improved tracking performance than the baseline model.  
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However, none of them is as reliable as the baseline model that can be generalized 

well to all the testing videos. The model trained with SynData1 even outputs an 

extremely large tracking error – 19.56 on video-037. The statistics of the average 

tracking error across all videos also support this observation. Compared with the 

baseline model, although there is a slight decline of 1.46% in average tracking 

error for the model trained with SynData2, much bigger increases of 2401.95% 

and 3.66% are observed for the models trained with SynData1 and SynData3. 

From these two experiments, I find that: i) the GoMBF-Cascade tracking 

model trained purely on synthesized facial images cannot generalize well to 

unconstrained real-world data; ii) involving synthetic facial images into training 

benefits tracking in some certain scenarios, but degrades the tracking model’s 

generalization ability. Interestingly, these two findings are contrary to those 

observed in deep learning-based 2D/3D facial tracking and reconstruction (Y. Guo, 

Zhang, Cai, Jiang, et al., 2018; Kortylewski et al., 2018; Richardson et al., 2017, 

2016). As reported in (Y. Guo, Zhang, Cai, Jiang, et al., 2018; Richardson et al., 

2017, 2016), facial tracking/reconstruction CNN models that work well on real-

world data can be learned only with similar synthetic facial images as SynData1 

and SynData3. In (Kortylewski et al., 2018), the authors find that priming deep 

networks by pre-training them with synthetic facial images is helpful for reducing 

the negative effects of the training data bias. Presumably, the discrepancy is mainly 

caused by the different feature learning capabilities between deep and non-deep 

learning methods. 

3.6 Conclusion 

This chapter first developed a novel regression method called GoMBF-Cascade 

for real-time 3D facial tracking from a monocular RGB video. GoMBF-Cascade 

is mainly featured with a sequence of globally-optimized modular boosted ferns – 

GoMBF, which is built with compositional learning and can efficiently handle the 

modality variety in facial motion parameters during regression. Compared with the 
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conventional boosted ferns (C. Cao et al., 2014; C. Cao, Weng, Lin, et al., 2013; 

X. Cao et al., 2014), GoMBF exhibits stronger fitting power and a higher learning 

speed. In theory, GoMBF can be seamlessly adapted to any other multi-output 

regression tasks. The resulting GoMBF-Cascade regression has been validated in 

3D facial tracking on in-the-wild videos and live video streams. It delivered 

competitive tracking performance comparing against the state-of-the-art methods 

(Y. Guo, Zhang, Cai, Jiang, et al., 2018; Ma & Deng, 2019) which require a large-

scale training set or have a much higher computational complexity, hence 

providing a robust and highly elegant solution to real-time 3D facial tracking.  

The chapter also systematically investigated the effect of synthesized facial 

imageries on training GoMBF-Cascade for 3D facial tracking. It applied three 

different kinds of synthetic facial images with various naturalness level for training 

and compared the tracking models trained on real data, on synthetic data and on a 

mixture of data. The experimental results showed that, i) training purely with 

synthesized facial images can hardly deliver a robust 3D facial tracking model that 

generalizes well to unconstrained real-world data; ii) involving synthetic images 

into training can benefit tracking in some certain scenarios, but harms the tracking 

model’s generalization ability. This provides a different understanding of learning 

from synthetic facial images as those formed in deep learning-based 2D/3D facial 

tracking and reconstruction (Y. Guo, Zhang, Cai, Jiang, et al., 2018; Kortylewski 

et al., 2018; Richardson et al., 2017, 2016). It is supposed to be caused by the 

different feature learning capabilities between deep and non-deep learning 

approaches. I believe the findings can benefit a series of non-deep learning facial 

image analysis tasks where the labelled real data is difficult to access.   

It can be found that, by conditioning on facial pose, expression and 

illumination, the generative adversarial network (GAN) (Tewari et al., 2020) is 

able to synthesize extremely realistic facial images. This provides a highly flexible 

and efficient way for synthesizing facial imagery with ground-truth labels. In the 

future, it would be a very promising direction to apply such networks to generate 

the training data for 3D facial tracking. 
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Chapter 4 

Realistic 3D Facial Expression Reconstruction for 

VR HMD Users 

Foreword 

With the advent of virtual reality (VR) technology, humans are able to interact 

with a simulated 3D world close to or completely different from the real world in 

a seemingly real or physical way. Wearing a head-mounted display (HMD), the 

user can communicate with each other or interact with the virtual world with full 

immersion, an experience that cannot be afforded by traditional video 

communication. However, the VR HMD significantly occludes the user’s face, 

making it intractable to capture the user’s facial performance with conventional 

vision-based methods, such as those developed in the previous two chapters. To 

solve this problem, this chapter proposes to combine a robust monocular 3D face 

reconstruction algorithm with an EMG-based facial biosensing technique – 

Faceteq (Mavridou et al., 2017) to achieve realistic 3D face capture of the VR 

HMD user. The proposed method offers a practical solution to enable face-to-face 

communication with compelling facial expressions and emotions in the VR 

context.  

The chapter is based on a published journal paper: 

- Lou, J., Wang, Y., Nduka, C., Hamedi, M., Mavridou, I., Wang, F. Y., & 

Yu, H. (2019). Realistic facial expression reconstruction for VR HMD 

users. IEEE Transactions on Multimedia, 22(3), 730–743. 

In the paper, I designed and implemented most parts of the reconstruction system, 

including 3D face embodiment generation, FACS AUs prediction from EMG 

signals and emotion recognition from AUs. I also conducted the experimental 

validation and wrote up the paper.  
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4.1 Introduction 

Recent progress in virtual reality (VR) has introduced immersive user experience 

in virtual worlds. Existing mainstream head-mounted displays (HMDs), such as 

Oculus Rift and HTC Vive enable users to perceive the virtual world, but they only 

allow limited interactions between the user and the virtual environment. These 

interactions are mainly based on human body motion capture and hand tracking 

technologies but ignore the importance of facial expressions for communication. 

Facial expressions serve as the primary nonverbal means of communication 

among human beings (Ekman & Rosenberg, 1997). A truly interactive and 

immersive experience cannot be envisioned without the technologies for sensing 

and recovering the user’s facial expressions in VR. However, VR HMDs usually 

occlude a large part of the user’s face, which rules out most existing facial 

performance sensing methods, such as ordinary camera-based technologies. A few 

recent works (Cha et al., 2016; H. Li et al., 2015; Olszewski et al., 2016; Suzuki 

et al., 2017; Thies, Zollhöfer, et al., 2016) have explored solutions to this problem.  

Li et al. (H. Li et al., 2015) and Olszewski et al. (Olszewski et al., 2016) made 

preliminary trials of equipping HMDs with the facial performance capture ability. 

However, their solutions require a RGB-D or RGB camera mounted on the HMD, 

which are not ergonomically comfortable and cause an extra head burden. Some 

works resorted to other advanced facial sensing technologies, such as infrared (IR) 

sensors (Cha et al., 2016) and (Suzuki et al., 2017) electromyography (EMG) 

sensors (Gruebler & Suzuki, 2014; Mavridou et al., 2017). These lightweight 

optical or contact-based sensors can be easily embedded into the headset in an 

unobtrusive manner, thus open a new era of HMD-based wearable facial 

performance sensing systems. 

However, existing solutions (H. Li et al., 2015; Olszewski et al., 2016; Suzuki 

et al., 2017) build the HMD user’s face embodiment with non-realistic facial shape 

or texture. Moreover, a few systems (Suzuki et al., 2017) can only detect the facial  
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Figure 4.1: A demonstration of the developed system. With a single face image, it is able to sense 

and reconstruct realistic facial expressions of the head-mounted display (HMD) user. Faceteq is a 

facial sensing wearable device that can be attached on mainstream HMDs. By utilizing eight 

integrated electromyography (EMG) sensors, Faceteq enables the detection of the facial muscle 

contractions of the HMD wearer.  

 

expression category which is subsequently represented with pre-defined facial 

movements on a pre-made virtual avatar. This prohibits natural interactions 

between participants in the virtual world. To address these problems, this chapter 

develops a framework (see Fig. 4.1) that captures facial activities coded in facial 

action units (AUs, see Fig. 4.2) (P. & Friesen, 1978) upon an advanced facial 

sensing hardware and can exhibit realistic expressions via a compelling digital 

embodiment of the user’s face in virtual scenarios. 

The proposed system embeds a pioneering facial sensing hardware – 

FaceteqTM (Mavridou et al., 2017) into the HMD to detect facial muscle activities 

through integrated EMG sensors placed on the most emotionally salient facial part 

(ESFP) – the eye region. Relevant AU-coded facial expressions are then identified 

with a machine learning method from pre-processed Root Mean Square (RMS) 

levels of recorded EMG signals. With a single image of the user, the system 

reconstructs the user’s 3D face and generates AU-based blendshapes using a  

User’s Image 

VR HMD Faceteq 

Facial Expression Sensing and Reconstruction 
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Figure 4.2: Examples of facial action units (Martinez et al., 2017). 

 

popular analysis-through-synthesis approach (Thies, Zollhofer, et al., 2016) and a 

robust non-rigid shape registration algorithm (S. Zhang et al., 2017). Classic 

psychological studies predict basic emotions from AUs following a few heuristic 

rules (P. & Friesen, 1978). However, as each category of emotions can have 

slightly different muscle group contraction, the real relationship between AUs and 

emotions turns to be complicated, which can be hardly explained with limited rules. 

The approach becomes infeasible when the observed AUs are not covered by the 

rules, such as in my case where seven AUs (AU1, AU2, AU4, AU6, AU12, AU25 

and AU43) focusing on the ESFPs – the eye and mouth region are investigated. To 

this end, the system uses the fern classifier to model the probability of emotions 

given activated AU information.  

The system developed in this chapter has been validated through appropriate 

experiments. Here is a summary of the main contributions:  

- It proposes the first automatic system of its kind that senses and 

reconstructs the HMD user’s facial expressions with a realistic face 

embodiment.  

- It develops an innovative correlation from facial biometric (EMG) signals 

to facial expressions through individual AUs, which explicitly captures the 

detailed facial movements performed by the HMD user.  

AU1 Inner Brow Raiser       AU2 Outer Brow Raiser         AU4 Brow Lowerer 

   AU6 Cheek Raiser               AU7 Lid Tightener               AU43 Eye Closure 

 AU12 Lip Corner Puller         AU18 Lip Puckerer                 AU25 Lips Part 
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- It proposes a novel probabilistic model that builds relationships between 

AUs and the six basic emotions. 

4.2 Related Work 

4.2.1 HMD-based Facial Sensing Systems 

The VR HMD occludes a significant portion of the user’s face, preventing most 

existing facial performance capture approaches from being applied. Some recent 

works embedded small advanced optical sensors inside the headset, such as IR 

sensors (Cha et al., 2016; Suzuki et al., 2017) to recognize facial expressions of 

basic emotions by detecting facial movements. Meanwhile, the contact-based 

sensing technology is drawing great attention in facial wearable device application 

because of its superiority in scenarios with highly constrained visibility. The 

electroencephalography (EEG) has been used in (Wolpaw et al., 2002) to record 

brain activities to detect basic emotions, but extensive training and user 

concentration are required. A commercial device from Looxid Labs3 incorporates 

two-channel EEG into the HMD, but whilst this may provide some information of 

user focus, this will not provide information that directly relates to user valence 

and facial expressions. An alternative is to measure the electrical signals of muscle 

activities. EMG is more sensitive at detecting micro-contractions of muscles and 

indeed was used to calibrate initial computer vision facial tracking algorithms 

(Cohn & Schmidt, 2003). It has been successfully combined with facial wearable 

devices for recognizing facial expressions and emotional states (Gruebler & 

Suzuki, 2014; Mavridou et al., 2017). All these technologies offer a wide range of 

pathways to a reliable HMD-based facial sensing system. However, the studies 

above only predict from biometric signals facial expression categories (e.g. 

happiness, anger) whereby what facial movements were involved is still unknown. 

 
3 http://looxidlabs.com/ 
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Li et al. (H. Li et al., 2015) first equipped the HMD with the ability to sense 

almost the whole face region. They integrated the HMD with eight strain gauges 

and an RGB-D camera to capture facial activities of the occluded upper face region 

and the mouth. The captured facial performance data were then mapped to 

blendshape coefficients through a linear regression to realize real-time facial 

animation. However, their solution requires tedious calibrations for each user and 

the mounted RGB-D camera introduces an extra head burden. Olszewski et al. 

(Olszewski et al., 2016) subsequently improved Li’s solution with a lightweight 

RGB camera and two IR cameras that see direct views of the HMD user’s mouth 

and eyes, and the convolutional neural network that builds a robust mapping 

between facial images and animation parameters of a pre-built virtual character. 

Their approach is free of user-specific calibrations and can generate relatively 

comprehensive facial animation. 

Although existing techniques and approaches have pushed the boundary of 

HMD-based facial sensing systems forward, the following three problems remain 

unresolved:  

a) Most previous systems (Cha et al., 2016; Gruebler & Suzuki, 2014; 

Mavridou et al., 2017; Suzuki et al., 2017) concentrate on recognition of facial 

expression categories while ignoring the fact that facial expression has multiple 

appearance representations. For example, happiness can be expressed with either 

the AU12 (lip corner puller) or a combination of AU12 and AU6 (cheek raise), so 

a deeper insight into the composition (e.g. AUs) of facial expressions is needed.  

b) The fidelity of reconstructed facial expressions has not attracted sufficient 

attentions yet. Previous works (H. Li et al., 2015; Olszewski et al., 2016) only 

consider the geometry of the facial expression while omitting the 3D shape and 

texture of the user’s face, which would generate unrealistic facial expressions in 

virtual environment.  

c) Previous studies have not created an integrated pipeline whereby a 

personalized model of the user’s face can be captured with a smartphone and used 

to better represent how they express themselves. 
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4.2.2 3D Face Reconstruction from a Single Image 

The field of 3D face reconstruction from a single image has witnessed significant 

progresses over the past two decades (Blanz & Vetter, 1999; Romdhani & Vetter, 

2005; Sela et al., 2017; Sengupta et al., 2018; Thies, Zollhofer, et al., 2016). 

Readers are referred to (Zollhöfer et al., 2018) for a comprehensive survey. 

Researches differ along two main dimensions, the underlying face prior and the 

reconstruction algorithm. 

1) Face Priors 

Face priors that model the geometry and texture of faces typically serve as the 

basis of 3D face reconstruction in the ill-posed monocular setting. 3D Morphable 

Model (3DMM) is a statistical face prior which was originally generated from a 

database of 200 scanned neutral human faces (Blanz & Vetter, 1999). It depicts 

the facial geometry and albedo within a multi-linear Principal Component 

Analysis (PCA) subspace. The 3DMM can also be extended to faces with 

expressions (Jiang et al., 2018; X. Zhu et al., 2016). Although 3DMM has laid the 

foundation for monocular 3D face reconstruction, it shows limitations when 

dealing with in-the-wild data captured in uncontrolled scenarios. With the 

available large-scale scanned 3D/4D face data (Booth et al., 2018; S. Cheng et al., 

2018; T. Li et al., 2017) and in-the-wild texture modelling (Booth et al., 2017), 

3DMM has been pushed closer to fully solve the 3D face reconstruction from 

unconstrained images.  Apart from 3DMM, a single 3D face reference has also 

been applied (Kemelmacher-Shlizerman & Basri, 2010). As this reference model 

should provide an initial estimation of the facial geometry and albedo, it thus needs 

to closely depict the desired face. 

2) Reconstruction Algorithms 

There are two main lines in this phase: generative approaches (Aldrian & Smith, 

2012; Blanz & Vetter, 1999; Thies, Zollhofer, et al., 2016) and discriminative 

approaches (Sela et al., 2017; X. Zhu et al., 2016). The generative approach treats 
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the monocular 3D face reconstruction as an inverse rendering problem and 

formulates it as a complex optimization process. Metrics such as the color 

consistency, feature similarity and regularization constraints are then used to direct 

the optimization (Romdhani & Vetter, 2005; Thies, Zollhofer, et al., 2016). This 

kind of approach can recover promising 3D facial geometry and texture 

information, while achieving real-time performance with the GPU solver (Thies, 

Zollhofer, et al., 2016). However, the inverse rendering problem is highly ill-posed 

due to the incomplete input data, it is hence prone to degenerating in challenging 

scenarios, such as dealing with faces under severe occlusions and large poses.  

Recently, the discriminative approach has emerged as an essential research 

branch resulting from dramatic progress in deep learning (Sela et al., 2017; 

Sengupta et al., 2018). Built on top of a database that contains extensive face 

images as well as the corresponding 3D facial data, deep learning is able to embed 

massive image-face relationships into a robust non-linear regression. This 

alleviates the problem of ill-posed images which creates incomplete or 

uncontrolled input data. Existing 3D face databases (C. Cao, Weng, Zhou, et al., 

2013; Yin et al., 2006) were collected with sophisticated 3D facial capture systems 

in controlled settings or using the aforementioned generative approaches on in-

the-wild face images (X. Zhu et al., 2016). Such processes are time-consuming, 

labor-intensive or not able to provide the fine-scale 3D facial data. To tackle these 

problems, a few recent studies resorted to the synthetic 3D facial data and yielded 

impressive results (Y. Guo, Zhang, Cai, Jiang, et al., 2018; Richardson et al., 2016). 

This is in line with an interesting theory of parallel vision (K. Wang et al., 2017) 

which discusses the significance of synthetic data in addressing the problems of 

visual perception and understanding.  

The combination of the generative approach and the discriminative approach 

now appears as an important direction in this (Tewari et al., 2018, 2017). The state-

of-the-art (Tewari et al., 2018) that integrates a convolutional encoder network 

with an expert-designed generative model does not require any 3D facial data for 

training, while is still able to output promising reconstructions. Recovery of facial 



  Chapter 4 

68 
 

geometry and texture details using deep neural networks is also an interesting 

direction (Huynh et al., 2018; Saito et al., 2017). 

To eliminate the need of massive training data, this chapter turns to a practical 

and reliable generative approach (Thies, Zollhofer, et al., 2016) which has been 

validated in several state-of-the-art works (Y. Guo, Zhang, Cai, Jiang, et al., 2018; 

Hu et al., 2017; Saito et al., 2017). It moves a step further to generate personalized 

blendshapes with a robust non-rigid registration method (S. Zhang et al., 2017) 

and a direct deformation transfer from generic AU-based blendshapes (H. Yu et 

al., 2012). 

4.2.3 Emotions from Facial Action Units 

The Facial Action Coding System (FACS) (P. & Friesen, 1978) is the best-known 

taxonomy of human facial expressions. It uses AUs to code the visually observable 

actions of individual or a group of facial muscles. For example, AU12 describes 

the contraction of the Zygomaticus major muscle that is typically observed in the 

expression of happiness. Thus, FACS AUs can offer a detailed interpretation of 

facial expressions resulting from facial muscle contractions. The revised FACS 

(Ekman, 2002) defines 32 anatomic AUs and 14 Action Descriptors (ADs) with 

respect to the head pose, gaze and other actions such as blow and bite. This chapter 

equips an EMG-based facial sensing hardware (Mavridou et al., 2017) with a 

learning method to identify common facial expressions coded in AUs. 

Psychological studies (P. & Friesen, 1978) suggest that emotions such as 

happiness, sadness, fear, anger, surprise, and disgust can be predicted from AUs 

with a few heuristic rules (e.g. AU6, 12 normally indicates happiness). However, 

the rules cannot fully explain the complicated relationship between AUs and 

emotions, since each category of emotions can have various facial appearance 

representation. Existing rule-based methods (Valstar & Pantic, 2006; Velusamy et 

al., 2011) are thus unable to provide emotional information from AU combinations 

that are not included in the established rules. To address this problem, this chapter 

proposes to use the fern classifier (Ozuysal et al., 2007) to build the relationship  
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Figure 4.3: A prototype of Faceteq. The device equips with eight dry EMG sensors placed on the 

ESFP that output eight-channel EMG signals. Each channel correlates to a specific facial muscle 

(highlighted with rectangles in different color) contraction (the facial muscle picture is retrieved 

from https://fineartamerica.com/). 

 

between six basic emotions and AUs with a posterior probability model. The 

proposed method fits well with the scenario where only AUs around the eye and 

mouth region are studied. 

4.3 System Overview 

4.3.1 Device 

The developed system integrates a wearable facial sensing hardware - Faceteq 

(Mavridou et al., 2017) (see Fig. 4.3) that fits with mainstream commercial VR 

head-mounted displays (HMDs). The hardware utilizes the EMG technology to 

detect facial muscle activations. It consists of eight surface dry EMG sensors 

placed on the ESFP that do not require skin preparation, conductive gel and 

adhesive pads, while having a 24-bit signal resolution, 1kHz sampling rate, 20-

450Hz signal bandwidth and no inter-sensor latency. Each EMG sensor accounts 

for a unique muscle action on Zygomaticus major, Frontalis, Orbicularis oculi and 

Corrugator. The output gives eight channels of muscle activations as well as their 

intensity scores at 1kHz when wired to a PC based VR system such as Oculus Rift 

or HTC Vive, or 25Hz via Bluetooth when using a smartphone. The learning  

 

https://fineartamerica.com/
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Figure 4.4: An overview of the proposed system. It first reconstructs a fully textured 3D face from 

a user’s image. Then, template AU-based blendshapes are conformed to the reconstructed face to 

generate personalized blendshapes. With Faceteq and a robust learning method, the system predicts 

from EMG signals AU-coded facial expressions which are further reconstructed by fusing 

personalized blendshapes. A fern classifier is learned for estimating emotions from AUs. 

 

method proposed in this chapter can further associate EMG channel activations to 

common AU-coded facial expressions. 

The hardware contains two photoplethysmogram (PPG) sensors and an inertial 

measurement unit (IMU) including accelerometer and gyroscope which provide 

nine channels values of head movement, posture and state analysis at 50Hz. 

Meanwhile, it supports real-time signal quality monitoring, ASCII data files as 

well as binary files for post-acquisition data analysis. 

4.3.2 Work Pipeline 

As illustrated in Fig. 4.4, the system consists of four main parts: offline 3D face 

reconstruction, personalized blendshapes generation, online AU-coded facial 

expression detection and six basic emotions estimation. 

Emotion Estimation AU-Coded Expression 

Detection 

Neutral 0 

  
Anger 0 

Disgust 0.54 
Fear 0 

Happiness 0.46 
Sadness 0 
Surprise 0 

 

HMD User 

with Faceteq   

EMG to AUs 

Fern 

Classifier 

Closed Mouth Smile 

AU6, 12 

Personalized Blendshapes Generation 

Neutral       AU1        AU2        AU4         AU6       AU12       AU25        AU43 

Non-rigid 

Registration 

User’s Image 

Template Blendshapes 

3D Face Reconstruction 
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To build a realistic digital embodiment of the user’s face, the system only 

requires one photo image of the user. Then a state-of-the-art 3D face reconstruction 

approach (Thies, Zollhofer, et al., 2016) is applied to recover the dense 3D 

geometry as well as the texture of the user’s face. The algorithm solves the 

reconstruction within a non-convex optimization process which takes photo 

consistency, sparse feature similarity and statistical regularization as constraints. 

The reconstruction is built upon a PCA-based morphable model (Paysan et al., 

2009). FACS-based blendshapes (C. Cao, Weng, Zhou, et al., 2013; X. Zhu et al., 

2016) and an illumination model based on Spherical Harmonics (Basri & Jacobs, 

2003). 

A template neutral facial mesh is warped to fit the reconstructed 3D face using 

a robust non-rigid registration method (S. Zhang et al., 2017). A linear rigid-

alignment based on 68 facial landmarks is first used to estimate the pose between 

the template and the reconstruction. Then a coupled global and local deformation 

is applied to each point on the template to conform it to the reconstruction. 

Personalized blendshapes are obtained by simply transferring the deformations 

from a series of generic AU-based blendshapes (H. Yu et al., 2012) to the deformed 

template neutral face as they share the same topology. During the non-rigid 

registration process, the facial texture is transferred simultaneously with the 

geometric deformations based on the built point correspondences. 

Eight-channel EMG signals from the facial sensing hardware are then fed into 

a learning method to predict common AU-coded facial expressions which drive 

personalized blendshapes to generate realistic facial expressions during online 

tracking. The learning method applies the Least-square Support Vector Machine 

(LS-SVM) on RMS features from EMG signals. Training and testing are 

conducted on a database collected from 15 confirmed mentally and physically 

healthy participants without any signs of conditions that could affect their face and 

thus facial expressions. 

To get a deeper insight into the VR HMD user’s internal emotional states, a 

probabilistic model is built to map AUs to six basic emotions. A fern classifier is 
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used to model the posterior probability of basic emotions given combinations of 

AUs. The fern classifier is learned from CK+ (Lucey et al., 2010) and EmotioNet 

(Fabian Benitez-Quiroz et al., 2016). 

4.4 Face Embodiment Construction 

With a single image, the developed system builds a digital embodiment of the 

user’s face that contains a series of fully-textured 3D facial meshes in neutral pose 

or with AUs. 

4.4.1 3D Face Reconstruction 

Following Thies et al. (Thies, Zollhofer, et al., 2016), the system converts the 3D 

face reconstruction from a single image into an inverse-rendering problem which 

is solved through an analysis-by-synthesis process. It uses a multi-linear PCA face 

model (C. Cao, Weng, Zhou, et al., 2013; Paysan et al., 2009; X. Zhu et al., 2016) 

which has 𝑛 = 53k vertices and 106k faces: 

 𝑀𝑔𝑒𝑜(𝛼𝑖𝑑 , 𝛼𝑒𝑥𝑝) = 𝑆̅ + 𝑆𝑖𝑑 ∙ 𝛼𝑖𝑑 + 𝑆𝑒𝑥𝑝 ∙ 𝛼𝑒𝑥𝑝 (4.1) 

 𝑀𝑎𝑙𝑏(𝛼𝑎𝑙𝑏) = 𝑇̅ + 𝑇 ∙ 𝛼𝑎𝑙𝑏 (4.2) 

This parametric face model has three dimensions, where identity and expression 

represent the facial geometry - 𝑀𝑔𝑒𝑜(∙) ∈ ℝ
3𝑛 and the third dimension represents 

the skin reflectance (albedo) - 𝑀𝑎𝑙𝑏(∙) ∈ ℝ
3𝑛. It assumes that the geometry and 

albedo obey a multivariate normal distribution centered at the average shape 𝑆̅ =

𝑆𝑖̅𝑑 + 𝑆𝑒̅𝑥𝑝 ∈ ℝ
3𝑛  (𝑆𝑖̅𝑑 ∈ ℝ

3𝑛  represents the average shape’s identity part and 

𝑆𝑒̅𝑥𝑝 ∈ ℝ
3𝑛  represents the expression part) and reflectance 𝑇̅ ∈ ℝ3𝑛 . The 

corresponding bases are 𝑆𝑖𝑑 ∈ ℝ
3𝑛×99, 𝑆𝑒𝑥𝑝 ∈ ℝ

3𝑛×29 and 𝑇 ∈ ℝ3𝑛×99. Standard 

deviations are 𝜎𝑖𝑑 ∈ ℝ
99, 𝜎𝑒𝑥𝑝 ∈ ℝ

29 and  𝜎𝑎𝑙𝑏 ∈ ℝ
99. These bases and standard 

deviations are obtained by applying Principal Component Analysis on a set of 3D 

face scans (Paysan et al., 2009) and assumed to be known in 3D face reconstruction. 
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The unknown variables in the aforementioned parametric face model are 𝛼𝑖𝑑 ∈

ℝ99, 𝛼𝑒𝑥𝑝 ∈ ℝ
29 and 𝛼𝑎𝑙𝑏 ∈ ℝ

99. They control the target face’s 3D geometry and 

skin reflectance.    

The face is assumed to have the Lambertian surface reflectance and the 

illumination is modelled with a second order Spherical Harmonics (SH) denoted 

by  𝐿 ∈ ℝ27  (Basri & Jacobs, 2003). A face image 𝐼𝑠𝑦𝑛  is synthesized by 

rasterizing the parametric face model under a rigid transformation (𝑅, 𝑡) and a 

perspective projection Π𝑃(𝑀𝑔𝑒𝑜) with the camera parameters 𝛫. 

In an analysis-through-synthesis loop, face model and rendering parameters 

are optimized mainly along the direction of generating a face image as close as the 

input image. The objective function is formulated as: 

 𝐸(𝒫) = 𝑤𝑐𝑜𝑙𝐸𝑐𝑜𝑙(𝒫) + 𝑤𝑙𝑎𝑛𝐸𝑙𝑎𝑛(𝒫) + 𝑤𝑟𝑒𝑔𝐸𝑟𝑒𝑔(𝒫) (4.3) 

where 𝒫 = {𝛼𝑖𝑑 , 𝛼𝑒𝑥𝑝, 𝛼𝑎𝑙𝑏, 𝑅, 𝑡, 𝛫, 𝐿}  is the collection of facial geometry and 

reflectance parameters (𝛼𝑖𝑑 , 𝛼𝑒𝑥𝑝, 𝛼𝑎𝑙𝑏), rigid motion parameters (𝑅, 𝑡), camera 

parameters 𝛫  and illumination parameters 𝐿 . 𝑤𝑐𝑜𝑙 = 1 , 𝑤𝑙𝑎𝑛 = 10  and 𝑤𝑟𝑒𝑔 =

2.5 × 10−5  are empirical weights to balance three energy terms - 𝐸𝑐𝑜𝑙(𝒫) , 

𝐸𝑙𝑎𝑛(𝒫) and 𝐸𝑟𝑒𝑔(𝒫). 

The photo-consistency term 𝐸𝑐𝑜𝑙  measures the colour distance between the 

synthesized face image and the input image: 

 𝐸𝑐𝑜𝑙(𝒫) =
1

|𝑉𝐼|
∑ ‖𝐼𝑠𝑦𝑛(𝑣𝐼) − 𝐼𝑖𝑛(𝑣𝐼)‖2𝑣𝐼∈𝑉𝐼  (4.4) 

 𝐼𝑠𝑦𝑛(𝑣𝐼) = [𝐼𝑟
𝑣, 𝐼𝑔

𝑣, 𝐼𝑏
𝑣]
𝑇
  

 𝐼𝑐ℎ
𝑣  = 𝑀𝑎𝑙𝑏, 𝑐ℎ

𝑣 ∙ ∑ 𝛾𝑖,𝑐ℎ𝑦𝑖(𝒏(𝑣))
9
𝑖=1 ,  𝑐ℎ ∈ {𝑟, 𝑔, 𝑏}  

 𝑣𝐼 = Π𝑃(𝑅𝑣 + 𝑡)  

where 𝐼𝑖𝑛 is the input image and 𝑣𝐼 ∈ 𝑉𝐼 denote all visible pixel locations in the 

synthesized image 𝐼𝑠𝑦𝑛, 𝑣𝐼 is obtained by projecting the visible 3D vertex 𝑣 on the 

face mesh onto the image plane. Its pixel value 𝐼𝑠𝑦𝑛(𝑣𝐼) is assigned with 𝑣’s 
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texture value - 𝐼𝑐ℎ
𝑣 , where𝑦𝑖 is the 𝑖th SH basis function, 𝛾𝑖,𝑐ℎ is the corresponding 

SH coefficient of a specific color channel – 𝑐ℎ, 𝒏(𝑣) is the normal of 𝑣 , and 

𝑀𝑎𝑙𝑏, 𝑐ℎ
𝑣  is the albedo value of 𝑣 in channel 𝑐ℎ. The landmark-fitting term 𝐸𝑙𝑎𝑛 

enforces a constraint to the reconstructed facial geometry according to some 

fiducial facial points, namely projected 3D landmarks, which should align to the 

corresponding landmarks on the input face image as accurate as possible: 

 𝐸𝑙𝑎𝑛(𝒫) =
1

|𝐹|
∑ ‖𝑓𝑖 − Π𝑃(𝑅𝑣𝑖 + 𝑡)‖2

2
𝑓𝑖∈𝐹

 (4.5) 

𝑓𝑖  is a 2D facial landmark detected on the input face image from my 

implementation of (Xiong & De la Torre, 2013). To ensure the plausibility of the 

reconstructed 3D face, a statistical regularization term is used to restrict face model 

parameters to a reasonable range: 

 𝐸𝑟𝑒𝑔(𝒫) = ∑ [(
𝛼𝑖𝑑,𝑖

𝜎𝑖𝑑,𝑖
)
2

+ (
𝛼𝑎𝑙𝑏,𝑖

𝜎𝑎𝑙𝑏,𝑖
)
2

]99
𝑖=1 + ∑ (

𝛼𝑒𝑥𝑝,𝑖

𝜎𝑒𝑥𝑝,𝑖
)
2

29
𝑖=1  (4.6) 

The objective function is transformed with the method of Iteratively 

Reweighted Least Squares (IRLS) and optimized using a Gauss-Newton (GN) 

solver. In my implementation, the optimization converges within 7, 5 and 3 GN 

steps from the coarsest level to the finest level of a three-level image pyramid (see 

Fig. 4.5). For generating personalized blendshapes, the expression component will 

be removed from the reconstructed 3D face. Please also note that the reconstructed 

facial texture presented in this work only keeps the estimated albedo and is 

rendered with a default lighting (see Fig. 4.6). The estimated lighting is discarded 

because it only models the lighting of the input face image, while the reconstructed 

3D face should be rendered with the lighting of the virtual space for a more realistic 

face embodiment. 

4.4.2 Personalized Blendshapes Generation 

To get a digital face embodiment with AUs, the system adopts a robust non-rigid 

registration algorithm (S. Zhang et al., 2017) and a series of template blendshapes  
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Figure 4.5: Reconstruction results from each level of the image pyramid. The initial 3D face is set 

with mean identity, neutral pose, mean albedo and rendered with the lighting model whose 27 

Spherical Harmonics (SH) coefficients are all set with 1. The facial texture here is rendered with 

estimated albedo and lighting. Face images have been cropped and resized for better presentation. 

The original face image is 640*480. 

 

 

Figure 4.6: Reconstructed facial texture. The right two images show faces rendered with the 

estimated lighting and the default lighting used in this work. 

 

(H. Yu et al., 2012). The template blendshapes are based on 3D scans of three 

female FACS certified actors using a 4D stereo imaging system (Imaging, 2020). 

Each actor performed 20 to 30 AUs, providing a total of 37 AUs (counting 

lateralizations) as well as a neutral face. The template mesh consists of 4,735 

vertices and 8,760 faces. In this work, I use seven AUs (AU1, AU2, AU4, AU6, 

AU12, AU25 and AU43) for association with and prediction from the available 

EMG signals. I calculate the mean of all actor’s meshes to get a more general 

template (see Fig. 4.4). 

The non-rigid registration conforms the template neutral face (source point 

cloud) to the reconstructed 3D face (target point cloud). A coupled global and local 

deformation is applied to the vertex v𝑖 on the source point cloud: 

Initial  
3D Face 

L2 

L1 

L0 

Estimated 
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 ṽ𝑖 = Φ𝑙𝑜𝑐𝑎𝑙 ∘ Φ𝑔𝑙𝑜𝑏𝑎𝑙(v𝑖) (4.7) 

A rotation matrix 𝑅  relative to the centre-of-mass 𝑚 and a translation vector 𝑡 

define the global rigid deformation: 

 Φ𝑔𝑙𝑜𝑏𝑎𝑙(v𝑖) = 𝑅(v𝑖 −𝑚) +𝑚 + 𝑡 (4.8) 

The non-rigid deformation is defined by a set of deviation vector d𝑖: 

 Φ𝑙𝑜𝑐𝑎𝑙(v𝑖) = v𝑖 + d𝑖 (4.9) 

For each vertex v𝑖on the source point cloud, I associate a corresponding position 

c(v𝑖)  on the target which is initialized with a closest point computation and 

updated iteratively within the optimization. The non-rigid registration can hence 

be casted as an unconstrained energy minimization problem with unknowns 𝒦 =

{𝑅, 𝑡, 𝐃, c}, where 𝐃 = {d𝑖}. The objective function is formulated as: 

 𝐸(𝒦) = 𝑤𝑓𝑖𝑡𝐸𝑓𝑖𝑡(𝒦) + 𝑤𝑠𝑚𝑜𝑜𝑡ℎ𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝒦) (4.10) 

The weights 𝑤𝑓𝑖𝑡 and 𝑤𝑠𝑚𝑜𝑜𝑡ℎ compensate for different scales of the energy terms. 

𝐸𝑓𝑖𝑡 measures the corresponding point distance between the source point cloud 

and the target point cloud: 

 𝐸𝑓𝑖𝑡(𝒦) = ∑ 𝑤𝑐𝑜𝑛𝑓,𝑖
2 ‖ṽ𝑖 − c(v𝑖)‖2

2𝑛
𝑖=1 + ∑ (1 − 𝑤𝑐𝑜𝑛𝑓,𝑖

2 )
2𝑛

𝑖=1    (4.11) 

where 𝑛 is the number of correspondences and 𝑤𝑐𝑜𝑛𝑓,𝑖  is the confidence of the 

each correspondence. And 𝑤𝑐𝑜𝑛𝑓,𝑖 close to one indicates a reliable correspondence, 

while 𝑤𝑐𝑜𝑛𝑓,𝑖  close to zero indicates that no proper correspondence is found. 

Source vertices without valid correspondence are excluded from the optimization 

process. The texture of the reconstructed face is transferred to the neutral template 

using the correspondence as well. To enhance the surface smoothness, an energy 

term enforcing small changes of point neighbourhoods and triangle areas is 

augmented to the objective function: 

 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝒦) =  𝐸𝑛𝑒𝑖𝑔ℎ(𝒦) + 𝐸𝑎𝑟𝑒𝑎(𝒦)   (4.12) 
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 𝐸𝑛𝑒𝑖𝑔ℎ(𝒦) = ∑ ∑ (‖ṽ𝑖 − ṽ𝑗‖2 − ‖v𝑖 − v𝑗‖2)
2

𝑗=𝒩(𝑖)
𝑛
𝑖=1   (4.13) 

 𝐸𝑎𝑟𝑒𝑎(𝒦) = ∑ (𝒜(ṽ𝑖) − 𝒜(v𝑖))
2𝑛

𝑖=1   (4.14) 

where 𝒩(𝑖) is the one-ring neighbourhood and 𝒜(v𝑖) is the summing area of 

triangles attached to v𝑖 on the source mesh. 

I use the Levenberg-Marquardt algorithm to solve the non-linear least squares 

problem above. After obtaining the deformed neutral template, I calculate 

deviations between the original neutral template and template blendshapes. These 

deviations are then transferred to the deformed neutral template to generate 

personalized blendshapes. The texture of the deformed neutral template is 

transferred at the same time, providing fully-textured personalized blendshapes. 

4.5 Facial Expression from EMG Signals 

Facial expressions are results of facial muscle movements. The pioneering 

hardware solution – Faceteq offers an efficient way to sense facial muscle 

contractions through eight integrated EMG sensors placed on the ESFP. However, 

mapping EMG signals to facial expressions is nontrivial. To this end, 15 subjects 

are recruited and the Faceteq interface is used for data collection and analysis. All 

facial expressions are defined according to action units (AUs), which enables a 

convincing facial expression recovery in subsequent steps. 

4.5.1 Data Collection 

In this study, 15 volunteers are recruited (11 male and 4 female), aged from 21 to 

52 years old (Mean: 31.93, Std: 12.75). Each participant is asked to perform five 

common facial expressions (see Fig. 4.7) – closed mouth smile, eye closure, 

forehead wrinkle, frown and open mouth smile, while wearing the prototype of the 

EMG-based facial sensing interface. All the facial expressions are defined with 

AU combinations following the work (Ekman & Rosenberg, 1997): AU6, 12 for 

closed mouth smile, AU43 for eye closure, AU1, 2 for forehead wrinkle, AU4 for  
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Figure 4.7: AU-coded facial expressions studied in this work. From left to right: forehead wrinkle, 

frown, eye closure, close mouth smile, and open mouth smile. 

 

 

Figure 4.8: EMG signals and RMS features. The left two columns compare raw and denoised EMG 

data. The right column shows the RMS feature extracted from the denoised EMG data within a 

256-msec time window. 

 

frown and the combination of AU6, 12 and 25 for open mouth smile. Eight surface 

dry EMG electrodes are placed symmetrically on the left and right side of the 

Faceteq interface, providing eight-channel EMG signals. These EMG electrodes 

monitor activations of specific facial muscles (see Fig. 4.3), including 

Zygomaticus major (channel 1&2), Frontalis (channel 3&4), Orbicularis oculi 

(channel 5&6) and Corrugator (channel 7&8). 

An audio track is used to instruct the subject to make facial expressions or 

return to the neutral pose. Each facial expression is repeated ten times with each 

lasting for two seconds. There is a ten-second rest between two adjacent repetitions. 

     AU 1, 2               AU4               AU43            AU 6, 12        AU 6, 12, 25 

Denoised EMG Data Raw EMG Data 

Open Mouth Smile 

RMS 
Frown 
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EMG signals are recorded at 1kHz sampling rate, resulting in 2 × 10 × 1,000 =

20,000 EMG samples for each facial expression of each subject in theory. The 

actual EMG sample amount may drift around the estimated value as there is 

latency in starting or ending the facial expression for each subject. 

4.5.2 EMG Signal Pre-Processing 

Facial EMG signals have small amplitude and can be easily interfered by various 

external or internal factors, such as motion artefacts, incorrect sensor placement 

and environmental noise. I therefore use multiple filters to clean the raw EMG data. 

A baseline correction on raw EMG signals is first adopted to remove mean values 

and the linear trend. To eliminate artefacts such as the line interference introduced 

by electrical devices, the Notch filter is then applied to remove the 50Hz 

component and its harmonics up to 350Hz. Signals are further passed through a 

band-pass filter retaining components from 30 to 450Hz. Finally, the eight-channel 

clean EMG signals can be obtained (see Fig. 4.8). 

4.5.3 Feature Extraction 

To reduce the dimensionality of data and extract the most informative segments, 

it is crucial to compress EMG signals along the time axis. Generally, EMG signals 

are partitioned into temporal segments of the same length, from where features are 

extracted. Long segments can suppress bias and variance of the feature, however, 

they may fail to reach the efficiency requirement (Oskoei & Hu, 2007). Some 

recent works report that using segments with 256 msecs length is a good trade-off 

between the feature effectiveness and the overall processing efficiency (Hamedi et 

al., 2016; Rezazadeh et al., 2011). I follow the setting of (Hamedi et al., 2016) by 

segmenting the pre-processed EMG signals into non-overlapping 256-msec pieces. 

Root Mean Square (RMS) is one of the representative time-domain features 

and has been widely used for analysing the contraction of facial muscle. With the 

hypothesis of the Gaussian random process, RMS provides the maximum 

likelihood estimation of EMG amplitude when a facial muscle is under constant 
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force and non-fatiguing contraction. According to a recent survey (Hamedi et al., 

2016), RMS shows superiority against the other time-domain features. I hence 

extract RMS from each 256-msec segment of EMG signals: 

 𝑅𝑀𝑆 = √ 
1

𝑁
 ∑ 𝑥𝑛

2𝑁
𝑛=1    (4.15) 

where 𝑁 = 256, 𝑥𝑛 is an EMG sample within the 256-msec segment. 

4.5.4 Facial Expression Prediction 

Multiple external or internal factors such as EMG electrode drift, individual 

variances or muscle fatigue, usually result in a large variation of the EMG pattern 

even for the same facial expression. Hence, a robust learning algorithm is required 

for mapping EMG features to facial expressions accurately. The influence of the 

classifier to the final prediction performance has been much studied. A recent 

study (Hamedi et al., 2016) compares 14 classifiers and reports that Least-square 

Support Vector Machine (LS-SVM), Regularized Discriminative Analysis (RDA), 

Normal Density Discriminant Function (NDDF) and Maximum-likelihood (ML) 

estimation provide a much higher classification accuracy against the other 

classifiers. ANOVA analysis shows that there is no significant difference among 

the classification performance of the top four classifiers (Hamedi et al., 2015). In 

this work, I choose LS-SVM as the classifier and adopt the libSVM (Chang & Lin, 

2011) framework to train the multiclass LS-SVM. 

4.6 Basic Emotions Prediction from AUs 

Existing rule-based methods (Ozuysal et al., 2007; Valstar & Pantic, 2006) cannot 

be extended to scenarios where observed AUs are not included in the established 

heuristic rules. Restricted by the number of EMG sensors applied and the range of 

facial expressions covered by the collected database, the developed system outputs 

specified AUs. It makes previous rule-based methods infeasible. To address this 

problem, I propose to use the fern classifier to model the relationship between AUs 
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and six basic emotions. Specifically, my target is to learn the posterior probability 

of emotions given occurrences of AUs. It is a typical Bayesian classification 

problem that can be solved efficiently with the fern classifier. 

Fern classifier has been successfully applied in image key-points recognition 

(Ozuysal et al., 2007). Each fern is a composition of a small set of features and a 

series of binary tests on these features. It returns the probability that a sample 

belongs to a class. Outputs from all ferns are then combined together in a Naive 

Bayesian way. In my task, six basic emotions - anger, disgust, fear, happiness, 

sadness and surprise are treated as classes, while the occurrence of AU is a binary 

feature. Since the feature pool consists of limited AUs, there is no need to partition 

it into groups of features. One fern is sufficient to learn the class-conditional 

distribution in my case. Let 𝑐𝑖 , 𝑖 = 1,… ,𝐻 be the set of class (emotion) and 𝑓𝑗 , 𝑗 =

1,… ,𝑁 be the set of binary feature (AU occurrence), we are looking for: 

 𝑐̂𝑖 = argmax
𝑐𝑖

 𝑃(𝐶 = 𝑐𝑖  | 𝑓1, 𝑓2, … , 𝑓𝑁)   (4.16) 

 𝑓𝑗 = {
1   𝑖𝑓 𝐴𝑈𝑗  𝑜𝑐𝑐𝑢𝑟𝑠

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

where 𝐶 represents the class. With Bayes’ theorem, we can have: 

 𝑃(𝐶 = 𝑐𝑖  | 𝑓1, 𝑓2, … , 𝑓𝑁)  =
𝑃(𝑓1,𝑓2,…,𝑓𝑁 | 𝐶=𝑐𝑖)𝑃(𝐶=𝑐𝑖)

𝑃(𝑓1,𝑓2,…,𝑓𝑁)
   (4.17) 

 𝑃(𝑓1, 𝑓2, … , 𝑓𝑁) =  ∑ 𝑃(𝑓1, 𝑓2, … , 𝑓𝑁 | 𝐶 = 𝑐𝑖)𝑃(𝐶 = 𝑐𝑖)
𝐻
𝑖=1    

where 𝑃(𝐶 = 𝑐𝑖) is the prior probability of emotion. 

I build the fern classifier on two benchmark facial expression databases - CK+ 

(Lucey et al., 2010) and EmotioNet (Fabian Benitez-Quiroz et al., 2016) that 

contain both AU and basic emotion labels. 

CK+ involves 123 subjects who are instructed to perform 23 facial expressions 

forming a database of 593 image sequences. Each sequence incorporates the onset 

(the neutral face) to peak formation of the facial expression. The peak frame of the 

facial expression is coded with AU and seven basic emotion labels (anger, 

contempt, disgust, fear, happiness, sadness and surprise) which are further rectified 
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according to the FACS manual (Ekman & Rosenberg, 1997). Overall, CK+ offers 

327 samples with both AU and basic emotion labels for this study. As contempt is 

beyond the scope of this study, I remove samples labelled as contempt, leaving 

309 samples in total for subsequent analysis. 

EmotioNet consists of a million in-the-wild images of facial expressions in 

which 975,000 images are made available to the public. Within the released 

database, there are 950,000 images automatically annotated with AUs and AU 

intensities. The remaining 25,000 are manually annotated with AUs by qualified 

coders. A small part of these images (2,479 images) are labelled with one of 16 

compound emotions defined in (Du et al., 2014) based on AU combinations. Since 

this study only considers six basic emotions, I relabelled images according to their 

compound emotion labels. For example, if an image has been annotated as happily 

surprised, I categorize it into both happiness and surprise. In total, there are 3,581 

samples available with AU and basic emotion labels. 

CK+ and EmotioNet, covering a wide range of AU-emotion relations, are 

appropriate for statistical analysis. Experimental results demonstrate the proposed 

method is able to give valuable emotion information when only limited AUs are 

available. This function is hence incorporated into the proposed system to assist 

the VR HMD user to understand the other users’ emotions in the virtual world. 

4.7 Results and Analysis 

The proposed system is developed to enable realistic facial expression 

reconstruction for the VR user wearing a HMD. It has been validated on 13 

subjects. Each of the three principal system parts – face embodiment construction, 

facial expression prediction and basic emotions estimation, has been carefully 

evaluated. In the following, I will report experimental results of each part and the 

overall system performance afterwards. 

4.7.1 Face Embodiment Construction  
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Figure 4.9: Realistic face embodiment generation from a single image. The reconstructed face 

shown above has discarded facial expression components. 

 

I evaluate the robustness of this part using face images from various subjects. The 

results are shown in Fig. 4.9. With a single face image of the user, the developed 

system is able to reconstruct a fully textured 3D face and generate vivid AU-based 

blendshapes. 

Since each AU originates from 3D scans of FACS certified actors, the 

generated blendshapes form a solid basis for natural facial expression composition. 

To enable deformation transfer between AU and the neutral face, I remove facial 

expression components from the reconstructed 3D face. 

4.7.2 Facial Expression Prediction  

Predicting facial expressions from dry EMG signals is not easy as the raw signals 

are quite noisy. I thus apply the aforementioned multiple processing steps to clean 

the raw signals. Fig. 4.8 compares the raw EMG signal and the denoised signal. 

EMG signals from channel 2 and channel 4 when collecting data for frown and 

open mouth smile are plotted for illustration. After obtaining clean EMG signals, 

I extract the RMS feature within a 256-msec time segment using Eq. 4.15 (see Fig.  

Neutral            AU1            AU2             AU4  

   AU6            AU12           AU25           AU43 

                      

Input Image Reconstructed 

Face 
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Figure 4.10: Representative RMS values of channel-1 EMG signals of the closed mouth smile. The 

red line indicates the reference RMS level which is used to differentiate facial expression samples 

from neutral samples. The black dashed box indicates noisy facial expression samples that were 

labeled as neutral. 

 

4.8 for example). As the instructional audio track was started manually, there are 

some variability in the time recorded and therefore the data. It also had a very short 

time delay to make or stop the facial expression once the subject heard the prompt 

tone. Therefore, it is infeasible to accurately annotate the RMS samples with 

correct facial expression labels according to the timestamp. To separate facial 

expression samples from neutral samples, I calculate a RMS threshold - 

𝑚𝑒𝑎𝑛(𝑅𝑀𝑆) + 𝑛 × 𝑠𝑡𝑑(𝑅𝑀𝑆) (shown as the red line in Fig. 4.10) for each EMG 

channel (Hamedi et al., 2011), where 𝑛  is an empirical value set manually 

according to each RMS curve. In my experiment,  𝑛 = 0.25 works well for all tests. 

Samples whose RMS values are above at least one threshold line are annotated 

with the specific facial expression label, while the others are annotated as neutral. 

This process extracts the most significant facial expression samples while filtering 

out samples with insignificant RMS features which were probably caused by the 

distraction of the subject or other noise-related interferences. 

The overall distribution of facial expression RMS samples is listed in Table 

4.1. To balance the neutral and facial expression samples in the data set, I randomly 

select the same number of neutral samples as the facial expression samples for 

each facial expression of each subject. I conduct two experiments to validate the  

Noisy 

Facial Expression 

Samples 
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Table 4.1: The distribution of labelled facial expression RMS samples. 

 CMS EC FW FR OMS 

Sample 

Number 
   2061    2416    1940    2483    1853 

CMS: closed mouth smile                EC: eye closure               FR: frown                        

FW: forehead wrinkle                      OMS: open mouth smile 

 

accuracy of facial expression prediction from RMS features. For both experiments, 

I perform max-min normalization for all the RMS features of the data using the 

max and min RMS values of the training data (Halaki & Ginn, 2012). The max 

and min RMS values are chosen for each EMG channel and each facial expression. 

First, I use the whole dataset and randomly select 80% data for training and the 

left 20% data for testing (Hamedi et al., 2015, 2016). The LS-SVM with the RBF 

kernel is adopted for the target multi-class classifier. 10-fold cross validation is 

applied to select the hyper-parameters 𝐶 and 𝑔𝑎𝑚𝑚𝑎 which are set as 2 and 32 

respectively in my experiment. The classification accuracy on the whole testing 

set is 86.77%. I also calculate the classification accuracy for each subject or each 

facial expression in the testing set (see E1 in Table 4.2). The average classification 

accuracy across subjects is 86.27% with a standard deviation of 0.0644. The 

average classification accuracy across expressions is 84.74% with a standard 

deviation of 0.1867. 

To further validate the generality of the facial expression classifier to EMG 

signals from new subjects, I apply the leave-one-out validation. Specifically, I 

leave one subject’s data for testing while using the data from the other subjects for 

training. I repeat the same process for each subject, which results in 15 different 

classifiers. The performance of the classifier is shown in E2 in Table 4.2. The mean 

classification accuracy for 15 classifiers is 75.8% with a standard deviation of 

0.1033. To validate the effectiveness of the EMG signal denoising step and the 

RMS feature, I conduct the same experiment as in E2 on denoised EMG signals 

and RMS features extracted from raw EMG signals. When the denoised EMG 

signals are fed directly into the classifier, the classification accuracy declines  
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Table 4.2: Facial expression recognition accuracy from RMS features. 

Classification Accuracy 

 E2 E1 

CMS EC FW FR OMS ALL ALL 

S1 0.16 0.24 0.96 1.00 0.01 0.60 0.73 

S2 0.89 0.45 0.97 0.99 0.43 0.77 0.89 

S3 0.28 0.77 0.98 1.00 0.66 0.74 0.88 

S4 0.86 0.43 0.96 1.00 0.16 0.73 0.84 

S5 0.42 0.62 0.95 0.82 0.86 0.68 0.94 

S6 0.75 0.85 0.97 1.00 0.16 0.82 0.94 

S7 0.81 0.84 1.00 1.00 0.24 0.76 0.78 

S8 0.55 0.93 0.99 1.00 0.74 0.87 0.90 

S9 0.38 0.96 0.99 0.80 0.65 0.82 0.89 

S10 0.30 0.97 0.99 1.00 0.92 0.87 0.91 

S11 0.97 0.88 1.00 1.00 0.28 0.80 0.91 

S12 0.87 0.32 0.98 1.00 0.18 0.70 0.78 

S13 0.65 0.47 0.73 0.59 0.54 0.51 0.79 

S14 0.71 0.91 0.99 0.98 0.71 0.87 0.90 

S15 0.95 0.87 0.97 1.00 0.23 0.83 0.86 

E1 0.79 0.91 0.99 0.99 0.55   

Note: 1) E1-E2 represent experiments; 2) The results of E2 are in orange and 

the results of E1 are in purple. 3) S1-S15 represent subjects; 4) ALL is the 

classification accuracy on all the testing data, including neutral samples. 

 

significantly, with a mean of 20.74% and a standard deviation of 0.0316.  The 

results also show that facial expressions cannot be accurately predicted from RMS 

features extracted from raw EMG signals (mean: 25.16%, standard deviation: 

0.2016). 

As shown in Table 4.2, both experiments show high classification accuracy for 

FW and FR, while lower accuracy for CMS and OMS. It can also be found that 

the classification accuracy varies from one subject to another. For example, S8 and 

S10 achieve high accuracy in both experiments, while S1 and S13 have a much 

lower recognition rate, even when their data was included in training in E1. This 

is probably due to EMG signals from some subjects are noisier or contain patterns 

that are quite different from EMG signals of the other subjects. This can be 

remedied by collecting data from more subjects and improving the data capture 

process. 
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4.7.3 Basic Emotion Estimation 

All facial expressions involved in this study have been coded in AUs, providing a 

detailed and anatomic description of facial expressions. AUs describing the 

physical appearance of facial display offer valuable clues for predicting six basic 

emotions. The developed system outputs AUs – AU1, AU2, AU4, AU6, AU12, 

AU25 and AU43 focusing on the ESFPs, which makes previous rule-based 

methods intractable. To get an insight into the HMD user’s internal emotional 

states, I build the relationship between AUs and six basic emotions with a 

probabilistic model – the fern classifier. Following Bayes’ theorem, the model 

estimates the posterior probability of a basic emotion when observing a specific 

group of AUs. 

The probabilistic model is learned from two benchmark FACS-annotated 

facial expression databases – CK+ (Lucey et al., 2010) and EmotioNet (Fabian 

Benitez-Quiroz et al., 2016). There are only two samples observing AU43 in CK+, 

while AU43 is not used when defining compound emotion category in EmotioNet. 

I hence discard AU43 when estimating basic emotions. 

As shown in Table 4.3, the number of samples belonging to each emotional 

category varies from each other. If the prior probability of an emotion is regarded 

as the proportion of samples belonging to it, the posterior probability of emotion 

given an AU combination will become the proportion of samples coded in the 

current AU combination within the whole database (see Eq. 4.17). This will cause 

large deviations when calculating probabilities. I therefore assumed that basic 

emotions have identical prior probabilities. 

After applying Eq. 4.17, the probabilities of basic emotions given the 

occurrence of AU for both databases are obtained (see Table 4.3). Table 4.3 

includes observed combinations of AUs that are used to define facial expressions 

in this work. From the results, I found the following phenomena: 

1) Emotions can be expressed in various forms of facial expressions. As can 

be seen from the table, when none of AUs specified in this work occur, emotions  
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Table 4.3: The probability of emotion given AUs learned from CK+ and EmotioNet. 

CK+ (309) 

AU code 

AU25_AU12_AU6

_AU4_AU2_AU1 

Anger 

(45) 

Disgust 

(59) 

Fear 

(25) 

Happiness 

(69) 

Sadness 

(28) 

Surprise 

(83) 

'000000' 0.0655 0.8990 0 0 0 0.0355 

'000001' 0 0 0 0 1 0 

'000011' - AU1, 2 

(3) 
0 0 0 0 1 (3) 0 

'000100' - AU4 

(54) 
0.6839 (35) 0.2533 (17) 0 0 0.0628 (2) 0 

'000101' 0 0 0.0618 0 0.9382 0 

'000111' 0 0 0.2188 0 0.7183 0 

'001000' 0.7387 0.1409 0 0.1204 0 0 

'001100' 0.2875 0.7125 0 0 0 0 

'010100' 1 0 0 0 0 0 

'011000' - AU6, 12 

(2) 
0 0.5391 (1) 0 0.4609 (1) 0 0 

'100000' 0 0.3897 0 0.3332 0 0.2770 

'100011' 0 0 0.1471 0 0 0.8529 

'100100' 0 0.3610 0.6390 0 0 0 

'100101' 0 0 1 0 0 0 

'100111' 0 0 0.9300 0 0 0.0700 

'110000' 0 0.3690 0 0.6310 0 0 

'111000' - AU6, 

12, 25 (64) 
0 0 0 1 (64) 0 0 

'111101' 0 0 1 0 0 0 

EmotioNet (3,581) 

 
Anger 

(289) 

Disgust 

(977) 

Fear 

(150) 

Happiness 

(1536) 

Sadness 

(359) 

Surprise 

(270) 

'000000' 0 1 0 0 0 0 

'000100' - AU4 

(760) 

0.3268 

(173) 

0.1274 

(228) 
0 0 

0.5459 

(359) 
0 

'100011' 0 0 0.4348 0 0 0.5652 

'100100' 0.4099 0 0.3404 0 0 0.2496 

'100101' 0 0 1 0 0 0 

'110000' 0 0.4274 0 0.5726 0 0 

'110011' 0 0 0 0.1495 0 0.8505 

Note: 1) AU code: ‘1’ indicates the AU occurs, ‘0’ indicates the AU doesn’t occur; 2) the number in parentheses 

denotes the amount of samples belonging to the category 

 

such as disgust, anger, surprise can still be observed. On the other side, a 

combination of AUs can describe several basic emotions. For instance, in CK+, 

AU6 and AU12 indicate both disgust and happiness, while the results of 

EmotioNet show that AU4 and AU25 probably can be observed for anger, fear and 

surprise. Most combinations of AUs used in this work, namely AU6,12, AU1,2 

and AU4 etc. are not discriminative for predicting an emotion category. 
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2) A few AUs or combinations of AUs show stronger links to emotions than 

the others. In CK+, AU1,4 indicates a high probability (0.9382) of sadness, while 

AU6,12,25 indicates a high probability (1.0) of happiness. In both CK+ and 

EmotioNet, AU4 normally indicates a negative emotion, such as anger, disgust and 

sadness. It can be found that the specific probability of each emotion when AU4 

occurs differs between CK+ and EmotioNet. It is mainly due to the variety of facial 

expressions of emotions, which leads to a single database only covering a limited 

range of AU-emotion relationships. This also explains the first phenomena. Some 

other AUs or AU combinations, e.g. AU25 can be found in all six basic emotions. 

To further verify the second phenomena, I calculate the discriminative power 

of each AU to an emotion (Velusamy et al., 2011): 

 𝐷 = 𝑃(𝐴𝑗|𝐸𝑖) − 𝑃(𝐴𝑗|𝐸𝑖̅)  (4.18) 

where 𝑃(𝐴𝑗|𝐸𝑖) is the probability of observing AU 𝐴𝑗  when emotion 𝐸𝑖  occurs, 

and  𝑃(𝐴𝑗|𝐸𝑖̅)  is the probability of observing 𝐴𝑗  when 𝐸𝑖  doesn’t occur. 𝐷 

measures the relationship between the AU and the emotion. 𝐷  close to −1 

represents a strong negative correlation, while 𝐷 close to 1 represents a strong 

positive correlation. I generate a correlation matrix of AUs and emotions expressed 

with the discriminative power 𝐷 from CK+. Each 𝐷 is normalized across all the 

AUs for each of the emotions. The original relation matrix contains 35 AUs and 7 

emotions. I remove most matrix components while only keeping AUs and six basic 

emotions studied in this work. As shown in Fig. 4.11, AU1 associates closer to 

fear, sadness and surprise, while AU6 and AU12 have a distinctive connection 

with happiness. AU4 shows a closer relation with anger, fear and sadness. AU2 

links closely to surprise. Consequently, the correlation matrix demonstrates the 

emotional saliency of the studied AUs and is consistent with the previous 

probabilistic model.  

Overall, the above probabilistic analysis takes a deep insight into the 

relationship between AUs and six basic emotions. The built probabilistic model 
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Figure 4.11: Correlations between AUs and basic emotions. The value close to 1 represents a strong 

positive correlation, while the value close to -1 represents a strong negative correlation. 

 

can provide useful emotional information when only limited AUs are available. 

4.7.4 Full System Evaluation 

I first test the system with the prototype of Faceteq which was used to collect the 

EMG data of specified facial expressions. Since the prototype can be used 

independently from a VR HMD and hence doesn’t occlude the user’s principal 

face region, it provides direct comparisons between the reconstructed 3D facial 

expression and the ground truth. Example results are shown in Fig. 4.12. The facial 

sensing hardware can detect the user’s facial expression through eight integrated 

EMG sensors. The facial expression is then mapped onto a realistic face 

embodiment of the user.  

 

Figure 4.12: Facial expressions sensed and reconstructed with the proposed system when the user 

was wearing the Faceteq prototype. 

         AU4              AU1, 2             AU43              AU6, 12       AU6, 12, 25 
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Figure 4.13: Facial expressions sensed and reconstructed with the proposed system when the user 

was wearing the VR HMD integrated with the Faceteq. 

 

Then, I do validation tests with the Faceteq and the VR HMD. As the EMG-

based facial sensing interface has been designed to softly enfold the wearer’s face, 

the type of HMD will not affect the scale of the EMG data. During the test, each 

subject was asked to perform facial expressions specified in this study when 

wearing a commercial VR HMD attached with the Faceteq hardware. Fig. 4.13 

shows example results. With the learned fern classifier, a probabilistic model 

between AUs and six basic emotions can be further obtained, which is important 

to VR applications. 

As shown in Fig. 4.14, existing systems apply different hardware and avatars 

to capture and exhibit the user’s facial performance. This makes it difficult to 

compare systems on quantitative metrics such as the 3D facial expression 

reconstruction accuracy. Moreover, those systems are developed for capturing 

different facial expressions and emotions, which also prohibits the comparison on 

the expression/emotion recognition rate. As a result, visual comparison is the only 

feasible way at this stage. Whereas it has limitations, it can intuitively reflect the  

      AU4            AU1, 2            AU43          AU6, 12      AU6, 12, 25 



  Chapter 4 

92 
 

 

                                            (Suzuki et al., 2017)                   (Olszewski et al., 2016) 

 

                                             (H. Li et al., 2015)                         The Proposed System 

Figure 4.14: Comparison with other similar systems from (H. Li et al., 2015; Olszewski et al., 2016; 

Suzuki et al., 2017). Avatars in (H. Li et al., 2015) and (Olszewski et al., 2016) capture the user’s 

facial movements with a clumsy RGB/RGBD camera attached on the VR HMD, while not 

preserving the user’s facial identity and texture. (Suzuki et al., 2017) simply uses a 2D cartoon 

image to represent the user’s face. 

 

visual quality of the captured facial expression. Fig. 4.14 visually compares the 

proposed system with three other representative systems in this field. It can be 

found that the proposed system can reconstruct a more realistic 3D face 

embodiment for the VR HMD user and doesn’t require additional cameras to 

capture the user’s facial movements. 

4.7.5 Limitations 

Since the biometric data collection step is labor-intensive and expensive, this work 

focuses on specific AU combinations on the ESFP. Future work could be extended 

to the detection of various AUs independently from EMG signals from a larger 

biometric database involving i) a wider selection of facial expression and ii) 

additional sensor inputs such as from an eye tracker. Then, any combination of 

these AUs obtained would be able to cover a wider range of facial expressions of 

emotion. Furthermore, the current system does not encode the intensity of facial 

expression. Both problems can be alleviated by collecting EMG data for single 

AUs with different scales of intensity. The current system mainly focuses on facial 

expressions displayed on the upper-half face, with the exception of AU12 and 
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AU25 which are sensed from the cheek. As such certain fundamental expressions 

occurring around the mouth area are ignored, in the future, I will also look to infer 

AUs associated with visemes during speech (Meng et al., 2017), such as AU24, 

AU25, AU26 and AU27. 

Restricted by the required EMG signal processing, the system described above 

cannot attain a real-time performance. The original EMG data should be 

partitioned into a series of time sequences for feature extraction. Short sample 

windows lead to bias and variance in feature estimation, while long sample 

windows reduce the system efficiency. In the experiment, I applied a 256-msec 

time window, which means that only about four (3.9) frames can be output from 

the system in a second. This issue could potentially be alleviated by using shorter 

or overlapping time windows, or applying EMG sensors with a higher sampling 

rate. 

The digital embodiment of the VR HMD user output from the proposed system 

is restricted to the frontal face region and still has significant room for 

improvement. A more compelling full head embodiment could be constructed by 

modelling hair (Hu et al., 2015), texture (Saito et al., 2017) and shape details 

(Huynh et al., 2018). 

4.8 Conclusion 

This chapter proposed a method and developed a prototype system that can sense 

and reconstruct the VR HMD user’s 3D facial expression. The applied hardware 

component is portable and compatible with mainstream VR HMDs. It can detect 

facial muscle movements accurately with eight integrated EMG sensors placed on 

the ESFP. With a single face image, the system can reconstruct the user’s fully 

textured 3D face and generate personalized AU-based blendshapes. Specifically, 

the system can capture AU-coded facial movements with integrated EMG sensors 

and a robust classifier learned from the data collected from 15 subjects. It can also 

provide useful emotional information for participants in the virtual world with a 
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novel probability model of AUs and six basic emotions built with the fern classifier. 

I believe the developed system can facilitate a wide range of VR applications, such 

as game, physical therapy and rehabilitation. 

In future, I plan to equip the system with the ability to detect independent AUs 

and its intensity. A significant sized database consisting of AU and corresponding 

EMG signals will be created. I will extend to AUs associated with visemes during 

speech to cover more facial expressions. The system could potentially be improved 

to achieve real-time performance with additional biometric sensors or more 

efficient signal processing methods. Supplementary improvements could involve 

features such as hairs, texture and geometric details for a compelling full-head 

digital embodiment for VR applications. 
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Chapter 5  

A Review on Automated Facial Nerve Function 

Assessment from Visual Face Capture 

Foreword 

After developing robust technical solutions for facial performance capture, the 

primary task becomes to apply and examine those solutions in real-world 

applications. Exploring new application avenues is thus essential and can in turn 

motivate the further development in capture methods. I noticed that existing face 

capture methods are mainly applied in content creation for entertainment, social 

media and human-machine interaction, the applications to facial biometrics for 

medical and health purpose only occupy a very small portion. Inspired by this 

finding, this chapter deeply investigates the largely unexplored problem – 

automated facial nerve function assessment from visual face capture for facial 

palsy management. It comprehensively reviews the principal studies in the field, 

and discusses the merits of existing assessment methods, the challenges and 

potential directions for further improvement. Most importantly, it identifies the 

significant role of monocular face capture approaches such as those developed in 

the previous three chapters in achieving purely automated, objective and accurate 

assessment. New directions of advancing the developed face capture approaches 

are also discussed, e.g. reconstructing and tracking asymmetric 2D/3D facial 

expressions for facial palsy patients.  

The chapter is based on a published journal paper: 

- Lou, J., Yu, H., & Wang, F. Y. (2019). A review on automated facial nerve 

function assessment from visual face capture. IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, 28(2), 488–497. 

I conducted the investigation of the target problem and wrote up the review paper.  
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5.1 Introduction 

Facial palsy is associated with a myriad of functional (A. Fattah et al., 2012) and 

psychosocial problems (Bradbury et al., 2006; Fu et al., 2011; VanSWEARINGEN 

et al., 1998; Walker et al., 2012) that erode foundations of the patient’s health and 

daily life. It generally refers to the weakness of facial musculature innervated by 

the facial nerve. The main obstacle in facial palsy management is the lack of an 

effective tool to objectively assess and document facial nerve function, which is 

crucial to clearly understand the progression or resolution of disease, evaluate the 

outcomes of therapeutic interventions, and make an accurate prognosis and 

appropriate treatment plan. 

A major part of facial nerve function refers to the motor function manifested 

by various facial muscle movements, and is visually observable with clear static 

or dynamic facial signs, e.g. resting symmetry, symmetry of voluntary movement 

and synkinesis. Facial nerve function assessment from these facial signs is hence 

an important means in clinical practice. With ubiquitous visual face capture – 

image/video, it is more widely accessible than those using obtrusive physical 

interventions such as electroneurography (ENoG) and electromyography (EMG). 

This motivated a branch of study (Gerós et al., 2016; Guarin et al., 2018; Z. Guo 

et al., 2017; Hadlock & Urban, 2012; Hsu et al., 2018; Ngo, Chen, et al., 2016; 

O’Reilly et al., 2010; Tzou et al., 2012; T. Wang et al., 2016) in this field to employ 

computational measures on biomedical visual face capture to objectively and 

quantitatively evaluate the facial nerve function. Such a solution is capable of 

automatically quantifying facial nerve function in millimetric precision (Guarin et 

al., 2018; Hadlock & Urban, 2012) or with semantic grades (Banks et al., 2015; 

Committee et al., 2009; House, 1983; Ross et al., 1996; Yanagihara, 1977) based 

on a machine learning model trained on clinician labelled data (Z. Guo et al., 2017; 

O’Reilly et al., 2010; T. Wang et al., 2016). This provides a highly efficient and 

cost-effective means whereby facial nerve function can be appraised in an 

objective manner. With the development of techniques in image processing, 
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computer vision and machine learning, especially those of 2D/3D face tracking 

(Gerós et al., 2016; Ngo, Chen, et al., 2016; Tzou et al., 2012) and feature learning 

(Hsu et al., 2018), the field of automated facial nerve function assessment has 

witnessed promising progress and developed various instruments in recent years. 

However, to date, none of these instruments has gained a wide clinical use. Their 

clinical effectiveness remains a big doubt mainly because of the limited data used 

for method development and validation. Meanwhile, important advancements in 

other areas, monocular 3D face tracking and face image synthesis for example, 

have not yet been fully utilized. 

This study recaps the prerequisite knowledge of the facial nerve function and 

systematically reviews principal studies in automated facial nerve function 

assessment from visual face capture which contains rich physiological information 

(Samad et al., 2017), to provide readers with an overview of this critical research 

field and stimulate new ideas. It discusses existing challenges or problems and how 

they have been tackled so far, and indicates future directions. Particularly, it 

identifies the importance of monocular face capture approaches in solving the 

assessment problem, and discusses directions to further improve those approaches’ 

performance. This introduces a promising avenue to apply and develop the face 

capture approaches proposed in the previous chapters. To the best of my 

knowledge, this is the first study of its kind to be reported so far, which is believed 

to benefit multiple groups of people, including researchers in visual face capture 

and clinical practitioners. 

5.2 Review Methods 

A systematic review of the English language literature published from 1977 to 

2019 was performed from the resources of PubMed and Google Scholar according 

to agreed inclusion and exclusion criteria: Inclusion – 1) facial nerve function 

assessment from face images/videos using computational measures; 2) 2D/3D face 

analysis from visual face capture, including tracking, reconstruction, synthesis and 
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feature learning. Exclusion – 1) assessment from non-visual face capture, e.g. 

electroneurography and electromyography; 2) manual or subjective assessment 

methods; 3) non-English language. 

Preliminary search was performed using key terms such as “facial”, “nerve”, 

“function”, “assessment”, “grading”, “palsy”, “paralysis”, “automated”, 

“automatic”, “computer”, “vision”, “machine”, “learning”, “image”, “video”, 

“processing”. These terms were manually grouped as key words for the search of 

titles which were then screened for potential relevance. 86 titles were searched and 

47 articles were retrieved after carefully examining their abstracts and main 

contents with regard to relevance. Applying the same selection criteria, the 

searching scope was then extended to the bibliographies of all the selected 

publications for relevant reports that were not covered by database searching. This 

process yielded 15 more articles. The articles were grouped in terms of three 

aspects: 1) what kind of visual face capture was used such as still face image or 

dynamic facial expression image sequence, RGB or RGBD image; 2) whether 

provided quantification of static, dynamic and synkinetic facial features; 3) 

whether predicted semantic grades using machine learning techniques. These three 

aspects also grounded the subsequent categorization of different automated 

assessment methods. 

In addition, 15 more articles that introduce facial nerve function, facial palsy, 

their clinical assessment, and clinical facial nerve grading scales were reviewed 

and summarized to briefly introduce the medical background of this review. 

5.3 Facial Nerve Function 

Facial nerve function represents a group of fundamental functions performed by 

the facial nerve - the seventh paired cranial nerve or simply CN VII (Gupta et al., 

2013). It mainly consists of: 1) Motor functions, supplying the muscles of facial 

expression, the posterior belly of the digastric, the stylohyoid and the stapedius 

muscles with motor fibres. 2) Sensory functions, providing special taste sensation  
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Figure 5.1: Typical symptoms of facial palsy. 

 

from the anterior 2/3 of the tongue and general sensation from a small area around 

the concha of the auricle. 3) Parasympathetic functions, innervating a portion of 

head and neck glands, including submandibular and sublingual salivary glands. 

Since the facial nerve is principally composed of motor fibres, facial nerve 

function generally refers to the motor function manifested by various facial muscle 

movements, thus can be effectively evaluated from outer facial features without 

any obtrusive physical intervention. 

5.3.1 Relationship with Facial Palsy 

Once the facial nerve is damaged, the aforementioned functions will be partially 

or completely lost, hence causing paralysis to the affected side of the face, which 

is also known as facial palsy. Typical symptoms of facial palsy (see Fig. 5.1) are 

inability to frown, reduced elevation of the eyebrow and closure of the eye, loss of 

blinking and squinting control, droopy lower eyelid, decreased tearing, dropping 

of the mouth to the affected side, inability to whistle or blow, altered taste, etc. 

Facial palsy patients may subsequently suffer from various sequelae (Peitersen, 

2002), including hyperkinesis, synkinesis and atrophy. All of these conditions 

could result in marked facial disfigurement, interrupt basic human function such 

as eating, drinking and speaking. The functional disability or impairment may 

further lead to a wide range of psychosocial problems (Bradbury et al., 2006; Fu 

et al., 2011; VanSWEARINGEN et al., 1998; Walker et al., 2012). Investigations 

carried out in Japan, UK and USA show that only the annual incidence of Bell’s 

palsy (a typical facial palsy type) is 20 to 30 per 100,000 population (Newadkar et 

Droopy mouth 

corner, dry mouth, 

impaired taste 

Droopy eyelid, 

dry eye or 

excessive tearing 
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al., 2016; Peitersen, 2002). It thus calls for immediate and effective action to 

understand and alleviate the suffering of such a large group of affected people, in 

which the primary step is to perform an accurate and efficient facial nerve function 

assessment which is a prerequisite for facial palsy diagnosis and therapy (Heaton 

et al., 2013; Jayatilake et al., 2013). 

5.3.2 Assessment with Facial Nerve Grading Scales 

To date, clinical facial nerve function assessment still relies on clinician to 

subjectively evaluate features such as resting symmetry, symmetry of voluntary 

movement and synkinesis. Targeting at providing a more uniform and accurate 

method for assessing facial nerve function, a variety of facial nerve grading scales 

such as House-Brackmann (House, 1983), Sunnybrook (Ross et al., 1996), 

Yanagihara (Yanagihara, 1977), FNGS 2.0 (Committee et al., 2009) and eFACE 

(Banks et al., 2015) have been developed over the years. These scales divide the 

degree of facial nerve damage into a series of discrete levels based on some 

rigorously-validated measures, including facial symmetry at rest, differential 

voluntary facial muscle movement, and secondary features such as synkinesis. 

Clinicians summarized the ideal characteristics of a facial nerve grading scale with 

current technologies: 1) perform regional scoring of facial nerve function; 2) 

conduct static and dynamic measures; 3) assess secondary sequelae such as 

synkinesis; 4) generate reproducible results with low interobserver and 

intraobserver variability; 5) sensitive enough to track changes over time and 

following interventions; 6) convenient for clinical use. A 2015 systematic review 

(A. Y. Fattah et al., 2015) found only Sunnybrook (see Table 5.1) fulfilled all 

criteria among previous grading scales. 

Although sophisticated grading scales (Banks et al., 2015) are being developed 

for clinical applications and the discussion (Niziol et al., 2015) over the clinical 

effectiveness of the scales continues, all these grading scales are limited by the 

subjective nature of clinician-based assessment and have inherent problems such 

as labor-intensive, time-consuming and might yield low reproducible results with  
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Table 5.1: Sunnybrook grading scale. 

 

interobserver and intraobserver variability (A. Y. Fattah et al., 2015; Niziol et al., 

2015). As an alternative, automated instruments enabling cost-effective, efficient, 

objective and quantitative facial nerve function assessment from ubiquitous visual 

face capture are invaluable and highly expected. 

5.4 Automated Assessment from Visual Face Capture 

As mentioned above, most facial nerve dysfunction is visually observable with 

clear static or dynamic facial signs, which motivated a lot of studies on automated 

facial nerve function assessment from biomedical visual capture of the face. A 

typical paradigm of such an instrument is illustrated in Fig. 5.2. It first uses an 

ordinary camera to take pictures of the patient’s face when it is at rest or 

performing specified facial expressions. Then, computational techniques (Guarin 

et al., 2018; Z. Guo et al., 2017; Hsu et al., 2018; T. Wang et al., 2016) in various 

areas such as computer vision, image processing and machine learning are 

employed to objectively and quantitatively assess the facial nerve function within 

a certain feature space. The resulting solution can significantly reduce the 

subjective bias in assessment and would be easily ported to ubiquitous mobile  

Measure Description Score 

Resting Symmetry 

(compared to normal side) 

0 – normal, 1 – narrow, wide or eyelid surgery  Eye  

0 – normal, 2 – absent, 1 – less pronounced or more 

pronounced  

Cheek  

(naso-labial fold) 

 

0 – normal, 1 – corner dropped or corner pulled 

up/out  
Mouth 

 

Symmetry 

of Voluntary Movement 

(degree of muscle 

excursion compared to 

normal side) 

1 – unable to initiate movement/no movement 

2 – initiated slight movement 

3 – initiated movement with mild excursion 

4 – movement almost complete 

5 – movement complete 

Forehead Wrinkle  

Gentle  Eye Closure  

Open Mouth Smile  

Snarl  

Lip Pucker  

Synkinesis 

(degree of involuntary 

muscle contraction) 

0 – none: no synkinesis or mass movement 

1 – mild: slight synkinesis 

2 – moderate: obvious but not disfiguring synkinesis 

3 – severe: disfiguring synkinesis/gross mass 

movement of several muscles 

Forehead Wrinkle  

Gentle  Eye Closure  

Open Mouth Smile  

Snarl  

Lip Pucker  

Resting Symmetry Score (RSS) = score(eye, cheek, mouth) x 5 

Voluntary Movement Score (VMS) = score(facial expressions) x 4 

Synkinesis Score (SS) = score(facial expressions) 

Composite Score = 

VMS - RSS - SS 
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Figure 5.2: Pipeline of the automated facial nerve function assessment system. 

 

devices such as smartphones and tablets, hence has promising applicability in 

facial palsy diagnosis and therapy. In the following, I will systematically review 

the principal studies in this important area along two main dimensions – 

computational measures and assessment outcomes. According to the modality of 

the input data, computational measures can be further divided into 2D measures 

and 3D measures. 

5.4.1 Computational Measures in 2D 

Numerous computational measures on facial palsy images have been developed. 

They are all based on clinical measurement of facial nerve function, mainly 

including evaluation of facial symmetry at rest, facial movements and secondary 

deficits such as synkinesis (Kleiss et al., 2013). Two fundamental categories of 

computational measures are static measures (Hadlock & Urban, 2012; Song et al., 

2017) and dynamic measures (Guarin et al., 2018; He et al., 2009), whereby facial 

resting symmetry and muscle movements are principally evaluated. 

1) The Role of Facial Landmarks 

A large portion of computational measures are built on top of a group of facial 

fiducial points called landmarks to quantify facial symmetry and movements. The  

Landmarks         LBP            Gabor      Deep Learning  

Feature Space  

Computational Measures  
Numerical computations on face features, e.g. calculate the landmark 

trajectory during facial movements)  

Quantification of Facial Nerve Function 
(Resting symmetry, symmetry of voluntary movement, synkinesis or 

semantic facial nerve grade) 
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Figure 5.3: Facial landmarks applied in (Burres, 1985). 

 

 

Figure 5.4: Typical distance, angle and area among landmarks (Hontanilla & Aubá, 2008). 

 

pioneer work of Burres (Burres, 1985) calculated 13 distances among ten 

landmarks on faces at rest and during expressions to evaluate facial motor function. 

The points (see Fig. 5.3) were manually marked on the face with a grease pencil, 

and the distance was gauged with a hand-held caliper. This inefficient process was 

then significantly improved by applying the reflective marker (Jorge Jr et al., 2012; 

Linstrom, 2002; Miyazaki et al., 2000),  image-editing software (Bray et al., 2010; 

Hadlock & Urban, 2012), image processing (Barbosa et al., 2016; Dong et al., 

2008) and computer vision techniques (Guarin et al., 2018; Z. Guo et al., 2017; T. 

Wang et al., 2014, 2016) to automate landmark placement and distance calculation 

on a digitized face photograph. Evaluation of the angle and area among landmarks 

is also incorporated to augment the facial function quantification (see Fig. 5.4)  

SO SO 

F F 

L 

Na 

Mid 

M M 

Ns 

IO IO 

Mc Mc 
Lc Lc 

SO - on the most lateral portion of 

the orbital rim, above the pupil; 

F - 2cm superior to point SO; 

IO - placed in the most inferior fold 

of orbital skin, directly below the 

pupil;  

M - the corner of the mouth;  

Mid - the midline opposite the 

nasal spine at the center of the 

mouth;  

Na – Nasion; 

Lc - Lateral canthus; 

Mc - Medical canthus. 
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Distance (red) 

{1, 5} - Forehead distance; 

{14, 16} - Palpebral distance;  

{5, 14} - Cheek distance. 

 

Area (black) 

{1, 3, 5, 7} - Forehead area; 

{10, 12, 5, 8, 14} - Cheek area; 

 

Angle (yellow) 

{1, 3, 5} - Forehead angle;  

{10, 14, 16} - Palpebral angle; 

{7, 8, 10} - Nasolabial angle;  

{5, 14, 15} - Smile angle. 
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Figure 5.5: Landmark position deviations for measuring the resting asymmetry (Hadlock & Urban, 

2012). Red (paralyzed side) and black (normal side) dots represent landmarks on top edge of 

eyebrow in mid-pupillary line (MPL), margin of upper eyelid in MPL, margin of lower eyelid in 

MPL, alar base, mid-upper lip position, and oral commissure position. Horizontal black and red 

lines indicate height of these landmarks. The vertical lines represent facial midline (based on 

bisection of the inter-pupillary line) (black) and the actual center of the philtrum (red). A - Resting 

brow ptosis, B - Superior eyelid malposition, C - Inferior eyelid malposition, D - Nasal base ptosis, 

E – Mid-upper lip ptosis, F - Oral commissure malposition, G - Philtrum deviation. 

 

(Bray et al., 2010; Dulguerov et al., 2003). This initiates a basic measurement 

which is sensitive to facial abnormalities of spatial (topological) nature and has 

been widely applied in automated facial nerve function assessment. Whereas 

various facial landmarks have been proposed in subsequent studies (Barbosa et al., 

2016; Bray et al., 2010; Dong et al., 2008; Dulguerov et al., 2003; Guarin et al., 

2018; Z. Guo et al., 2017; T. Wang et al., 2014, 2016), there is a simple rule: the 

landmarks of interest are located close to the facial area responsible for facial 

movements, or on anatomical points. For example, as shown in Fig. 5.3, SO 

(eyebrow) and IO (lower lid) for eye closure, M and Mid for smile, Lc is on lateral 

canthus and Mc is on medical canthus. 

2) Static Measures 

The resting asymmetry is a result of muscle weakness on one side of the face. 

Typical symptoms (see Fig. 5.5) are droopy lower eyebrow and lower eyelid, the 

A 

B 

C 

D 

E 

F 

Droopy lower eyelid 

The mouth corner 

pulls down 

Less pronounced 

nasolabial fold 
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mouth corner droops, and the depth or orientation of the nasolabial fold alters. 

Most of these features can be effectively quantified with vertical deviations of 

landmark positions compared against the normal side of the face, e.g. brow ptosis, 

superior eyelid malposition, inferior eyelid malposition, nasal base ptosis, mid-

upper lip malposition, oral commissure malposition, and philtrum deviation 

toward the healthy side (Hadlock & Urban, 2012). Fig. 5.5 demonstrates such 

deviations with paired red and black lines on a paralyzed face in repose. Difference 

between landmark-based triangle areas (Dulguerov et al., 2003) and angle degrees 

(Bray et al., 2010) from the two sides of the face is also frequently used in 

quantifying the asymmetry. All these measures are initially represented in image 

pixels, which could be further scaled by the inter-pupillary distance (the average 

human iris diameter is 11.77mm (Rüfer et al., 2005)) to allow “real-life” 

millimetric measurements on the image. 

However, landmarks can hardly depict the contrast between the nasolabial 

folds in two sides of the face, which exhibits non-pronounced variations in 

topology. To address this problem, measures upon image pixel intensities could be 

adopted, e.g. distances between pixel intensities (G. Cheng et al., 2010; S. Wang 

et al., 2004; S. Wang & Qi, 2006) or mediate visual texture descriptors such as 

Local Binary Pattern (LBP) histogram features (He et al., 2009) and circular Gabor 

features (Ngo, Seo, et al., 2016) from two sides of the face. 

3) Dynamic Measures 

Evaluation of facial movements evoked by voluntary muscle contraction lays the 

basis of almost every facial nerve function assessment instrument. Despite the 

nearly limitless ways in which humans may move the muscles of facial expression, 

typical attempted movements critical in facial function and communication are 

frequently evaluated: forehead wrinkle, eye closure, nose wrinkle, smile and lip 

pucker (Burres, 1986; Dulguerov et al., 2003; Hadlock & Urban, 2012) (see Fig. 

5.6). 
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Figure 5.6: Typical facial expressions involved in evaluation of voluntary movement. 

 

Photographs of the face in repose and with facial expressions, or videos of the 

face performing facial expressions are normally required and analyzed. Similar 

with the resting symmetry, the symmetry of voluntary muscle movement can also 

be efficiently measured using landmarks. Generally, changes lying in difference 

between landmark-based line distances (Burres, 1986; Hadlock & Urban, 2012; 

Kim et al., 2015) (or triangle areas (Azoulay et al., 2014; Z. Guo et al., 2017), 

angle degrees (Bray et al., 2010; Guarin et al., 2018)) introduced in static measures 

between rest and maximum movements are first gauged to quantify the muscle 

excursion. Then, the symmetry of voluntary movement is denoted as deviations 

between quantified muscle excursions on two sides of the face. Secondary defects 

such as synkinesis resulting from abnormal activation of muscles during 

expression could be measured in the same way as those mentioned above (Kleiss 

et al., 2013). Instead of just factoring in two states (neutral and peak) during facial 

movement, a few measures (Gerós et al., 2016; Miyazaki et al., 2000) are based 

on the trajectories (position over time) of facial landmarks. They can not only 

appraise abnormalities of spatial nature, but also assess temporal characteristics 

such as the velocity and moving direction. 

As discussed in static measures, an inherent deficiency of landmark-driven 

measures is that they are insensitive to abnormality with obscure topological 

features such as changes in the nasolabial fold. The deficiency will be magnified 

in voluntary movement symmetry evaluation. As the zygomaticus muscle 

contracts during smiling, the nasolabial fold commonly deepens a lot on the normal 

side, while it keeps almost unchanged on the affected side. This contrast manifests 

clear evidence of asymmetry, thus should not be excluded. To this end, analogous 

Forehead Wrinkle     Eye Closure        Nose Wrinkle           Smile                Lip Pucker 



Chapter 5  

107 
 

measures (He et al., 2009; McGrenary et al., 2005; Meier-Gallati et al., 1998; Ngô 

et al., 2016; Ngo, Seo, et al., 2016; T. Wang et al., 2014) driven by pixel intensities 

as those used in static measures could be applied. A simple solution is to perform 

a subtraction between images obtained at rest and during facial movement, then 

compare the luminance changes of a specific paretic area with that of the healthy 

side (McGrenary et al., 2005; Meier-Gallati et al., 1998). Such kind of methods 

however is sensitive to illumination changes, which is restricted to environment 

with controlled lighting. To cross this constraint, some studies resorted to robust 

visual texture descriptors (He et al., 2009; Ngô et al., 2016; Ngo, Seo, et al., 2016; 

T. Wang et al., 2014). He et al. (He et al., 2009) employed the multi-resolution 

LBP (MLBP) on temporal-spatial domain to extract the motion features from each 

region of the face. Then they assessed the symmetry of facial motion by the 

Resistor-Average Distance (RAD, a distance measure between two probability 

distributions that is closely related to the Kullback-Leibler distance) between 

MLBP features. NGO et al. further extended the facial texture analysis from spatial 

domain to frequency domain by using Gabor filters (Ngô et al., 2016), circular 

Gabor filters (Ngo, Seo, et al., 2016). More recent studies (Hsu et al., 2018; Sajid 

et al., 2018) turned to deep learning methods such as convolutional neural 

networks (CNNs) which have revolutionized the visual imagery analysis to extract 

high-level features from the face image. The extracted features are supposed to 

embed the most prominent image patterns probably including the facial 

abnormality into a compact numerical vector. A major concern about this method 

is that deep learning always requires a huge amount of data (typically more than 

10K images) for training. Creating such a large-scale dataset is extremely 

expensive and time-consuming, let alone it might involve intractable ethics 

problems as the data exposes the privacy of patients. 

As facial movements are driven by muscles located in specific facial areas (this 

does not apply to synkinesis which is a kind of abnormal muscle activation), 

regional analysis is important in measuring facial motions. For example, smiling 

only accounts for facial movement around the mouth region. Therefore, it is 
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beneficial to restrict computational measures within facial regions that are 

responsible for the corresponding facial movements (Barbosa et al., 2016; G. 

Cheng et al., 2010; Sawai et al., 2012; T. Wang et al., 2014). The face can be 

divided into regions according to facial landmarks (T. Wang et al., 2014) or using 

other image segmentation techniques (Barbosa et al., 2016; G. Cheng et al., 2010). 

5.4.2 Computational Measures in 3D 

An inherent shortcoming of 2D measures is that they cannot deal with out-of-plane 

facial movement due to the anatomical nature of skull. Gross et al. (M. M. Gross 

et al., 1996) found that 2D analysis underestimates 3D facial motion amplitudes 

by up to 43%. Mendes et al. (Mendes et al., 2014) measured the cornea surface on 

a 3D eyeball model created with a CAD (computer-assisted design) software, 

which was identified to be far more accurate than calculating only the 2D distance 

between the two eyelids for corneal exposure measurement. 3D analysis is hence 

crucial for more accurate assessment of complex facial function. 

1) Landmark-based Measures 

Many existing 3D measures (Gaber et al., 2015; Gerós et al., 2016; Hontanilla & 

Aubá, 2008; Katsumi et al., 2015; Mehta et al., 2008; Ngo, Chen, et al., 2016; Tzou 

et al., 2012; Vinokurov et al., 2015) are built upon the analysis of 3D facial 

landmark’s trajectory during standardized facial movements. Distances, angles 

and surface between 3D landmarks on the normal side of the face are typically 

calculated and compared with that on the paralyzed side (Hontanilla & Aubá, 

2008). During this procedure, a 3D motion capture system is employed to 

reconstruct and track the 3D facial geometry. Such systems were usually 

established with a multi-view camera setup (Hontanilla & Aubá, 2008) (see Fig. 

5.7) or a mirror structure (Tzou et al., 2012). These systems required a tedious 

calibration process and invasive reflective markers attached on the subject’s face 

to track 3D facial landmarks. Mehta et al. (Mehta et al., 2008) applied a different 

system called 3D VAS which was calibration free and was able to track a dense  
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Figure 5.7: Multi-camera setup (Hontanilla & Aubá, 2008), RGB-D cameras (Gaber et al., 2015; 

Vinokurov et al., 2015) and 3D hand-held scanner (Özsoy et al., 2019) used in 3D facial motion 

capture systems. 

 

3D shape in real-time. However, the 3D VAS required color fringe patterns to be 

projected on the face during motion capture. It either didn’t provide an efficient 

means to track facial landmarks which had to be manually annotated frame by 

frame. A few recent studies (Gaber et al., 2015; Gerós et al., 2016; Katsumi et al., 

2015; Vinokurov et al., 2015) developed more compact and cost-effective 3D 

motion capture systems which only comprised a portable RGB-D camera (see Fig. 

5.7). Meanwhile, advanced computer vision facial tracking algorithms were 

incorporated to further automate the 3D capture system (Gerós et al., 2016; Tzou 

et al., 2012; Vinokurov et al., 2015). 

2) Surface-based Measures 

The landmark trajectory only outlines the facial movement in a coarse manner, so 

it is unable to depict more in-depth morphological changes in facial soft tissue. To 

solve this problem, a few studies (Gibelli et al., 2018; Özsoy et al., 2019; Patel et 

al., 2015; Sforza et al., 2018; Taylor et al., 2014) introduced 3D surface-based 

measures. They first applied commercial 3D scanners such as 3dMDflexTM to 

repetitively capture the detailed 3D geometry of the face with repose and during 

facial expressions in a specified period of time.  Then, measures such as point-to-

point root mean square (RMS) between the registered 3D point clouds of the 

normal side and the paralysed side, the neutral face and the morphed face to 

quantify face symmetry and the intensity of the facial expression (see Fig. 5.8).  

Multi-camera Setup 

Kinect 

RGB-D Cameras 

PrimeSense Hand-held  

Scanner 

Artec Eva  
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Figure 5.8: Point-to-point distance between 3D images of face and flipped face, facial expression 

and neutral face, for constructing 3D surface-based measures. Please note that the distance value 

increases from red to blue. 

 

Statistical analysis such as ANOVA and t-test showed high intra-observer and 

inter-observer reproducibility of such surface-based measures, which implied a 

potential more reliable and accurate method to assess facial nerve function. Recent 

studies (Özsoy et al., 2019) found that using mobile hand-held 3D scanners, e.g. 

ArtecTM Eva (see Fig. 5.7), could achieve similar measure accuracy as that using 

stand-by immobile 3D scanners. This indicates that 3D surface-based measures 

could probably be widely applied in clinic without the need of a complicated 

laboratory setup. 

5.4.3 Assessment Outcomes 

Although a variety of automated facial nerve function assessment solutions have 

been proposed, their outcomes fall into two main categories: i) non-semantic 

numerical values quantifying static, dynamic and synkinetic facial features; ii) 

semantic grade of facial nerve function designed by the clinician. 

The majority of existing solutions belongs to the first category, which output 

at least one aforementioned computational measure in high precision. For instance, 

as reported in (Hontanilla & Aubá, 2008), results from a 3D measurement 

  3D Image Superimposition        Flipped Face                  Initial Face 

  3D Image Superimposition        Nose Wrinkle                      Neutral 
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instrument called FACIAL CLIMA varied from the caliper results an average of 

0.11% regarding the distance measured and 0.41% regarding the angles measured. 

The intra-rater (test-retest) reliability of these measurements is quite high, with an 

intra-rater correlation greater than 0.9 (Bray et al., 2010). Most of these solutions 

however stays at the method discussion phase, only a few of them (Bray et al., 

2010; Gerós et al., 2016; Guarin et al., 2018; Hadlock & Urban, 2012; Tzou et al., 

2012) have been implemented into prototypes. As presented in (Gerós et al., 2016), 

a typical system of its kind embeds the facial function measuring algorithms into 

a user-friendly graphical interface to acquire and process facial motion data. The 

analysis outcomes are organized into a graph named facegram to present the 

measures with plots and tables. Tools such as pointers, zooming and line axis 

tracings are provided to facilitate the user interaction. Whilst these solutions 

provide detailed insights and quantifications about abnormal conditions, they still 

need clinicians to judge the severity of facial nerve dysfunction. 

Solutions in the second category instead aim to quantify the facial nerve 

function according to a specific facial nerve grading scale designed by the 

clinicians. To achieve this target, machine learning techniques should be applied 

to build a predictive model which is trained on labelled data and capable of making 

predictions on new data. The model is called classifier when the prediction is of 

assigning an unseen data sample into one or more predefined classes, or regressor 

if the prediction output is continuous. When applying to my case, the data refers 

to images of facial movement from either a healthy subject or a facial palsy patient, 

and the prediction is the grade of facial nerve function. If the grade is discrete, a 

classifier is employed, otherwise a regressor is employed. The classifier or 

regressor is trained on a group of facial movement data (from both healthy subject 

and facial palsy patient) which has been graded by clinicians, using methods such 

as support vector machine (SVM) (Azoulay et al., 2014; Z. Guo et al., 2017; Kim 

et al., 2015; T. Wang et al., 2016), artificial neural network (ANN) (McGrenary et 

al., 2005), k-nearest-neighbor (KNN) (He et al., 2009) or hybrid classifier 

(Barbosa et al., 2016). For a new subject, the solution first extracts computational 
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features from his/her facial movement data, then calls a pre-trained classifier to 

map the features to the facial nerve function grade defined in the grading scale. 

The most frequently used grading scale is House-Brackmann scale (HBS) which 

divides the facial nerve function into six levels (Z. Guo et al., 2017; He et al., 2009; 

Sajid et al., 2018; T. Wang et al., 2016), followed by Yanagihara scale (YGS) (Ngô 

et al., 2016; Ngo, Seo, et al., 2016) and Sunnybrook scale (SGS, see Table 5.1) 

(Azoulay et al., 2014). The grade could also simply be a binary value indicating 

whether the subject has facial palsy or not (Barbosa et al., 2016; Kim et al., 2015), 

or if a specific face region is paralyzed (Hsu et al., 2018). The reported 

classification accuracy (by comparing the predicted grade against that from the 

clinician) varies a lot, ranging from 49.9% (Z. Guo et al., 2017) to 95.5% (Azoulay 

et al., 2014). As the dataset used for evaluation and the grading scale applied are 

different in studies, it’s difficult to compare solutions from each other. 

Additionally, although many studies (Azoulay et al., 2014; Kim et al., 2015) claim 

that their solutions have been implemented into a computer program or mobile 

application, only one presents the system prototype (O’Reilly et al., 2010). 

5.5 Discussion 

Although a number of automated facial nerve function assessment instruments 

have been developed, none of them has gained widespread use in clinical practice 

to date. The reliability of these instruments lacks sufficient clinical validation, 

which is the major concern. The instrument’s inadequate applicability also remains 

a big obstacle for it to become widely accessible. According to outcomes discussed 

above, existing instruments can be broken down into two types – non-semantic 

instrument (nsINST) and semantic instrument (sINST). nsINST targets at 

supplying the clinician with objective quantification of facial nerve function. 

sINST is built on top of a clinical grading scale, which requires a specialized model 

training on some clinician-labelled data. In the following, I will discuss the 
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limitations of both instruments respectively and envisage the future directions in 

this field. 

5.5.1 Limitations of Existing nsINST 

Despite the capability of providing high-precision facial function measures 

comparable against calipers (Hontanilla & Aubá, 2008), the clinical effectiveness 

of nsINST remains the primary question as it lacks thorough and rigorous clinical 

validation. Researchers or clinical practitioners are consistently working on this 

issue. Bray et al. (Bray et al., 2010) tested their SMILE system (for measuring lip 

excursion during smiling with face photographs) on a database of 20 free gracilis 

transfer procedures with subjectively excellent results and follow-up of 4 to 12 

months following single-stage surgery or 12 to 18 months following second-stage 

surgery to evaluate outcomes in facial reanimation. In (Tzou et al., 2012), Tzou et 

al. reported 241 facial palsy patients were filmed and analyzed with their 3D facial 

motion capture system, accounting for more than 1,000 videos made to track the 

rehabilitation progress after each operational therapy. These tests validate the 

reliability of nsINST to some extent, however the sample size and variety involved 

in the cohort study yet seem to be insufficient for a medical tool. The instruments 

hence fail to gain a wider (e.g. international) agreement and are only locally 

accepted. 

Another essential problem is that existing nsINST are highly constrained by 

ineffective motion capture techniques used. To ensure the accuracy of measures, 

during motion capture, the patient’s head was often required to stay in a stable 

position relative to the camera (Z. Guo et al., 2017). Intrusive markers were 

normally required to be placed on the face to track facial landmarks (Gerós et al., 

2016; Tzou et al., 2012). These not only cause discomfort or annoyance to the 

patient, but also prevent the system from being applied in a broader range of 

circumstances such as the patient’s home. 
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Table 5.2: Comparison of automated facial nerve grading systems and criteria. 

Methods 
Static 

Features 

Dynamic 

Features 

3D  

Features 

Deep 

Features 

Grading 

Scale* Dataset 
Prediction 

Accuracy 

Hsu et al.  

2018  
 ✓  ✓ BFR 

Hsu et al.  

2018  
93% 

Sajid et al.  

2018 
 ✓  ✓ HBS 

Sajid et al.  

2018  
92.9% 

Z. Guo et al.  

2018  
✓ ✓   HBS 

Z. Guo et al.  

2018  
49.9% 

Ngo, Chen, et al.  

2016 
✓ ✓ ✓  YGS 

Kihara et al.  

2011  
66.5% 

Ngo, Seo, et al.  

2016 
✓ ✓   YGS 

Kihara et al.  

2011  
81.2% 

T. Wang et al.  

2016  
✓ ✓   HBS 

T. Wang et al.  

2014  
89.9% 

Azoulay et al.  

2014  
✓ ✓   B 

Azoulay et al.  

2014  
95.5% 

He et al.  

2009  
✓ ✓   HBS 

He et al.  

2009  
69.3% 

*Grading scale: B – a binary value indicating if the subject has facial palsy or not; BFR – a binary value indicating if a specific face region is 

paralyzed or not. 

 

5.5.2 Limitations of Existing sINST 

sINST utilizes machine intelligence to grade facial nerve function according to a 

semantic facial nerve grading scale. However, current sINSTs are still far from 

satisfying clinical requirements and have apparent limitations. As the performance 

of a sINST relies on the grading scale applied, the extracted features in the 

prediction process and the dataset for training, the following discussion will 

concentrate on these three aspects. 

Since a sINST is built on top of a facial nerve grading scale, its reliability 

highly depends on the robustness of the applied scale. As described in the previous 

section, clinicians have specified several characteristics for an ideal facial nerve 

grading scale and find only Sunnybrook meets all the criteria (A. Y. Fattah et al., 

2015). However, Table 5.2 shows that most existing sINSTs were built upon less 

advanced grading scales such as HBS and YGS, which divide the overall facial 

nerve function into a few discrete levels with only general explanations. The 

potential effect of such sINSTs is therefore limited. The reason that previous 

sINSTs preferred to use less sophisticated grading scales is supposed to have two 

folds: i) Sophisticated grading scales such as Sunnybrook require accurate sub-

scores for different facial regions and facial expressions, which is more arduous 
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for the clinician to grade. This makes the training data more expensive to acquire. 

ii) Modelling the grade consisting of semantic sub-grades will introduce more 

complexity to the machine learning algorithm. Therefore, to develop a sINST, it is 

important to find a good trade-off between the grading scale’s robustness and the 

machine learning model’s complexity. 

An ideal feature is supposed to contain critical information of facial nerve 

function, mainly including resting symmetry, symmetry of voluntary facial 

movement and synkinesis. As introduced in the previous section, these features 

can be acquired from static, dynamic and 3D measures. I thus summarize the 

representative sINST according to the measures they performed. As shown in 

Table 5.2, almost all sINST conducted static and dynamic measures. In (Hsu et al., 

2018) and (Sajid et al., 2018), deep learning methods were applied to extract high-

level features that output a promising prediction accuracy rate. Meanwhile, rare 

sINST utilized 3D measures. As discussed in Section 5.4, 3D measures have 

shown to be superior against 2D measures, hence should cause more attention. It 

can also be noticed that the prediction accuracy rates of sINST vary a lot, from 

49.9% to 95.5%. Since datasets (see Table 5.3), facial nerve function grading 

scales and evaluation protocols (e.g. what were input to the instrument, images or 

videos? How many samples were for training and testing?) adopted in these sINST 

are different from each other, the accuracy value actually cannot fully reflect the 

instrument’s true performance. 

As shown in Table 5.3, datasets applied in studies are different from each other. 

The biggest concern is that the subject cohort involved in existing datasets seems 

to be insufficient. For example, in (Z. Guo et al., 2017), most HBS grades contain 

less than 5 subjects. Meanwhile, most datasets (Z. Guo et al., 2017; Kihara et al., 

2011; T. Wang et al., 2016) only include subjects from an identical ethnic 

background. Their applicability to other ethnic groups needs to be further verified. 

Another issue is none of these datasets is publicly accessible, causing no 

benchmark available to develop a widely accepted sINST and further push it to the 

clinical use. 
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Table 5.3: Datasets used to develop sINSTs. 

Dataset Descriptions 

Hsu et al. 2018  Source: collected from YouTube. Data: 32 videos of 21 facial palsy patients. Label: Paralyzed 

face region – eyes/mouth in a video frame was outlined with an average rectangle plotted by 

three specialists.  

Sajid et al. 2018 Source: collected from UCSD, PCDS and online resources. Data: 2, 000 real faial palsy images 

and 5,000 synthetic facial palsy images generated by GANs (Goodfellow et al., 2014). Label: 

each image was labelled with a HBS score.  

Z. Guo et al. 2018 Source: captured from recruited subjects. Data: 480 images (480 × 640 pixels) selected from 

160 facial expression videos captured from 32 subjects (14 males, 18 females). Each subject 

performed 5 expressions - expressionless, raising eyebrows, closing eyes, bulging cheek and 

showing teeth. 3 images randomly selected from each video. Label: subjects were graded 

according to HBS - 5 in I (healthy), 2 in II, 5 in III, 4 in IV, 5 in V and 11 in VI. 

T. Wang et al. 2014  Source: captured from recruited subjects. Data: 570 facial epression images from 57 facial 

palsy patients (31 females, 26 males). 2 images per patient for each of 5 facial expressions – 

raising eyebrows, closing eyes, screwing up nose, plumping cheek and opening mouth. Label: 

each subject was graded with a HBS score. 

Azoulay et al. 2014  Source: captured from recruited subjects. Data: videos of 9 facial expressions (face at rest, 

strong eye elosure, weak eye closure, rasied eyebrows, closed mouth smile, big smile, puckering 

of lips, puff-up cheeks and stretching down lower lip) were recorded from 14 patients and 31 

healthy subjects (15 females, 30 males). Label: three otolaryngologists independently graded 

the patients’s facial palsy according to HBS, YGS and SGS. 

Kihara et al. 2011* Source: captured from recruited subjects. Data: multiview face images captured from 83 

subjects (74 patients, 9 healthy subjects) with a multi-camera setup (7 cameras). Each subject 

performed 10 expressions. Each camera took 60 images (2,112 × 2,816 pixels) for each 

expression. Label: each expression was graded with a YGS score.  

He et al. 2009 Source: captured from recruited subjects. Data: 197 videos (720 × 576 pixels, 500-700 frames 

per video) taken from subjects with Bell’s palsy, trauma to the nerve from skull fracture and 

surgical damage, and normal subjects. Each video presents 5 facial movements. Label: each 

video was graded with HBS by a clinician. 

* The dataset was proposed in (Kihara et al., 2011) and then applied in (Ngo, Chen, et al., 2016) and (Ngo, Seo, et al., 2016). However, 

some key information of the database reported in the three papers are inconsistent, including the number of subjects involved, which 

is 5 in (Kihara et al., 2011), 83 in (Ngo, Chen, et al., 2016) and 85 in (Ngo, Seo, et al., 2016). As common authors are found in all the 

three papers, it seems that the database has been extended after it was first reported. I reported here the version with the most details.  

 

5.5.3 Prospect 

Overall, for both nsINST and sINST, a widely acceptable benchmark database for 

evaluation is urgently needed. The constraint is mainly due to the high complexity 

and expense of data collection which could be alleviated by more extensive 

collaborations among practitioners across the world. It is worth pointing out that, 

in (Sajid et al., 2018), the authors proposed to augment the original training dataset 

by automatically synthesizing facial palsy images (see Fig. 5.9) with a cutting-

edge deep learning method – GANs (Goodfellow et al., 2014), which is cost-

effective and highly efficient. Although the synthetic facial palsy images in (Sajid 

et al., 2018) still need significant improvements, it inspires me to introduce a novel 

theory – Parallel Vision (K. Wang et al., 2017) to solve the data problem. 
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Figure 5.9: Facial palsy images synthesized in (Sajid et al., 2018) with various severity level. 

 

 

Figure 5.10: Facial expressions synthesized in (Nagano et al., 2018). 

 

Parallel Vision emphasizes the importance of photorealistic image synthesis 

in addressing the problems of visual perception and understanding. It comprises 

three stages: i) building artificial (virtual) scenes by synthesizing diverse photo-

realistic data samples to simulate natural physical scenes that occur in real life; ii) 

conducting computational experiments on the pre-built artificial data to develop 

vision models (algorithms); ii) executing the vision model on the artificial data and 

real data concurrently to realize virtual/real interaction. Consequently, the vision 

model could be continuously optimized. The theory has been successfully applied 

in many facial analysis tasks, e.g. monocular 3D face reconstruction (Richardson 

et al., 2016), facial expression synthesis (Gecer et al., 2018), 3D gaze estimation 

(Lu et al., 2016) and facial expression recognition (Y. Wang et al., 2017). In (Y. 

Wang et al., 2017), the authors trained their facial expression recognition model 

on a dataset consisting of synthetic face images rendered from 3D facial scans and 

  Mild                   Medium          Medium Severe            Severe          Total Paralysis 

Synthetic Facial Expressions Input Image 
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real images captured from movies, and achieved a very promising recognition rate 

which outperformed the state-of-the-art by an average of 11.13% for seven basic 

facial expressions. Meanwhile, with only a single face image in arbitrary poses, 

existing face synthesis techniques can generate natural-looking face images 

(Nagano et al., 2018) even for those with extreme facial expressions such as 

asymmetric facial expressions (see Fig. 5.10). This provides solid technical 

supports for synthesizing photorealistic facial palsy images. I therefore believe that 

the Parallel Vision theory has a huge potential to fill the data gap discussed in this 

review and worth to be further investigated. 

For a more flexible and portable assessment instrument, monocular face 

capture approaches (C. Cao et al., 2015; Gou et al., 2017; Thies, Zollhofer, et al., 

2016; Yamaguchi et al., 2018) such as those developed in the previous three 

chapters are also highly needed. With only a commodity RGB camera, they can 

effectively capture 2D/3D facial shape and movements. As mentioned above, 

those information are critical for assessing facial nerve functions through metrics 

such as resting symmetry, symmetry of voluntary movement and synkinesis. It 

therefore opens up a great opportunity for applying the proposed face capture 

approaches. What’s more, the main end-users of the assessment instruments are 

facial palsy patients whose faces suffer from various degrees of paralysis (please 

refer to Section 5.3.1 for more information). Typically, the paralyzed face is 

asymmetric no matter it’s in repose or with an expression, hence is very hard to be 

accurately captured. This poses a big challenge to the capture approach, but will 

in turn motivate the development of the approach’s performance to a new level.  

As a future work, I propose to utilize the developed face capture approaches to 

address the problem of automated facial nerve function assessment with the 

following four steps: 1) Collect facial expression images from at least 100 facial 

palsy patients. Label each image with sparse landmarks and a clinical grade. 

Obtain each patient’s 3D facial geometry and texture with a commercial 3D 

scanner. 2) Train 2D/3D facial tracking models on the collected data using the 

methods proposed in Chapter 2 and Chapter 3. 3) Learn a regression from the 
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tracked 2D/3D face to the clinical grade. 4) Build a sINST by incorporating the 

learned regression, and validate its performance in practical facial palsy 

management applications. I believe the envisaged work can be accomplished with 

a profound interdisciplinary collaboration with clinicians and researchers in 

related areas. 

5.6 Conclusion 

Effective and objective assessment of facial nerve function in facial palsy patients 

is essential to gauge severity of disease, monitor progression over time, evaluate 

the outcomes of therapeutic interventions and facilitate communications among 

practitioners, however still remains unresolved. Automated instrument working on 

biomedical visual face capture utilizes image processing, computer vision and 

machine learning techniques to carry out computational measures on facial nerve 

function in a highly efficient and widely accessible way, is appearing as a 

promising solution. By reviewing the principal studies related to this topic, this 

study found that though many automated instruments have been developed, they 

are still at a preliminary stage far from meeting clinical requirements. These 

instruments are severely limited by the lack of a rigorously validated benchmark 

database and insufficient incorporation of advancements in other areas such as 

monocular 3D face tracking and deep learning. To eliminate these obstacles, 

broader and deeper interregional and interdisciplinary collaborations are necessary 

and highly anticipated. Advancements in computer vision and deep learning areas 

such as the Parallel Vision theory (K. Wang et al., 2017), unconstrained monocular 

2D/3D face reconstruction and tracking techniques (C. Cao et al., 2015; Gou et al., 

2017; Thies, Zollhofer, et al., 2016; Yamaguchi et al., 2018) should be 

incorporated much more to further develop the instrument. In particular, this 

introduces a good application avenue for the face capture approaches developed in 

the previous chapters. Those approaches can accurately capture 2D/3D facial 

shape and motion which are critical in assessing facial nerve functions. On the 
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other side, the new application scenario will in turn push the approaches to tackle 

challenging cases such as capturing asymmetric facial expressions. Based on these 

insights, the chapter envisages a potential pathway to apply the proposed face 

capture approaches onto automated facial nerve function assessment.   
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Chapter 6 

Summary and Outlook 

This thesis developed novel facial performance capture approaches with low data 

and computational cost. The approaches are applicable to different performance 

modalities and use-cases. Specifically, they can capture the face from sparse 2D 

facial landmarks to dense 3D facial geometry, from traditional visual scenes via a 

monocular RGB camera to novel virtual reality (VR) scenarios that provide 

immersive interaction via a head-mounted display (HMD) with integrated EMG 

sensors. Whereas these approaches were developed for capturing different aspects 

of facial performance or for different application scenarios, they are connected 

closely with each other in terms of the algorithms applied. For example, the 2D 

and 3D facial tracking methods proposed in Chapter 2 and Chapter 3 are both built 

upon the cascaded regression method. The 3D face reconstruction algorithms 

adopted in Chapter 3 and Chapter 4 are both optimization-based and utilize the 

energy term of 2D facial landmark alignment in the objective function. This 

enables a smooth transition between the works of different chapters and makes the 

whole research more articulated and integrated. The thesis also explored a new 

application avenue of the developed face capture solutions, which targets at 

automated facial nerve function assessment for facial palsy management. The 

detailed contributions of this thesis are elaborated as follows: 

Chapter 2 proposed a novel optimization subspace learning method to improve 

the canonical Supervised Descent Method - SDM (Xiong & De la Torre, 2013) for 

more robust 2D face alignment and tracking. The proposed method is named as 

Multi-subspace SDM (MS-SDM). It divides the original intricate optimization 

space of face alignment into multiple simpler subspaces using k-means on facial 

appearance features. Within each subspace, a generic descent map (or shape 

regression) that is able to move the initial facial shape towards the ground-truth 
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shape can be learned more easily via SDM. Given an unseen face image, MS-SDM 

first employs a Naive Bayes classifier to predict the subspace label, then calls the 

corresponding subspace shape regression to detect facial landmarks. The 

experimental results on challenging face datasets showed that MS-SDM can detect 

landmarks more accurately than SDM. By further developing a mobile facial 

tracking application, I demonstrated the potential of applying MS-SDM for 2D 

facial tracking on live video streams.  

Chapter 3 extended the facial performance capture to more challenging 3D 

facial tracking from a monocular RGB camera. It developed a new boosting 

method called globally-optimized modular boosted ferns (GoMBF) to solve multi-

modal facial motion regression via compositional learning. GoMBF is a deep 

composition of several boosted ferns with each was initially trained for predicting 

partial motion parameters of the same modality and later refined towards the whole 

regression target with a global optimization step. It shows stronger predictive 

power and a fast learning speed in comparison with the conventional boosted ferns 

(X. Cao et al., 2014). By cascading a sequence of GoMBFs (GoMBF-Cascade) for 

regressing facial motion parameters, I achieved the state-of-the-art 3D facial 

tracking performance even using a small training set. It thus provides a highly 

elegant and practical 3D facial tracking solution to real-world applications. This 

chapter further deeply investigated the effect of synthetic face images on training 

GoMBF-Cascade. I synthesized three types of face images with different 

naturalness levels for training, and compared the regression models trained on real 

data, on synthetic data and on mixed data. In my experiments, the GoMBF-

Cascade models trained purely on synthesized images showed poor tracking 

performance on real videos and became more biased after incorporating the 

synthetic data into training. These two insights can benefit a variety of non-deep 

learning face image analysis tasks where the labelled real data is hard to obtain. 

Chapter 4 addressed the intractable problem of capturing the VR HMD user’s 

facial expression for immersive face-to-face communication/interaction in virtual 

environment. It proposed to integrate lightweight EMG sensors into the HMD in 



  Chapter 6 

123 
 

an unobtrusive manner to capture the user’s facial movements which are 

significantly occluded by the HMD, and map the captured movements to a user-

specific 3D face model to recover the user’s facial expression with high-fidelity. 

The proposed method is an innovative combination of a classic monocular 3D face 

reconstruction algorithm (Thies, Zollhofer, et al., 2016) and a pioneering facial 

biosensing technique – Faceteq (Mavridou et al., 2017). It extends the face capture 

from the traditional visual scene to the novel VR context, which paves the way to 

many new and exciting VR applications.   

Chapter 5 deepened my research by exploring a new direction for applying the 

developed facial performance capture approaches to solve real-world problems. It 

identified a novel application avenue – automated facial nerve function assessment 

from visual face capture, which is crucial for facial palsy management. In the 

chapter, I systematically reviewed the most relevant and representative studies on 

related topics, identified the principal challenges and indicated several promising 

directions for future work. To the best of my knowledge, this is the first study of 

its kind to be reported so far. I believe that this review can not only inspire 

researchers in the field of face capture, but also is helpful to clinical practitioners, 

neurologists and bioengineers.  

As shown above, this thesis addressed a number of existing problems in the 

field of facial performance capture. It in turn posed new questions and inspired 

new ideas which are worth for further research: 

i) It can be found that the MS-SDM method proposed in Chapter 2 has not 

utilized the complementary information between different subspaces. This 

indicates a promising direction to further improve the MS-SDM’s performance: 

combining subspace-specific shape regressions via compositional learning. The 

underlying issue resembles the one of integrating the motion parameter–specific 

boosted ferns into a GoMBF as studied in Chapter 3. With a similar global 

optimization step as that used in Chapter 3, an improved shape regression is 

supposed to be learned for more accurate facial landmark detection.  
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ii) Quality face images with ground-truth labels are essential to train a robust 

face capture model. However, collecting such data is normally time-consuming 

and labor-intensive. This is a long-standing bottleneck that has severely restricted 

the development of face capture solutions, especially in the field of 3D face capture 

as discussed in Chapter 3. As an alternative, synthesizing face images for training 

is highly economic and efficient. It has been successfully applied in some face 

analysis tasks, such as 3D face reconstruction (Y. Guo, Zhang, Cai, Jiang, et al., 

2018; Richardson et al., 2016) and face frontalization (Y. Wang et al., 2017). With 

the advent of more powerful generative adversarial networks - GANs (Nagano et 

al., 2018; Saito et al., 2017), face images with high-resolution, extremely 

photorealistic facial texture and background can be synthesized now. The synthesis 

process can even be manipulated by tuning some specific facial attributes such as 

head pose, facial expression and illumination by using a conditional GAN (Tewari 

et al., 2020). This stimulates a promising research direction - using GANs to 

generate high-quality face images for training the face capture model. 

iii) As discussed in Chapter 4, capturing the VR HMD user’s facial 

performance with high-fidelity is of vital importance to achieve more immersive 

communication in virtual environment, however has not been well-studied.  

Whereas this thesis developed a practical capture solution to this largely 

unexplored problem, there is still huge space for further improvement. For 

example, more efficient EMG signal processing techniques could be developed to 

achieve real-time performance, a significant-sized database covering a wide range 

of AUs and the corresponding EMG signals could be created for training to enable 

continuous facial expression capture, or utilizing more lightweight and sensitive 

infrared cameras that can be attached onto the headset ergonomically to visually 

capture the HMD wearer’s facial performance. 

iv) I found that existing face capture outcomes have mainly served for content 

creation or human-machine interaction in the fields of entertainment, social media 

and security, while have rarely been applied in facial biometrics for medical and 

healthcare purpose. On the other side, Chapter 5 revealed that the cutting-edge 
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facial performance capture techniques could play an important role in automated 

facial nerve function assessment for facial palsy management, but had never been 

fully utilized. To this end, it is timely and imperative to deeply incorporate the 

advanced face capture techniques into assessing facial nerve function. I believe 

that such an interdisciplinary integration could push the facial palsy management 

which currently still relies on the clinician judgement to a new level, while creating 

more application opportunities for various face capture solutions such as those 

proposed in Chapter 2 to Chapter 4.  
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