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Abstract

The  evolution  and  developments  in  modern  industry  have  resulted  a  wide  range  of 

occupational  activities,  some  of  which  can  lead  to  industrial  injuries.  Due  to  the  activities  of 

occupational  medicine,  much progress  has  been made in  transforming the  way  that  operatives 

perform their tasks. However there are still many occupations where manual tasks have become 

more  repetitive,  contributing  to  the  development  of  conditions  that  affect  the  upper  limbs. 

Repetitive Strain Injury is  one classification of those conditions which is  related to overuse of 

repetitive movement.  Hand Arm Vibration Syndrome is  a subtype of this classification directly 

related to the operation of instruments and machinery which involves vibration. 

These  conditions  affect  a  large  number of  individuals,  and are costly  in  terms of  work 

absence, loss of income and compensation. While such conditions can be difficult to avoid, they can 

be monitored and controlled, with prevention usually the least expensive solution. In medico-legal 

situations  it  may  be  difficult  to  determine  the  location  or  the  degree  of  injury,  and  therefore 

determining  the  relevant  compensation  due  is  complicated  by  the  absence  of  objective  and 

quantifiable methods. 

This  research  is  an  investigation  into the  development  of  an  objective,  quantitative  and 

reproducible  diagnostic  procedure  for  work  related  upper  limb  disorders.  A set  of  objective 

mechanical provocation tests for the hands have been developed that are associated with vascular 

challenge.  Infrared thermal  imaging was used to monitor the temperature changes using a well 

defined capture protocol. Normal reference values have been measured and a computational tool 

used to facilitate the process and standardise image processing.

These  objective tests  have demonstrated  good discrimination between groups of healthy 

controls and subjects with work related injuries but not individuals, p<0.05, and are reproducible. A 

maximum value for thermal symmetry of 0.5±0.3ºC for the whole upper limbs has been established 

for use as a reference.

The tests can be used to monitor occupations at risk, aiming to reduce the impact of these 

conditions, reducing work related injury costs, and providing early detection.  In a medico-legal 

setting this can also provide important objective information in proof of injury and ultimately in 

objectively establishing whether or not there is a case for compensation. 
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Resumo

A evolução e desenvolvimentos na indústria moderna resultaram numa extensiva gama de 

atividades  profissionais,  algumas  das  quais  podem conduzir  a  doenças  ocupacionais.  Devido  a 

actividades da medicina profissional, muito progresso foi feito transformando a forma como os 

operadores executam as suas tarefas. No entanto ainda há muitas ocupações onde tarefas manuais se 

tornaram  mais  repetitivas,  contribuíndo  para  o  desenvolvimento  de  condições  que  afectam  os 

membros  superiores.  Repetitive  Strain  Injury é  uma das  classificações  destas  condições  e  está 

relacionada  com  o  sobreuso  de  movimentos  repetitivos.  Hand  Arm  Vibration  Syndrome é  um 

subtipo desta classificação directamente relacionada com a operação de instrumentos e maquinaria 

que envolve vibração.

Estas condições afectam um número grande de indivíduos, e são dispendiosas em termos de 

dias de ausência de trabalho, perda de rendimento e compensações. Enquanto tais condições podem 

ser difíceis de evitar,  elas podem ser monitorizadas e controladas, sendo a prevenção a solução 

menos  cara.  Em  situações  médico-legais  pode  ser  difícil  determinar  o  grau  de  doença,  e 

consequentemente a determinação da correspondente compensação devido à ausência de métodos 

objectivos e quantitativos.

Esta  pesquisa  é  uma investigação  no desenvolvimento  de  um procedimento  diagnóstico 

objectivo,  quantitativo  e  reproduzível  para  as  doenças  ocupacionais  que  afectam  os  membros 

superiores.  Um  conjunto  de  testes  objectivos  de  provocação  das  mãos  foi  desenvolvido  e  é 

associado a um desafio vascular. A técnica de imagens térmicas de infravermelhos foi utilizada para 

monitorizar o processo que usa um protocolo de captura bem definido. Valores de referência foram 

medidos e uma ferramenta computacional foi utilizada para facilitar o processo de uniformizar o 

processamento de imagem.

Estes testes objectivos demonstraram boa discriminação entre grupos de controlo suadáveis 

e grupos de sujeitos com lesões ocupacionais mas não entre indivíduos, p<0.05, e são reproduzíveis.  

Um valor máximo de simetria térmica de 0.5±0.3ºC foi estabelecido como referência para todos os 

membros superiores.

Estes testes podem ser usados para monitorizar ocupações de risco, reduzindo o impacto 

destas condições, levando a uma redução dos custos relacionados com doenças ocupacionais, e 

fornecendo  a  sua  descoberta  precoce.  Numa situação  médico-legal  isto  pode  fornecer  também 

informação objectiva importante como prova de lesão e por fim verificar a necessidade de haver 

compensação.
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1 – Introduction

In  this  section  an  informative  overview  of  the  research  topic  is  presented  outlining  its 

practical  and  theoretical  value.  In  addition  this  section  presents  the  importance,  the  previous 

approaches to the problem and the motivation to perform the current work. It introduces the aims 

and objectives of this work and outlines the contribution to knowledge it  claims to make. This 

chapter ends with information about the organisation of the thesis. 

1.1. Background

The evolution and changes of modern places of work add new activities to those classically 

associated with repetitive and strain causing manual tasks. Computer mouse users, workers using 

pneumatic hammers, machine operators, typists and many others are at risk of developing one of the  

two main forms of so called Hand Arm Syndrome (HAS). HAS is not a disease in itself but a  

summative term describing a variety of clinical phenomena related to upper limb disorders. The two 

main proponents of the syndrome are Hand Arm Vibration Syndrome (HAVS) and Repetitive Strain 

Injury (RSI) (Fig. 1) - both work related upper limb occupational disorders caused by over use of 

tools,  instruments  or  machinery.  Within  the  scope  of  the  this  work,  RSI  is  defined  as  an 

occupational  syndrome  caused  by  repetitive  tasks  and  affecting  the  upper  limbs.  HAVS is  an 

occupational condition that affects upper limbs and results from overuse of vibrating tools. Methods 

for assessing symptoms of HAS are needed for the prevention of further injuries, avoiding work 

absence and minimising health related costs and legal consequences.
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Fig. 1: Hand Arm Syndrome diagram with its main proponents.



 Work Related Upper Limb Disorders (WRULD) are damages to body structures such as 

bones, muscles, joints, tendons, ligaments, nerves and the local blood circulation system that are 

consequences of work and its environment. The risk factors of this type of conditions are the work 

environment  (e.g.  poor  workplace  layout,  excessive  heat  or  cold  and  high  levels  of  noise), 

individual factors (e.g. physical capability, lack of experience and life habits) and organisational and  

psychological  factors  (e.g.  monotony,  time  pressure,  lack  of  control  over  tasks  performed  and 

limited social interaction). The symptoms of WRULD may take a long period of time to develop 

and normally manifest as pain, discomfort, numbness and tingling sensations. In more severe cases, 

affected subjects may also experience swelling of the joints, decreased grip strength and a change in 

skin colour of the hands and fingers. There are European Union (EU) legislation directives that 

regulate the work environment  in order to prevent this condition, although due to negligence or 

ignorance they are not always applied (EASHW, 2007).

The European Agency for Safety and Health at Work reported that about two thirds of EU 

workers  are  exposed  to  repetitive  arm  and  hand  movements  and  a  quarter  to  vibrating  tools 

(EFLWC, 2005).  This is  a significant  amount and in a wide range of jobs the development  of 

WRULDs is  almost  inevitable  and  consequently  now the  most  common form of  occupational 

disease  in  the  EU  with  about  45% having  the  highest  incidence  of  all  occupational  diseases 

(Eurostat, 2004).

The condition causes personal suffering, loss of income and cost to business and national  

economies. A total cost of WRULD in the EU between 0.5% and 2% of gross national product was 

estimated (EASHW, 1999).  

1.2. Prevalence 

The first known recognition of pain and disability related to repetitive movement was made 

in 1713 by the Italian physician Bernardo Ramazzini, who observed that clerks suffered from a 

condition caused by an incessant movement of the hands and arms always in the same direction. 

The first recognition in the United Kingdom was made in 1908 with the “telegraphist's cramp” 

(Sleator et al., 1998). The first reporting of a condition caused by use of vibration tools was in 1911 

by  Loriga, who identified vascular spasms in Italian miners who operated pneumatic tools (Loriga, 

1911).  

As in the EU, musculoskeletal disorders are the most common occupational disease in UK. 
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A survey on self-reported work related diseases  in 2004/05 (Jones et al.,  2006) showed that an 

estimated 375.000  people (about 0.87% of the population) in Great Britain (GB) suffered from 

WRULD caused  or  made  worse  by  the  workplace,  this  value  coincides  with  those  quoted  by 

previous similar studies at 2001/02 and 2003/04. From this  value of incidence, an estimated 25% 

(0.29% of whole GB population) of sufferers had become aware of their condition in the past 12 

months. The same report  (Jones, 2006) showed an estimate of 4.7 million working days (full day 

equivalents) were lost through this category of conditions caused or made worse by work activities. 

This equates to an annual loss of 0.20 day per worker every year (Sleator et al., 1998).

In 1995/96 a Health & Safety Executive (HSE) survey estimated that 506,000 people in the 

UK were affected by WRULD. The prevalence was around 30% higher in women than in men, 

increasing with age. 38% of the respondents attributed their conditions to repetitive tasks, 37% to 

manual handling, 23% to work posture and 10% to physical work. The same study estimated that 

36,000 men in the UK suffered from HAVS. From those affected by HAVS, two thirds reported 

difficulties in picking up small objects and all reported use of hand held power tools as the cause of  

their condition (Sleator et al., 1998).   

A 1999 research report by the HSE found that the prevalence of self-reported symptoms of 

musculoskeletal disorders in the upper limbs was 17% in general industries (Buckle and Devereux, 

1999). According to the Trade Union Congress ‘Safety Report Survey’ of 2003 the percentage of 

employers in Wales concerned about upper limb disorders in the workplace was 38% (RSIA, 2007). 

A paper in 1994 (Bird and Nicholson, 1994) stated that WRULDs were estimated to cost 

British industry £1 billion per year. Five years later another paper (David, 1999) suggested that 

WURLDs are the leading cause of work absence and job resignation with approximate costs of 

£1.25 billion per year. Every day in the UK, 6 people leave their jobs in consequence of a RSI 

condition. The costs to UK industry are likely to be between £5 and £20 billion  annually. One 

larger employer found that the average cost of retiring an employee on medical grounds due to RSI 

was £40,000 (RSIA, 2007).

A HSE study in 1986 found that around 19,000 British workers were at risk of HAVS, and 

for 10,000 of these the risk was high (Kyriakides, 1988). 1,400 new cases were assessed by the 

Department of Social Security (DSS) in 1993/94 but only 1,100 received a benefit payment in April 

1994 (HSE, 1995). It was thought that there were around 12,000 British sufferers of HAVS who 

were in  employment at  the time (Hodgson et  al.,  1993).  Sufferers will  often make a  claim for  

compensation from their employers, and settlements are generally around £2,000, although sums in 

excess of £50,000 were paid out (HSE, 1995). The survey findings suggested that 20% of HAVS 
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sufferers took sick leave an annual average of 12 days each because of their condition (Hodgson et 

al., 1993).     

In the United States (US) almost one third of all acute injuries involve upper extremities.  

According to a 1995 “National Health Interview Survey” it is estimated that each year 18 million 

causes of WRULD occur and cause a visit to a physician. Acute WRULD is responsible for about  

32 million days of restricted activity and almost 10 million days of work absence in a year. The 

same  statistics  indicate  that  about  615,000  hospitalisations  occur  as  a  consequence  of  those 

conditions  and  of  these  587,000  result  in  surgical  procedures.  In  1995  the  estimated  cost  of 

WRULDs per year in the US was estimated to be around $19 billion. The same study has shown 

that workers' compensation from these injuries increased linearly from 1980's (Kelsey, 1997).  A 

paper in 2003 (Peper, 2003) estimated that in the US RSI injuries contribute to about 26% of all 

workplace injuries, the same document estimates that in the year 2000 a value in the range between 

$45 and $60 billion was spent in work compensation due to RSI injuries.    

In Sweden three out of five office workers have symptoms of RSI (Buckle and Devereux, 

1999). In Australia 60% of children using laptops in school experienced discomfort. 40% of  Dutch 

university students have an RSI condition (RSIA, 2007). In India a study was carried out on 200 

Information Technology professionals who operate daily computers on a daily basis. 77.5% of them 

reported musculoskeletal symptoms. This study suggested the necessity of prevention measures and 

a periodic appraisal of health for workers in these areas (Suparna et al., 2005).

1.3. Legal considerations

The development of RSI frequently causes sufferers to take their employers to court in order 

to claim compensation. An early example in the UK of such a claim is Sarah Munson, a journalist at 

the Portsmouth News, who was award £11,371 in compensation on 31st of October 1993 despite the 

fact that RSI did not figure in any medical dictionary at the time (The Independent, 1993). Another 

example of a successful court  claim are five former Midland Bank workers who were awarded 

£50,000 each in compensation in May 1998 in spite of the fact  that RSI was not recognised by UK 

employers at the time (BBC, 1998).

 As in RSI, HAVS sufferers went to court in order to claim compensation. An example is that  

of  eight  former  employees  of  North  West  Water  who  were  awarded  a  total  of  £1.2  million 
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compensation in August 2000. The company admitted negligence (BBC, 2000). Six other British 

Gas  workers  were  awarded  £430,000 compensation  at  a  Manchester  court  in  1999 because  of 

HAVS (BBC, 2000). Another typical example of a successful claim for HAVS injury was in 2004 

when Stock-on-Tees Borough Council  had to pay £350,000 compensation for WRULD (Archer 

Solicitors, 2004).      

The examples above demonstrate that it should be less expensive to avoid WRULD than to 

do nothing. When avoidance is not possible, control and frequent monitoring of workers' health 

could prevent or at least diminish the impact of the condition and the likelihood of litigation. 

1.4. The case for early detection

In RSI and HAVS early recognition and early treatment mean quick recovery.  The early 

identification of  RSI is  difficult  because it  includes  a large range of conditions.  The American 

College of Rheumatology has suggested the usage of Medical Imaging modalities to assess this 

conditions (Van Tulder, 2007). This would provide more detailed and objective information that 

could be used for a more correct diagnosis and respective indicative treatment and for assessing the  

treatment progress.  An American physician, Pascarelli, suggests, in his book (Pascarelli, 1997), the 

use  of  medical  thermography  as  a  diagnostic  aid  mainly  due  to  its  simplicity  in  obtaining  an 

objective record  with  the aid of  a  computer,  but  stated that  more research is  needed in image 

processing to improve the technique.

1.5. Current diagnostic approach

The current diagnostic procedure for both RSI and HAVS syndromes is similar. Starting with 

the medical record of the patient and focusing on the pathophysilogical history, a questionnaire and 

a pain pictogram are used where the patient indicates pain on a scale from 1 to 10. After reviewing 

this information physical examinations follow in order to identify symptoms and pathologies. This 

is done subjectively, relying on the clinician's perception and on the patient's claim. The lack of an 

objective and repeatable measures is evident.
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1.6. Research to date 

Some research exists to explain the diffusivity of WRULD.  Fry (Fry and Dennet, 1988) 

proposed  that  muscle  overuse  leads  to  a  painful  condition  with  changes  in  muscle  fibres. 

Neurogenic theories suggest that nerves are sensitised by mechanical irritation and traction  due to 

overuse. It causes the nerve to become less tolerant for compression and stretching. Since early 

WRULD presents few physical signs, the major problem in achieving a diagnosis is the lack of 

sensitive  objective  measurements.  A study  in  1997 (Sharma,  1997)  suggested  that  temperature 

measurements by infrared imaging using mechanical challenges to the hands could possibly be used 

as a diagnostic tool in order to evaluate non-specific hand-arm pain and to monitor progress during 

treatment. The author suggested that future work is needed to confirm this finding. Another study 

(Greening and Lynn, 1998) that measured vibration thresholds in sensory nerves had shown that 

patients with WRULD have objective signs of minor polyneuropathy.

A review study performed in 2000 aiming to understand the causes of RSI conditions (Szabo 

and King, 2000) showed that is often difficult in litigation cases to prove the degree of the injury.  

Two years later a Swedish scientist (Lundström, 2002) suggest that the lack of normative data and 

the absence of standard methods to assess the HAS pathology limits its identification. The same 

author refers that quantitative sensory tests are very dependant on the subject's perception and its 

sensitivity, specificity and reliability are still unknown.

In 2003 a pilot study (Peper et al., 2003) investigating discomfort measurements in computer 

operators  through  "point  and  type”  tests  and  electromyography,  concluded  that  symptomatic 

subjects presented more muscular electrical activity than controls performing the same test. The 

same  study  concluded  that  further  investigations  involving  other  monitoring  techniques  were 

required.

Van Tulder, a Dutch scientist, affirmed (Van Tulder et al., 2007) that major parts of the RSI 

diagnosis are based on the medical history and physical subjective examinations, however some 

electrodiagnostic tests such as electromyography are used, although its diagnostic accuracy has not 

been proven according to Van Tulder.

Another author in 2008 (Augusto et al., 2008) suggested that subjective examinations in 

assessing   RSI  conditions  are  insufficient,  objective  methods  are  needed  to  recognise  injury 

characteristics and to be used on evaluating the treatments.           

An  investigation  in  Serbia,  observing  the  vascular  changes  in  HAVS  patients  through 
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thermal  images  (Jankovic  et  al.,  2008),  showed  that  the  vascular  provocation  used  was  not 

completely  satisfactory,  there  is  a  need  for  further  development  methods  to  identify  more 

characteristics in the patient's condition. The same study concluded that thermography demonstrated 

to be useful in the differential diagnostic tests because of its ability to provide the opportunity for 

assessing the entire hand simultaneously.

Harada,  a  Japanese  investigator,  affirmed  that  there  is  no  single  objective  test  with 

satisfactory diagnostic  ability  for  HAVS (Harada,  2008).  The same author suggested  that  for  a 

reliable  objective  diagnostic  indication  on  the  vascular  aspect  of  HAVS,  cold  stress  tests  are 

recommended to evaluate HAVS patients, however a standardised evaluation approach is required.

The  absence  of  objective,  quantitative  and  reproducible  diagnostic  procedures  for  Work 

Related Upper Limb Disorders enhances the difficulties in assessing the injury state and thus the 

choice of adequate treatment.  In legal situations it  would quantify the degree of injury thereby 

providing the opportunity for attributing a fair compensation.

1.7. Aim

It  is  aim  of  this  work  to  design,  implement  and  assess  an  objective,  quantitative  and 

reproducible diagnostic procedure for Work Related Upper Limb Disorders (WRULD). 

1.8. Objectives

In order to achieve the above aim, the following objectives will be addressed:

1. Standard infrared image capture protocol: design and assessment of the capture protocol to record  

medical thermal images of the hands.

2. Online  hand  injury  incidence  questionnaire:  design,  implementation  and  assessment  of  both 

questionnaire suitability and results.

3. Hand temperature reference data: design, implementation and assessment of data suitability and 

results.

4. Mechanical stress provocation tests: design and perform objective, standardised tests and assess 

the results.
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5. Comparison and results  assessment  of  different  techniques  available  in  image processing on 

thermal images such as: enhancement, objects boundaries discovery and interpolation.

6. Standard reference method for  thermal image analysis of hands:  design, implementation and 

results assessment.

1.9. Proposed methodology

The  proposed solution  to  achieve  the  above  objectives  consists  of  two independent  but 

related  investigations  with  different  methodologies.  The  first  investigation  characterises  the 

incidence of hand injuries in a sample population through an online questionnaire (Fig. 2). The 

second,  more  complex  investigation  consists  of  the  development  of  a  standard  thermal  image 

capture protocol for hands., including a range of mechanical stress provocation tests,  image capture 

and a standardised methods and analysis tools that use image processing techniques to produce 

quantitative and statistical data (Fig. 3).  
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characterisation of  hand injuries  
in a sample population.



1.10. Contribution to knowledge

This work claims the following contributions to knowledge: 

In the design phase:

• The development of a protocol to capture thermal images of hands.

• A new definition for the thermal symmetry of the human body.

• The development of  objective mechanical stress provocation tests to assess hand injuries.

• The development of a reference anthropometric geometrical model of hands.

In the implementation stage:

• A comparison of image enhancement techniques for thermal medical images.

• A comparison of edge detection techniques for thermal medical images of hands.

• A comparison of interpolation techniques for thermal medical images.

• The development of a novel warping technique based on triangulation and barycentric coordinates 

that preserves the true temperature values within defined areas of interest in a predefined model. 

In the assessment phase:
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Fig. 3: Phase diagram for the development of a Hand-Arm Syndrome  
diagnosis procedure  with different stages of investigation on the right.



• A set of reference values for thermal symmetry of the upper limbs and joints in healthy subjects.

• A second  set  of  thermal  symmetry  values  and  mean  temperature  variation  after  mechanical 

provocation and vascular stress tests for healthy and WRULD affected subjects.

• A comparison of three methods that assess the recovery of hands from a cold stress test.

• Identification and quantification of inter- and intra- user measurement errors and  variance data for 

different camera models in standardised image capture and analysis.

1.11. Structure of the thesis

This document is separated into six sections:

This  introduction  describes  the  background,  motivation,  relevance,  aims,  objectives  and 

contribution to knowledge of present research. 

1. The  next  section,  a  literature  review,  demonstrates  the  anatomical  and  physiological 

characterisation of the hands, the nature of the syndromes and their respective prevalences, 

causes, characterisations and shortcomings of current diagnostic methods. It also describes 

the  technique of  thermal  imaging and its  use in  medicine  and its  alternatives  including 

imaging processing techniques that can be used to improve medical imaging analysis. 

2. The third section outlines the methodology used in this research project including the design 

of  experiments and tests and methods of analysis. 

3. In the Results section the results of experiments and tests are presented and interpreted. 

4. The fifth section discusses the significance of findings and analyses error sources. It also 

sets the results into the context of other projects and methods. 

5. The final part of this document is the Conclusion, where the main results of this project are 

emphasised and and the case for the claimed contribution to knowledge is made. It also 

provides an outlook into future work. 

The  diagram in fig. 4 visualises the above structure and outlines  the links between different parts 

of this document.    
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2 – Literature Review

2.1. Hands

In the context of this work 'hands' are defined to extend from the wrist to the fingertips. Each 

hand has one thumb and four fingers: (from lateral to medial) are described as little, ring, middle 

and index. In this subsection relevant information about these extremities is included to increase 

understanding of how they perform and how they can be affected in a pathological condition. The 

internal  anatomy of  the  hand is  described,  its  physiology in  terms  of  movement,  sensor-motor 

system, microcirculation and the temperature regulation of the hand is briefly reviewed to elucidate 

those factors that are of importance in the context of Hand Arm Syndrome.

2.1.1. Anatomy

Since this work frequently cites anatomical terms they are briefly outlined below in sections 

2.1.1.1 to 2.1.1.8.

 Hands are regarded as having two surfaces, a palmar (anterior) and dorsal (posterior), and 

two borders, radial (in the medial border of the hand) and ulnar (in the lateral border of the hand) as 

shown in fig. 5. The palm of the hand is constituted of three areas:  thenar (overlies the thumb 

metacarpal), midpalm (overlies the three middle metacarpals) and hypothenar (overlies the little 

finger metacarpal) (Jones, 2006).  
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The constitution of the structure of the hand is formed of bones and associated joints, blood 

vessels  (arteries and veins),  muscles,  nerves, tendons,  ligaments,  skin,  hair  and nails  (Jameson, 

1998).

2.1.1.1. Bones

Each hand is composed of 27 bones (fig. 6): 8 carpal bones are organised in two rows in the 

wrist that articulate the hand with the radius and ulna (bones of the forearm), 5 metacarpals in the 

palm, one in each direction of the correspondent finger and thumb and connecting to them; and 14 

phalangeal bones that form the fingers and thumb: three in each finger and the remaining two in the 

thumb. The carpal bones are on the proximal row from lateral to medial: scaphoid, lunate, triquetral  

and pisiform; and on the distal row in same direction: trapezium, trapezoid, capitate and hamate. 

The palmar bones, the metacarpals, receive their name from each corresponding finger, each with a 

head and a shaft. Each finger has 3 phalanges, the proximal, the middle and the distal that carry the 

nails. The thumb has the proximal and distal phalanges only but no middle phalange (Jones, 2006).

   

The bones have an integral role in HAS, connecting with other bones through their rounded 

and flattened surfaces at their farthest ends to form joints where the bones meet. These joints are 
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Fig. 6: Bones of the hand (right hand in  
dorsal view), Webliography[1].



covered on their surface with soft cartilage material that acts as a muffler to the bones and aids joint 

movement. When cartilage is damaged the joints can become painful, and in serious cases leads to 

arthritis, one of the more severe results of RSI (Jameson, 1998). 

2.1.1.2. Joints  

Joints are important in the interconnection of bones forming the articulation, which in the 

hand is very complex and delicate. A major part of the operations performed by hands does depend 

on this articulation. There are three types of joints present in the hand, the intraphalangeal joints that  

interconnect  the  phalanges,  the  metacarpophalangeal  joints  which  combine  metacarpals  with 

phalanges and carpometacarpal joints which link carpal bones with the metacarpals as shown in fig. 

7. The carpometacarpal joints are the most flexible, they are responsible for the flexion/extension 

movement  and  also  radial  and  ulnar  deviation  movements.  Metacarpophalangeal  joints  with 

exception of the thumb, have a very limited independent motion  (Jones, 2006).      

The  joints are surrounded by joint capsules, which consist of synovial membranes on the 

inside and tough fibrous membranes on the outside. These capsules control the joint motion range 

and aid to  lubricate  the  joint  surface  by  secretion  of  synovial  fluid.  An inflammation  in  these 
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Fig. 7: Bone joints of the hand (right hand in  
dorsal view), Webliography[2].



capsules can be a result of RSI, causing pain, discomfort and swelling (Jameson, 1998). 

2.1.1.3. Muscles

Muscles are tissues that contain cells which are contractible by nature. That characteristic 

allows the bones to which the muscles are attached to move. They can be categorised in two groups, 

the extrinsic (arise outside of the structure they are attached to) and the intrinsic (fully contained in 

the structure they are  attached to).  There are  29 muscles that control hand movements,  15 are 

extrinsic and 14 intrinsic. The extrinsic muscles are divided into two types: flexor and extensor, as  

shown in fig. 8. The intrinsic muscles, as shown in fig. 9, are divided into four groups: three tenar  

muscles, three hypothenar eminences and four lumbrical muscles, these are unique muscles in the 

human body because they originate from tendons instead of bone. (Jones, 2006).
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Fig. 8: Extrinsic muscles of the hand (right  
hand palmar view), Webliography[3].



Muscles  are  amongst  the  structures  most  frequently  affected  by  HAS  since  repetitive 

movements restrict normal blood flow to these tissues. This also affects the exchange of oxygen 

between  blood and  the  muscular  cells.  The  decrease  of  oxygen  in  the  muscles  evokes  a  pain 

response, inflammation and formation of scar tissue. This situation leads to a loss in muscle contract  

ability,  rise  of  muscle  weakness  and  sudden  muscle  fatigue.  In  a  prolonged  circumstance  this 

degenerative process caused by HAS may lead to a chronic condition (Jameson, 1998).

2.1.1.4. Tendons

Tendons connect  the muscles to the bones (Jameson, 1998).  Hand tendons origin in the 

muscles of the forearm and traverse the carpal tunnel at the wrist to reach the hand where they 

move the hand and fingers. The finger tendons traverse laterally over the metacarpal bones and the 

phalanges. They are supplied with blood at the wrist and the metacarpals by the muscles and at the 

fingers  by  arterioles.  Tendons  are  independent  of  each  other,  although  they can  collaborate  in 

movements (Nichols, 1960).

Tendons are fine tubular extensions of the muscles that allow them to attach to bones. These 

muscle-tendon junctions together with tendon-bone junctions are the two areas most likely to be 

affected  by  HAS.  The  overuse  of  muscles  of  the  upper  limbs  causes  injury  to  the  tendons' 

attachment at the periosteum (outer layer of the bone). This causes pain and swelling that can be felt 

over  the bones'  surface.  In  severe  cases  changes  over  bone surfaces  can be  identified in  x-ray 

images (Jameson, 1998).

The retinaculum is a structure that guides the tendon from its insertion point at the wrist to  
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Fig. 9: Intrinsic muscles of the hand (on left: right hand in  
dorsal view, on right: left hand in palmar view),  
Webliography[4].



the  correspondent  finger.  When  traversing  this  structure the  tendon is  wrapped by a  sheath  of 

material called the synovial membrane, which is secretes a viscous fluid (called synovial fluid). The 

main  function  of  this  fluid  is  to  protect  the  tendon  from  friction  and  to  aid  its  movements 

underneath the  retinaculum.  In the  case  of  HAS, the  synovial  membrane can thicken affecting 

tendon  movement,  becoming  swollen  and  thickened  in  the  process.  This  causes  pain  and 

inflammation (which in turn is associated with increased temperature that may aid its detection via 

infrared imaging) until the stress is withdrawn (Jameson, 1998).     

2.1.1.5. Ligaments

Ligaments are fibrous materials that act like semi-elastic bands. They function as a means of joining 

bones to form joints. The three more important ligaments (fig. 10) of the hand are: the collateral 

ligaments (found on either side of each finger joint, that prevents abnormal sideways flexion), the 

volar plates (to  connect  the proximal  and middle phalanx on the  palmar side of the  joint,  and 

prevent the proximal joint from excess flexion) and the transverse carpal ligament (located around 

the wrist and encloses the carpal tunnel holding all carpal bones, muscles, tendons, nerves, veins, 

arteries that compose the wrist)(Jameson, 1998).

In HAS, ligaments play an integral part, not because they tend to become injured, but due to 

their function to cover or enclose several nerve structures that can contribute to nerve entrapment 

syndromes. However in HAS it is possible for the ligaments to be injured, this normally occurs only 

in strenuous work such as carpentry or in other occupations that involve heavy mechanical labour. 

Ligament injuries are slow to heal, and can take from six months to a year to full recovery. This is  

caused by the minimal blood supply to the ligaments. Sufferers of HAS with sprained ligaments 

may experience pain for large periods of time (Jameson, 1998).  
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2.1.1.6. Nerves

Nerves  supply  the  muscles  and  all  other  body  tissues  with  information  in  the  form of 

impulses from and to the brain. They control muscular contraction as well as local body movement 

and reactions. The nervous system is divided into two subsystems: The central  nervous system 

(CNS) in the brain, and the autonomous or peripheral nervous system (PNS) present in the spinal 

cord (attached to the brain and all other parts of the body). The hand is innervated by 4 main nerves 

which include sensor  and motor components  (fig.  11).  These nerves  are:  posterior  antebrachial 

cutaneous, radial,  median and ulnar (Jameson, 1998). 
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Fig. 10: Ligaments of the hand (left hand in dorsal view),  
Webliography[5].



The posterior antebrachial cutaneous nerve innervates the dorsum skin of the wrist and is 

connected to the spinal nerve roots C4-T1 (fig. 11) (Tortora and Grabowski, 2003). 

The radial nerve (fig. 12) is responsible for innervating the wrist extensors which control the 

position of the hand and stabilise the fixed unit. It has its origin at the posterior cord of the brachial 

plexus (fig. 11) (C6-8). The radial nerve innervates the radial three quarters of the dorsum of the 

hand and the dorsal surface of the thumb and also supplies sensibility to the dorsal surfaces of the 

index and middle fingers and to the radial side of the ring finger (Jones, 2006).

19

Fig. 11: Roots of the nerves of the hand on the spine,  
Webliography[6].

Fig. 12: Regions of each nerve of the hand (right hand on both  
palmar and dorsal views), Webliography[7].



  The median nerve (fig. 12) innervates the muscles involved in the fine precision and pinch 

functions of the hand. It originates at the lateral and medial cords of the brachial plexus (fig. 11) 

(C5-T1) and provides motor and sensor capabilities to the anterior surfaces of the thumb, index and 

middle fingers and the radial side of the ring finger. Dorsal branches of this nerve serve to supply 

the dorsal aspect of the index and middle fingers distal to the proximal interphalangeal joint and the 

radial half of the ring finger (Jones, 2006).

The ulnar nerve (fig. 12) drives the muscles involved in the power grasping function of the 

hand.  It  has  its  origin at  the  medial  cord of  the  brachial  plexus (fig.  11)  (C8-T1).  This  nerve 

innervates the little finger and the ulnar half of the ring finger on the palmar surface; at the dorsal 

aspect of the hand, the ring and little finger metacarpals, the dorsum of the little finger and the 

dorso-ulnar half of the ring finger (Jones, 2006).

Regarding hand function, the most important nerve is the median which carries information 

from the larger area of the palmar surface of the hand, and innervates the intrinsic muscles that 

control the thumb (Jones, 2006). 

HAS  often  implicates  injuries  to  the  Peripheral  Nervous  System,  although  the  Central 

Nervous System also plays an important role. Impulses for muscle contraction in the fingers start in 

the  brain  and  flow  downward  to  the  arms  passing  through  the  spinal  cord,  where  the  CNS 

communicates  with  the  PNS,  and  arrive  at  the  hand  and  fingers.  The  peripheral  nerves  are 

responsible for sending impulses to the organs and receive sensory information from them including  

the skin. Some of these nerves are engaged in sympathetic and parasympathetic functions. Nerves 

belonging to the sympathetic nervous system which emerge from the middle-back spinal region 

cause muscle tension, the release of adrenaline, decrease of digestive function, increased breathing 

and  heart  rate.  Opposite  reactions  such  as  slower  breathing,  slower  heart  rate  and  increased 

digestive function are caused by the parasympathetic nervous system, from the brain and spinal 

region near the tailbone  (Jameson, 1998).

People in stressful jobs are usually found to have an increased and prolonged sympathetic 

response. This makes them more susceptible to HAS conditions. The sympathetic response induced 

muscle tension can cause fatigue of muscles and chronic mechanical stress. Compression of the 

peripheral nerves may occur at various sites between neck and the upper limbs. It is possible for a 

nerve  to  become trapped in  more  than one  location  at  same time.  Among HAS sufferers  it  is  

common to find multiple entrapment sites. Nerve impulses are considerably attenuated in situations 

where  the  nerve  is  being  compressed at  more  than one  site  (Jameson,  1998).  Prior  to  muscle 

weakness becoming apparent, gradually increasing degrees of numbness and tingling sensations are 

signs  of  progressive  impairment  of  nerve  conduction.  Nerve  compression  can  cause  injury  of 
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sympathetic fibres resulting in dryness of the skin and poor circulation to the extremities (Werner 

and Andary, 2002). 

Dermatomes are areas of skin mainly supplied by a single posterior spinal nerve root. In fig. 

13  is  shown the  hand  skin  areas  with  the  corresponding  nerve  root.  The  thumb posterior  and 

anterior skin areas are supplied by the C6 nerve root, the index and middle finger skin areas by the 

C7 and the remain fingers areas by the C8 nerve root (Casey et al., 1993). 

In the context of this work hand dermatomes are relevant to identify neurological reactions 

to mechanical provocation.

It is, however, the interaction of nerves with the blood supply to the hand that is at the core 

of this work. This aspect is explained in greater detail in the following section.

2.1.1.7. Blood vessels, veins and arteries

The  hand  has  one  of  the  richest  and  complex  vascular  networks  of  the  human  body 

(Jameson, 1998). 

Hands  are  fed  by  two main  arteries  that  carry  oxygen-rich  blood from the  heart  to  the 

tissues, the radial (middle side) and ulnar (lateral side) (fig. 14). Both are branches of the brachial 

artery, which supplies the upper limbs from the aorta artery. After reaching the hand via the carpal 

tunnel at the wrist, both arteries form two palmar branches, the superficial and the deep palmar 

branches that respectively contribute to the superficial and deep palmar arches. From these arches 

the digital arteries, two for each finger, are formed (Nichols, 1960).  
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Fig. 13: Dermatomes of the hand, Webliography[21]



Two  main  veins  carry  oxygen-deficient  blood  back  to  the  heart  (fig.  15)  the  cephalic 

(median) and basilic (lateral).  Both will  merge into the brachial vein at the forearm. There is a 

dorsal venous arch, resultant from the digital veins, two for each finger, that ends at the cephalic 

and basilic veins (Nichols, 1960).

In HAS conditions bleeding of small capillaries and veins may occur due to direct injury. A 

pressure increase within the cells causing oxygen deprivation may also occur due to a leakage of 
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Fig. 14: Arteries of the hand (right hand palmar view and  
right hand dorsal view), Webliography[8].

Fig. 15: Veins of the hand (right dorsal hand), Webliography[9].



fluid to the surrounding areas outside the cells. This decrease of oxygen supply to the cell structures 

may cause the cells to die (Jameson, 1998).

Inflammation  due  to  direct  pressure  causing  nerve  compression  and/or  swollen  tissues 

causes a decline in blood flow to the nerve. As a consequence there is less oxygen available to the 

nerve cells which results in degeneration of myelin. Myelin thinning affects the speed and wave 

form of the nerve impulse. In a prolonged situation of nerve compression and reduced blood flow, 

the axon, which is responsible for transmitting impulses to the tissues will start to degenerate. These 

symptoms are not noticed immediately as the nerves consist of thousands of axons. Only after a 

considerable number of axons have died the symptoms will appear. It is relevant to note that axons 

are very slow at regenerating, if they have that capability at all. This is one of the reasons why HAS 

must  be  diagnosed  at  an  early  stage  and  treatment  should  be  initiated  immediately  otherwise 

irreparable harm to the nerve cells with long term disability will be the consequence. It is believed 

that in HAS affected patients with an over-productive sympathetic nervous system this can cause 

the blood vessels to constrict and dilate inappropriately, and thus constituting a condition that is 

known as Raynaud's phenomenon (Jameson, 1998).         

Since blood supply to the hands directly affects their temperature an abnormal reaction of 

the nervous system to stimuli, may be noticeable by monitoring hand skin temperature. In order to 

understand this causal relationship the next section introduces the layer between superficial blood 

vessels and the outside world: the skin.    

2.1.1.8. Skin

Skin differs on both sides of the hand, at the dorsum it is thin, soft, hairy and pliable and on 

the palmar side it  is thick and hairless,  with unique characteristics for special  functions (Jones, 

2006). 

Skin  is  constituted  of  three  layers:  epidermis,  dermis  and  hypodermis  (Tortora  and 

Grabowski, 2003). 

The outer layer is the epidermis, it is a protective wrap over the body structures, constituted 

of  stratified  squamous  epithelium with  an  underlying basal  lamina.  It  is  this  layer  by  its  own 

characteristics that makes the skin waterproof. The thickness of the epidermis at the hand varies 

from 0.5mm on the dorsal region to the 1.2mm on the palmar. This layer does not have any blood 

vessel cells, the deepest sublayers are nourished through diffusion from blood capillaries that extend 

from the upper layers of the dermis (Tortora and Grabowski, 2003).
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The middle tier of the dermis has enfolded glands, nerves, blood vessels and hair follicles 

(the latter are not present on palmar skin). This layer is composed of two sublayers: the papillary 

region and the reticular region. The papillary region (fig. 16) is placed on the superficial chunk of 

the dermis (20%) and consists of areolar connective tissue with elastic fibers, it contains dermal 

papillae that accommodate capillaries,  corpuscles of touch and free nerve endings (Tortora and 

Grabowski, 2003) Using infrared imaging, circulatory activity can be monitored up to 6mm inside 

of body, therefore peripheral capillary activity can be recorded using this technique.  

The inner layer of the skin is the hypodermis (fig. 17), although it is not considered to be a 

part  of the skin.  It  attaches the skin to underlying bone and muscle and supplies it  with blood 

vessels and nerves (Jones, 2006). 

The skin has several functions, those relevant to this work are: sensation detection (due to 

the  nerve  endings  that  react  to  temperature,  touch,  pressure,  vibration,  and  tissue  injury), 

temperature regulation and evaporation control (Tortora and Grabowski, 2003).

Skin has different pigmentation, which explains the different skin colour of the humans. In 

all other attributes and features the hand remains similar (Smith and Burns, 1999).  

Skin becomes thinner with age, is more easily damaged and loses the ability to heal due to a 

fall in elasticity, decrease in blood flow and lower glandular activity (Tortora and Grabowski, 2003).

An important property of the skin in the context of this work is, due to the measurement of 

infrared radiation emitted by the skin, is its emissivity (the relative power of its surface to emit heat  

by radiation) that is usually at a characteristic value of 0.98. This means that the human skin is a 

poor thermal reflector but has a high ability to both absorb and emit radiated energy (Hardy, 1934).
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Fig. 16: Sub-layers of the epidermis (Palm of the hand), Webliography[10].



       

2.1.2. Physiology

In this section the physiology of the hand is presented, the characterisation of the sensory 

system of the hand, the microcirculation with its important role for thermoregulation.

     

2.1.2.1. Sensor System

The hand sensory system has a relevant role in thermoregulation of the hand. This system is 

important for the activation or suppression of an answer from the autonomous nervous system. The 

acclimatisation period described in section 3.1 is an example of how ambient constant temperature 

habituation and contact avoidance with other materials are significant. 

The hand is an important source of information, it is equipped with different sensors that 

transmit  sensor-motor  data  to  the  brain  through  the  nervous  system.  These  sensors  can  be 

extroceptic (perceiving sense from outside the body) or interoceptic (perceiving sense from within 

the  body)  (Jones,  2006).  The  different  sensors  that  can  be  found  in  the  human  hand  are 
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mechanoreceptors, thermoreceptors, nocireceptors, muscle receptors and joint receptors (fig. 18). 

Mechanoreceptors however are directly related to tactile sensation and act on mechanical stimuli. 

Touching, hearing and equilibrium are examples of sensation perceived by these sensors.  (Jones, 

2006). 

Thermoreceptors provide thermal information of objects from thermoreceptive afferent units 

in  the  skin.  Hands  provide  two  different  types  of  thermoreceptors:  cold  receptors  and  warm 

receptors,  with cold receptors being in the majority and located closer to the skin surface.  The 

density of these receptors per square centimetre on the dorsal hand is 7 for cold sensors and 0.5 for 

warm. Cold receptors respond to skin temperature decreases over a range of 5-43ºC and become 

more active at skin temperature of 25ºC. Contrastingly, the warm receptors discharge signals at skin 

increasing temperatures reaching a maximum at 45ºC. Between 30ºC and 36ºC no thermal sensation 

is noted, although both types are spontaneously triggered. During daily activities hand can vary in 

skin temperature between 20ºC and 40ºC, normally remaining between 30ºC and 35ºC. When hand 

skin temperature is sensed over 45ºC or below 13ºC these sensors transmit a sensation of pain to the 

brain. On the palmar hand these sensors are innervated by the median nerve. Warm sensors conduct 

much faster (1-2m/s) than cold sensors (10-20m/s). This identifies them as unmyelined fibers in 

opposition  to  the  cold  receptors  that  are  small-diameter  myelined  fibers  (Jones,  2006)  The 

thermoreceptors of the skin can perceive a temperature difference of 0.01ºC this, however, may take 

up 10 seconds (Widmeier et al., 2004). 

Nocireceptors  mediate  pain  sensations  and  are  selectively  sensitive  to  high-intense 

stimulation of several different energy forms such as electrical, mechanical, chemical or thermal. 

These receptors are continually relaying impulses to the brain. The density of these receptors per 

square centimetre on the dorsal hand is 188. Muscle receptors provide to the central nervous system 

the information about muscle length and force. Joint receptors reflect the location of stresses during 

limb movements (Jones, 2006).  
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2.1.2.2. Microcirculation

Microcirculation is the name given to the smallest blood vessels (<100µm in diameter) in 

the  vasculature.  The  components  of  the  thermoregulation  system  are  arterioles  (arterial  side), 

capillaries and venules (venous side) (fig. 19). Arterioles are small diameter blood vessels with thin 

muscular walls. These elements are the primary site of vascular resistance, they obtain autonomic 

nervous system innervation and also regulate  their  diameter  according to a response to  various 

circulating hormones. In a healthy vascular system these elements are relaxed. The increase of total 

peripheral  resistance of the arterioles may lead to  hypertension.  This is  important  in  this work 

because this resistance affects directly affects the peripheral temperature. Arterioles are composed 

of  vascular  smooth  muscle  and  endothelium,  that  have  direct  communication  between  them. 

Endothelium is a thin layer of cells that forms the interior surface of blood vessels. These cells are  

involved in several vascular aspects such as the control of blood pressure by vasoconstriction or 

vasodilatation. The endothelium produces nitric oxide and any deregulation in this function may be 

a sign of a pathological state, which may be reflected in the peripheral temperature. The arterioles  

provide blood to the capillaries, which are the body's smallest blood vessels (5-10µm in diameter). 

They connect arterioles and venules and provide the interchange of water, oxygen, carbon dioxide , 

heat,  chemical  substances and many other  nutrients  between blood and neighbouring cells  that 
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Fig. 18: Sensors of the hand skin, Webliography[12].



constitute tissues. 

There are three types of capillaries:  continuous, fenestrated and sinusoidal. Metarterioles 

allow  direct  communication  between  arterioles  and  venules,  and  have  an  important  role  in 

bypassing the blood flow through the capillaries. The regulation of blood flow into capillaries is 

provided by precapillary  sphincters  that  answer  to  nitric  oxide.  The  blood  flow influences  the 

peripheral temperature, which is transferred to the external environment through infrared emission. 

This emission can be recorded by an infrared imaging system and used to monitor pathological 

states indicated by deficient nitric oxide regulation. Venules are small blood vessels that endorse 

deoxygenated blood to return from the capillaries to the larger veins and from these back to the 

heart to be re-oxygenated by the lungs (Tortora and Grabowski, 2003).  

The principal functions of microcirculation can be summarised firstly as the transportation 

of blood cells and substances such as oxygen and glucose to and from the cells and secondly as the 

regulation of blood pressure, fluid tissues and body temperature (Tortora and Grabowski, 2003).

The full process of thermoregulation is summarised in the next section.
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2.1.2.4. Thermoregulation

It  is  known  that  the  temperature  of  the  hand  varies  according  to  the  surrounding 

environment. At a constant environmental temperature of 30ºC it varies on average between 32.9ºC 

and 34.8ºC, in a cool environment (20-25ºC) it can vary from 24ºC to 32.9ºC and in hot conditions 

(35-40ºC) it can arrive to a maximum of 35.9ºC (Houdas and Ring, 1982). 

Thermoregulation is the capacity of a body to maintain and regulate its temperature within a 

limited range of values. In humans the core temperature must be constant, around 37ºC, to maintain  

normal  organ  activity.  The  temperature  within  the  body  can  be  regulated  by  autonomic  and 

behavioural means, as shown Fig. 20, where the red flux represents the heat transfer path and the 

green the signal path (Houdas and Ring, 1982). 

Thermoreceptors are spread throughout the human body, internally sensing the temperature 

close to the organs and peripherally sensing the shell temperature under the dermis. Any variation of  

temperature  values  is  communicated  via  the  nervous  system  to  the  body  central  temperature 

controller, that is a group of neurons in the anterior part of the hypothalamus, known as the preoptic 

area. It is this area that receives nervous impulses from the thermoreceptors, mucous membranes 
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Fig. 20: Human body thermoregulation diagram according to Houdas and Ring.



and other areas of the hypothalamus. Neurons from the preoptic area generate impulses at high 

frequency  when  blood  temperature  increases  and  at  lower  frequency  when  blood  temperature 

decreases. These impulses propagate to two other parts of the hypothalamus known as the heat-

loosing centre and the heat-promoting centre, that when stimulated by the preoptic area set into 

activity a series of responses that lower or rise body temperature correspondingly. When the sensory 

system acknowledges a decrease in core temperature nervous impulses are sent to the preoptic area, 

which in turn activates the heat-promoting centre through hormones production activating the heat 

gain  mechanisms  such  as:  vasoconstriction  (decrease  on  warm blood  flow),  shivering  (muscle 

contractions and stretching), and a slow increase of metabolism rate. If a core temperature increase 

is perceived the thermoreceptors will sent nervous signals to the preoptic area, which generates 

hormones that inhibits the heat-promoting centre and activates the heat-loosing centre, which in turn 

activates  the  body  temperature  decrease  mechanisms  such  as  vasodilatation  and  sweat  glands 

stimulation that activate perspiration through sympatethic nervous system  (Tortora and Grabowski, 

2003).

The task of preserving normal body temperature presupposes an exchange of thermal energy 

to the surrounding environment at the same rate as it is produced by metabolic reactions (Tortora 

and Grabowski, 2003). 

According  to  Tortotra  and  Gabowski  (2003)  heat  can  be  transferred  to  the  external 

environment through four mechanisms shown in Fig. 21:

• Conduction, where heat exchange occurs between materials or substances that are in direct 

contact with each other. In a unclothed resting state about 3% of body heat is dissipated via 

conduction .  

• Convection, where transfer of heat happens by the movement of a fluid or gas between 

areas of different temperature. Contact with cold or warm water or being close to a working 

fan are good examples  of  this  type of heat exchange.  At  a  steady state  the amount  of 

percentage of heat removed from a unclothed human body by convection is about 15%. 

• Radiation transfers heat in the form of infrared rays between two objects without physical 

contact. A body looses heat by radiating more infrared waves than it absorbs from cooler 

objects, however when surrounded by warm objects the opposite happens. In a unclothed 

steady state about 60% of heat loss occurs by radiation.

• Evaporation, which occurs when heat transforms a liquid into a gas. About 70% of the 

human body is  composed of water,  a certain amount of water is  lost  through the skin, 
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mucous membranes and breath. The amount of evaporation is directly related to the relative 

humidity of the air. The higher the relative humidity the lower the evaporation rate. In a 

situation of 100% relative humidity heat may be gained by the body through condensation 

of water on the skin as fast as heat is lost by evaporation. Under resting conditions the 

unclothed human body loses 22% of heat by evaporation.  

The  human body is  very  sensitive  to  temperature  variation,  it  is  know that  for  normal 

activity  the  core  temperature  varies  between  36ºC  and  37.5ºC,  outside  of  that  interval  some 

functional activities start to be compromised. More than 7ºC variation from the lower or upper limit 

can be fatal (Tortora and Grabowski, 2003).

Depending on the surrounding environment, the temperature of the skin is between 1ºC and 

6ºC lower than the body core temperature. In order to prevent the core temperature to deviate from 

normal values the human body has thermal effectors, which are able to react to a need for core 

temperature increase or decrease (Tortora and Grabowski, 2003).

Factors such as age, body mass index and gender affect this thermoregulation, and this is a  

reason why they should be taken into consideration in this work. Children and adolescents have a 

higher metabolic rate due to the reactions present in their body as a consequence of normal growth. 

Older people may have lost the capability of the vasomotor system, have a very slow metabolic rate 

due to the ageing of cells and a reduced production of perspiration. Subjects with large body mass  

are less affected by heat exchange with the environment than people with small body mass. Women, 

due to their menstrual cycle, present core temperature oscillations between 0.2 to 0.4ºC (Tortora and 

Grabowski, 2003).  
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The blood flowing in the veins and arteries of the hand is of lower temperature than in other 

regions of the body. This phenomenon is explained by the blood in the brachial artery being cooled 

by cold blood returning to the heart from the hand by way of deep veins in close proximity to the 

vessels – an arrangement that resembles a counter-flow heat exchanger. The method used in the 

hand to conserve heat consists in most of the venous blood returning from the distal section being 

diverted to deep tissues and therefore being heated by the blood passing through the main artery 

trunk. For dissipating heat the venous blood circumvents this heat trap in the form of the warmed 

blood passing through the main artery, being deflected initially by arteriovenous anastomoses into 

the  superficial  system of  cutaneous  and  subcutaneous  veins  where  the  heat  is  then  lost  to  the 

external environment (Abramson, 1967).

Since skin is a predominant organ in the hand, and since (compared to muscle tissue) only a 

small amount of blood is required to satisfy the oxygen requirements of the tissues of the hand, the 

circulation plays a majority role in thermoregulation. High cutaneous blood flow in the hand due to 

vasodilatation  results  in  an  increase  in  skin  temperature.  This  alters  the  temperature  gradient 

between the body and its environment, and produces accelerated heat loss from the skin. In a warm 

environment  the amount of cooling of the blood as it  passes through the hand is  minimal,  the 

increase in blood flow occurs without much loss of heat. Heat loss by evaporation in the hands,  

however, can be considerable. Due to the large number of sweat glands being located on the palmar 

skin of the hands and feet, large amounts of heat are lost by sweating, and as a result the extremities  

can have a lower surface temperature than other regions of the body. Consequently there are greater  

fluctuations  in  thermal  responses  to  alterations  in  environmental  temperature,  especially  in  the 

fingertips. Hand microcirculation therefore plays an important role in thermoregulation through a 

rich sympathetic innervation of the small vessels that facilitate heat dissipation or conservation. 

Temperature regulation in the hands is mainly accomplished by vasoconstriction and vasodilatation  

of the cutaneous blood vessels (Abramson, 1967).       

Common causes  of  increased  temperature  values  of  the  hands can be:  arthritis,  trauma, 

infection,  reactive  hyperemia  (caused  by  cold  stress,  warm  stress  and  alcohol),  tenosynovitis, 

dermatitis,  bone  fracture,  rheumatoid  algodystrophy  and  osteoarthritis.  The  opposite  effect, 

decreased  temperatures  of  the  hands,  can  have  as  common causes:  neurogenic  lesions,  arterial 

occlusion,  diabetes,  effects  of  smoking,  old  skin  lesions  (scar  tissue),  vasoplastic  disorders, 

acrocyanosis,  diabetic  neuropathy,  arteriosclerosis,  disseminated  lupus,  carpal  tunnel  syndrome, 

Sudek's algodystrophy, dermatomyositis, scleroderma and vasospasms from smoking (Houdas and 

Ring, 1982).  

Many  of  the  above  conditions  are  associated  with  HAS  and  the  changes  in  surface 
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temperature and temperature regulations patterns may allow clinicians to assess their presence and 

severity.

2.2. Mechanical Stress

In  the  context  of  this  work  mechanical  stress  is  defined  as  a  disruption  of  normal 

homeostasis due to a mechanical challenge or task. It can be described by the reactions of the body 

to forces of a detrimental nature such as infections and various abnormal states that tend to disrupt 

its normal physiological equilibrium. Its diagnosis is complex, multifactorial and often uncertain. 

According  to  Noble  (2002)  currently  there  are  three  measures  are  clinically  used  for  its 

identification: questionnaires, biochemical measures and psychological measures:

• When exposed to general stress stimuli, the body responds physiologically by increasing the 

activity of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathoadrenal system 

(SAS).  Stress  gives  rise  to  a  number  of  characteristic  behavioural  responses.  There  are 

several  different  questionnaires  available  to  quantify  the  level,  since  this  is  always  a 

subjective method.

• In  biochemical  measures  hormones  are  of  interest.  The  hypothalamus  releases  the 

corticotropin-releasing  hormone  (CRH)  and  it  acts  on  the  adrenal  cortex,  liberating 

corticotropin (ACTH) and increasing the secretion of corticosteroid hormones that can be 

measured in various body fluids such as urine, saliva or blood.

• In measuring the physiologically response to stress, the sympathetic nervous system (SNS) 

is important because its activity can be used as relevance indicator. During stress response 

the autonomous nervous system is activated instantaneously and the balance between the 

sympathetic and parasympathetic components is quickly disrupted.  With the sympathetic 

nervous activity predominant, non-invasive techniques clinically used to assess stress by 

physiological measures are: heart rate, heart rate variability, blood pressure, blood pressure 

product  and  electrodermal  activity.  All  these  measures  require  baseline  and  pre-stress 

measurements for proper interpretation.  

Prolonged and repeated exposure to mechanical  stress can,  via  the mechanisms outlined 

above, cause conditions such as HAS which is outlined in the following section.
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2.3. Hand-Arm Syndrome

This  section  of  the  literature  review  outlines  the  medical  background  of  a  range  of 

conditions summarised under the term Hand Arm Syndrome (HAS) as far as it is required for the 

understanding of this project which focuses on work related aspects of HAS only. It is not intended 

to be a comprehensive review of HAS. 

A hand injury scoring  system has  been developed and proposed by Campbell  and Kay 

(1996) to give an answer to the absence of objective tools for grading the severity of injuries that 

affect  the hand.  Their  proposed system allows all  types  of  injuries  that  affect  the  hands to  be 

classified and subsequently compared in terms of severity.

In order to  analyse separately  the  hand distal  to  the carpal  anatomical  components  four 

categories  were  suggested:  integument,  skeletal,  motor  and  neural.  Each  of  these  categories  is 

examined in detail to cover all possible injury patterns and assigned a numerical grade according to 

its  notable  importance  (table  2  of  Appendix  3).  The  final  hand  injury  severity  score  is  then 

calculated  according  to  the  result  of  completing  table  1  of  Appendix  3  by  using  individual 

weighting factors of table 3 of Appendix 3 against the values obtained from the information of table 

2 of the same Appendix (3). This is done for each finger of the subject. Finally the hand injury is 

classified in factors according to the obtained score (see table 4 of Appendix 3). In Campbell's  

study the final hand injury severity score has shown a significant correlation with the absence time 

of work caused due to hand injuries (p<0.002). Campbell suggests that in order for scoring systems 

to  be functional  and descriptive there  are  factors  that  must  be considered  such as  handedness, 

occupation, treatment and patient psychological profile. He states that a descriptive system simply 

outlines the exact structural damage at the time of injury, whereas in order to be more specific and 

of prognostic  value a large number of hand injuries is  needed. Although he considers that this 

scoring system for hand injury is a descriptive system to classify injuries into categories, it was 

considered to be the first stage in the evolution of a quantitative measurement of hand conditions. 

The  following  reviews  are  structured  into  two  sections,  one  for  the  general  group  of 

symptoms summarised under the label Repetitive Strain Injury (RSI) and a second one for one of its 

best understood sub-conditions, the Hand Arm Vibration Syndrome (HAVS). Other sub-conditions 

of  RSI  such as  Carpal  Tunnel  Syndrome are  very  complex,  can  have  other  (non-work related 

genesis) and are generally not as well understood as HAVS. Fig. 22 outlines this hierarchy. 

In  each  section  the  causes  and  symptoms of  the  syndromes  are  briefly  explained.  The 

emphasis of the review is on highlighting the deficiencies of current diagnostic methods and to 
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introduce potential avenues for improvement. These avenues will then be explored further in the 

following ‘Discussion’ section.

2.3.1. – Repetitive Strain Injury (RSI)

RSI is also known as ‘cumulative trauma disorder’ or ‘occupational overuse syndrome’, it is 

one  of  a  loose  range  of  conditions  due  to  repetitive  occupational  tasks  and/or  wrong  posture 

affecting muscles, tendons and nerves in the upper extremities and upper back provoking chronic 

pain  and  discomfort  in  affected  subjects.  RSI  can  be  classified  into  several  sub-syndromes  or 

disorders, one of them is HAVS, that will be studied particularly in this research, other muscle, 

tendon, nerve syndromes and disorders and cervical radiculopathies are also included in the RSI 

classification (Pascarelli and Quilter, 1994) but are not considered here.

RSI was first been documented 300 years ago, the first reports of a repetitive phenomenon 

affecting the human upper limbs were made in occupations involving clerical work and telegraphy 

(Physiotherapy, 1999). In technically developed countries the highest increase of RSI conditions 

was  in  the  late  1970’s,  mostly  from  the  use  of  typewriters.  With  computers  and  consequent 

automation of work, this trend has continued for almost 30 years. Alongside technological advances 

and developments of specialised service industries the number of exposed workers continues to 
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grow every year (Physiotherapy, 1999).

In the UK the Government Department of Health does not accept the use of the term RSI, 

claiming that it is invalid as a diagnosis and that it can be misleading. The current term used is 

Upper  Limb Disorder  (ULD) or  Work Related Upper  Limb Disorder  (WRULD),  but  in  public 

media the term RSI is frequent encountered. However, in the UK RSI/ULD/WRULD as a clinical  

condition is recognised as a serious problem and actions have been taken: an awareness-raising 

campaign was started and booklets were produced under existing legislation by the government 

(Den Held and Cockburn, 2000).

 

2.3.1.1. - Prevalence of RSI

A survey on self-reported work-related illness estimated that around half a million people in 

the UK suffer from a work-related musculoskeletal condition affecting the upper limbs or the neck. 

The authors concluded that the only current monitoring system for RSI used in all EU countries is 

that of subjectively surveying workers. There is  no other common method in use to access the 

syndrome or its degree of severity (Den Held and Cockburn, 2000).

According to an HSE survey, absenteeism due to RSI conditions related complaints cost 5 

million working days in the UK in 1995. There are substantial numbers of claims with subsequent 

legal  processes,  the  precise  number,  however,  is  unknown.  The  Department  of  Social  Security 

(DSS) compensation recovery service recorded over 400 claims related to RSI in the year ending 31 

March 1999. The Employment Relations and Union Services Health & Safety report of 1999 refers 

to around 2500 civil claims that are pursued by people with RSI every year, a large number of these 

are settled out-of-court, often for significant sums between £30,000 and £85,000 (Physiotherapy, 

2001).  The UK government policy on RSI specifies general  duties for all  employers under the 

Health and Safety Act of 1974 to assess and reduce risks and to ensure the health and safety of  

employees but there is no quantitative goal regarding the reduction of RSI related complains (Den 

Held and Cockburn, 2000). 

An HSE awareness-raising information campaign, “good health is good business”, started in 

1995 and is still running. On of its initial focal areas of concern was musculoskeletal risk, including 

upper  limb disorders,  and has  subsequently  covered other health  risks  as  well.  (Den Held  and 

Cockburn, 2000).
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2.3.1.2. – Causes of RSI

Several factors in everyday activities affect the soft tissues present in the upper limbs and 

cause  a  slow  and  progressive  loss  of  capacity  for  performing  those  activities.  The  factors 

responsible can be divided in three main groups: 

• physical, 

• workplace organisational, 

• and external factors. 

Physical risk factors include those where a substantial amount of time is spent performing a 

repetitive task, like typing on a computer keyboard. An uncomfortable workplace that results in 

poor posture or bad positioning, awkward postures maintained for long periods of time, extended 

periods of overhead work, repetitive loading or lifting actions are also contributing physical risk 

factors. These may be aggravated in situations where excessive forces are applied by twisting or 

gripping motions or where working in extreme hot or cold temperatures or vibrations from power 

tools is required (Pascarelli and Quilter, 1994, Peddie and Rosenberg, 1997).

Workplace  organisation risk  factors  include  prolonged  periods  of  manual  work  without 

adequate breaks, work to tight deadlines, excessive workload, monotonous work, low job control, 

job  insecurity  or  dissatisfaction,  poor  workplace  social  support,  unclear  job  roles,  lack  of 

information about workplace design, workstation and equipment design, work psychological stress 

and ignorance of RSI risks (Pascarelli and Quilter, 1994, Peddie and Rosenberg, 1997).

External risks  identified  in  connection  with  the  RSI  syndrome  are  the  degree  of  work 

difficulty and the working style: 

• Weaknesses or resistance to RSI are partly inherited. While gender has been named as a 

factor with many authors concluding that women are more vulnerable to RSI due to their 

physiology and hormonal changes. Other studies contest this view and point out that there is 

no significant difference between genders and that men are statistically loosing more work 

time to RSI than women (Sprout, 1997)

• A person’s general health, an underlying physical condition such as diabetes or rheumatoid 

arthritis, fatigue or an earlier trauma to the body can be also affective. 

• With respect to activities outside work, some hobbies may require repetitive activities such 

as when playing a musical instrument, playing video games, sewing or carpentry.
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• Some studies have shown that RSI mainly affects experienced workers, although there are 

concerns that a new generation of young workers that are using computers and consoles may 

be  increasing  their  time  of  exposure  in  addition  to  work  related  stress  loads  and  thus 

negatively affect their resilience. 

• The Body Mass Index (BMI) is also a factor not just because of obesity but body shape can 

affect workers adopting wrong postures. 

• Psychology may be a contributing factor,  for example,  a  shy person may be hesitant to 

openly show symptomatic signals and thus that aggravate the situation. 

A downturn in the economy can contributes to RSI, increasing employee workload as can 

someone’s lifestyle, the use of drugs, smoking and alcohol abuse, diet or even sedentary behaviour 

(Pascarelli and Quilter, 1994, Peddie and Rosenberg, 1997).

2.3.1.3. – Occupations at risk

Some work activities carry higher risk than others, as a result workers undertaking certain 

types of activities increase the probability of developing RSI. Occupations with high a risk are:

• assembly-line workers engaging in repetitive movements, reaching overhead or twisting to 

the side, applying thumb pressure,  pinch gripping, producing ulnar deviation and having 

generally little control over the layout of the place of work; 

• manual labourers such as butchers or bricklayers, who regularly have to twist their hands, 

extend and flex their wrists while applying great force;

• clerical  workers  such  as  typists  and  computer  users  are  at  risk  due  to  static  posture, 

repetition and bending wrists; 

• professionals like journalists or telephone operators often assume static posture, work to 

deadlines while putting pressure on elbows.

The list continues with musicians, (repetition, hunching shoulders and forceful wrist 

motions), graphic designers (gripping with fingers and hunching shoulders), supermarket cashiers 

(pulling, lifting and twisting wrists repeatedly), construction workers (repetition, awkward postures 

and  use  of  vibrating  tools),  postal  workers  (carrying  mailbags),  and  many  more.  (Peddie  and 

Rosenberg, 1997).
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2.3.1.4. – Symptoms

There  are  a  number of  signs  that  are  indicative  of  RSI,  one  sign  by itself  may not  be 

significant  for  diagnosing  the  syndrome.  A grouping  of  symptoms,  however,  is  often  a  good 

indicator that RSI is present. Accepted signs that could reveal indices of RSI syndrome are:

• pain in the upper limbs, shoulders or neck, 

• fatigue or lack of endurance, 

• weakness in the hands and forearms, 

• tingling or numbness, 

• loss of sensation, 

• heaviness, clumsiness of movements,

• stiffness,

• lack of control or coordination,

• cold hands,

• heightened awareness, frequent self-massage,

These signs are normally present in health assessment questionnaires for upper limb work 

related disorders, and according to the two following tables (table 1 and table 2) they can reveal the 

severity of RSI to some degree. In both tables the grade of injury is quantified according to the 

severity of the symptoms together with suggested corrective actions (Pascarelli and Quilter, 1994, 

Peddie and Rosenberg, 1997).
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Degree of injury Characteristics of pain Remedy
Grade one Pain is present only when performing the 

aggravating tasks, outside activities of daily 
living are not affected.

Modifications to workstation usually eliminate 
symptoms.

Grade two Pain continues long after having stopped 
aggravating tasks, activities of daily living are 
affected to a small degree.

Modifications to workstation usually eases or 
eliminates symptoms.

Grade three Pain continues long after work, activities of 
daily living are affected. Physical signs, such 
as tenderness or swelling are present.

Patients at this level need rest. They usually can 
resume work after allowing themselves time to 
heal and if their workstations have been 
modified.

Grade four Pain is present in the morning and usually at 
night, but may subside on weekends; 
activities of daily living are greatly affected. 

Patients usually require lengthy time away from 
work. Recovery is uncertain, though not 
impossible. 

Grade five Pain is continuous; activities of daily living 
are substantially restricted.

Patients need lengthy period of time away from 
work. Recovery is uncertain.

Table 1: Degrees of injury in RSI (Peddie and Rosenberg, 1997).

Pre- RSI Early RSI Danger Zone Chronic Pain Complex Chronic 
Pain (RSD)

Symptom “Funny” 
feeling in 
arms and 
hands

Intermittent 
twinges of 
pain or 
tingling while 
typing.

Weakness, clumsiness, 
pain intermittent but 
not necessarily relieved 
by rest, daily activities 
impaired, depression

Weakness, constant 
pain, not relieved 
by rest, made worse 
by any activity, 
disability.

Chronic pain, Reflex 
Sympathetic 
Dysfunction, 
dystonia, severe 
depression

Outcome Relieved 
by rest.

Relieved by 
rest and 
rehabilitation.

Moderate risk of 
permanent impairment.

High risk of 
permanent 
impairment.

Permanent disability.

Table 2: The continuum of RSI (Helliwell and Taylor, 2004).

2.3.1.5. – Diagnostic methods

The  most  frequently  used  methods  to  assess  signs  and  symptoms  indicating  RSI  are 

questionnaires and the analysis of medical history. The most common approach is to identify all 

existing symptoms and the level of discomfort to the patient and then to eliminate symptoms that  

may  suggest  alternative  causes  such  as  a  non-RSI  related  neurological  deficit,  joint  swelling, 

vascular changes, young or old age (outside the 15 to 55 years bracket) and systemic symptoms. 

The following step is then to consider specific diagnosis for which there may be appropriate 

investigations or treatment. After this the clinician attempts to identify all physical factors, which 

are known to be RSI risk factors (section 2.3.1.1 above). 
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The next step is to identify which of these risk factors are indeed important and applicable in 

the respective case and to isolate potential obstacles to recovery which can be:

• psychological (maladaptive illness belief and depression or psychological distress),

• workplace issues (monotony, low degree of control, poor personal relationships and high 

work demands),

• workplace issues,

• financial issues (disability allowance, compensation issues),

• and attitudes of the individual. 

After this, the clinician will need to assess if there is evidence of physical damage and that 

continued activity  (moderated  according to  the  “Remedy” column of  Table 1)  will  not  lead to 

damage. It is recommended that the patient should not take time off work, if possible. If symptoms 

persist advice is taken about activity modification, this must be coordinated with the person’s work 

supervisor or employer. Some analgesic may be provided if necessary for symptom control, often 

being prescribed regularly rather then when is required. If symptoms persist the whole process is 

reviewed after a few days or weeks (Helliwell and Taylor, 2004). 

The above procedure is  common in many places and countries;  it  does not contribute a 

solution to the problem and it does not satisfy the needs of the patient. 

In only a few cases the diagnosis is solely based on symptom descriptions collected by 

questionnaire using tables such as the ones shown above, in most cases clinicians will also perform 

a dedicated RSI examination after reviewing the medical history of the patient. This is normally 

achieved using three main avenues of  examination:  looking for  clinical  signs,  testing muscular 

functions, and testing for nerve damage (Helliwell and Taylor, 2004).

Appendix  1  provides  an  overview table  of  current  diagnostic  methods  in  use  for  RSI. 

Briefly, there are four main muscle test performed, the wrist flexion test, the grip strength test, the 

pulp pinch test and Finkelstein’s sign test. 

Seven tests are conducted to assess nerve damage; they are: Phalen’s manoeuvre, detection 

of  Tinel’s  sign,  nerve  conduction  studies  (or  electromyography,  EMG),  the  Semmes-Weinstein 

monofilament  test,  the  Weber  two-point  discrimination  test,  the  use  of  Magnetic  Resonance 

Imaging (MRI) and the use of X-Rays. On rare occasion’s video analysis has also been used in 
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order to isolate the problem. (Pascarelli and Quilter, 1994). 

To date only three pilot  projects  have been conducted that were aimed at  introducing a 

standard test for the assessment of the syndrome:

• The first project used computer assisted thermography and was undertaken in Cambridge in 

1997.  Using thermography the project  attempted  to  quantify temperature changes in  the 

forearm of keyboard users suffering from chronic forearm pain. A specific typing speed and 

an acclimatised room were used, but the results reported were found not to be significant,  

probably due to the poor protocol guiding the use of the technique (Sharma et al., 1997). 

• In  the  same  year  another  study  was  performed  at  Middlesex  Hospital  School  of 

Physiotherapy  using  a  vibration  meter  to  obtain  threshold  vibration  measurements  in 

patients with RSI and in computer keyboard users. These tests were performed under are 

more  rigorous  protocol  in  a  controlled  temperature  room with  a  patient  acclimatisation 

period of 20 minutes. Office workers presenting early signs of RSI were identified from a 

quantitative measurement of vibration perception. This approach may prove useful in patient 

assessment and for detection of the early onset of RSI in the work environment (Greening 

and Lynn, 1998). 

• The latest of the three studies was a pilot conducted in Vienna (Austria) with the goal of 

demonstrating a relationship between cold fingertips developing while type writing and the 

duration of  keyboard operation.  15 healthy  females  participated in  acclimatised room at 

24ºC and after  15 minutes  of  acclimatisation.  From this study it  was  concluded that  in 

healthy subjects after 5 minutes of typing the temperature initially increased in the forearm 

and fingers, but after 15 minutes typing a high percentage showed cold fingertips and further 

increased temperature in the forearm. The pilot suggested that continuous typing eventually 

results in a vasoconstriction (narrowing of blood vessels) in the fingertips – causing them to 

cool,  while  muscular  activity  in  the  forearm  produced  the  heat  excess  observed  there 

(Ammer et al., 2001). 
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In conclusion, currently there is: 

1. no standardised test for the diagnosis of RSI, 

2. a total lack of methods for a preventive screening test and 

3. no objective and repeatable means for quantifying existing lesions. 

These are the three problems that will be addressed in this work.

2.3.2. – Hand-Arm Vibration Syndrome (HAVS)

HAVS is the second main proponent of Hand Arm Syndrome. Workers exposed to hand-

transmitted vibrations may experience various vascular and neurological related disorders of the 

hand, although not all frequencies, magnitudes or durations of vibration cause the same effects. In 

order  to  enable reporting and comparison of exposures,  there is  a need for  the exposure to  be 

measured  and  evaluated  using  defined  standardised  protocols.  Furthermore  it  is  necessary  to 

identify what should be measured and how measurements should be expressed, taking in account 

the  components  of  vibration  (magnitude,  frequency,  direction,  waveform  and  duration)  and 

assessing their  impact  according to  criteria  such as  the  probability  of  a  specific  severity  for  a 

specific form of the disease.  With current  assessment protocols it  is  also difficult  to gauge the 

importance or weight of different frequencies, the axes of vibration, vibration magnitude and daily 

exposure durations for HAVS (Griffin, 2006).

It  is  understood that Hand-Arm Vibration Syndrome affects  the circulatory,  nervous and 

musculoskeletal systems and is provoked by a progressive and excessive exposure to vibration over 

a prolonged period of time. The term HAVS is used to describe a range of injuries that can be 

incurred after excessive exposure to  vibration when using vibrating tools with Vibration White 

Finger (VWF) syndrome having the highest prevalence, clustered around certain industries (Claim, 

2007).

VWF is composed of three main components: 

• circulatory disturbances i.e. vasospasm and finger blanching, 

• sensory and motor nerve damage resulting in tingling, numbness and/or loss of dexterity, 

• musculoskeletal  disorders  with  changes  in  the  structure  of  the  joint,  bone  or  muscle 
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(Coughlin et al., 2001).

It is of importance to this work that VWF, like RSI is one of the conditions producing so 

called secondary Raynaud’s phenomenon, where exposure to a mild cold stress (water at 20ºC for 1 

minute)  provokes  intense  and  often  painful  narrowing  of  peripheral  blood  vessels  and  thus  a 

reduction of the blood supply (hence the white finger) followed by unusually long recovery times 

where dilatation of blood vessels and re-perfusion only eventually cause the affected limb to warm 

up again (Claim, 2007). These changes can be monitored and quantified with digital thermography 

given the right methodology is followed.

2.3.2.1. – Prevalence of HAVS

One  of  the  largest  personal  injury  schemes  in  British  legal  history,  is  the  scheme  to 

compensate  coal  miners  and  their  families  for  occupational  respiratory  diseases  and  HAVS.  A 

Medical Research Council (MRC) survey in 1997-8 gave an estimate of 288,000 suffers of VWF in 

Great Britain - 255,000 males and 33,000 females (HSE, 2007). To illustrate the cost to society it is 

worthwhile  to  consider  that  in  the  same  year  the  High  Court  awarded  £127,000  each  in 

compensation to 7 coal miners for VWF. 

In  2000  a  survey  by  Southampton  University  concluded  that  the  exposure  to  hand-

transmitted vibration is surprisingly prevalent and although Raynaud’s phenomenon is common in 

the general population, many cases can be attributed to hand-transmitted vibration, especially in 

men. This emphasises the public health importance of this common occupational hazard in Great 

Britain (Palmer et  al.,  2000a, Palmer et  al.,  2000b). The number of annual new cases of VWF 

assessed for disablement benefit under the Industrial Injuries Scheme (IIS) was 865 in 2004/05. An 

estimated  provisional  of  549  cases  of  HAVS  was  seen  by  rheumatologists  and  occupational 

physicians in 2005 (HSE, 2007). The government is at the moment paying around £2 million every 

working day in compensation for vibration related injuries. Until November 2006 around 120,000 

VWF claims were made, more than 21,000 in Wales alone, excluding many others that have not yet 

been registered with HSE (Claim, 2007).

HAVS is very difficult to prove in court, the process is slow, the evidences should be strong, 

and courts are facing the task of striking a balance between suspicious false claims and awarding 

legitimate compensation.  A claimant’s  detailed,  clear  and accurate  but  subjective description of 
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symptoms is  not  enough. Support,  for example by objective photographic evidence of vascular 

symptoms corroborated by expert medical opinion has shown to be helpful (Platt, 2006).

An Italian physician (Acciari, 1977) has performed the first study on occupational lesions 

from vibrating tools with infrared thermography. In that study he defined a vibrating tool  as a 

device operating at high speed with low amplitude oscillating movements. He stated that the most 

dangerous vibrations to the human extremities were in the range from 30Hz to 80Hz. The vibration 

amplitude was described as the distance travelled through one oscillation and vibration acceleration 

as the parameter perceived by the person exposed and reported in meters per square second. The 

methodology followed by this study was to take a thermal image of the hands before a cold vascular 

provocation,  then using an exposure to water at  5ºC for 5 minutes,  followed by thermographic 

recordings in 5 minute intervals. This test was not considered 'fair' in law due to the difficulty in 

turning the fingers white  without  previous exposure to vibration.  The infrared thermal imaging 

technique was compared with the photoplethysmyography modality. 

The outcomes from this study were:

• Control healthy subjects had recovered from thermal stress within 15 minutes.

• Vibration injured affected subjects had recovered from thermal stress in an average 

of 40 minutes. 

• After the provocation:

• Thermography was extremely useful in objectifying the subjective symptoms.

• Thermography was very demonstrative under standard conditions.

• Infrared  thermography  had  identified  84%  of  the  pathological  cases  and 

photoplethysmyography had identified  only 24% of  the  clinical  confirmed 

cases.

This study concluded that thermography is  a  suitable  choice for  a  diagnostic  method in 

liability and insurance cases, and also in occupational and forensic medicine (Acciari, 1977).

The same Italian researcher, Acciari, conducted a subsequent study assessing vibration tool 

angiopathy with thermal imaging. His findings in mean temperature differences from the fingertips 

to the metacarpals per each finger after vibration exposure were -1.2ºC for the thumb and -1.9ºC, 

-1ºC, -0.9ºC and 0.2ºC for the index, middle, ring and little finger correspondingly. The dorsal hand 
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presented to be warmer at the radial region and cooler at the ulnar region. The author suggested the 

usage  of  thermography  for  the  assessment  of  vascular,  nervous  and  osteoarthritis  diseases.  He 

strongly proposed to use thermal imaging as a diagnostic tool for pathologies involving vibration 

and prognostic data for vascular or neuronal traumatic lesions or in sudden atrophy (Acciari, 1978). 

2.3.2.2. – Causes

As already indicated above HAVS can be caused by the progressive and excessive exposure 

to vibration that is transferred from a tool to a worker's hands and arms and workplace exposed to 

cold temperatures. 

This  disorder  is  characterised  by  a  complete  episodic  closure  of  digital  blood  vessels. 

Although either central and/or local pathogenic mechanisms may be involved, this pathogenesis is 

not fully understood yet because the pathophysiological mechanisms underlying muscular disorders 

in workers operating vibration tool are often unclear. Disorders of organs, nerve fibre dysfunction 

resembling entrapment neuropathy and diffuse or multi-focal neuropathy are thought to be related 

to working with vibrating machines causing neuropathy to peripheral nerves, mainly sensory ones 

but also those of the motor and nervous system. Any of the nerves of the upper limbs may also be  

affected as this disorder is not confined to the digits. It can also extend to the palm and the arms 

(Griffin and Bovenzi, 2002).

The  consumption  of  alcohol,  tobacco  or  drugs  as  well  as  the  individual  lifestyle  also 

influence the risk of contracting HAVS. Age is another important factor that is thought to be linearly  

correlated  with  vibration  exposure  history.  People  that  work  a  long  time  exposed  to  hand-

transmitted vibration tend to be more susceptible to acquiring the syndrome. According to a 2004 

study from Sweden that examined working women exposed to hand-transmitted vibration, there is 

no difference between genders with respect to power absorption during vibration exposure (Bylund, 

2004).

2.3.2.3. – Symptoms

The main symptoms of HAVS are apparent in the fingers. Patients report  that these can 

become  numb  and  turn  white,  and  spasm  may  occur  due  a  lack  of  blood  supply.  The  main 

symptoms of HAVS are thus two fold: vascular effects are expressed as coldness and blanching of 

one or more fingers and neurological effects manifest themselves as tingling sensations, “pins and 
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needles” and numbness. The neurological symptoms can arise independently and pre-date vascular 

symptoms.

In most individuals the condition is not severe and attacks only cause minor discomfort. In 

more extreme cases, however, repeated or constant ischaemic episodes can result in skin ulcers and 

even gangrene requiring surgery or amputation. Picking up small objects such as pins or nails will 

become more difficult as the sensory capacity of the fingers decreases, along with a loss of strength 

and grip of the hands. Pain, tingling and numbness in the arms, wrists and hands can make sleeping 

difficult (Griffin and Bovenzi, 2002). 

2.3.2.4. – Vibration and vibration quantification

The term vibration can be defined as mechanical movement that oscillates in the form of a 

wave about a fixed point. Each wave produced by vibration is characterised by four components, as 

can be observed in  fig.  23: frequency (number of cycles per second,  measured in  Hertz  [Hz]), 

acceleration (change in velocity over time, measured in meters per square second [m/s2]), velocity 

(the rate of change of position, measured in metres per second [m/s] and displacement (vector that 

specifies  the  change  in  position  of  a  point  to  a  previous  position,  quantified  in  metres  [m]) 

(Mansfield, 2005). 
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These quantities can be used to assess the magnitude of a body's exposure to vibration. The 

frequency (f) is normally known and the acceleration (a) is the value usually measured, knowing 

these two values the other two can be obtained: 

v = a / (2 π f)

d = v / (π f)  or d = (2 v2) / a

where v is velocity, d is displacement and a is acceleration.

Calculating the averaging vibration levels over  time is  difficult  because these levels are 

rarely  constant.  In  order  to  simplify  this  calculation  the  2001  edition  of  ISO  5349  therefore 

recommends the following formula to obtain a daily average vibration level:

a hv eq ,8h= ahv1
2 xt1ahv2

2 xt2

T

where ahv is the acceleration averaged over the entire period T, ahv1 is the acceleration for the first 

sub-period t1 and  ahv2 the acceleration for the second sub-period t2. T is the sum of sub-periods t1 

and t2. In order to calculate an 8h or daily equivalent level, known as A(8) the above formula can be 

simplified into the one presented below (South, 2004).

A8= a hv1
2 xt1ahv2

2 xt2

8

The current exposure limit value to vibration is defined in the 2002 version of ISO 5349 and 

is addressed by an European Directive recommended for all member states to incorporate into their 

national legislation. The UK government agreed with this and accepted to accommodate it in its 

domestic legislation. The directive established as exposure limit a value for A(8) of 2.5 ms -2 and an 

exposure maximum limit value of 5.0 ms-2. The HSE, in order to simplify the exposure calculation 

from a single period of exposure, has implemented the chart presented in fig. 23 where by knowing 

the  time of  exposure and the  weighted  acceleration  the  draw of  a  line  “calculates”  the  partial 

vibration exposure without the need for calculations (South, 2004).
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2.3.2.5. – Occupations at risk

According to the Industrial Injuries Advisory Council document ‘Prescribed Disease A11’ 

(PD A11), HAVS is defined as: 

“[…] cold-induced, clearly delineated, episodic blanching occurring through the year, affecting the  

distal with the middle phalanges or proximal phalanges, or in the case of the thumb the proximal  

phalange  […]  persistent  numbness  or  persistent  tingling  of  the  digits  and  a  significant  and  

demonstrable reduction in both sensory perception and manual dexterity of the digits  […]  onset  

occurs  after  work  involving  one  or  more  of  the  tools  or  occupational  exposures  listed  […]” 

(McGeoch et al., 2005).  

The same document defines the type of jobs at risk of developing HAVS as those where 

vibrating  or  rotation  tools  such  as  chainsaws,  hand-held  rotary  tools  for  grinding,  sanding  or 

polishing metal are used. Activities involving the holding of material being ground, working with 

49

Fig. 24: HAVS partial exposure calculation chart (South, 2004).



percussive  tools,  riveting,  chipping,  hammering,  fettling  or  swagging  are  also  increasing  risk. 

Heightened risk can also be attributed to the use of hand-held powered percussive drills or hand-

held  percussive  hammers  in  mining,  quarrying  demolition,  roads  or  footpaths  construction  or 

pounding machines in shoe manufacture (McGeoch et al., 2005).

2.3.2.6. – Diagnostic methods

Vibration injury to the hands was first reported in 1911 in Italy by Loriga in workers using 

compressed  air  tools  (Pelmear,  2003).  In  1975  the  Taylor-Palmear  scale  shown  in  table  3  for 

assessing vibration effect injuries was published. Only ten years later it was listed in the UK by the 

Industrial Injuries Advisory Council (IIAC) as PD A11.

Stage Grade Description
0 -- No attacks
1 Mild Occasional attacks affecting the tips of one or more fingers
2 Moderate 

Occasional
attacks affecting the tips and middle sections of the fingers (rarely the base of the 
fingers) on one or more fingers

3 Severe Frequent affecting the entire length of most fingers attacks
4 Very Severe As in stage 3, with damaged skin and possible gangrene in the finger tips

Table 3: Taylor-Palmear scale (Gemne et al., 1987).

Two alternatives to the Taylor-Palmear scale were introduced in Stockholm in 1987. The 

vascular scale shown in table 4 and table 5, however, was subsequently exposed as deficient in that 

the frequency of blanching attacks is supposed to be used to determine severity. This turned out not  

to  be  the  case  and severity  can  instead  be  determined from the  results  of  properly  conducted 

objective vascular tests, such as using a mild cold stress test (water at 20ºC for 1 minute) together 

with  thermal  imaging (Pelmear,  2003).  Both  scales,  like  the  Taylor-Palmear  scale,  are  entirely 

subjective.

Stage Signs and symptoms
0V No attacks
1V attacks affecting only the tips of the distal phalanges of one or more fingers
2V Occasional attacks of whiteness affecting the distal and middle (rarely also the proximal)
3V Frequent attacks of whiteness affecting all of the phalanges of most of the fingers
4V As 3V and with tropic changes

Table 4: Vascular stages of the Stockholm Workshop scale for HAVS.
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Stage Signs and symptoms
0SN Exposed to vibration but no symptoms
1SN Intermittent numbness, with or without tingling
2SN Intermittent or persistent numbness, reduced sensory perception
3SN Intermittent or persistent numbness, reduced tactile discrimination and/or manipulative dexterity

Table 5: Sensory-neural stages of the Stockholm Workshop scale for HAVS.

In 2002 Griffin developed a method of scoring (fig. 25), that can be used to map where 

blanching symptoms occur. It can be applied to any other type of symptoms that occur in relation 

with HAVS. The shaded areas correspond to the zones where blanching typically occurs. The author 

of this map has assigned a score value to each anatomical region of the fingers to record the severity  

of the condition (Mansfield, 2005).

Several clinical and laboratory tests have evolved and became available over the years to 

assist physicians in evaluating the three components of HAVS. A recent paper, however, concluded 

that  diagnosis and medical  tests for HAVS are notoriously crude and can be inaccurate due to 

clinicians using unsophisticated methods to assess patients (Platt, 2006). 

In the UK the current “gold standard” method to diagnose HAVS is based on the five stages 

in  table  3  Every  year  workers  at  risk  complete  a  questionnaire,  followed  by  a  routine  health 

surveillance performed by a “responsible person”. If symptoms or signs of HAVS are shown, a long 

series of examinations commences. In order to demonstrate the complexity (and inadequacy) of this 

process the various stages are briefly outlined below. (Appendix 2 presents an overview table of the 

diagnostic methods mentioned).
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1. Inclusion tests:

These tests establish if HAVS could be present.

• Musculoskeletal   tests  are  prescribed  to  assess  the  injury  severity.  These  tests  should  be 

performed by a “qualified person” (McGeoch et al., 2005).  An examination of the fingers, 

hands and the upper body is carried out by a clinician to assess tropical changes and/or the 

presence of musculoskeletal abnormalities. Four tests are performed: the Allen, the Phalen, 

the Tinel and the Adson test.

• In addition muscular tests are used to verify if weakened muscle and losses of dexterity are 

present. These tests are the grip force measurement test, the pinch force test, the Moberg 

pick up test and the Purdue pegboard test. (Sampson, 2006).

2. Exclusion tests:

If the muscular and musculoskeletal tests are positive, the clinician will continue to exclude 

certain conditions which may cause HAVS-like symptoms.

• Vascular   tests. A check on the peripheral pulses, for example, is used to exclude peripheral 

vascular disease, a check on the blood pressure in both arms is used to assess if unequal 

blood pressure indicative of proximal vascular occlusion is the problem. 

• This is followed by tests for connective tissue disease, which can also produce HAVS like 

symptoms. If no symptoms such as hair loss, alteration of skin texture, a deposit of calcium 

in soft tissues or focal red lesions due to visible dilation of small blood vessels under the 

skin are suggesting connective tissue disease "we can be in presence of HAVS, although  

some more tests need to be conducted also to act as a recorded proof of the injury, and also  

to assess its state of severity" (McGeoch et al., 2005).

3. Confirming tests:

If  doubts  about  the  state  of  the  disease  persist  the  following  confirming  tests  will  be 
performed.

• In order to  assess the normal  blood flow pattern,  some  additional  vascular tests  will  be 

performed  e.g.:  cold  provocation  test,  finger  systolic  blood  pressure  test  (Lawson  and 

Navell, 1997), the use of colour charts and the nail compressions test (Lewis Prusik test).

• In order to detect if there is a  loss of nerve function the sensorial and neurological tests 
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available  are:  light  touch test,  pain sense test,  two-point  discrimination  test,  deep sense 

perception  test,  monofilaments,  vibration  sense  test,  vibration  threshold  test  (VTT)  and 

thermal aesthesiometry (TA). (Lawson and Navell, 1997, Sampson, 2006).

Only  now,  when  a  patient  is  finally  found  to  develop  or  is  already  suffering  from the 

disorder provoked by hand-transmitted vibration in a work situation, it is recommended that he/she 

should not be returned to the same work vibration exposure situation or that changes should be 

made to their work situation (Griffin and Bovenzi, 2002).

In  contrast  to  this  elaborate  procedure  the  already  mentioned  Italian  study  that  used 

thermography  as  a  diagnostic  technique  for  assessing  vibration  injury  (Acciarri,  1977)  in 

conjunction with a study by Bovenzi et al. (2000) may offer a faster and more accurate means of 

diagnosis. Bovenzi concluded that acute exposures to vibration (with equally weighted magnitude) 

reduces the finger blood flow for all frequencies between 31.5 and 250Hz. While duration of digital 

vasoconstriction  after  vibration  increases  with  frequency  the  constriction  severity  diminishes: 

results  the  study  showed  that  for  an  exposure  time  of  2  minutes  the  frequency  with  highest 

reduction of finger blood flow and simultaneously with the shortest recovery time was 31.5Hz.

In conclusion: 

1. HAVS is a particular manifestation of RSI.

2. As an RSI sub-group it suffers from the same the problems as RSI (no single standardised 

test, lack of simple and effective methods for a preventive screening test and no objective 

and repeatable means for quantifying existing lesions). 

3. In addition, as shown above, HAVS is difficult to diagnose. 

4. Thermography of hands exposed to low frequency vibration at 31.5 Hz for 2 minutes may be 

a more suitable alternative.
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2.4. RSI related questionnaires

A Canadian questionnaire was run on an adult working population to assess the predictors of 

work-related RSI. From the 2806 respondents, 10% reported RSI related conditions and it could be 

concluded that women of ages between 30-50 years old with a high demand of repetitive tasks and 

working more than 30 hours were more associated with RSI. The same study revealed that subjects 

having smoking habits demonstrated to be more affected than non-smokers, however the difference 

is very small (Cole et. al., 2005).

In order to characterise hand injury incidence and severity in a sample population, a group 

of scientists (Levine et al., 1993) developed a self-administrated questionnaire. The questionnaire is 

assessed according to the sum values of the answers per respondent using a grading into 5 different 

symptomatic  stages (no symptoms,  mild symptoms,  moderate  symptoms,  severe symptoms and 

very severe symptoms) and 5 different functional stages (no difficulties, mild difficulties, moderate 

difficulties, severe difficulties and very severe difficulties).  This questionnaire has demonstrated to 

be  reproducible  (Pearson coefficient  of  r=0.91),  internally  consistent  (Cronbach alpha of  0.89), 

responsive to clinical change (p<0.01) and able to measure dimensions of outcomes not captured by 

traditional  measurements  of  impairment  of  the  median  nerve  (Levine  et  al.,  1993).  This 

questionnaire  will  be  used  to  characterise  the  incidence  and  severity  of  hands  injuries  in  the 

academic population at the University of Glamorgan as one of the scopes of this work.

2.5. Thermography

This  sub-section  describes  the  basic  concepts  of  thermography,  introduces  the  thermal 

imaging parameters and quality assurance techniques, emphasises the importance of standardisation 

in thermal  imaging, presents the software available for capture and analysis of thermal images, 

resumes the use of thermal imaging in medicine and its relevance, states the suggested medical IR 

imaging  capture  protocols  and  enumerates  the  non-invasive  alternatives  to  thermography 

comparatively.
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2.5.1. Physical principles

    The National Physics Laboratory (NPL) defines “temperature (T) as the measurement of the  

average energy of the microscopic components (usually atoms or molecules) of which an object is  

made. If the measurement is made based on the temperature of a black-body (an object that absorbs  

all radiation that approaches it at any wavelength and emits it again in a continuous spectrum)  

then the microscopic components are the photons which make up the electromagnetic field within  

the blackbody cavity” (NPL, 2009).  The temperature difference between two points, hotter and 

cooler, can be expressed by the rate of heat transfer. 

Over the ages different methods have been used to measure that function and different scales 

have been developed, the current international standard is the Kelvin (K), which is based on the 

triple point of the water (absolute zero corresponds to -273.15 ºC). The common scale derived from 

this used in occidental Europe is the Celsius (ºC), a centigrade scale between the ice and boiling 

points of the water. The conversion of these two scales can be obtained by the formula T(K) = T(ºC) 

+ 273.15. In this study and thesis all temperature values will be given in Celsius. 

The quantity of electromagnetic energy radiated from an object is related to its temperature. 

An object can be characterised by emitting or absorbing electromagnetic radiation, such radiation 

distribution  forms  the  electromagnetic  spectrum,  which  is  characterised  by  frequency  and 

wavelength and it influences physiological responses such as vision. The visible light is a small 

portion of that radiation distribution but the only one that the human eye can discriminate. On the 

higher frequency side of the electromagnetic spectrum, as can be observed in the fig. 26, are the 

ultraviolet, the x-rays and the Gamma rays , in the opposite direction with longer wavelengths and 

frequencies, as indicated by fig. 26, are the infrared, microwaves and radio waves.  
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Infrared radiation was discovered in 1800 by Sir William Herschel in an experiment where 

he demonstrated (measuring with mercury thermometers) the heat of colours produced by sun light 

passing through a glass prism, as can be seen in fig. 27.

The black-body is taken as a standard of comparison for radiation sources. The radiation 

emitted from a  black-body can  be described by three expressions:  Plank's  radiation law,  Wien' 

displacement law and the of Stefan-Boltzmann equation (Thomas, 1999).

The Planckian distribution of temperature, is described in this formula and demonstrates that 

short wavelengths result from high temperatures and long wavelengths from low ones (fig. 28). 

Wien's displacement law mathematically illustrates that  colour may vary from red to orange or 

yellow as the temperature of the radiation increases (fig. 29). The Stefan-Boltzmann equation states 

that the total radiated energy from a black-body, per unit area, per unit time, is proportional to the 

fourth power of its absolute temperature (fig. 30). Most total radiation thermometers are based on 

this equation (Thomas, 1999).
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Fig. 27: Herschel's apparatus on discovering infrared radiation, Webliography[16].
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Fig. 28: Planck's radiation law, Webliography[17].

Fig. 29: Wien's displacement law, Webliography [18].



It is very difficult to obtain an object that complies completely with the Stefan Boltzmann 

equation (fig. 31) over an extended wavelength region. Several factors may affect the radiation on 

the object surface such as spectral absorption, spectral reflectance and spectral transmittance. The 

relationship between these three factors can be explained by Kirchoff's law (Thomas, 1999). 

The fraction of the radiant emittance of a black-body produced by an object at a specific 

temperature  is  known  as  emissivity.  This  factor  also  affects  the  accuracy  of  temperature 

measurements through infrared radiation. The emissivity value of a material can be obtained by 

calculating the ratio of the energy emitted at a given wavelength to that of a black body at the same 

temperature. The emissivity value range is between 0 and 1. A perfect black-body has an emissivity 

value equal to 1 (Thomas, 1999). Human skin, studied in this project, is almost a perfect radiator, 

and has an average emissivity of 0.98 irrespective of skin color (Houdas and Ring, 1982).

            The use of infrared detectors to monitor temperature changes goes back to 1880 when 

Langley invented the bolometer which could detect  heat from an object  400 meters away.  The 

58

Fig. 30: Stefan-Boltzmann function, Webliography[19].

Fig. 31: Stefan-Boltzmann equation, Webliography[20].



temperature detection by infrared detectors relies on the radiated heat reaching its detector cell. 

These  cells  can be  thermocouples,  microbolometers,  pyroelectric  or  ferroelectric  elements.  The 

thermistor  bolometer  is  based on the  change in  resistance of  a  semiconductor  when heated by 

radiation, which can be a slow response due to a variety of thermal processes involved. However, 

new developments in detector technology offer increasingly faster responses. Examples of this are 

radiometric  microbolometers  which  are  DC  coupled  for  detecting  temperature  change  and 

ferroelectric and pyroelectric devices, which detect temperature by changes in capacitor charges. By 

being  AC coupled  and  chopper  dependent,  however,  it  is  difficult  to  make  them  radiometric 

(Thomas, 1999).  

2.5.2. Infrared cameras

Infrared cameras are the instruments used in thermography to record and monitor 

object temperatures through surface irradiated heat. Manufacturers often hide important aspects of 

equipment  technical  specifications  or  over-simplify  them,  which  can  make  it  difficult  to  fully 

understand and characterise the equipment in use. The relevant camera characteristics, however, 

have to be known when the aim is to accurately monitor temperature changes. A brief summary of 

the relevant factors is presented in this section, which is just an introduction to the technology. For a 

better understanding (a full review is beyond the scope of this work) refer to Thomas (1999).

Wavelength

There are generally two types of cameras available, grouped by the spectral wavelengths 

they are susceptible to. So called  'long wavelength systems' (2-5μm) are more sensitive to lower 

temperatures and are less affected by radiation attenuation over long distances, 'short wavelength 

systems' (9-12μm) in contrast are more sensitive to higher temperatures but normally this type of 

camera is restricted in terms of distance from the target (maximum about 200m). These 2 camera 

types usually also differ in the type of detector they use. Commonly, the long wavelength systems 

are characterised by using Platinum Silicide (PtSi) or Indium Antimonide (InSb) detectors, cooled 

by liquid nitrogen, Peltier elements or other refrigeration devices.  They are more expensive but 

offer a better thermal sensitivity. The short-wavelength systems are usually uncooled cameras that 

use Mercury  Cadmium  Telluride  (MCT),  Microbolometer  and  Quantum  Well  Infrared 

Photodetectors (QWIP) as detectors (Thomas, 1999).
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Lenses

As important as detectors are the lenses. They are made of Silicon (Si) or Germanium (Ge), 

which  are  materials  that  have  good  mechanical  properties,  are  mechanically  resistant,  non-

hygroscopic and can be formed into lenses with advanced turning methods. Germanium lenses are 

used for long-wavelength cameras and Silicon ones for short-wavelength cameras. IR camera lenses 

have  antireflective  coatings  and  block  visible  light  and  other  non-desired  wavelengths  from 

reaching the detector. There are two main types of lens: normal angle lenses (ca. 24º opening angle),  

which are used for closer distances, and wide angle lenses (ca. 45º) for circumstances where the 

target is further away. The internal design of the lens system is also very important; if adequate the 

system should transmit close to 100% of incident radiation (FLIR, 2009). 

Mode of operation 

IR cameras can be also characterised by the image construction system employed by the 

detector. Two types are commonly used:  scanning systems and Focal Plane Arrays (FPA). FPAs are 

more common nowadays due to a significant decrease in the price of technology in recent years.  

They also perform faster and now tend to provide higher image quality (Thomas, 1999).

Sensor range  

One of the major issues in medical thermography is that camera manufacturers generally 

have not produced devices exclusively for clinical use (although some are starting to come onto the 

market at the time of writing). The temperature range advertised by the manufacturers varies from 

-40 to +1000 or +2000ºC,  mainly to suit industrial applications. The temperature range is the ability  

of a thermal sensor to detect heat radiation over a given range and over such a large range the 

accuracy of detectors tends to be in the region of +/- 2ºC (e.g. for a typical microbolometer). For 

medical use, however, the recommended range is usually only from 25ºC to 42ºC, but in situations 

involving cold provocation stress this may be between 17ºC and 42ºC (Ring and Ammer, 2000). 

The accuracy should be higher by at least a factor of 10 (i.e. +/- 0.2ºC). This could not be achieved 

by the camera itself, an external calibration source is required to ensure the required accuracy.
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When capturing images using a thermal camera a range of parameters have to be taken into 

consideration. These are: thermal resolution, spatial resolution, accuracy, repeatability, responsivity, 

dwell,  portability,  focus,  temperature  range,  operating  distance,  emissivity,  ambient  radiant 

reflectance and the presence of varying objects shapes and surroundings (Thomas, 1999). All these 

parameters may affect the measurements and lead to errors. A brief description of these parameters 

is presented in the next paragraphs. 

Thermal Resolution

Thermal  resolution  is  the  smallest  difference  in  temperature  that  an  instrument  can 

discriminate.  Camera manufacturers describe this parameter usually provided in the form of Noise 

Equivalent Temperature Difference (NETD). In practice this measure is not particularly useful or 

even  meaningful  because  NETD  degrades  over  time,  its  measurement  requires  specialised 

equipment (e.g. oscilloscope) and its measurement procedure is not standardised (Plassmann et al., 

2006). Thermal resolution is characterised by two main factors: noise and digitisation step width 

(Plassmann  et  al.,  2006).  Inappropriate  thermal  resolution  results  in  measurement  errors.  This 

parameter can also be quantified by the Minimum Resolvable Temperature Difference (MRTD), a 

curve that indicates the relationship between the temperature difference needed and a particular size 

of  object  to  be  perceptible.  The latter  is  described by the  Slit  Response  Function (SRF).  This 

variable is determined by imaging a blackbody source through a slit which is initially opened wide 

and then reduced gradually in width producing a graph of apparent temperature over slit width. The 

common SRF width of the slit value quoted is the milliradian angle at 50% of the radiance received 

by the imager and obtained from the traced graph (Thomas, 1999).

Spatial Resolution

The minimum size that can be resolved by a thermographic system is given by the spatial 

resolution measure, which defines the clarity or fineness of object detail reproducible in an image. 

This parameter is often referred as the total number of pixels (picture elements) displayed in an 

image. It is calculated by multiplying of the number of pixel displayed horizontally by the number 

of pixels displayed vertically. The smallest area that can be resolved by a detector is defined by the 
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Instantaneous Field of View (IFOV). This is the projection of one detector element in the image, or 

part of it. A system with high spatial resolution has small detector elements and a correspondingly 

smaller IFOV. It is calculated from the ratio between the detector dimension by the focal length and 

its values is presented in milliradians (Thomas, 1999).

Accuracy     

Accuracy  in  thermographic  terms  is  a  measure  that  represents  how  much  a  measured 

temperature is deviating from the true value. It can be presented as an absolute uncertainty (e.g. 

±2ºC) or a proportion of the indicated temperature (e.g. ±2%). Another word for accuracy is 'bias' or 

'offset'.

Precision

In the context of this work precision is defined as repeatability. It is the degree to which 

repeated measurements under unchanged conditions show the same results. 

Responsivity

The time response of an infrared detector to incoming radiation is its responsivity. The type 

of detector (e.g. thermal, photon) and the efficiency of the detector cooling system determine this 

specification (Thomas, 1999).

Dwell

Dwell describes the period of time over which the detector is exposed to radiation before the 

signal is taken from it. For small detectors a longer integration time is needed due to smaller amount  

of radiation that it can receive. A typical integration time for a FPA is about 16ms in which one 

complete image frame is produced. The amount of energy that a detector captures at any given 
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temperature may be reduced by shortening the dwell time. In FPAs it is simpler to measure higher 

temperatures by changing the detector dwell electronically rather than to install an attenuation filter 

(Thomas, 1999). 

Object emissivity

Emissivity  is  the  ratio  of  radiated  emissive  power  of  an  observed  object  to  that  of  a 

blackbody at  the same temperature.  Its  value varies  in  the  interval  between 0 and 1 (where  1 

corresponds to the blackbody value). Infrared cameras therefore have the ability to change their 

emissivity settings so that it  matches that of the observed object. This has to be done manually 

which is a potential source of error. The recommended emissivity value of 0.98 to analyse human 

skin  temperature  is  well  known  and  documented  (Houdas  and  Ring,  1982).  Temperature 

measurements rely on the correct setting of emissivity values. Both emissivity and environment 

temperature combined affect the temperature readings, it can be corrected retrospectively by image 

processing. When the emissivity value is set to 1, the environment temperature setting of the camera  

does  not  affect  the measured temperature of the observed object.  The environment  can have a 

significant impact in the emissivity particularly when sweating or shivering.

Camera to object distance

Accurate temperature measurements are influenced by the distance from the target to the 

camera lens. A greater distance from a target results in a lower temperature reading due to the 

absorption of radiation by air, especially air moisture. 

A second factor is the diminishing apparent size of an object at increasing distance. Here an 

important indicator to help the camera operator in placing the instrument at a correct distance from 

the target is given by the spot size ratio of the lens. This provides the minimum target size for valid 

measurement, although it varies according on the lens and camera. The maximum distance from the 

target is given by multiplying the minimum target size by the spot size ratio (Thomas, 1999). The 

recommended operating distance for monitoring temperature changes in the upper  limbs of the 

human body with an IR camera is between 1m and 1.5m (Ring, 1988).
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Stray Radiation 

Another  factor  that  affects  accuracy  and  precision  of  temperature  measurements  is  the 

reflection of  ambient  radiation on observed objects.  This is  radiation  that is  transmitted and/or 

reflected by the surroundings from a number of sources straight into the lens or reflected off the  

surface  of  the  object  of  interest.  Since  human  medical  infrared examinations  are  not  normally 

conducted outdoors (veterinary ones may, however) there is no need to consider sun light in this  

work although concern must be given to artificial room lighting which should be carefully chosen in  

order to prevent ambient radiant reflection (i.e avoiding incandescent spot light sources in favour of 

colder ones such as strip lighting). 

 A second source of stray radiation is the inside of the camera itself and caused by internal  

radiation produced by the  materials  that  the camera is  made from.  In order  to  minimise  these  

internal effects a re-imaging lens system is recommended by Thomas (1999).

Object characteristics

An object's  physical  characteristics  such  as  shape  and  surface  condition  can  influence 

temperature measurements by IR imaging. Object shape influences the angle between the infrared 

camera and sections of the object. If the incident angle is less than 60º the energy emitted into the  

camera by human skin starts to decrease significantly thus altering the measured temperature. This 

phenomenon can be observed at the edges of limbs which always appearing cooler than the centre 

part of the limb. For thermographic examinations an incidence angle between camera and object of 

interest which is close to 90º is therefore recommended.

  

All aspects and parameters mentioned above are relevant to this work and have to be taken 

into consideration in  order  to  obtain  correct  temperature measurements  and to  develop a  valid 

standard  technique  of  temperature  recording  with  thermography.  This  standardisation  aspect  is 

explored further in the following section. 
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2.5.3. Thermography in medicine

The technique of infrared imaging has been developed and was used primarily for military 

purposes. The first  known usage of this technique in medicine was in 1957 by Ray Lawson, a 

Canadian physician,  when he was investigating surface temperature changes in  female subjects 

suffering from breast cancer with an Evaporagraph (a device where heat induced evaporation of a 

volatile substance is used to record temperature). In Europe, in the early 1960s, Lloyd Williams, at 

the Royal National Hospital for Rheumatic Diseases in Bath (England), has been a pioneer of the 

usage of the technique in medicine, with a particular emphasis on limb disorders (Ring, 2003). The 

application of this technique in medicine had in the beginning several  limitations such as poor 

quality of the image, and the large size of the capture devices. With the evolution of the electronic 

components on which this imaging modality depends and improved image capture procedures the 

number of applications increased as did their quality and results (Ring and Ammer, 2000). 

From these beginnings the conditions where the applications of infrared thermography is 

nowadays indicated were: vascular diseases, myeloma, spinal disorders, rheumatic disorders, nerve 

pathology, neurological disorders, deep venous thrombosis, reflex sympathetic dystrophies, referred 

pain syndromes, diabetic microangiopathies, open heart surgery, early detection of skin cancer and 

breast  disease  and  general  cancer  (Head,  2002).  With  the  evolution  and miniaturisation  of  the 

electronics in the infrared imaging systems in tandem with the development of appropriate image 

capture protocols  the  application of  this  imaging technique  is  growing in medicine  (Jones  and 

Plassmann,  2002).  However,  attention  to  underlying  physical  principles  is  required  to  avoid 

malpractice. 

As already mentioned this medical procedure is based on a process of recording the radiant 

emitted energy in the form of heat from the body surface and transforming the obtained signals into 

visible  digital  images  through  an  imaging  system  (Jiang  et  al.,  2005).  Apart  from the  before 

mentioned parameters that affect the IR camera itself there are series of factors that influence the 

proper use of this modality in a clinical context: the most prominent ones are the parameters of the 

investigation room, the ambient temperature control, the imaging system, the temperature control 

reference and patient positioning. These aspects will be addressed in the following sections.   
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2.5.4. Importance of standardisation

The existing literature lacks information on reference values of temperature distribution on 

the human body surface. Infrared thermography, unlike any other medical imaging modality such as 

radiology, does not have a generally accepted range of standardised positions to improve the quality 

of temperature recordings. Although it is obvious that the standardisation of the technique would 

reduce substantially the errors. Literature describe the reproducibility of the technique only vaguely 

(Ammer, 2003).

It is known that environmental conditions such as temperature, humidity and air circulation 

affect  the measurements  as  well  as  laboratory  conditions  (e.g.  false  ceilings  where  air  may be 

filtered and no direct air flow is affecting the subject, double glazed windows and illumination).  

Patient  preparation  and  clothing  have  an  influence  in  the  measurements;  likewise  the  pre-

examination  acclimatisation  period.  The  imaging  system  has  to  comply  to  quality  assurance 

requirements (section 2.5.6) to avoid affecting the process of acquiring the image. The usage of 

standardised area of interest  (AOI) masks (discussed later in  this  document),  for example,  will 

enforce the quality of the recording by facilitating correct subject positioning and distance from the 

camera as well as the size and position of the AOI itself. All these variables have to be taken into 

consideration in order to homogenise the capture and analysis process and to allow comparisons and 

the generation of reference data (Ring et al., 2004).

In the specifications of the University of Glamorgan project aimed at building a reference 

database of the distribution of the temperature of human body surface (Ring et al., 2005), 24 views 

of  the  human body were  defined  and  the  following aspects  of  medical  thermal  imaging  were 

standardised:

- Subject preparation, before and during examination;

- Imaging system, including calibration and quality assurance requirements;

- Capture protocol;

- Image analysis;

- Image storage;

- Examination reporting;

- Education and training of clinical users of thermal imaging.    
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According  to  Ring  et  al.  (2004)  the  usage  of  standard  procedures  allows  repeatability, 

facilitates  understanding  and  knowledge  exchange  and  reduces  the  amount  and  influence  of 

variables.  In medical thermography this is a relevant aspect as some past errors were made due to 

the lack of using a standard image capturing methodology (Ammer, 2003). This in turn lead to a  

decreased application in medicine and considerable loss of credibility. The aspects that influence 

this technique are described in the section 2.5.2 of this document can only be addressed properly if 

a standard protocol is followed.   

2.5.5. Proposed standard medical thermographic protocols

In  2006  the  American  Academy  of  Thermology  (AAT)  suggested  a  document  which 

specifies  the  purpose,  common  indications,  contraindications  and  limitations  of  using  Infrared 

Thermography in medicine (Schwartz, 2006). This document describes how this technique should 

be conducted in terms of:

• Patient communication and preparation;

• Patient assessment;

• Examination guidelines;

• Reviewing the examination;

• Presentation of the examination findings;

• Examination time recommendations;

• Continuing professional education.

The objective of this document is to standardise the technique, offering the opportunity for 

multi-centre data exchange and modality improvement.

Ammer  (2008)  suggested  what  is  called  the  'Glamorgan  Protocol'.  It  establishes  the 

guidelines for a standard medical thermographic examination specification based on:

• using standard views;

• the indication of the reliability of each view;
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• cold challenge tests;

• patient preparation pre and during examination;

• examination room conditions;

• imaging system operation;

This protocol is now being followed worldwide as it is based on the experience of several 

years of usage of the modality and it accommodates and integrates the AAT proposal. An important 

factor of this protocol is that it is generic. It therefore has to be adapted to the actual area and object  

of interest to be investigated.

2.5.6. Quality assurance in a thermal imaging system

In  order  to  ensure  that  the  infrared  camera  system  is  giving  optimal  performance  and 

consistent reliability, Plassmann has developed a set of practical tests (Plassmann et al., 2006) to 

determine the most critical parameters that affect thermal image recording. These are: 

•  Start-up  drift.  The  amount  of  time  needed  after  powering-up  of  the  system  for  its 

stabilisation.  This  time  can  differ  considerably  from  the  value  advertised  by  the 

manufacturer,  which is a severe concern. This parameter should be checked every three 

months.

•  Long-term drift.  A temperature drift  may be introduced into the measurements by the 

ageing of the camera's electronics components. This aspect is important, because it  can 

indicate  when the  camera  needs  to  be  recalibrated by the  manufacturer.  This  aspect  is 

considered  to  be  of  medium  severity.  This  parameter  should  be  checked  every  three 

months.

•  Offset  variation over  a  temperature  range is  an error  in  the  measurement  that  can be 

introduced by the camera sensor array readout having a different amplification for different 

temperatures.  This  aspect  is  medium  severe.  This  parameter  should  be  checked  every 

couple months.

•  The thermal flooding effect is caused by the introduction of a warm (or cold) object into 
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the observed scene. In the case of a warm object this causes flooding by stray radiance. All 

imager types have this problem and it is important to know its expected value. An increased 

value is indicative of sensors malfunction but overall this is and effect of  low severity. This 

parameter should be checked every couple of months.

• Image non-uniformity occurs when the sensor cannot detect the correct radiation of the 

objects in the corner edges of the imager as a result of deficiencies in the optical path. It  

results in a degradation of the captured image and is an aspect of medium severity.  This 

parameter should be checked every couple of months. 

2.5.7. Software for medical thermography

The vast majority of infrared imaging software available in the market was not developed 

for  medical  use,  Camera manufacturers produce  software  to operate  in  a  much wider  range of 

temperatures  than  those  used  in  medicine.  The  applications  are  dedicated  mainly  to  industrial 

applications  and  consequently  offer  only  basic  statistical  analysis  of  the  images  but  highly 

specialised,  industry  specific  reporting  features.  The  Medical  Imaging  Research  Unit  at  the 

University of Glamorgan has, in cooperation with Polish collaborators, developed the CTHERM 

software package and specifically designed it for medical thermography (Plassmann and Murawski, 

2003).  The package runs on the Microsoft Windows® operating systems and is independent of the 

camera hardware provided that the camera manufacturer provides the correct device drivers. It aids 

the investigator by providing  pre-defined AOI masks that help to position the patient at the correct 

distance and position. 

After providing image capture features, the CTHERM software stores the infrared images in 

a local database which provides support for image handling operations such as searching, deleting, 

importing/exporting to and from Bitmap format and the definition of colour palettes. The stored 

images can be statistically analysed either by user-defined AOIs or cross-sections. Importantly for 

this  work  a  particular  tool  allows  cold  stress  test  assessments  and  provides  detailed  reporting 

features.

The CTHERM software, however does not have any tools for image enhancement, edge 

detection, interpolation and warping of images all of which are thought to be required in the context 

of  this  work in  order  to  allow an automatic  or  semi-automatic  solution for  analysing  AOIs of 
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thermograms of upper limb disorders.

2.5.8. Non-invasive alternatives for medical thermography

In  this  subsection  some  non-invasive  imaging  alternatives  to  infrared  imaging  used  in 

medicine  to  record  human  body  peripheral  temperature  are  presented  along  with  a  brief 

characterisation and comparative  information with  respect  to  the  advantages  and disadvantages 

when compared with infrared thermography. From a group of temperature monitoring techniques 

the selected representatives are:  Liquid Crystals Thermography, Laser Doppler Flowmetry, Full-

field Large Perfusion Imaging and Photoplethysmyography.       

Liquid  Crystal  Thermography is  a  system  that  uses  thermally  sensitive  liquid  crystals 

embedded between  two sheets  of  flexible  plastic  material.  This  system reacts  to  heat  flow by 

producing different colours as a function of temperature when illuminated by white light (Meyers et 

al., 1989). This response remains present for a short period of time only, which implicates that for a 

permanent record a digital photography of the liquid crystal sheet has to be taken. While the liquid 

crystals  themselves  have  a  temporal  resolution  of  up to  10  milliseconds  the  fact  that  they are 

embedded in thermally slowly adapting plastic sheets means that the overall response time is in the 

range of several seconds. The technique is nevertheless widely used in medicine when screening of 

a  large  group  of  subjects  is  required.  Its  major  applications  in  medicine  are  the  diagnosis  of 

inflammations, evaluation of skin tests, traumatology and forensic medicine (Stasiek et al., 2006). 

The advantages of this technique are that it is inexpensive, easy to use, virtually unbreakable, has an 

accuracy of 0.1ºC, is very simple to calibrate, suitable for curved surfaces, has very high spatial 

resolution (< 1 micron) and is reusable after a short period of time. It has as disadvantages the 

necessity  of  an  additional  method  for  producing a  permanent  record,  the  difficulty  of  reading 

temperatures under low light conditions, having a limited temperature range, the fact of being a 

slow technique and not being suitable for large surfaces or surfaces with non-uniform deepness 

(Meyers et al., 1989).   

Laser Doppler Flowmetry is a modality for measuring blood flow in the peripheral blood 

vessels. When a laser beam is pointed towards tissue and the flowmetry system scans the movement 
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of the red blood cells by analysing the Doppler scattered signal reflected back into a photocurrent 

sensor. The result is a dimension-less blood flow measurement value (called 'flux') expressed in a 

quantity proportional to the product of the average speed of the blood cells and their concentration. 

These systems screen tissue samples to about 1 millimetre depth and resolve blood flow speeds 

from 0.01 to 10 mm/s. This method is able to register flow in various types of blood vessels such as 

arterioles, capillaries and venules. It maps the blood flow speed to a colour map according to the 

defined colour scales. It is an easy to use technique with an output directly proportional to blood 

flow speed (not volume) that allows instantaneous measurements of dynamic processes. Scanning a 

larger skin is, however, a slow process (although faster, all real-time systems are coming onto the 

market  at  the  time of  writing),  and only  moderately eye safe  which  requires  the  use of  safety 

goggles.  This  technique  is  used  in  medicine  for  analysing  vascular  areas,  burns,  looking  for 

inflammations  and  abnormalities  such  as  tumours  (Terada  et  al.,  2007,  Stikbakke and  Mercer, 

2008). A strong correlation was found when examining healthy controls and primary Raynaud's 

patients after cold provocation stress (section 2.7). From this study Schlager (2010) concluded that 

thermography  can  substitute  Laser  Doppler  perfusion  imaging  for  skin  surface  temperature 

assessment, the main reason being that it is more time effective and there is no laser required. 

Full-field  Laser  Perfusion  Imaging (FLPI)  is  a  non-invasive  instantaneous  technique  of 

monitoring  2D microvascular  flow maps.  It  is  based  on Laser  Doppler  Perfusion  Imaging but 

behaves differently due to the diverging laser beam illumination of the skin and contrast assessment 

in the resulting speckle pattern (Buick et al., 2009). This technique performs up to 4 times faster  

than conventional scanning laser Doppler imaging methods (Serov et al., 2005). The advantages of 

this modality are that it is a very fast recording method, allows dynamic processing, is easy to use 

and is safe. On the other hand are the disadvantages of being expensive and the maximum skin 

areas that can be record being limited in size to an area of 8cm x 12cm. FLPI is a very recent 

screening technique and consequently more studies are required to correlate the proportionality of 

its  outcome  to  blood  flow  values.  Preliminary  studies  demonstrated  that  assessing  cold  stress 

challenges with this method follows a similar trend but to a different time-scale (Buick et al., 2009).

  

Photoplethysmyography is  an  optical  technique  of  measuring  blood  volume  changes  in 

peripheral tissues based on the optical properties of the selected skin area. With a naked eye it is 

possible to perceive that regions with less blood are apparently more white in colour and regions 

with more blood are darker. This method uses the same principle (Allen, 2007). The underlying 
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mode of operation is to emit a non-visible (near-)infrared light into the skin and according to the 

amount  of  light  absorbed  by  the  skin  the  blood  volume is  calculated.  The  advantages  of  this 

technique  are  the  low  cost,  facility  of use,  instantaneous  results,  applicability  for  dynamic 

monitoring and can be used to measure bilateral symmetry. The major disadvantage of the method 

is that it measures across a small skin area only. Medical applications of this method are clinical 

physiological  measurements,  including monitoring,  vascular  and autonomic function assessment 

(Allen, 2007). At the time of writing an emerging photoplethysmography (PPG) imaging technique 

is being proposed by scientists at Loughborough University for non-contact measurement of skin 

blood perfusion over  a  wide  tissue  area.  They claim that  with  such technique  it  is  possible  to 

measure both pulse rate and blood perfusion (Zheng et al., 2009). 

 

None of the alternative techniques summarised above satisfy all the requirements for this 

work of being easy to use, fast and providing measurements across a large area of skin from a single  

measurement. On the positive side they are able to provide a direct measure of blood flow while in 

thermography (being an indirect method) the relationship between thermographic image and  blood 

flow is inconclusive (Buick et al., 2009).  

2.6. Thermal physiology reference data

When conducting temperature studies in areas of interest (AOIs), two of the values taken in 

consideration are the mean temperature of the AOI and its standard deviation. In order to identify 

pathological manifestations or abnormal temperature patterns, these values alone do not provide 

sufficient  information.  Based on the  fact  that the  human body is  bilateral  and practically  fully 

symmetric with respect to its extremities the indication is that the human body could have a bilateral  

temperature  symmetry  between  two  AOIs  in  co-lateral  locations.  This  had  been  suggested  by 

Freeman in  1936 when he  and his  team conducted  a  study demonstrating  a  different  bilateral 

temperature distribution between healthy controls and schizophrenic patients (Freeman et al., 1939).

Based on this  measure Lloyd Williams (1964) in  England stated that  significant  differences  in 

bilateral  temperature  symmetry  could  be  related  to  pathological  states  such  as  structural 

abnormalities of blood vessels, abnormalities of vascular control, local effects on blood vessels, 

changes in thermal conductivity of the tissues and increased heat production in the tissues.
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• The  first  attempt  to  characterise  reference  values  of  bilateral  thermal  symmetry  using 

thermal imaging was made by Uematsu (1986). He used an Agema thermal camera with an 

image resolution of 140x140 pixels an equipped with an computer interface. He did not 

specify  any  acclimatisation  period  for  the  study  volunteers  or  any  examination  room 

conditions. The skin surface area was divided into 32 segments (AOIs) with hair covered 

areas  of  the  body  being  avoided.  His  finding  in  bilateral  temperature  difference  are 

summarised in table 6. He used 32 healthy controls and 24 patients with peripheral nerve 

impairment.  In  the  symptomatic  patients  the  presented  average  difference  between  the 

normal side and the side with the nerve damaged was 1.55ºC; six times the difference found 

in normals that was 0.3ºC. The difference between temperature symmetry in healthy controls  

and patients was statistically significant (P < 0.001).

• In the same year Goodman and his team  (Goodman et al., 1986) performed a study on 

temperature symmetry in the back and extremities using computer assisted infrared imaging. 

The infrared camera they used was the same model as Uematsu's. They used a sample of 31 

healthy  volunteers  that  had  been  physiologically  assessed  by  physical  examination  and 

clinical  records.  A pre-recording  protocol  enforced  2  days  avoidance  of  prolonged  sun 

exposure and 2 hours without eating, drinking, smoking or drugs before examination. In the 

examination room the volunteers disrobed and underwent an acclimatisation period of 20-25 

minutes at 20.5ºC (±0.5ºC), with a low relative humidity. As a calibration device a pair of  

(near-)infrared light-emitting diodes spaced at 10 cm situated alongside of the subject were 

used (which have a relatively constant far infrared, i.e. heat output to be used as calibration 

reference). Each thermogram was performed in such a way that a spatial resolution of about 

1mm and a temperature resolution of 0.5K at  1m was achieved. Repetitive  temperature 

calibration was performed with  standard blackbody sources.  A total  of  9  different  body 

views were used. Each image AOI was divided into slices and compared with those obtained 

from the other side. The results are shown in table 6. It was concluded from this study that  

mean  temperature  bilateral  differences  in  the  same  AOI  higher  than  1ºC  is  should  be 

considered as abnormal.

• In  1988,  Uematsu  and  his  colleagues  performed  a  second,  larger  study  aimed  at  the 

quantification  of  thermal  symmetry  with  consideration  given  to  normal  values  and 

reproducibility  (Uematsu et al., 1988). A total of 90 healthy subjects collaborated in this 

study.  Two infrared systems (JTG-500 M thermometry and Eye 160 thermometry)  both 
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controlled by computers were used. An acclimatised examination room with temperature 

ranging from 23º to 26ºC and humidity between 45% and 60% was used. The thermography 

guidelines  of  Pochaczevsky  were  followed  (Pochaczevsky  et  al.,  1986).  All  subjects 

disrobed and acclimatised in the room for 20 minutes. The body surface was scanned using 

90,000 data  points per scan,  one every mm, and the distance between the body and the 

recording equipment was of 50cm. The system used was able to discriminate differences of 

0.03ºC  and  able  to  quantify  mean  temperature  and  standard  deviation  values  for  each 

defined AOI. In this study some sympathetic bilateral symmetry responses were recorded in 

the context of a cold stress to the feet. The results are shown in table 6. The AOIs studied in 

this investigation demonstrated to be reproducible with a coefficient of variation of 0.1%. 

On healthy controls the recovery from cold challenge to the feet presented to be bilateral 

symmetrical,  for  pathological  states  a  discrimination  value  of  0.1ºC  was  suggested.  No 

significant difference was noted from using two different capture systems. 

• The latest large study into study bilateral temperature symmetry was conducted in Taiwan 

on 57 healthy subjects (35 males and 22 females with ages ranging from 24 to 80 years old) 

investigating 25 different AOIs with thermography (Niu et al., 2001). An acclimatised room 

at 21 ± 1 ºC and 50-60% relative humidity was used. The thermal camera used was an 

Avionics  TVS-2000,  a  Japanese  cooled  camera  with  thermal  detectors  of  indium 

anthimonide  (InSb)  with  a  10  element  array  detecting  wavelengths  from  3  to  5.4μm, 

distinguishing a difference as small as 0.1ºC and with the ability to scan an image in about 

0.033 second.  After  20 minutes  of  thermal  equilibrium a  set  of  three full-body thermal 

images were taken at 15 minute intervals. From each image 25 AOIs were analysed. An 

analysis  was  conducted  where  the  researchers  obtained  overall  values  and  verified 

differences between genders and age groups (where subjects with age less or equal to 60 

were compared to older than 60). The results are shown in table 6. This study concluded that 

the human thermoregulatory system is substantially symmetrical, the maximum difference 

value obtained for an upper limb AOI in healthy subjects was of 0.5±0.4ºC. From the age 

group comparison no difference was found between hands, digits and anterior forearms (p < 

0.05). Elderly people presented a lower average skin temperature than younger ones. From 

gender comparisons it is clear that only the palm of the hands, digits and arm AOIs did not 

present statistical evidence of difference (p<0.05). The average skin temperature was higher 

in the distal extremities.
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From the above 4 studies it can be concluded that bilateral temperature symmetry can be a 

relevant indicator for identifying pathological states, however, the concept of thermal symmetry 

requires further specification since different methodologies appear to provide different results. An 

updated set  of data produced under the control of a standard capture and analysis  protocol for 

medical  thermal  images  and  generated  with  the  current  generation  of  high  resolution  thermal 

cameras and analysis software is therefore required. 

2.7. Hand vascular test

Episodes of constriction of small arteries and/or arterioles of hands and feet, with sequential 

changes in colour of the skin, pallor, cyanosis and usually following exposure to cold is a condition 

known as Raynaud's phenomenon (Chucker et al., 1971). This frequent medical problem was firstly 

described by Maurice Raynaud, a French physician who in 1862 stated that it is related to a large  

number of conditions such as neurological and/or vascular diseases that can affect the extremities 

(Ring, 1988, Ammer, 1996). Thermography is a well known method to document this reaction of 

hands  to  a  moderate  cold  challenge,  e.g.  diagnosis  of  Raynaud's  phenomenon  and  Complex 

Regional Pain Syndromes.   

Ring  proposed,  designed  and  implemented  an  objective  and  quantitative  vascular 

provocation test to assess the presence of Raynaud's phenomenon in the hands (Ring, 1995). The 

test protocol prescribes that after a period of acclimatisation in a  room of 22ºC for 10 to 15 minutes 
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Table 6: Reference values of bilateral thermal symmetry of AOI using thermal  
imaging (from previous studies).

Study Goodman,1987

A
O

I
dorsal arm NO DATA

anterior arm 0.13 ± 0.15ºC NO DATA 0.50 ± 0.40ºC

dorsal forearm 0.32 ± 0.16ºC

anterior forearm 0.23 ± 0.20ºC 0.30 ± 0.20ºC

dorsal hand 0.38 ± 0.06ºC

palmar hand NO DATA

Abnormality value > 1.55ºC > 1ºC > 1ºC >0.5ºC

Uematsu, 1986 Uematsu, 1988 Niu, 2001

0.22 ± 0.15ºC 0.39 ± 0.26ºC 0.50 ± 0.40ºC

0.27 ± 0.23ºC

0.95 ± 0.10ºC 0.31 ± 0.22ºC 0.50 ± 0.30ºC

0.42 ± 0.06ºC 0.31 ± 0.25ºC

0.62 ± 0.10ºC 0.31 ± 0.25ºC 0.40 ± 0.30ºC

0.59 ± 0.10ºC 0.31 ± 0.23ºC 0.40 ± 0.30ºC



a thermal image of the hand should be taken as a baseline. After this first record the subject is asked 

to wear a thin plastic glove and to immerse the whole gloved hands avoiding any contact for a 

period of 60 seconds in a bucket filled with water at 20º C. After withdrawing the hands from the  

bucket and removing the gloves the hands are positioned in a resting position facing the thermal 

camera at a 90º angle (perpendicularly) and an infrared image is  taken 10 and 20 minutes after the 

cold challenge.  (The  20 minute  image is  only  needed if  the  subject  experiences  difficulties  in 

recovering  to  normal  temperature  within  10  minutes).  Other  authors  suggested  different  water 

temperatures for the cold provocation and different times for exposure recovery, but the method 

described  above  has  proved  to  be  effective  and  provides  a  statistically  significant  difference 

between  healthy  controls  and  Raynaud's  affected  subjects.  Other  reasons  for  these  time  and 

temperature values are that the subjects remain comfortable (water at 10 degrees, can, for example, 

be very painful for Raynaud's sufferers) and that the recovery will be achievable within the limited 

time available for a routine clinical test (Ring, 1995). 

To present the results of the cold stress test to clinicians Ring defined a simple index that 

expresses the temperature gradient difference between the fingers and metacarpal areas of the hand 

(fig. 32). It can be calculated automatically by a computer program application from the two IR 

images taken before and after the cold challenge. The index value is calculated by first determining 

the temperature change in each area shown in fig. 32. For each hand the two area figures are than 

added to arrive at the final index value. This is graphically shown in fig. 33. The thermal gradient in 

both hands is given by the formula: F1-M1+(F2-M2), where F1 is the average mean temperature of 

the fingers area of the right hand, M1 is the average mean temperature of the metacarpals area of 

the right hand, the F2 is the average mean temperature of the fingers area of the left hand and M2 

the average mean temperature of the metacarpals area of the left hand.
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Fig. 32: Mean Thermal Areas (MTA) method to  
assess hands cold stress test recovery.



To interpret the obtained index values a scale was proposed, fig. 33, where indices in the 

range between  0.0 to -5.0 are regarded as normal recoveries while indices from -5.0 to -15.0 are 

said to be vasoplastic, with increasing severity in the presence of higher hypothermia (Ring, 1995). 

Ammer later suggested to use -4.0 as threshold value between normal recovery and presence of 

hypothermia (Ammer et al., 2007).  In non-affected subjects the area temperature of the fingers 

should be less than the area temperature of the metacarpal before the cold provocation test and the 

opposite (fingers warmer than metacarpals) after the challenge. In Raynaud's affected people the 

expected pattern after provocation is that the fingers are still cooler than the metacarpals, fig. 34 

(Ring, 1995).
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Fig. 33: The thermal gradient index scale for grading the  
severity of Raynaud's phenomenon (Ring, 1995).

Fig. 34: One approach to quantification - estimating mean  
temperature difference between fingers to dorsal hand  F-D  
(Ring, 1995).



Ammer proposed two similar approaches for obtaining the thermal  gradient index when 

recuperating from a cold stress challenge of the hands. In the first method the mean temperature of a 

region of at least 25 pixels at the centre of each distal finger (intra phalanx) is  subtracted from the 

values measured at  exactly the same size region but at  the proximal area of the correspondent 

metacarpal, fig. 35. The final index per hand is then obtained from the average of four fingers index 

differences.  Ammer's second method is  based on the temperature profile  of  each  finger,  which 

corresponds to a line from the centre of each finger (distal, intra phalanx) to the intraphalageal-

metacarpal joint and a second line with same thickness (5 pixels) and length from there to the 

proximal edge of the correspondent metacarpal. The index per finger is calculated by subtracting 

the mean temperature of each line, finger side - metacarpal side, fig. 36. As before the final index 

per hand is obtained from the average of four index fingers differences (Ammer et al., 2007).  

This vascular test with a comparison of the three assessment approaches will be used in this 
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Fig. 35: Mean Thermal Gradient (MTG) method to assess 
hands cold stress test recovery.

Fig. 36: Mean Thermal Profile (MTP) method to  
assess hands cold stress test recovery.



project  to  document  the  severity  of  injury of  Raynaud's  affected  subjects  with  the  intention to 

discriminate between different stages of injury.

2.8. Image processing

This section outlines the different techniques involved in infrared image processing. It forms 

the underlying foundation for the computational aspects of  this research work.

2.8.1. Introduction

Digital  images  are  formed  of  pixels,  which  correspond  to  signals  captured  by  digital 

detectors sensitive to specific wavelengths of the electromagnetic spectrum. The multiplication of 

the number of vertical and horizontal pixels characterises the image in terms of resolution, the pixel 

depth (in bits) indicates the amount of different signals that can be stored in a pixel (normally 2pixel 

depth). 

Once  images  are  captured  three  stages  typically  describe  the  subsequent  operations: 

processing, analysis and understanding (fig. 37). While these three operations are linked, processing 

is related to the task of signal detection, storage and preparation for analysis; in the analysis part 

information is extracted and selected; and in the final phase this information  leads to knowledge 

and subsequently understanding. 

The  evolution  of  the  techniques  for  digital  image  processing  is  driven  by  military, 

astronomical,  industrial  and medical  needs.  It  was in the 1960's that major underlying parts of 

modern techniques for image processing and manipulation were developed at the Bell Laboratories, 

Maryland,  USA,  for   applications  ranging  from  satellite  reconnaissance  to  medical  imaging 

(Rosenfeld, 1969).

The use of digital imaging in medicine brought several improvements such as: the ability to 

post-process images, the development of permanent record systems, the possibility send images to 

third parties over networks, environmental improvements (e.g. avoiding paper and chemicals) and 

in the case of radiology images a substantial reduction of  radiation levels due to technological 

improvements. Some resistance still exists to the use of digital imaging in medicine mainly due to 

the initial costs and technology dependency. On the other hand digital technology allows users  to 

post-process images in order to  improve results, for example by correcting image brightness and 
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contrast, which can result in an improved diagnosis while the number of repeated examinations is 

reduced in parallel with the examination costs. Maintaining a permanent record of patient images 

leads to better pathological understanding and improved treatments and clinician knowledge. Image 

exchange through networks increases the spread of knowledge and understanding. It allows advise 

from remote specialists and the establishment of reference information based on image comparison. 

The correct implementation of digital image processing technologies reduce human error.

   In the context of this research 5 different digital image processing modalities are studied. 

They are: image enhancement(section 2.8.2), feature extraction (2.8.3), template matching (2.8.4), 

interpolation techniques (2.8.5) and registration (2.8.6). These techniques will all be used on the 

thermal images processed in this work.

In infrared cameras the focal plane array (FPA) typically captures a frame (image)  every 

16ms.  Pixels  are  usually  digitalised  with  12  or  14  bits,  providing  4096  or  16384  discernible 

temperature levels respectively. The temperature range for studying the human body is normally 

from 25º to 35ºC, a 10ºC difference. It is interesting to note that in principle only an 8-bit frame 

grabber is needed for this range as with an 8-bit pixel resolution it is possible to represent 256 levels  

of temperature. This equates to a thermal resolution of slightly more than 0.1 ºC over the said 10 ºC 

range  and  this  happens  to  be  also  the  thermal  resolution  limit  of  most  microbolometer  based 
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Fig. 37: Steps involved in digital imaging processing, Webliography[21].



cameras.

 

The smallest spatially resolvable distance is the spatial resolution, it refers to the precision in 

discriminating two object temperatures at a given distance. It is calculated by dividing the double of  

the distance between the target and the imager by the number of pixels times the tangent of the 

angle between the target and the camera divided by two. The typical value is between 1 and 4 

meters (Jones and Plassmann, 2002).  

Thermal  imaging  processing  techniques  can  be  divided  into  4  phases:  capture,  pre-

processing, segmentation/registration, and post-processing. During capture the usual processing is 

an image non-uniformity correction, made by the imager itself. After capture, most cameras perform 

some degree of simple pre-processing. This can be low pass filtering (for reducing the noise caused 

by the scene or the equipment), thinning (for simplifying the objects in the scene) and binarisation 

(for  separating   objects  from the  background).  More  complex  functions  are  then  executed  by 

computer based software. In the context of this work segmentation and registration techniques are 

used for partitioning the image into the objects that it contains , e.g. hands, fingers and background. 

Examples  of  this  techniques  are:  edge  detectors,  gap  bridging  techniques,  fill  area  operations, 

histogram  equalisation,  and  Hough  transforms  (for  shape  detection).  Common  post-processing 

techniques  in  thermal  imaging  are  high-pass  filters  (to  detect  hot  or  cold  spots),  temperature 

averaging  and  computing  spatial,  temporal  or  frequency  variations  of  temperature  (Jones  and 

Plassmann, 2002).

Jiang (2005) classifies  thermal image processing in two groups: low level processing and 

high level processing. In the low level processing group he identifies: image enhancing techniques 

(that improves the clarity of the image), temperature measurement processes (absolute or relative 

temperature measurements with interpretation of the pixels in the AOI) and other auxiliary imaging 

processing tools such as: isotherms, line profilings and histograms. The high level processing group 

is sub-divided into two object detection sections: static and dynamic. The static sub-group uses 

techniques based on the spatial distribution of  temperature using only one image. In the context of 

this  work  these  techniques  can  be  used  for  assessing  asymmetries  and briefly  consist  of  edge 

detectors (e.g. Canny), features detection (e.g. Hough transform) or segmenting images (e.g. Bezier 

histogram). The dynamic methods use a sequence of images and in this work could be used for 

assessing a stress challenge. This sub-group may employ artificial intelligence techniques such as 

Artificial  Neural Networks,  Bayesian Belief Networks, Linear Discriminate Analysis  and Fuzzy 
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Logic.      

In this work the image enhancing techniques that present the best results when applied to the 

thermal images of upper limbs will first be used to emphasise those image features. That will then 

be extracted for the second segmentation phase which  identifies those areas of the image which are 

of interest from the background. This delineation of AOIs could ideally be automated and improve 

the consistency and thus quality of the analysis. Operations of template matching, interpolation and 

registration through feature based image morphing together with methods of identifying  landmarks 

used for guiding subsequent algorithms will lead to a standard methodology of IR image analysis of 

the hands.

2.8.2. Image enhancing techniques

In  most  cases  even  in  a  controlled  environment  and  when  making  use  of  standardised 

procedures images records are acquired with what is called noise. Image noise can be described as 

the random variation of individual pixel values appearing in the image while being non-existent in 

the real scene. This type of interference  can be caused by the surrounding environment, i.e. thermal 

reflectance,  and/or  by  the  acquisition  equipment  itself  due  to  the  camera  sensor  or  electronics 

sensitivity to spurious or transient electromagnetic signals.  The presence of this destructive effect 

can seriously affect the main purpose of image acquisition,  namely to measure the temperature 

values of the object in the scene. 

There are three types of noise that can be found in digital images: 

• Random noise,  where  fluctuations  above and below the  actual  image  intensity  occur  in 

intensity and/or colour.

•  Fixed pattern noise appears when some pixels' intensity surpasses far beyond that of the 

ambient random noise fluctuations. This is also known as “Hot Pixels”; 

•  Banding noise is introduced by the camera when it reads the information from the digital 

sensor. 

Changes in image noise do not only occur with environmental changes or when changing 

the camera model, there are other characteristics like fluctuations in luminance, “chroma” (colour 

composition), spatial frequency and magnitude that will affect the noise in the image. Noise affects 

all  image regions  equally  although  darker  regions  will  (percent-wise)  be  affected  more   than 

brighter ones. In brighter areas noise becomes less pronounced (Gonzalez and Woods, 2002).
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There are some techniques known to improve images affected by noise, reducing its impact. 

Linear smoothing filters operate by processing the original image with a moving convolution mask. 

While reducing noise the trade-off is  a blurring effect on the image. Examples of this type of filters  

are: mean, Gaussian, Gaussian white noise, high-pass, low-pass, Homomorphic, and Unsharp. Non-

linear filters do not generate their output as linear function of the respective input; their function 

locates  and  removes  noise  by  determining  whether  the  pixel  value  is  valid  or  noise  affected. 

Examples for this type of filters are: median, Poisson, Wiener, Lucy-Richardson, speckle, salt and 

pepper and noise compose  (Gonzalez and Woods, 2002). While these filters produce less or no 

image blurring they introduce new and not necessarily correct information into the image as the 

assumptions on which they are based may not be true. 

A study on image quality suggested as a comparing measure for signal to noise ratio (SNR), 

the calculation of the root mean square error (RMSE) and the cross-correlation coefficient (CCC). 

The SNR is a ratio of the mean pixel value to the standard deviation of pixel values; the higher this 

ratio the less obstructive the noise is. The RMSE measure is used to assess how well a method to 

reconstruct an image performs relative to the original image; the closer to the value of the original 

image the better. A standard method of estimating the degree to which two images are correlated is 

the CCC; the closer to the original image the more advantageous it is (Kinape and Amorim, 2003). 

The result of such an experiment is expected to be helpful in terms of enhancing the desired 

image features for further post-processing in an attempt to build a semi-automated solution for the 

analysis of medical thermal images of the hand.

2.8.3. Features extraction

In order to  reduce the amount of resources required to describe a large set of data 

accurately (i.e. reducing the number of variables which generally require large amounts of memory 

and  computational  power)  several  techniques  for  features  extraction  have  been  developed. 

Incidentally, these techniques can also be helpful for selecting those areas of the image that are to be  

analysed.

The temperature range of the examination room, as explained in a previous section of this 

document (section 2.5) is close to that of peripheral parts of the body, especially hands. This makes 

them appear very similar to the room background and it is therefore often difficult to identify their  

outline correctly in the thermal image. Accurate edge definition, however, is vital for a number of 

statistical image analysis procedures (Zhou et al., 2004) and a precise approach is needed in order to 
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produce repeatable results.

This study investigates a range of established boundary extraction techniques to determine 

their practical performance in identifying infrared imaging objects with poor background contrast.

A total of 5 classes of edge detection techniques were selected for processing of the images in order 

to be benchmarked in this research project. These are:

• Class1:  template  based  detectors  or  gradient  operators  work  by  calculating  the  first 

derivative of the spatial intensity distribution. They are simple to implement and detect both 

edges and their orientation. Noisy image data affects their performance. Although this can 

be minimised by applying a Gaussian filter this also removes much of the high frequency 

information present in edges.  The 4 techniques selected from this class are the Roberts, 

Sobel,  Prewitt  and Kirsch detectors.  (Gonzales and Woods, 2002, Gonzales et  al., 2004) 

describe these in detail. Briefly, they are:

1. The Roberts edge detector was amongst the first  edge detectors introduced and it  is 

probably the simplest. It is still widely used due to its simplicity and speed (mostly in 

hardware based implementations). Its disadvantages are that it is asymmetric and that it 

cannot detect edges orientated at 45, 135, 225 and 315 degrees .  

2. The Sobel edge detector is the most promising of this class of operators as it integrates 

and implements noise removal and edge detection into a single algorithm. It is, however,  

also the most complex to implement computationally.  

3. The Prewitt edge detector is simpler to implement than the Sobel one and works well for 

the images which are corrupted with Poisson type noise but for other types of noises it is 

deficient.  

4. The Kirsch edge detector has similar properties to that of the Sobel one but tends to 

perform slightly better on noisy images than the Sobel algorithm. Both Kirsch and Sobel 

methods are superior to simple derivative operators as they apply rotated versions of 

masks/templates and thus find edges at different orientations. 

• Class  2:  second  order  difference  operators  have  fixed  characteristics  for  all  edge 

orientations. Laplacian, Laplacian of Gauss and Marr-Hildreth were the selected operators in 

this class. They find the correct place of edges and also test a wider area around the pixel 

than  the  above  gradient-based detectors.  The  disadvantages  of  these  operators  are  their 

sensitivity  to  noise,  possible  multiple  detection  of  the  same  edges,  malfunctioning  at 

corners/curves and problems in places where the gray level function varies. Edge orientation 
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detection is affected due to the properties of the Laplacian approach, which looks for the 

alteration of the variation of the gray level value for finding the correct zero-crossing. The 

Laplacian  of  Gauss  approach  uses  the  Laplacian  method  combined  with  a  Gaussian 

smoothing filter. It can be approximated by a discrete mask, which depends on the size of 

the Gaussian and the size of the kernel. The Marr-Hildreth method is an improvement on the 

Laplacian of Gauss technique. It locates the original edge from double edges by finding the 

zero crossings between the double edges but it is highly susceptible to noise (Gonzalez and 

Woods, 2002, Gonzalez et al., 2004). 

• Class 3: the Canny and Shen-Castan algorithms were selected as examples of probabilistic 

operators. They have good localisation capabilities and response even in the presence of 

noise.  Both  compute  probability  values  for  determining  an  error  rate.  Their  major 

disadvantages  are  poor  detection  of  zero  crossings  and the  complexity  of  computations 

(Gonzalez and Woods, 2002, Gonzalez et al., 2004).

• Class 4: as an example of segmentation based operators the watershed algorithm was the 

selected. It filters the object’s boundaries and effectively removes image noise. This method 

first finds a gradient based on a threshold value, fills it to obtain edges, then searches for  

discontinuities in the image and finally tries to connect objects or border. It treats image 

foreground and background asymmetrically (Karantzalos and Argialas, 2006).

• Class 5: snakes were the selected as examples of active contour operators. Snakes are non-

parametric and are based on internal and external energy terms: the internal term holds the 

curve together and prevents it from collapsing, the external attracts the curve to edges. This 

method needs an  approximate contour  outline as  a  starting input,  which it  then tries  to 

improve.  Snakes  are  able  to  reduce  a  second order  problem to  just  one  dimension and 

optimise it locally. They are, however, relatively slow (Kass et al., 1988). These methods are 

categorised in two classes: edge-based models and region-based models (Li et al., 2007). In 

this specific study, with its emphasis on the comparison of different techniques, the edge-

based class is used.

Apart from the above 5 classes edge detection solutions using Artificial Intelligence (AI) 

methods such as Genetic Algorithms or Neural Networks have been suggested (Suzuki et al., 2000, 

Ghosh and Mitchell, 2006). These methods are computationally expensive and partly depend on 
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heuristic parameters (empirically found and often subjective “fiddle factors”). If those parameters 

are not properly defined errors will emerge. Other popular approaches use edge maps, which rely on  

the correct identification image points both inside and outside the object of interest for adequate 

performance and their application can be complex (Zhou et al., 2004). 

Using  (non-thermal)  digital  images  two  studies  comparing  traditional,  well  documented 

edge detectors have shown that probabilistic methods (Canny and Shen-Castan) based on Average 

Risk  (AVG)  and  Signal  to  Noise  Ratio  (SNR)  measures  (Sharifi  et  al.,  2002,  Roushdy,  2006) 

perform better than those mentioned above. For these reasons AI and edge map techniques will not 

be used here.

An important property of infrared images when compared to normal digital images is the 

relatively high level of noise. Dependent on the thermal imaging sensor used noise can be up to 5% 

of the dynamic signal range, e.g. in a thermal image with a measurement range between 16ºC and 

36ºC this could be 1ºC. It is therefore important to include noise reduction techniques into any study 

aimed at improving boundary detection in thermal images, and to evaluate if their inclusion aids 

subsequent segmentation. In the context of thermal images homomorphic filters are thought to be 

useful as they allow noise to be modelled as an additive term to the original image data, reducing 

image luminance and improving reflectance (Arsenault and Levesque, 1984, Gonzalez et al., 2004). 

Importantly, this  is a close approximation of the physical processes inside a thermal camera sensor.

From a  comparative  experiment  using  the  above  methods  the  expected  outcome is  the 

knowledge  which of the  feature extraction methods perform more accurately and efficiently. In the 

task of identifying the landmarks that will delineate the thermal image AOI (hands) and how exactly  

the pre-processing of images enhances or affects this operation.

2.8.4. Template matching

This  technique  consists  of  finding features  in  the  image that  is  being analysed that  are 

common  to  a  template  reference  image.  This  method  is  useful  for  image  comparison  or  to 

implement a template based image registration based on the correspondence between image features  

and reference template features such as landmark, which could be control points or reference lines 

(Brunelli, 2009). This is a promising approach but  lies  outside the scope of this work. It may, 

however, be an avenue for further investigations, especially with a view towards fully automating 
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the algorithms developed in this work.

2.8.5. Interpolation techniques

Image interpolation is a method of constructing new data points (pixels) in a digital image 

within the range of a discrete set of known data points (pixels) thus calculating a new point between 

two existing data points (Lehmann et al., 1999). In a situation where a change in scale of the object 

may be needed (e.g. when morphing an object into a standard shape), interpolation can play an 

important  role in  that operation.  Thermal  images are  quantitative images and not  qualitative as 

normal digital images. Preserving the original pixel value is therefore imperative. The three more 

common and very well documented interpolation techniques are described by Poth (2004). Briefly, 

these are:

• Nearest Neighbour interpolation is a simple method that consists in a new pixel receiving 

the value of the nearest pixel. Is a very fast method but can easily generate errors.

• Bilinear interpolation methods consists of assigning a pixel value calculated as the  median 

of the four adjacent pixels values on the closest 2x2 neighbourhood of the pixel, the result of 

this algorithm is smoother than that of the previous one.

• Bi-cubic interpolation methods consider a 4x4 neighbourhood with 16 pixels, these pixels 

are not required to be at same distance to the one in question, therefore the closer a pixels is 

the higher a weighting is attributed to it in the calculation of the average value of the new 

pixel. This method produces noticeably sharper images than the previous two. It is widely 

used as standard in some commercial applications for image editing.

It  will  be  goal  of  experiments  in  this  study to  identify  which  of  these  commonly  used 

interpolation methods has the least impact when a change of scale is forced onto an object with 

thermal  information.  The  result  of  this  experiment  will  be  used  in  subsequent  registration 

operations.

2.8.6. Feature based registration

Image registration is the process of transforming the different sets of data in a homogeneous 
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system in order to facilitate operations such as image comparison or averaging, e.g. translating, 

rotating or zooming an image until it matches a template image as closely as possible. In this work a  

morphing operation is associated with registration. Morphing consists of the transformation of one 

image into another image by non-linear interpolation. This is in contrast to linear operations such as 

translating, rotating or zooming which preserve the original shapes in the image while morphing 

produces  a  change  of  appearance  of  objects  in  the  image.  Similar  to  morphing  is  a  second 

registration  operation  called  warping.  When  the  scale  of  an  object  is  changed  or  even  its 

appearance, the two operations occur together. Whereas, however, warping only operates on the 

source  image,  changing  object  shape  and  attributes  image  topology  and  geometry,  morphing 

operates on both the source and the target images, producing a continuous change of shape and 

attribute blending (Gomes et al., 1999).  

A  good  morphing  operation  should  include  feature  preservation  and  smoothness 

preservation and  avoid linearities, it should therefore use adaptive methods. Warping is based on 

three principles: point based, vector based and spline mesh. None of them is perfect, the point based 

method is predictable and presents consistency problems but it has simple interpolations and can be 

used  on  different  types  of  graphical  objects.  The  vector  based  method  has  exactly  the  same 

disadvantages as the point based method and also requires high computational effort. The spline 

mesh  method  has  a  difficult  specification,  multiple  pass  anomalies  and  can  only  be  used  in 

restricted types of graphical objects (Gomes et al., 1999).

Image warping is a technique in image processing that performs a pixel to pixel mapping 

from the original image to an output image. It  is  a domain transformation useful for removing 

optical  distortions  induced by a  camera  or  a  particular  viewing perspective,  to  perform image 

registration with a template, or to align images (Glasbey and Mardia, 1998). There are two types of 

image warping: forward warping, which is based on the destination coordinates being specified as 

functions of the source coordinates, and reverse warping where the source coordinates are defined 

as functions of the destination coordinates (Gomes et Al., 1999).

Reverse warping is performed by scanning the destination image pixel by pixel, calculating 

the corresponding location in the source image by evaluating the mapping function and copying to 

the destination pixel the value obtained from the function calculation (Gomes et Al., 1999).

In medicine in recent years interest has increased in using the warp technique to register 

images produced by medical imaging systems with body atlas information. It allows combination of 

different medical imaging modalities improving understanding of the body structure (X-rays and 

CT) and physiological events (MRI and Thermography) (Glasbey and Mardia, 1998). 

One dimensional signal warping such as sound has alignment related problems, in order to 
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address this on 2-D images the warp operation can assume a parametric form, through smoothness, 

or a non-parametric form penalising roughness (Glasbey and Mardia, 1998).

The parametric form of warp (Glasbey and Mardia, 1998) can be based in the following 

transformations:

• Simple translation, a simple correspondence is performed using a function that maps along 

rows, columns or both combined with direct conformity. It has problems associated with 

alignment and template matching.

• Procrustes  transformation,  is  adding  a  rotation  of  a  given  angle  value  to  a  simple 

transformation  along  with  a  magnitude  value  that  corresponds  to  a  possibility  of 

enlargement (value > 1) or shrinkage (value < 1) of the selected pixels to warp. It can lead to 

heavier computations.

• Affine transformation, is a six-parameter generalisation of the Proscrutes transformation and 

allows different stretching along rows and columns of an image and shearing. It is the most 

common  general  linear  transformation,  facilitates  the  alignment  through  a  regression 

algorithm, but it can be a problem when the reference points are not labelled or need to be 

assigned.

• Perspective transformation, is when a fixed point in space views a planar object. It is a non-

linear transformation that requires eight parameters and uses the affine transformation to 

limit the viewpoint, preventing it becoming to distant or foreshortened. This transformation 

is able to map straight lines at all orientations to straight lines preserving the conic sections. 

Nevertheless to use more than four landmarks by least squares in the image space requires 

an iterative approach and consequentially demands high computations.     

• Bilinear  transformation,  is  another  eight  parameter  transformation  generalisation  of  the 

affine transformation, which preserves straight lines in three particular directions, including 

the lines parallel to the axis. It is a bijective transformation but can lead to collinearities.

• Polynomial  transformation,  uses  polynomials  of  third  and  higher  order  to  perform  the 

transformation,  treats  as  special  cases  the  quadratic,  biquadratic,  cubic  and  bicubic 

transformations. It can be computationally heavy but has the advantage of not leaving gaps. 

The non-parametric forms of warping such as elastic deformations, Thin-plate splines and 

Bayesian  approach  were  introduced  to  provide  a  solution  for  the  poor  performance  with  local 

distortions of the parametric transformations. Giving a set of matched reference landmarks in both 
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images a triangulation can be obtained and an affine transformation defined by the triangles vertices 

can  be  used  in  the  triangle  inside  pixels  correspondence.  A continuity  along the  edges  of  the 

triangles  is  ensured  producing  a  smoother  transformation.  However  the  non-parametric 

transformations  produce  roughness.  The  use  of  Thin-plate  splines  over  the  whole  image  and 

Bayesian techniques  can produce heavy computational load (Glasbey and Mardia, 1998).   

There are four main warping techniques described in detail by Gomes et al. (1999): 

• Triangulation, the object or objects presented in the image have well known delimitation 

landmarks, and from them it is possible to build a triangular mesh model representing the 

whole object or objects. The triangle is the minimal and simplest geometrical shape used in 

image processing and are  able  to  represent  any other  geometrical  form (Besl,  1995).  It 

triangulates  the  specification  mapping  of  the  source  and  target  triangle  pair  using  for 

example the barycentric coordinates inside those triangles. With triangulation the previously 

referred parametric and non-parametric can be used. This avoids triangle mesh foldover and 

maps each triangle independently.

 

• Field-based point, uses vectors as features. For each feature vector v in the source image an 

destination  v'  vector  feature  is  specified  under  the  transformation.  The  object  shape  is 

reconstructed by considering the distance of the points to the segment feature, the distance is 

inversely proportional to the influences of the points in the pixels interpolation. There is a 

field of influence per each feature vector. Each of those vectors an orthogonal coordinates 

(u,v)  are  defined, where v is  the perpendicular  distance to the  feature  vector and u the 

distance along it. The coordinate u is normalised in accordance with the segment length, the 

v coordinate is the absolute distance. Stretching a vector in a direction, the neighbourhood of 

that feature is also stretched along that direction. A new coordinate system is defined per 

each vector feature, which is used to define a local transformation using inverse distance 

weighted  interpolation.  The  final  warping  is  obtained  as  a  blending  of  the  local 

transformation of each feature. In field-based mapping each pair of points, lines or boxes 

defines one mapping. The final map is a weighted average. It needs a modified weighting 

function, provokes ghosting and singularities at crossovers. (Gomes et al., 1999).     

• Free-form deformation, uses free-form curves such as B-splines and Bézier curves to define 

coordinate  curves.  By changing the control  points  of  the free-form curves,  a  change in 

coordinates  curves  defines  a  change  of  the  coordinates  that  performs  the  warping 
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transformation. The warping process is composed of four steps:

1. A new coordinate system is defined on the space where the object is embedded based in 

its Cartesian coordinates. A representation of the coordinate system is used to specify it.

2. The coordinates of the object shape on the new coordinate system are computed.

3. The representation curves of the coordinate system are warped, which causes deformation 

of the space.

4.  The  new  object  coordinates  are  changed  back  to  Cartesian  coordinates  in  order  to 

reconstruct the warped object.

This mapping defines a global deformation of space and, therefore, deforms all the objects 

embedded in that space. Free-form deformation uses a high degree polynomials and control 

points in a grid. It can be very complex to implement (Gomes et al., 1999).  

• Multi-pass  spline,  uses  a  mesh that  has  control  points  defining the image objects  to  be 

warped, those objects are delimited by lines which intersect the control points present on the 

mesh. It is composed of a separable transformation reducing the 2D warping problem into 

two 1D problems. Each transformation per mesh column depends only on the y coordinate.  

This  separability  simplifies  computationally  when  the  graphical  objects  uses  a  matrix 

representation  reducing  substantiality  the  problem of  warping  processing  demands.  The 

process of warping using this technique composes the following steps:

1.  Decomposes  the  horizontal  displacements  generating  vertical  splines  without  vertical 

displacements.

2.  Intersects a scan line with the vertical splines.

3. Constructs a scan line map where it generates a spline with the intersections producing the 

new localisation of the warped objects.

This method is very efficient, has a laborious specification and the splines cannot cross 

(Gomes et al., 1999).

A South  African  study  (Delport,  2007)  has  compared  two  morphing  techniques:  mesh 

warping and field morphing. These two modalities only vary in the way warping is performed. 

• Mesh  warping requires a finite number of control points in the mesh. This can occasionally 

cause regions with too many control points and others with too few. Another problem might 

be that the user does not  have enough control points. 

• With field morphing unexpected interpolations known as “ghosts” can be generated. This 

technique also demands  very high computational resources. 
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In the South African study triangulation was used to help and improve morphing along with 

warping. Delaunay triangulation was used due to its uniqueness and nearest neighbour approach but 

a  problem  known  as  foldovers  (triangle  overlap)  appeared  which  would  cause  inconvenient 

morphing. The study concluded that the user must select appropriate control points to minimise the 

error, something that can be a tedious task (Delport, 2007).

Barycentric coordinates were discovered by Möbius in 1827 (Hormann, 2004) and follows 

the Ceva's theorem, which states that for any point p inside a planar triangle  with vertices [v1, v2, 

v3] there exist  three masses  λ1,  λ2 and  λ3.  Placing these masses at  the corresponding triangle 

vertices, their centre of mass will correspond to c, as shown in the following formula.

c= λ1v1λ2v2λ3v3
λ1λ2λ3

 

Triangular based interpolation has the advantage of preserving the geometry of lines  that are  

combined (Rase, 2001).

A triangle can be divided into three sub-triangles by its centre of mass, each interior point 

will have a local barycentric coordinate according to the distance to the triangle vertices. Pixels can 

be represented uniquely by barycentric coordinates within the triangle due to their position. The 

barycentric coordinates in a triangle are normalised and the sum of three barycentric coordinates 

from an interior point related to the vertices is 1 (Hormann, 2004). 

The normalised triangular barycentric coordinates are homogeneous and satisfy the linearity, 

positivity and Lagrange properties (interpolates the original pixel in the destination pixel enforcing 

linearity along the polygon edges), they are used in computer graphic applications such as image 

warping, texture mapping and correspondence refinement. Triangular barycentric coordinates are 

easy to implement and fast to compute. The application of barycentric coordinates is particularly 

useful for interpolating data that is given at the vertices of the polygons (Hormann, 2004). 

The triangular barycentric transformation is based in translating the triangle vertices points 

and inner points from Cartesian into the barycentric coordinates, translate the pixel values according 

to the transformation function and copy that value to the corresponding point at the destination 

point after a coordinate translation from barycentric to Cartesian (Phillips, 2008) as illustrated in 

fig. 38 and using the following algebraic formulas:   
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A=[V1x V2x V3x
V1y V2y V3y
1 1 1 ] ; A1=[Px V2x V3x

Py V2y V3y
1 1 1 ] ; A2=[V1x Px V3x

V1y Py V3y
1 1 1 ] ; A3=[V1x V2x Px

V1y V2y Py
1 1 1 ]

λ1= det A1
det A

; λ2= det A2
det A

; λ3= det A3
det A

; λ1λ2λ3=1  ; Px=λ1V1xλ2V2xλ3V3x

Py=λ1V1yλ2V2yλ3V3y

 

Some authors suggested image warping techniques based on meshes and lines (Gomes et al., 

1999, Beier and Neely, 1992, Wolberg, 1998, Wolberg, 1996), although these will not be studied 

here due to their reported implementation complexity and computational cost.  

Recent  research  proposed  image  warping  based  on  triangulation  as  a  fast,  simple  and 

accurate method (Fujimura and Makarov, 1998, Dong-Keun and Yo-Sung, 2004, Hormann, 2004). 

This approach also uses barycentric coordinates to make the correspondence between pixels of the 

original and resultant image of the transformation. 

In this study a geometrical model of hand will be used and a reverse warp technique using 

triangles correspondence and barycentric coordinates.

Due to the reported advantages the a goal of experiments in this study will be to contribute 

to the overall aim of this research project by developing a morphing method based on triangulation 

with a scope of being accurate, simple and fast.

93

Fig. 38: Point correspondence between source and destination  
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2.8.7. Conclusion

In this section the background of a wide range of image processing techniques has been 

presented and those most likely to of use for this work have been selected. In the next chapter the  

knowledge  gained  here  will  be  used  to  design  appropriate  experiments  where  the  selected 

approaches will be implemented and tested. The common  goal of these tests is find the most useful 

combination of methods for implementing  a semi-automatic solution that addresses  the central aim 

of this research study.
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3 – Methodology

This section outlines the methodology used in this research work. It specifies the materials 

used and how they were selected, and the techniques used to obtain the results. 

• Section 3.1 outlines the image capture protocol used throughout this study. 

• Section 3.2 describes the process of volunteer recruitment and selection and clarifies ethical 

considerations.

• Section  3.3  details  2  experiments  designed  to  identify  the  most  suitable  method  for 

analysing areas of interest in a thermal image.

• Section 3.4 reports the setup and performance of 2 pilot experiments which informed the 

design and implementation of 4 objective provocation tests detailed in the following section.

• Section  3.5  explains  4  different  objective  provocation  tests  and  means  to  analyse  the 

performance of competing cold stress test methods as well as a comparison of three infrared 

camera systems.

• The final section 3.6 is  devoted to the image processing and analysis  steps used in  the 

objective provocation tests above. 

3.1. Image capture protocol

The image capture protocol plays an important role in all infrared imaging investigations, it 

specifies the subject preparation for the imaging appointment and during the data collection, the 

room conditions and the capture procedure itself. The recording protocol used in this investigation 

follows the guidelines of the “Glamorgan Protocol”, which recommends the standard procedures for 

recording and evaluation of thermal images of the human body (Ammer, 2008). It is divided into 

three sections: the subject, the room and the image recording process.
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1. The subject to be investigated has to follow the following instructions:

• Instructions to be sent to the subject together with the appointment outlining: 

◦Avoid smoking for two hours (minimum) before the investigation

◦ Avoid heavy meals on the day of the examination 

◦Avoid  cosmetics  and  ointments  on  the  skin,  these  substances  act  as  skin  thermal 

insulators.  

◦Avoid physiotherapy or sports on day of the examination 

◦Report infections and any drugs taken, either prescribed by a general practitioner or 

acquired from a standard pharmacy. 

• On arrival: 

◦The investigator explains the procedure.

◦The  subject  completes  the  following  forms:  “Informed  Consent”  (Appendix  8),  “Euro-QoL” 

(Euro-QoL score  HAS  to  be  zero  for  controls,  Appendix  10),  “RSI  screening  questionnaire” 

(Appendix 11) and “HAVS screening questionnaire” (Appendix 12) (these last two forms are only 

used in the pilot phase and the final tests of this work). 

◦The investigator requests the subject to remove as much clothing as the volunteer is comfortable 

with  (in  changing  cubicle)  leaving  the  upper  limbs  exposed.  In  actual  facts  all  subjects  were 

wearing either a t-shirt or short sleeved shirt ensuring that the forearms were unclothed.

◦The subject must avoid uneven cooling due to jewellery, crossed legs, or hands/arms placed close 

or on the body. 

◦The investigator has to check the room temperature repeatedly and humidity (temperature has to 

be 22ºC and humidity below 50% to prevent subjects from sweating) .

• On scanning: 

◦The standard position used is that of both hands in dorsal view as defined in the Glamorgan 

Standard Capture Protocol (Ammer, 2008).

◦A off-the-shelf MDF board has to be used for enhancing the background to hand contrast. The 
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MDF board has a high thermal resistance and therefore does not conduct significant amounts of 

heat  to  or  from  the  hands  during  a  single  investigation.  MDF  has,  however,  a  high  thermal 

capacitance  so  that  over  time  it  will  assume  the  temperature  of  the  hands  and  stay  at  that 

temperature for several minutes.  In extended or consecutively repeated investigations the board 

must therefore be replaced with an identical one in order to maintain good contrast and to avoid 

thermal interference from the previous examination.

◦Marks from tight clothing or seating have to be avoided.

◦No volunteer names/details are stored on any computer system (only a volunteer code is used). 

This can be cross referenced to the forms which are stored in a locked filing cabinet).

Apart from the member of staff performing the examination, a second member of staff or a 

person  brought  in  by  the  volunteer  has  to  be  permanently  present  in  the  office  area  (not  the 

laboratory space itself) as a witness/chaperone.

2. The examination room

The examination room has to have a stabilised air conditioning system, that maintains the 

room temperature at 22ºC ± 1ºC and the humidity below 50%. The outside laboratory window has 

to be completely closed with shutters not only to avoid solar radiation but also to maintain privacy 

during the examination. An acclimatisation cubicle has to be provided close to the examination 

room and maintained under the same environmental conditions. The subject can disrobe there and 

rest  for  15  minutes  before  the  examination  to  facilitate  thermal  equilibrium.  All  unnecessary 

equipment  should  be  removed  from  the  laboratory  area  to  ensure  adequate  space  for  the 

examination equipment and to avoid thermal reflections. All equipment and the walls have to be 

away from the subject as far as possible in order to minimise heat reflections. The laboratory area 

itself should be equipped with the absolute minimum of furniture only to provide adequate room for 

manoeuvre of the equipment and sufficient space between the camera and the volunteer. In order to 

avoid disturbance during the examination process, a door sign “Examination in progress” should be 

used.

3. The image recording process

For the image recording process the investigator has to make sure that all equipment is set 
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up correctly (a check list is helpful here). The infrared camera must have been switched on at least 

90 minutes before the start of the first capture to avoid start-up drift (Plassmann, 2006). Before 

starting the capture process on the subject an image from a calibration source must be taken. The 

same applies to the end of the process. Both calibration images combined allow the investigator to 

check for recording errors. 

For capturing the desired views from the subject, correct placement in terms of distance, 

angle to the camera,  subject position and field of view of the camera has to be achieved. This 

adjustment process can be significantly simplified by using capture masks (fig. 38) in the computer 

capture software which are overlaid onto the live image. Additionally a camera stand (fig. 39), 

facilitates fast positioning and stable fixation onto the target view.

Fig. 39: Example of a live overlay mask.

The above protocol was followed in all investigations in this work. The camera used was the 

FLIR A40 (thermal) infrared camera with a resolution of 320x240 pixels, a measurement accuracy 
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(bias, offset) of ±2ºC and a precision (repeatability) of ±0.1ºC. It was connected to a PC using the 

CTHERM package developed at Glamorgan Medical Imaging Research Unit (Plassmann, 2003). 

The lenses used in this imaging system were a standard lens (IR-lens 24º) for regional (close-up) 

views and wide angle lens (IR-lens 45º) for the total (full) body views. 

For all tests involving human subjects ethical approval was requested and obtained from the 

Ethics Committee of the Faculty of Advanced Technology at the University of Glamorgan before 

starting experiments. All individuals collaborating in this research project were treated identically, 

their confidentiality was respected and no harm was caused to them. All volunteers collaborating in 

this work could withdraw at any time from the project without being disadvantaged. The author of 

this work has acted with integrity and has used the available resources as beneficially as possible. 

3.2. Online RSI Questionnaire

In order to characterise the incidence of occupational diseases affecting the hands or upper 

extremities amongst the 20,000 students and 2,000 members of staff at the University of Glamorgan 

an online questionnaire based on Levine's (Levine et al., 1993) self-administrated questionnaire for 

Carpal Tunnel Syndrome assessment was designed and implemented (see Appendix 4). 

This questionnaire, coded in HTML and the PHP programming language (Code scripts are 

provided  in  Appendix  6),  was  made  available  at  the  author's  Research  Group  website 

(http://medimaging.awardspace.co.uk/)  and the  data  collected was stored  in  a  MySQL database 

(database  schema  in  Appendix  5).  The  system  was  protected  by  a  username  and  password 

combination. The architecture of this data collection and analysis setup is shown in fig. 40. The 

input forms presented online to users had build-in automatic field validation (e.g. check for age 

between  16  and  80)  to  improve  the  quality  of  the  collected  data.  In  order  to  avoid  multiple 

submissions from a single user, a mechanism that temporarily recorded the user's Internet Protocol  

address was used.  This mechanism did not  allow the same machine to  perform more than one 

submission within a 15 minute interval. The questionnaires were anonymous, only an optional text-

box existed for entering an email address if the participant was interested to collaborate in future 

studies. A local copy of the online database was used for analysis using SQL queries and to obtain  

results.  All  records with partial  or inconsistent data were eliminated from the database prior to 

analysis.
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The  questionnaire  was  advertised  using  wall  posters,  email  and  on  the  University  of 

Glamorgan intranet pages. 

All respondents were graded into four pathological states: severe symptoms, signals, early 

signals  and  healthy  in  order  to  characterise  the  state  of  the  respective  occupational  disease 

condition. This classification was derived from Levine's score (Levine et al., 1993). Data from the 

fields for gender, age, BMI (Body Mass Index), occupation, smoking profile, alcohol intake habits, 

keyboard usage and mouse usage was correlated with the four pathological states in order to study 

the relationship between these two data sets. Participants were also analysed according to their age 

group (18-30, 31-40, 41-50, 51-60 and 61-85 years) and four BMI classes (underweight (<18.5), 

normal weight (18.5-24.9), overweight (25-29.9) and obese - level 1 (30-34.9)). The occupational 

distribution of participants was divided into four groups: administrative/clerical, lecturers, students 

with occupation and students without an occupation.

3.3. Image analysis experiments

The  thermographic  value  used  as  a  benchmark  for  discriminating  between  healthy  and 

pathological states is that of thermal symmetry. In the context of this work 'thermal symmetry' is 

defined as  the  ‘degree of  similarity’ between two Areas  of  Interest  (AOI),  mirrored across  the 

human body’s longitudinal main axis which are identical in shape and size and as near identical in 
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Fig. 41: Architecture of the online questionnaire application for data  
collection and analysis.



position as possible. The degree of similarity is expressed as the difference between the respective 

corresponding AOIs' mean and standard deviation. 

Although the human body is bilateral with two eyes, hands, arms, legs, feet, and ears these  

are not necessarily 100% identical in shape or size. Image processing techniques developed for this 

work, however, allowed to compensate for these differences and to achieve near-perfect shape and 

size symmetry prior to comparison for thermal symmetry. 

In  this  study two experiments  were  executed  in  order  to  establish  underlying  reference 

information. Common to both experiments was that all  images were recorded using the capture 

protocol defined in section 3.1 and stored in the laboratory database. The captured images were 

recorded and retrieved by the CTHERM application. 

In the first experiment only the CTHERM software was used for evaluating the temperature 

values using AOI. For the second experiment all images to be analysed were standardised using a 

template model following the warping technique described further down in section 3.6.4 which 

produced the results in a semi-automated manner.

3.3.1 Experiment 1: Suitability of body views

It  was  aim  of  this  first  experiment  to  establish  if  with  current  camera  technology  it  is 

possible to use only two total body views (front and back) instead of several regional body views, 

which show more detail but are slower to perform. If this could be demonstrated then the faster and 

more convenient full body view technique could be used for all subsequent investigations. This first 

experiment consisted of analysing the images in the CTHERM software package, which has the 

possibility  of  graphically  defining  areas  of  interest  in  the  thermal  images  (fig.  42)  and  then 

calculating the thermal values of these AOIs for mean temperature and standard deviation.

The seven regional (i.e. close-up) views specified by the standard capture protocol (Ammer, 

2008) and used in this investigation were 'Both Hands Dorsal', 'Left  Arm Anterior',  'Right Arm 

Anterior',  'Right Arm Dorsal', 'Left Arm Dorsal',  'Chest Anterior' and 'Upper Back'.  'Total Body 

Anterior', 'Total Body Dorsal' were used for the total body views. In all the views shown in fig. 43 

to fig. 56 the respective AIOs as defined by Ammer (2008) are shown. 
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Fig. 42: Statistics editor of CTHERM software package to  
analyse AOIs.
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Fig. 43: Both Hands Dorsal regional view, AOI evaluating hand thermal  
symmetry (a threshold value was used to ignore background temperature).

Fig. 44: Left Arm Anterior regional view, AOI evaluating  
arm and forearm thermal symmetry.
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Fig. 45: Right Arm Anterior regional view, AOI evaluating  
arm and forearm thermal symmetry.

Fig. 46: Right Arm Dorsal regional view, AOI evaluating  
arm and forearm thermal symmetry.

Fig. 47: Left Arm Dorsal regional view, AOI evaluating  
arm and forearm thermal symmetry.

Fig. 48: Total Body Anterior view, AOI evaluating limbs  
thermal symmetry, not suitable for hands and feet.



104

Fig. 49: Total Body Dorsal view, AOI evaluating limbs thermal  
symmetry, not suitable for hands and feet.

Fig. 50: Both Hands Anterior regional view, AOI evaluating  
wrist thermal symmetry.

Fig. 51: Left Arm Anterior regional view, AOI evaluating elbow  
thermal symmetry.

Fig. 52: Right Arm Anterior regional view, AOI evaluating  
elbow thermal symmetry.
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Fig. 53: Right Arm Dorsal regional view, AOI evaluating  
elbow thermal symmetry.

Fig. 54: Left Arm Dorsal regional view, AOI evaluating elbow  
thermal symmetry.

Fig. 55: Chest Anterior regional view, AOI (red and blue)  
evaluating shoulder thermal symmetry.

Fig. 56: Upper Back regional view, AOI evaluating shoulder  
thermal symmetry.



The subjects used in this first experiment were 39 males, with a mean age of 26.9±10.2. 31 

of these were in the age group of 18-30, 5 in the age group of 31-40 and 1 in each in the 41-50, 51-

60 and >60 groups. 26 had a BMI classification of 'normal weight' and the remaining 13 one of 

'overweight'. The mean BMI value was 23.5±2.4.

The results of this first experiment are presented in section 4.2 and discussed in section 5.

3.3.2 Experiment 2: Suitability of standardised body views

The second experiment aimed to establish if a more refined method of defining AOIs in a 

template model could produce better symmetry values than the best method of the previous section 

3.3.1 (“Best” in this context means a higher degree of symmetry between corresponding left and 

right parts of the body) just for the hand, forearm and arm AOIs.

This  refined  method consisted  of  loading the  image  database  produced  in  the  previous 

experiment into a semi automatic software package (which is described in more detail in section 

3.6) that would 'warp' the individual shape of a part of the body to a standard shape). It does so by  

using a standardised 'mask' outline of the respective body part that is composed from well defined 

and consistently reproducible anatomical control points. Fig. 57 shows such a mask overlaid onto a 

thermographic  image  of  an  elbow.  The  mask  control  points  are  now  moved  manually  by  the 
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Fig. 57: A standard mask defined by (red)  
anatomical control points overlaid onto a  
thermal image on an elbow.



operator into their correct position as shown in fig. 58. Fig. 59 shows how the software takes the 

image from fig. 58 (on the left) and warps it back to the standard mask shape (shown on the right). 

This way all individual thermal images in the data base can be brought into their respective standard  

shapes and can then be analysed and compared in a standardised and fully automatic manner. 

For this standard analysis method three AOI models, based on anatomical landmarks were 

defined: one model for both hands (fig. 59) in dorsal view and two further ones for the the left and 

the right arm (fig. 61 and 62). Due to the body's symmetry the dorsal AOI model for the right arm 

can be used as the anterior model for the left one and vice versa.
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Fig. 58: Mask control points manually adjusted to  
fit the thermal image outline.

Fig. 59: The captured elbow shape produced in the  
step shown in fig. 57 (left) is now warped into the  
standard mask shape.
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Fig. 60: Reference AOI model defined by anatomical  
markers and the AOI formed by triangles (17 AOIs for  
each hand).

Fig. 61: Reference AOI model for the left arm in anterior  
view and the right arm in dorsal view (2 AOIs formed by  
triangles).

Fig. 62: Reference AOI model for the right arm in anterior  
view and the left arm in dorsal view (2 AOIs formed by  
triangles).



The  outcome  of  this  experiment  together  with  details  on  the  statistical  analysis  and  a 

comparison with the results obtained from the first experiment (outlined in 3.3.1) is presented in 

section 4.2 and discussed in section 5.

3.4. Statistical Methods

The statistical methods used in this research were:

 - Alpha Cronbach Coefficient

 - Interclass Correlation Coefficient

 - Kolmogorov–Smirnov test

 - Pearson's Chi Square test

 - Z-test

 - Student t-test 

The Alpha Cronbach Coefficient is a parameter used as a measure of the internal consistency 

estimate of reliability of test scores, it provides information about the internal consistency of the 

test, a value closer to 1 would mean a good internal consistency (Cortina, 1993).

For  quantitative  measures,  intra-class  correlation  coefficient  (ICC)  is  the  principal 

measurement of reliability, it provides a value between 0 and 1, the closest to 1, more reliable the 

test will be (Lachin, 2004).

The Kolmogorov–Smirnov (K-S) test is a nonparametric test of equality of one-dimensional 

probability distributions used to compare a sample with a reference probability distribution, based 

on the empirical distribution function. In the case of this research to verify if the sample follows the 

normal  distribution.  The K-S test  statistic  itself  does  not  depend on the  underlying cumulative 

distribution function being tested and is an exact test. If the p value is higher than 0.05 it means that 

the sample distribution follows the reference distribution (Chakravart et al., 1967).

The Pearson's Chi Square test is a statistical procedure that test a null hypothesis that the 

relative frequencies of occurrence of observed events follow a specified frequency distribution. The 

events are assumed to be independent and have the same distribution, and the outcomes of each 

event must be mutually exclusive. Pearson's chi-square is used to assess two types of comparison: 

tests of goodness of fit and tests of independence. A test of goodness of fit establishes whether or 
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not an observed frequency distribution differs from a theoretical distribution. A test of independence 

assesses whether paired observations on two variables are independent. A chi-square probability of 

0.05  or  less  is  commonly  interpreted  by  applied  workers  as  justification  for  rejecting  the  null  

hypothesis that the row variable is unrelated (that is, only randomly related) to the column variable 

(Chernoff and Lehmann, 1954).

The Z-test is a statistical  procedure where the Null Hypothesis should be an assumption 

about the difference in the sample means for two samples (note that the same quantitative variable 

must have been measured in each sample). The data should consist of two samples of quantitative 

data (one from each sample). The samples must be obtained independently from each other. The 

samples must have a known variance (standard deviation) and must follow a Normal Distribution. if 

the distributions of the variables in the samples are non-normal, the two-sample z-test can still be 

used  for  approximate  results,  provided  the  combined  sample  size  (sum  of  sample  sizes)  is 

sufficiently large, for a minimum of 30 values (Montgomery et al., 2009).

The Z-test used compares two independent means according to the formula:

Z=
π 1−π 2−

 sd 1
2

n1


sd 2

2

n2

Where 1 and 2  are the means of groups 1 and 2, sd 1 and sd 2  are the standard 

deviations of the groups, and n1 and n2  the number of samples of each group. The  value 

represents the difference between the groups to be tested. 0 is used to test if they are equal. The 

obtained Z value is then looked-up in the standard normal table. The number from this table is then 

subtracted from 1 and the resulting figure is the p-value.  

The results of the Z-test in this document will be described as: HS-Highly significant (p < 

0.01), S-Significant (p<0.05), NS-Non Significant (p>0.05).

A student's t-test is statistical hypothesis test in which the test statistic follows a Student's t  

distribution if the null hypothesis is supported. It is most common test applied when the test statistic 

would follow a normal distribution if the value of a scaling term in the test statistic were known and 

the sample has a significant size (more than 100 values). It is used for testing of the null hypothesis 

that  the  means  of  two  normally  distributed  samples  are  equal  or  the  null  hypothesis  that  the 

difference between two responses measured on the same statistical unit has a mean value of zero. A 

result  probability  value  inferior  to  0.05  means  that  the  samples  are  statistically  independent 

(Zimmerman, 1997).
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3.5. Pilot stress tests

The  first  pilot  test  involves  the  application  of  mechanical  stress  by  using  a  computer 

keyboard.  The second tests uses a vibration device.  The aim of both tests is  to investigate  the 

temperature variability of hands and forearms during stress exposure in healthy subjects.

3.5.1. Keyboard provocation test, KPT

The aim of this pilot test is to investigate the amount of temperature increase in the hands 

and forearms of healthy subjects after 5 and 15 minutes of free typing at constant speed. 

This investigation involved: 

• A FLIR A40 (calibrated) thermal camera; 

• A PC workstation with CTHERM, MS Excel and SPSS software packages to process and analyse 

the thermal images; 

• A standard computer keyboard as provocation tool; 

• A table with a MDF board on top (to improve thermal contrast between limb and background); 

• A chair for seating the volunteer. 

12 healthy male volunteers with an average  age of 22.4±6.3 and average BMI value of 

23.9±1.9 (9 with ages between 18 and 29, being 3 of them left handed and over weighted; and 3 

with ages between 30 and 39, 1 being left handed and 2 over weighted) were recruited for this pilot. 

All volunteers were students and 100% healthy (defined as having a score of zero in the 

EURO-QOL questionnaire (Appendix 10) that they completed together with an informed consent 

form  when  recruited).  On  first  arrival  all  volunteers  were  informed  of  the  procedure  which 

consisted of two visits on two different days. During the first visit the right hand was provoked 

while the left remained still (fig. 63). During the second visit the stressed hand was the left while 

the right one remained unchallenged in a still position. 

The experiment followed the protocol defined in section 3.1 of this document. The standard 

views of dorsal hands and forearms as defined in 3.3 were used. The thermal camera was placed on 
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a stand at 90º angle (perpendicular) to the top surface of the table at a distance of 1m (fig. 64). A 24º  

lens was used on the camera. 

The subjects were seated in a chair in a comfortable position, thermal reflective table surface 

was covered by a MDF board in order to improve image contrast between hands and background. 

'Free style' random typing at constant speed (3 to 4 characters/second) on an unconnected computer 

keyboard  was  performed  by  the  volunteers  under  the  investigator's  instruction  and  constant 

supervision. A thermal image was taken before starting to type and another 15 images in one minute 

intervals (fig. 65). 
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Fig. 63: One hand typing the other one still.

Fig.  64: Perpendicular position of the camera.



If  the  images  taken  from the  calibration  reference  source  before  and  after  examination 

differed in more than 0.1ºC the experimental result was not used and the experiment was repeated.  

This  procedure  was  necessary  for  quality  assurance  and  was  repeated  in  the  other  pilot  study 

involving vibration and in the final objective provocative tests.

For the data analysis of this pilot experiment not all AOIs as defined in 3.3.2 were used but 

only 4 as shown in Fig. 66. These are 2 symmetrical squares covering an area of 5,600 pixels each 

and also 2 symmetrical rectangles on the inside of the forearms with an area of 2,140 pixels each. 

Mean temperatures and standard deviations were computed for each AOI and averaged over all 

volunteers  grouped  according  to  handedness,  age  group  and  BMI  class.  All  the  results  were 

registered in a spreadsheet and statistically analysed using the SPSS® software package. For testing 

reliability and repeatability of the results the Interclass Correlation Coefficient was calculated for 

each AOI. 
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Fig. 65: The pilot Keyboard Provocation Test diagram.



Fig. 66: Areas of Interest for keyboard pilot test.

Fig.67 exemplifies a sample examination of a subject. It demonstrates a typical sequence of 

captured thermograms during an individual's examination. 

Fig. 68 and fig. 69 show the overall results of the keyboard typing pilot experiment on 12 

volunteers. Both demonstrate as expected a temperature increase in the stressed extremities. 

They  also  show  an  initial  increase,  although  smaller,  in  the  non-stressed  and  passive 

extremity  that  ,  after  peaking  approximately  in  the  middle  of  the  observation  time,  somewhat 

subsided.  This effect  was expected due to  the  thermal  regulation principles  outlined  in  section 

2.1.2.4 that link both sides of the body and is in line with observations made in literature (Sharma et 

al., 1997, Ammer et al., 2001).
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Fig. 67: Thermograms from a capture sequence of a keyboard stress investigation.



Fig. 68: Average mean temperatures over time on exercising the  
right hand, keeping the left hand still.

Fig. 69: Average mean temperatures over time on exercising the  
left hand, keeping the right hand  still.

With respect to thermal symmetry (absolute contra-lateral difference between AOIs), it can 

be seen that independently of the hand stressed, the pattern of temperature changes is very similar in  

both hands and forearms (fig. 70 and fig. 71). The absolute values, however, are slightly different. 

In these combined/averaged tables the underlying reason for this remains hidden. It is, however, 

reasonable to assume that the handedness of individuals, for example, may play a role and that the 

differences shown are due to the fact that right handed participants outnumbered left handed ones 
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(and therefore the effect did not cancel out when averaging). This assumption is explored in the 

following paragraphs.

Handedness

The blue and the red bar in fig. 72 and fig. 73 represent the the thermal symmetry of hands 

in right and left handed participants respectively. Generally, thermal symmetry was higher when the 
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Fig. 70: Hand Thermal Symmetry (Right hand typing and left hand still).

Fig. 71: Hand Thermal Symmetry (Left hand typing and right hand still).



preferred hand was typing (one exception: 5 minute point in fig. 73). This could be explained by the 

higher  “ability”  of  the  preferred  hand  that  results  in  more  efficient  movements  and  thus  heat 

generating energy consumption.

In figures 74 and 75 this pattern is repeated for the forearm. However, the asymmetry values 

are  significantly  more  pronounced.  This is  logical  since  the  heat  producing muscles  for  finger 

movements (see 2.1.1.3) are located in the forearm and not in the hands.

Age

When separating the experimental group into two age cohorts (18-29 and 30-39) the results 

are inconclusive. There is no generally coherent pattern. When observing results at the 15 minute 

point only it appears that the younger participants are less thermally symmetrical than the older 

ones.  It  is  possible  that  the  older  age  group is  more  experienced at  typing  (Salthouse,  1984), 

consuming less energy and thus producing less metabolic heat. If this was the underlying reason, 

however,  thermal  symmetry differences should be less pronounced when left-hand typing since 

participants are predominantly right handed and both groups would have to make similar efforts. 

Since thermal symmetry is higher in these cases this assumption is probably incorrect (fig. 72 and  

fig. 73).

A alternative explanation is that older participants may already show early signs of some 

aspects  of  HAS  where  topical  vasoconstriction  (see  2.1.2.4)  masks  the  increase  in  internal 

temperature. This assumption is supported by the observation that thermal asymmetry is actually 

negative when right-hand typing – the right hand tends to be more frequently (ab)used and is thus 

more susceptible to HAS, hence the negative asymmetry value.

In fig. 74 and fig. 75 this negative asymmetry for the older age group (i.e. apparent cooling 

of the working limb) can no longer be observed. When analysing lower arms instead of the hands 

the  expected  heating  effect  is  present  instead  as  expected  (although  reduced)  indicating  that 

vasoconstriction may still be present but is no longer the overwhelming factor.

BMI

After 15 minutes of typing normal weight participants were more asymmetric in temperature 

than their overweight counterparts. A possible explanation is that overweight people have both a 

higher thermal capacity (more body mass) and also better subcutaneous insulation (shielding warm 
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muscles). This picture is repeated when analysing the lower arm in fig. 74 and fig. 75.
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Fig. 72: Hand Thermal Symmetry (Right AOI – Left AOI) characterisation of hand AOI when  
stressing right hand.

Fig. 73: Hand Thermal Symmetry (Left AOI – Right AOI) characterisation of hand AOI when  
stressing left hand.



Conducting an Inter Class Correlation coefficient test, it can be shown that for the hand AOI 

the ICC was only 0.67 with a 95% confidence interval of 0.42 to 0.76.  These values unfortunately  

represent poor repeatability of the hand AOI. For the forearm AOI in contrast the ICC was 0.92 

with a 95% confidence interval of 0.84 to 0.96. To address this outcome new test using a different  

AOI for  the  hand in  a  more  controlled manner  will  be  developed (section  3.6.1)  and assessed 

(section 4.3.1).  
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Fig. 74: Forearm Thermal Symmetry (Right AOI – Left AOI) characterisation of forearm AOI  
when stressing right hand.

Fig. 75: Forearm Thermal Symmetry (Left AOI – Right AOI) characterisation of forearm AOI  
when stressing left hand.



The  participants  in  this  study  had  complained  about  the  duration  of  the  test  (15 

acclimatisation + 15 minutes of provocation) and having to come for two visits, questioning if they 

could not  do the test  in just  one visit.  This information was also taken in consideration in  the 

development of the new test (section 3.6.1).  

From the results it became clear that the AOIs of the pilot KPT did not produce the expected 

value of repeatability, and new AOIs for hands need to be specified to improve this situation. The 

volunteers also complained about the duration of the test and about having to make two visits, a 

new test was therefore developed (section 3.6.1) to address both issues.

3.5.2. Vibration provocation test, VPT

This second pilot  experiment  aimed to investigate  the temperature changes in the upper 

limbs of healthy subjects after holding a vertical vibration device for 2 minutes. 

This investigation used the same equipment as in the previous experiment and additionally: 

• A vibration device (a cinema seat vibration device) as provocation tool, which produces vertical 

vibration (fig.  76).  This type of vibration was suggested by Prof. Griffin in Southampton. This 

vibration device was isolated with brown paper and plastic (good thermal conductor) to minimise 

the effect of thermal conductance between the subject and the device.  

• A PHILIPS frequency generator set to 31.5 MHz for generating the vibration frequency (fig. 76). 

• A PHILIPS frequency counter, to monitor the frequency induced (fig. 76).

• A standard GRUNDIG 400W audio amplifier, to amplify the signal from the frequency generator 

for the vibration device (fig. 76).

• An oscilloscope, to monitor the waveform produced.

The same 12 healthy male volunteers as in section 3.5.1 participated in this pilot experiment 

and the same procedure with two visits on two different days was followed. As before on the first  

visit the provoked hand was the right and the left remained still (fig. 77) while during the second 

visit this was the other way round. Technical protocol, volunteer preparation, acclimatisation, etc. 

were identical. 
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The volunteers were seated in a chair in a comfortable position and a baseline image was 

taken (fig.  78).  The volunteers  then stood up,  in  order  to  standardise  the  procedure,  and were 

requested to hold the vibration device with the fingertips of one hand (fig. 77) at an angle of 90º 

between the hand and chest while the other hand remained still. 

The  vibration  frequency  of  31.5Hz  frequency  was  chosen  in  agreement  with  literature 

(Bovenzi et al., 2000). The induced maximum acceleration  from the vibrating device was 36 m/s2, 

measured by a calibrated laser vibrometer (fig. 79 and fig. 80) at Swansea Metropolitan University. 

With the same device the acceleration absorbed by human hands was determined to be 30 m/s2 on 

average. Using the chart shown in fig. 81 and tracing a line from the measured acceleration to the 

correspondent exposure time of 2 minutes, the partial exposure vibration A(8) was found to be 2.5 

m/s2. This is half of the maximum allowed by British and EU regulations (5 m/s2 ) and was thus 

considered a safe value for this experiment.

After 2 minutes of vibration exposure the subject was asked to assume the same position as 

in the first image and a second image was recorded under exactly the same conditions as the fist one  

(fig. 82). 

All data was analysed using the same methods as section 3.5.1.

For data analysis the same 4 AOIs as in the previous pilot experiment in 3.5.1 were used and 

analysed in the same way.

122

Fig. 76: The vibration test equipment: on top the  
vertical vibration motor, underneath the frequency  
counter, frequency generator and at the bottom the  
audio amplifier.
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Fig. 77: A volunteer holding the vibrating device with the fingertips of one hand,  
position used for the pilot test (holding the device with just one hand) - rejected.

Fig. 78: Hands positioned at 90º angle to the camera.

Fig. 79: The laser vibrometer measuring the vibration magnitude from the vibration  
device, the posture for the real objective test (holding the device with all fingertips).
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Fig. 80: Laser vibrometer output, the laser measures the acceleration of the  
vibrating device in several points.

Fig. 81: Vibration magnitude exposure calculation chart, the red line shows the  
correspondence between weighted acceleration (36 m/s2) and 'daily' partial vibration (2.5  

m/s2) exposure and exposure time (2 minutes).



The same 12 volunteers as in the previous keyboard provocation test participated in this 

experiment. 

Fig.  83  shows  that  the  mean  temperature  changes  when  exposing  the  right  hands  of 

volunteers for 2 minutes to a vibration provocation at a frequency of 31.5Hz and a magnitude of 2.5 

mm/s2 while keeping the left hand still. Fig. 84 shows the results for the left hand while keeping the 

right hand still. 

Fig. 85 and 86 show the average temperature differences calculated from these data sets. 

Generally, the stressed hand grows colder as expected from literature (see 2.3.2). Due to the already 

mentioned  link  between  both  body  hemispheres  the  collateral  side  is  also  affected  but  not 

conclusively so; as shown in fig. 86 where the left hand actually grows slightly warmer as the right  

hand is stressed. 
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Fig. 82: The pilot Vibration Provocation Test diagram.
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Fig. 83: Average mean temperature on exposing the right hand  
to vibration keeping left still, just hands were exposed.

Fig. 84: Average mean temperature on exposing the left hand to  
vibration keeping right still, just hands were exposed.

Fig. 85: Mean temperature difference from baseline, right hand  
vibrating and left hand still, just hands were exposed.



Fig. 87 and fig. 88 show the thermal symmetry between left and right hands before and after 

vibration stress while fig. 89 and fig. 90 do the same for the respective forearms. As in the previous 

experiment the left extremities are slightly warmer than the right ones at the baseline by about 0.3 

degrees C. If now the left hand is stressed (fig. 88) and thus cooling down the lateral asymmetry 

actually  decreases.  In  the  case  of  the  already  colder  right  hand  being vibrated  the  asymmetry 

increases. 

When comparing changes in hands and their respective forearms it is also obvious (and in 

line with expectations from literature [Acciari, 1978]) that forearms are significantly less influenced 

by vibration than hands. 

There is possibly a difference between groups in terms of handedness, age and BMI class, 

but due to the low sample number (12 participants) the statistical coefficients this difference cannot 

be conclusively proven.

Handedness

These result show that right handed subjects are slightly more affected by vibration to the 

right hand than left handed people are affected to vibration of the left hand. 
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Fig. 86: Mean temperature difference after left hand vibrating  
and right hand still, just hands were exposed.



Age

 From the results it could be concluded that with age there is a small loss in the capability of 

maintaining thermal symmetry after vibration exposure. 

BMI

It could be concluded from this experiment that vibration provokes a decrease in thermal 

symmetry of the hands having a larger impact in the forearms where a small difference can be 

observed between normal weight and overweight BMI classes.
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Fig. 87: Hand Thermal Symmetry (Right AOI – Left AOI)  
characterisation of hand AOI when stressing right hand with  
vibration.

Fig. 88: Hand Thermal Symmetry (Right AOI – left AOI) 
characterisation of hand AOI when stressing left hand with  
vibration.



A Inter Class Correlation coefficient test was conducted, obtaining that for the hand AOI the 

ICC was 0.81 with a 95% confidence interval of 0.48 to 0.94 and alpha Cronbach coefficient of  

0.89, and for the forearm AOI the ICC was 0.89 with a 95% confidence interval of 0.65 to 0.94 and 

alpha Cronbach coefficient of 0.92. In contrast to the previous keyboard provocation experiment 

where the hand AOI repeatability was poor, these values represent a good repeatability of the both 

AOIs.

The participants in this had questioned the reason for two visits and suggested if the test 

could not be perform in just one test, or combined the provocation of the two hand in one test. A 

new test  had  been  developed  (section  3.6.2)  addressing  this  outcome and  posteriorly  assessed 

(section 4.3.2). 
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Fig. 89: Forearm Thermal Symmetry (Right AOI – Left AOI)  
characterisation of forearm AOI when stressing right hand  
with vibration.

Fig. 90: Thermal Symmetry (Right AOI – left AOI) 
characterisation of forearm AOI when stressing left hand with  
vibration.



Considering the results of the vibration pilot test it  can be seen that the AOIs used were  

reliable and produced repeatable outcomes. However, these could be improved if the hand AOI 

would be shaped following the outline of the hand rather than being simply  a rectangle . This 

should  lead  to  a  better  discrimination  of  data  between  different  groups  to  be  analysed.  The 

possibility  of  provoking both  hands in  the  same test  would also  speed up the  experiment  and 

remove the need for two visits. The test developed in section 3.6.2  deals with these aspects.

In review the pilot  test  involving keyboard typing and vibration produced the following 

outcomes:

1. Hand AOI repeatability low in keyboard provocation test

2. Statistical difference between groups low in vibration provocation test

3. Duration of the keyboard provocation test was acknowledged as uncomfortable from the 

participants.

4. The participants in both tests had suggested a combination of provocation to both hands in 

order to avoid a second visit. 

3.6. Objective provocation tests

Based on the  experience  gained from the  first  two pilot  tests  four  objective  tests  were 

designed: three of these involved a mechanical stress followed by a vascular test the fourth included 

only the vascular test. These tests are described in detail in this section. To support the validity of 

these 4 tests, two further tests were designed: one to verify the methods for assessing a vascular  

challenge,  the  other  one for  determining any difference  in  results  if  other  imaging instruments 

suitable for medical thermal imaging are used. 

In order to recruit volunteers, participants from the questionnaire study (section 3.2) who 

had indicated that they were prepared to be approached again were contacted. Additionally posters 

advertising this study and asking for volunteers were distributed around the Faculty. Emails were 

sent to students and staff and an advertisement was posted on the University of Glamorgan intranet 

website.  After  volunteers  expressed  their  interest  in  collaborating  in  this  study,  they  received 

information on the experiments and tests (See Appendix 9) and were asked to sign an informed 

consent form (also in Appendix 8). After that an EURO-QOL form (see Appendix 10) had to be 
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completed and two screening questionnaires (one for each syndrome, RSI and HAVS) were also 

given to the volunteers in order to collect information about possible signs or symptoms of these 

conditions  (Appendices  11  and  12).  These  questionnaires  are  validated.  standard  forms  for 

collecting information when screening for the syndromes. The RSI screening questionnaire is the 

one  designed  and  used  by  the  London  Hazards  Centre  (Tivey,  1997).  The  HAVS  screening 

questionnaire is the one suggested and utilised by UK HSE and the NHS (HSE, 2008). 

Once the  volunteers  had  completed questionnaires  and forms,  their  medical  history and 

information on the syndromes relevant for this work could be analysed. Participants were graded 

and  divided  into  four  groups  of  injury  severity  based  on  HAS  syndrome  signs,  symptoms  or 

medical diagnoses according to the guidelines (Levine et al., 1993, Tivey, 1997, HSE 2008). These 

four groups are: 'healthy controls', 'signs of syndrome', 'symptoms of syndrome' and 'confirmed with 

syndrome'. The individuals considered for the control group had an EURO-QOL score of 0 and no 

complaints  in  the  hands.  The  distinction  made  between  the  'signs'  group  individuals  and  the 

'symptoms' group was based on the respective individuals' complaint characteristics and the EURO-

QOL score. Those having an EURO-QOL score of less than 2 and absence of numbness, tingling or 

blanching were  considered for  the  'signs'  group,  anyone above that  EURO-QOL score  and not 

clinical  confirmed  has  having  a  condition  were  considered  for  the  'symptoms'  group.  The 

'confirmed' group was composed of individuals clinically confirmed of having a HAS condition. 

Table 7 shows the problems reported by the subjects of the 'symptoms' and the 'confirmed' groups.

Volunteers were then asked to perform the objective provocation test(s). As the protocol 

stated that they had to wait at least 30 minutes in between individual tests it was suggested to them 

that they participated in only one test per visit and day.
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Confirmed

Volunteer: Reported problem:

HAS03 Right index finger and thumb affected with RSI

HAS26 All fingers of both hands affected with RSI

HAS29 Index finger of right hand affected with HAVS

Symptoms

Volunteer: Reported problem:

HAS02 Numbness and tingling in the little and ring finger of the left hand.

HAS05 Numbness and tingling in all fingers of both hands.

HAS07 Numbness and tingling in all fingers of right hand.

HAS16 Numbness and tingling in all fingers of both hands.

HAS17 Numbness and tingling in all fingers of both hands.

HAS18 Numbness and tingling in all fingers of both hands.

HAS22 Numbness, tingling and arthritis in all fingers of both hands.

Table 7: Reported problems from the individuals of the symptoms and the confirmed groups.

The order of provocation test was: first the keyboard provocation test, second the vibration 

provocation test, third a mouse provocation test and finally a standard vascular cold stress test. The 

mouse provocation test follows a similar rationale to the keyboard test and was included due to the 

fact that both mouse and keyboard are known to cause repetitive stress. The standard vascular cold 

stress test was included so that experimental results of the other three tests could be set into the 

context of this well known, accepted and documented test for comparison and verification. 

The volunteers participating in the four tests test are characterised in table 8, according to 

injury stage group, gender, age, BMI and handedness.    

The thermal camera used in all tests was a FLIR A40 (described in section 3.1) and all tests 

were performed in the Thermal Physiology Lab at the University of Glamorgan. All volunteers 

while participating in the tests were constantly monitored for the duration of the tests by the author.
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Volunteer
Injury 
grade 
group

Gender Age BMI Handedness KPT VPT MPT CST

HAS01 Control M 20 24,4 Right x x x x

HAS02 Symptoms F 32 33,9 Right x x x x

HAS03 Confirmed F 38 30,3 Right x x x x

HAS04 Control M 51 28,8 Left x ---- ---- ----

HAS05 Symptoms F 35 19,8 Right x x x x

HAS06 Signs F 44 21,9 Right x x x x

HAS07 Symptoms F 39 20,7 Right x x x x

HAS08 Control F 35 24,3 Right x x x x

HAS09 Signs F 35 26,2 Right x x x x

HAS10 Control F 31 22 Right x x ---- ----

HAS11 Control F 61 26,9 Right x x ---- ----

HAS12 Control F 34 26,7 Right x x x x

HAS13 Signs F 58 19,4 Right x x x x

HAS14 Signs M 64 29,6 Right x x x x

HAS15 Signs M 31 27,7 Right x x x x

HAS16 Symptoms F 30 19,7 Left x x x x

HAS17 Symptoms F 34 20,19 Right x x x x

HAS18 Symptoms F 54 25,1 Right x x ---- ----

HAS19 Control M 20 27,7 Right x x x x

HAS20 Control M 21 23,2 Right x x x x

HAS21 Control F 30 21,8 Right x ---- ---- ----

HAS22 Symptoms F 32 22,9 Right x x

HAS23 Control M 22 24 Right x x x x

HAS24 Control M 32 26 Left x ---- ---- ----

HAS25 Signs F 23 22,3 Right x x ---- ----

HAS26 Confirmed M 22 20 Right x x x x

HAS27 Control M 38 27,3 Right x x x x

HAS28 Signs M 31 30 Right x x x x

Table 8: Volunteers participating in the four Provocation Test (KPT=Keyboard, VPT=Vibration,  
MPT=Mouse, CST=Cold Stress Test), the '----' represent the volunteers that have not performed the  
test.

After arrival, before the volunteer entered in his first test he was requested to complete all 

forms (consent  form, EURO-QOl and both screening questionnaires for RSI and HAVS).  After 

completing them or coming for a second test, in accordance with the protocol defined in section 3.1 
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the volunteer was requested to keep the upper limbs unclothed and stay still, avoiding any contact 

for a period of 15 minutes in the acclimatisation room before undertaking the test. 

Before starting any of the tests the examiner takes a reference image from the calibration 

source (blackbody) in order to verify for the performance of the capture equipment. For recording 

the hands a MDF board is again used to facilitate better contrast with the background. A capture 

mask proposed by Ammer (Ammer, 2008, Ring et al., 2005), fig. 38, is shown on a screen visible to 

the volunteer in order to already at this stage produce a good alignment with the standard view. The 

camera is positioned at a distance of 1 m perpendicularly to the hands' surface.

The description of the procedures of the objective tests are outlined in sections 3.5.1 to 

3.5.4. At the end of each test an image from the thermal reference source was taken to validate the 

capture quality. All the captured images were securely stored in the laboratory's CTHERM database,  

and subjected to analysis with the results shown in section 4.3 and discussed in section 5. The 

statistical analysis of this test includes the mean temperature and standard deviation values of AOI 

of the hand, its calculated thermal symmetry, a ICC test evaluating consistency and repeatability, a 

K-S test test if the collected data follows the normal distribution, a non-parametric chi-square test 

evaluating  the  evidence  of  statistical  independence  between  groups.  All  test  were  run  in  the 

statistical software SPSS. A Z-test was used to compare hypotheses and ran manually in Microsoft  

Excel to verify if it was possible to statistically discriminate between groups. 

3.6.1. Keyboard provocation test, KPT

The keyboard provocation test is based on the pilot test in section 3.5.1. using its outcomes. 

In  order  to  respond  to  the  poor  repeatability  found  in  the  pilot  test  (section  3.5.1)  and 

simultaneously to design a more standardised test of mechanical provocation this test was designed 

as outlined below. 

The  text  to  be  typed  by  subjects  was  not  reported  in  previous  studies  (Sharma,  1997, 

Ammer,  2001).  To  overcome  this  lack  of  information  and  in  order  to  minimise  the  potential 

psychological stress related with the task of typing a text, a supporting computer application was 

developed (in the C# language). This tool consists of a virtual keyboard displayed on the computer 

screen (after: Peper, 2003) that informs the user which key to press (Fig. 91). The user is then 

informed if the key pressed was the correct one (outlined in green) or not (contoured in red). The 
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pseudocode of the program is shown in fig. 92. In addition to checking the key pressed by the user, 

the  application  allows  to  count  the  number  of  keystrokes  in  a  defined  period  of  time.  For  a 

permanent record of the keys to be pressed and the keys actually pressed the application writes two 

log files and at  the end of the test. A summary with the total  number of keystrokes and failed  

attempts is displayed. 

The  Keyboard  Provocation  Test  (KPT)  begins  by  recording  a  baseline  image,  then  the 

subject begins the task of keyboard typing, aided by the application described before for 5 minutes, 

sitting in a chair in the correct position and facing the screen at a 90º angle with the arms stretched  

over to the keyboard. After this the subject is repositioned for recording a new image under the 

same conditions as the baseline image. This image recording is followed by a vascular provocation 

test,  described in more detail  in section 3.6.4, for 1 minute.  After this test  the subject is again 

repositioned in the image recording position as before and for 10 minutes an image is taken at 1 

minute intervals. This procedure is summarised in the diagram of fig. 93.
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Fig. 91: The virtual keyboard application.



Pressed keys <- 0

Displays the virtual keyboard on the screen

Reads the duration of the test in minutes

While the duration of the test is not reached

     proposed key = generate a random number (1-41)  

     Display the proposed key to be pressed on the screen

     Read a key from the keyboard

     Pressed keys <- Pressed keys + 1

     Records the key proposed in the proposed log file

     Records the key pressed from the keyboard in the pressed log file

     If the pressed key is the same of proposed key

              Outlines the proposed key in the virtual keyboard with the green colour

     Else

              Contours the proposed key in the virtual keyboard with the red colour

Fig. 92: Pseudocode of the virtual keyboard application.

All collected images were analysed in a process outlined later in section 3.7.4.
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Fig. 93: The Keyboard Provocation Test diagram.



3.6.2. Vibration provocation test, VPT

The vibration provocation pilot test described in section 3.5.2 has proved to be repeatable. It 

requires, however, two visits or a longer period of examination on the same day. This test is based 

on the pilot but reduces the time of examination while maintaining its repeatability and introduces 

extra  information  and  contextualisation  by  including  a  post  provocation  cold  challenge  after 

vibration exposure.

The required equipment is the same as the one in the pilot test and shown on fig. 76. After 

capturing the baseline image the volunteer is asked to stand up, hold the vibrating device with the 

fingertips of the hand maintaining an angle of 90º between arms and forearms as shown in fig. 79. 

The device was then turned on, inducing the before mentioned vibration frequency of 31.5Hz at an 

acceleration amplitude of 36 m/s2 for 2 minutes. After that period the device was turned off and the 

subject was requested to return to the baseline recording position and a post vibration thermal image  

was  taken  as  shown  in  fig.  94.  This  procedure  was  immediately  followed by  a  vascular  test, 

described in more detail at section 3.6.4. 

 All collected images were analysed in a process outlined later in section 3.7.4
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Fig. 94: The Vibration Provocation Test diagram.



3.6.3. Mouse provocation test, MPT

Mouse handling is a very intensive repetitive task, normally performed by just one hand, it 

involves short and continuous movements of the wrist, metacarpals and index and middle carpals 

for clicking. These movements are known to provoke RSI, as addressed in chapter 2 , but the effect  

of these movements towards the development of the condition remain unclear.

It is the aim of this experiment to assess the effect of mouse handling on the temperature of 

the mouse handling hand compared to the other inactive hand.

As before in the mouse provocation test, a computational application was developed. This 

tool presents a window on the screen showing a single virtual button (fig. 95). Whenever this button 

is clicked it will disappear and then reappear at a random position inside the window. This process 

will run for a specified time. The program has the ability of counting the number of mouse clicks 

and mouse cursor distances travelled in order to quantify the stress load and to report it at the end of 

the test. In fig. 96 pseudocode of the tool is shown.

As in the other tests, the Mouse Provocation Test begins with the recording of a baseline 

image. After this recording the volunteer is requested to sit at a computer desk and to place the left 

hand still on the desk and the right hand on the mouse. When ready, the provocation program will  

start and run for a period of 5 minutes. After that and a return to the recording position another 

image is taken. When this second image is recorded the volunteer is subjected to a vascular test, as 

described  in  the  next  section  (3.6.4).  The  diagram  presented  in  fig.  97  describes  the  whole 

procedure of the Mouse Provocation Test. 
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All collected images were analysed in a process outlined later in section 3.7.4.
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Fig. 95: The Mouse Provocation Test application.



Read Duration

X ← random value (0, 800-button.length)

Y ← random value (0, 600-button.height)

button.center ← (X+button.length/2, Y+button.height/2)

Time ← 0

traversed ← 0

Num_Clicks ← 0

While (Time < Duration)

if (clicked)

Num_Clicks ← Num_Clicks + 1

X ← random value (0, 800-button.length)

Y ← random value (0, 600-button.height)

new_button.center ← (X+button.length/2, Y+button.height/2)

distance ← sqrt (pow2(new_button.X – button.X) + pow2(new_button.y – button.y) 

traversed← traversed + distance

button = new_button

Fig. 96: The mouse provocation application algorithm pseudocode.
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Fig. 97: Digram of the Mouse Provocation Test.



3.6.4. Cold stress test, CST

The aim of the Cold Stress Test for the hands is to assess the ability of the vascular system to  

recover from a cold challenge provocation. The recovery pattern provides objective information 

about the capabilities of the vascular system of the hand. When exposed to cold stress blood vessels 

constrict  in  order  to  avoid hypothermia.  This decreases  the provision of  oxygenated blood and 

simultaneously the removal of carbon dioxide saturated blood and consequently forces a reduction 

of hand temperature. Immediately after the challenge blood vessels will start to re-open, increasing 

blood flow and re-establishing the normal temperature.   

After taking the baseline image, the volunteer is asked to wear a pair of thin latex gloves 

over the hands and immerse them in a bucket filled with water at 20ºC (monitored by a mercury 

thermometer). The volunteer remains seated in front of a desk with the hands in a vertical position 

inside the bucket avoiding contact with the bucket wall or the other hand for a period of one minute. 

Immediately after this the investigator helps to take off the gloves and makes sure that no direct  

contact is made with the water. In order to complete the test, the volunteer now places the hands in 

the  recording position (which  is  the same as  the one  for  taking the baseline image)  and for  a 

recovery period of 10 minutes a thermal image is taken at 1 minute intervals. The whole procedure 

for the case of applying the vascular test  only without  any pre-provocation is described by the 

diagram in fig. 98.
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As outlined in section 2.7 of the literature survey there are three methods for assessing the 

outcome of a cold stress challenge: Ring's Mean Thermal Area (MTA) method and Ammer's Mean 

Thermal Gradient (MTG) and Mean Thermal Profile (MTP) methods. In order to test and compare 

the performance of these three assessment methods a computational application was developed in 

the C# language. The tool loads thermal images of a cold stress test of the hands (i.e. baseline image 

plus  the  10  recovery  images) and  implements  an  automated  solution  for  all  three  methods, 

generating charts for each hand and statistical tests in addition to the respective index values, the 

flowchart of this application is shown in fig. 99. 

The thermal indexes for each method, each hand and each image are calculated as follows: 

• MTA - the difference between the average mean temperature of the area of four finger and 

the mean temperature of the area of the palm. 

• MTG - the difference between the average mean temperature of the fingers from 25 central 

pixels of DIP and the average mean temperature of the finger's metacarpals from 25 central 

pixels of the proximal region (at the same distance from the finger metacarpi-phalanger joint 

of the central finger DIP).

• MTP - the difference between the average mean temperature of the finger's central line 5 
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Fig. 98: The Cold Stress Test diagram.



pixels large from the central DIP to the metacarpi-phalanger joint and the average mean 

temperature  of  the  finger's  metacarpals  central  line  5  pixels  large  from  the  metacarpi-

phalanger joint to the proximal region of the metacarpal with the same length of the finger 

line.  

This analysis is outlined later in section 3.7.4.

143

Fig. 99: Flowchart of the application to evaluate the three  
assessment methods of CST.



3.6.5. Inter-camera assessment test

Different  infrared cameras are currently available for medical  use and it  is  important to 

investigate the impact of different imaging systems. The same methodology (i.e. images captured 

according to the test defined in section 3.6.4. and each image standardised and analysed by the 

method  described later  in  section  3.7.4.)  could  produce  different  results  with  different  camera 

systems. In order to  assess the impact  of camera performance on the described methodology a 

simple experiment was conducted where 3 cameras were selected, according to the different image 

resolution produced in the far infrared wavelength, and a volunteer was asked to undergo a CST that 

was recorded by a different camera every time (For practical reasons it was not possible to monitor 

the same CST by all three cameras simultaneously). The three cameras' characteristics are shown in 

table 9.

Characteristic FLIR B2 Portable FLIR A40 Thermovision FLIR SC7000 Titanium

Image resolution 120x120 320x256 640x512

Detector type Uncooled uncooled Cooled

NETD 1K 0.08K at 30ºC <20mK

Thermal Accuracy ±2ºC or ±2% ±2ºC or ±2% ±1ºC or ±1%

Table 9: Operational characteristics of three infrared imager systems

The results of the measurements on the standardised AOIs of the hand were recorded in a 

spreadsheet  and statistically  analysed  using  the  SPSS® software  package.  The  variances  and  a 

student t-test were calculated to verify the degree of equity between the measurements of the three 

imager systems. The results are shown later in section 4.3.6.

3.7. Image processing developments

Thermal images are, due to the underlying physical principles, different from conventional 

digital images. Some of the common imaging processing techniques for conventional images can be 

used without problems others, however, may produce different results from what was expected. In 

this  section a  set  of  four  experiments  investigates  common procedures  for  conventional  digital 
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imaging processing towards their suitability for thermal image processing. 

3.7.1. Image enhancement

As already pointed  out  in  Chapter  2,  there  are  no image capture  processes  that  do  not 

introduce noise.  Image enhancement techniques that deal  with noise and its  suppression and/or 

removal may be grouped into two categories: linear smoothing filters and non-linear filters. 

The linear smoothing filters are: Mean, Gaussian, Gaussian white noise, Low pass, Band 

pass, High pass, Homomorphic, and Unsharp.

The  non-linear  filters  are:  Median,  Poisson,  Wiener,  Lucy-Richardson,  Speckle,  Salt  & 

Pepper, and Noise compose.

The  methodology  followed  in  this  experiment  consisted  of  selecting  20  noisy  thermal 

images  (with  poor  contrast  between  the  object  in  the  scene  and  the  background)  from  the 

Glamorgan laboratory database. Utilising the CTHERM software 'Export' function the images were 

converted to Bitmaps and loaded into MATLABTM analysis software for processing with the various 

filters  implementations.  The filtered  images  images  were  then loaded back into CTHERM and 

compared  against  the  original  noisy  images.  Within  the  MATLABTM  software  3  image  noise 

evaluation parameters were calculated: the 'Signal to Noise Ratio', the 'Root Mean Square Error' and  

the  'Cross  Correlation  Coefficient'.  The  diagram  in  the  fig.  100  shows  the  scenario  of  the 

experiment.
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The results of this experiment are shown in section 4.4.1.

3.7.2. Edge detection

Hands, like feet, are the body areas where heat transfer with the environment occurs most 

frequently and effectively. 

This in turn influences the boundaries of these extremities in thermal images, making them 

often difficult to detect as they may assume temperatures close to those of the environment. It is,  

however, necessary to have an accurate edge definition in each image so that the analysis of the 

thermal image neither includes any pixels belonging to the background or the environment nor 

excludes any parts actually belonging to the body. This is of particular interest for this work.

Some authors suggest the use of Artificial Intelligence methods such as neural networks, 

genetic algorithms or edge maps to solve this problem (Zhou, 2004, Suzuki, 2000, Ghosh, 2006). In 

practice  these  techniques  are  computational  intensive,  time  consuming,  complex  and  often 

associated with a high probability of error. The approach taken here consists of testing which of the 

currently existing and well documented traditional edge detection techniques for digital images is 

best suited for the demands of medical thermal imaging. 

The performance of edge detection techniques is closely related to the presence of noise. It 
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Fig. 100: The scenario of the medical thermal images noise improvement  
experiment.



is therefore a second objective of this experiment to verify the hypothesis that noise pre-processing 

by a conservative noise reduction filter can improve boundary detection. Based on the outcome of 

the experiment in 3.7.1 it is thought that in this context one of the most appropriate filters should be 

the Homomorphic filter. It allows noise to be modelled as an additive term to the original image 

data (Gonzalez and Woods, 2002) which is a close approximation of the physical processes inside 

the thermal camera sensor and electronics. Eleven classical edge detection techniques were selected 

and divided into five groups according to  their  underlying principle.  These techniques are:  the 

gradient based (Roberts, Sobel, Prewitt and Kirsch), the second order difference based (Laplacian, 

Laplacian of Gauss, Marr-Hildreth), the probability based (Canny, Shen-Castan), the segmentation 

based (Watershed), and the contour following based (Snakes). 

The gradient based algorithms are the most simple ones. They detect both edges and their 

orientations,  although they are  sensitive to  noise and due  to  their  simplicity  too  inaccurate  for 

certain applications. 

Second order difference operators have fixed characteristics for all edge orientations. They 

find the correct place of edges and also test  a wider area around the pixel than gradient based 

detectors. The disadvantages of these operators are their sensitivity to noise, multiple detection of 

the  same edges,  malfunctioning at  corners/curves  and problems in places  where the  grey level 

function  varies.  Edge  orientation  detection  is  affected  due  to  the  properties  of  the  Laplacian 

approach. 

Probabilistic methods have good localization capabilities and response even in the presence 

of noise, they compute probability values for determining an error rate. Their major disadvantages 

are poor detection of zero crossings and the complexity of computations (Sharifi, 2002). 

Segmentation based operators filter the objects boundaries and effectively remove some of 

the image noise, but they treat the image foreground and background asymmetrically (Karantzalos, 

2006). 

Contour following methods finally are able to reduce a second order problem to just one 

dimension and optimise locally. They are, however, relatively slow (Kass, 1988). 

A total of 35 thermal images of hands were recorded according to the protocol defined and 

imaging system specified in section 3.1 above. 

The selected Bitmap images were processed in two ways: the first using pre-process noise 

reduction filtering with a Matlab™ implementation of the Homomorphic filter followed by the edge 

detections, the second employed edge detection algorithms only without pre-processing. All edge 

147



detection algorithms were implemented as Matlab™ scripts (Gonzalez, 2004). 

The parameters used for defining the Homomorphic filter were: ‘low filter’ value equal to 

0.1 and ‘high filter’ value equal to 1 in order to decrease the illumination contribution and increase 

the reflectance contribution. The value used for the ‘delimiter’ was 7. 

The gradient based edge detectors had the usual automatic threshold based on the average 

grey-level of the image to maintain consistency for subsequent comparisons. Line thinning was 

applied and all detectors (with the exception of the Sobel one where the direction was rotated in 

multiples of 45º) used both horizontal and vertical directions of edge detection. 

In the Laplacian filter the ‘shape value’ was set to 0.2, whereas the Laplacian of Gauss filter 

used an automatic threshold and a standard deviation value of 2. The Marr-Hildreth algorithm used 

a Gaussian kernel of size 11, a standard deviation value of 1 and the median of Gaussian was set to 

0. 

In the probability based operators, the Canny filter used automatic low and high thresholds 

and 6 as standard deviation preset. The Shen-Castan filter used 1 as the ‘smoothing factor’, 0 for the 

low and 3 for the high threshold value (chosen empirically). 

The watershed segmentation based edge algorithm used an automatic threshold calculated 

using the average image grey level together with an 8 pixel connected neighbourhood for each 

individual location. 

The parameters used for the Snake algorithm were 0 for the ‘energy’ contributed by the 

distance between control points, 0.1 as ‘energy’ contributed by the curvature of the snake and 1 

pixel for each incremental move of the snake in order to reduce computation time. For the initial  

seeding outline the output of the Canny filter was used. 

Two evaluation methods were used to compare and assess the edge detection algorithms and 

to verify any improvements as a result of noise filter pre-processing. The diagram in the fig. 101 

shows  the  scenario  of  the  experiment.  In  the  first  (subjective)  method  5  image  processing 

professionals graded the edge detection algorithms on a 10 point  scale. The algorithm with the 

cumulative smallest score was considered the best. If the images resultant from noise filter pre-

processing obtained better scores than the ones without, the conclusion was that in this instance 

noise filtering enhanced the results of the respective outlining process. On occasions where the 

subjective judgement resulted in a draw a second review stage was used to arrive at a ranking. The 

second  (quantitative)  method is  based  on a  reference  outline  that  was  produced  in  a  graphics 

package under high magnification and aided by contrast enhancement techniques. The performance 
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measure here is the total length of the outline (in pixels). The same quantitative method was used to 

assess noise filtering.

 

The results of this experiment are shown in section 4.4.2.

3.7.3. Interpolation methods

Image interpolation is a method of constructing new data points (pixels) on a digital image 

within the range of a discrete set of known data points (pixels) calculating a new point between two 

existing  data  points  (Lehmann,  1999).  In  this  experiment  three  more  common  and  very  well 

documented interpolation techniques will be tested. Those methods are: Nearest Neighbourhood, 

Bilinear and Bicubic. 

This experiment follows the previous one in section 3.6.2 on edge detection since image 

interpolation is usually based on on edge detection or has edge detection as a pre-process.

A selection  of  20  thermal  images  of  faces  stored  in  the  Glamorgan  thermal  laboratory 

database was made. The face anterior view was selected because it is the view with the highest 

thermal  standard  deviation  values  and  thus  well  suited  for  performing  interpolation  tests.  An 

application was coded in C# programming language. As shown in fig. 102 an image median noise 
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Fig. 101: The scenario of the medical thermal images boundaries detection  
experiment.



removal filter was applied initially and succeeded by a Gaussian blur operation to minimize the 

remain noise.  A Canny edge detection operator  was then executed over  the noiseless image to 

discover the object boundaries. In order to improve the edge a thinning transformation was applied 

to the resulting image to simplify the edges and remove some undesirable artefacts. A one pixel 

wide continuous shape outline is the result of this operation.

The  standard mask for  a  head was then loaded (compare  3.3.2,  Experiment  2)  and the 

control points of the mask were automatically aligned with the shape using a process by which the 

the centres of mass from both, shape and mask are calculated and brought into coincidence first. 

The control points of the overlaid mask were then moved under consideration of the difference 

between  the  2-D main  axes  between  centres  of  the  regions.  Interactions  from the  user  of  the 

application was requested to assist  the adjustment of the control points if  required.  Finally,  the 

automated warping process deformed the original thermal image into the standard form dictated by 

the mask. This final process used the three interpolation methods under  investigation.  Fig.  103 

illustrates the procedure of the experiment.
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Fig. 102: C# application for Testing image interpolation methods.



To assess the performance of the 3 interpolation methods the mean temperature and standard 

deviation of a defined AOI was calculated before and after interpolation. The method that produced 

the smallest difference in both figures was considered 'best'. 

The results of this experiment and a detailed analysis are presented in section 4.4.3.

3.7.4. Barycentric warp model

The interpolation method comparison above uses a simple standard warping model. It is one 

of many possible ones, each with their particular advantages and disadvantages.  

In  some  physiological  hand-oriented  studies  an  anatomical  anthropometric  geometrical 

shape was developed (Griffin, 1990) that is similar to the mask shown in fig. 39 and suggested 

thermal imaging usage for analysis of hands (Ammer, 2008).

An identical  model  has  been developed that  is  based  on anatomical  control  points,  that 

delineate the AOI within the hand. This model is a geometric approximation of the capture mask. 

Per  hand  it  is  composed  of  17  AOIs:  the  wrist,  the  palm,  the  thumb  metacarpal  (due  to  its  

substantial anatomical differences from the others metacarpals), the finger phalanges (PIP, MIP and 
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Fig. 103: The interpolation comparison methods  
in medical thermal images scenario.



DIP) and the thumb phalanges (PIP and DIP) as shown in fig. 104. The sizes in pixels of those 

defined AOI of the hand are presented in table 10.

Fig. 104: Geometrical 'anatomical regions' based model of the  
hand.

The model was developed for images with a resolution 340x256 pixels. (For other camera 

resolutions it would have to be adjusted.) A warping solution to standardise  hand shapes should 

work  without scrambling/deleting/altering relevant data within the different anatomical regions of 

the hand. This standardised image of the hand should permit to perform comparisons and statistical 

analysis such as image averaging. 

AOI Number of pixels

Wrist 3600

Palm 11400

Thumb metacarpal 600

Thumb PIP 800

Thumb DIP 534

Fingers PIP MIP DIP

Index 624 546 390

Middle 756 662 474

Ring 730 638 456

Little 428 428 368

Table 10: Size (in pixels) of the AOIs of the hand model.

152



A fully automatic retrieval of anatomically defined control points can, however,  not easily 

be performed as  shown by the experiments described above in  section 3.7.2 with results  in  in 

section 4.5.2 and discussion in section 5.

For simple shapes some authors therefore suggested image warping techniques based on 

meshes and lines (Gomes, 1999, Beier, 1992, Wolberg, 1996, Wolberg, 1998), although these are 

not  recommended  here  due  to  their  implementation  complexity  and  computational  cost  when 

dealing with intricate shapes such as hands.  

More recent research proposed image warping based on triangulation as a fast, simple and 

straightforward method (Fujimura, 1998, Dong-Keun and Yo-Sung, 2004, Hormann, 2004). This 

approach uses barycentric coordinates to create the correspondence between pixels of the original 

and  target  image  of  the  transformation.  Barycentric  coordinates  are  coordinates  based  on  the 

weights (distance) from the vertices of a triangle.  

The objective of this experiment is to investigate the application of this methodology to 

medical thermal images and study its impact in terms of thermal accuracy (i.e. the degree by which 

AOIs in source and target image differ in terms of mean and standard deviation). 

Thermal  images  of  the  hands  used  in  this  experimental  work  were  retrieved  from  the 

Glamorgan thermal laboratory database, these images were taken from subjects according to the 

Glamorgan standard capture protocol (Ammer, 2008). 

An object oriented C# coded application was developed to load thermal images and then 

overlay the anatomical model of the hands with its adjustable control points, fig. 105. These points 

could be manually moved to the correct positions in the respective thermal images and after the 

adjustment was completed the warping transformation operation could start (the operator selects 

that option from the application menu). This creates the regions shown in fig. 104 and the triangles 

that constitutes them from the control point positions. Although this is a rigid model composed from  

triangles linked to the control points, which define the AOI within the hand, it can be dynamically 

adjusted.  For  each  AOI  a  range  of  first  and  second  order  statistical  values  (mean,  maximum, 

minimum, standard deviation, skewness and kurtosis) are calculated and saved in a CSV file for 

subsequent analysis.
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The creation of the warped image begins with the calculation of a reverse transformation for 

each pixel of each target triangle. The Barycentric coordinate of that pixel is calculated according to 

the system shown in fig. 106 and the formulae described in section 2.8.6.

 Fig. 106: Barycentric coordinates correspondence system with Cartesian coordinates.  

The warping method used in this approach is called 'reverse warping'. From the Cartesian 

coordinate of the pixel in the target triangle, a Barycentric coordinate is calculated based in the 

triangle vertices in Cartesian coordinates. The correspondent source triangle of the original image is 

obtained with the corresponding vertices. Based on the correspondent Barycentric coordinate of the 

equivalent pixel in the source triangle, using the triangle vertices Cartesian coordinates the original 

pixel Cartesian coordinate is calculated. Subsequently, this pixel value is copied from the original 

image to the resultant image using the triangular correspondence. The pseudocode followed by this 

warping method is represented by fig. 107 and a flowchart representation of the operation is shown 
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Fig 105: Adjustable control points overlaying the  
thermal image of the hands.



in fig. 108.

The  resultant  image  is  traversed  pixel  by  pixel  inside  the  hand's  geometrical  outline 

establishing the hands information translation. Problems can arise if the target and source triangles 

differ significantly in size. To address this situation when a difference in size of more than 5% 

appears the values of the translated pixels are multiplied by the ratio between the size (in pixels) of 

the target triangle by the size (in pixels) of the source triangle, however, an investigation is needed 

in how it can affect the measurement data. A statistical study was performed to assess the variation 

between different operators of the developed tool: 10 users were asked to use the application and 

warp  the  same  image,  the  obtained  results  were  evaluated  in  terms  of  variance  and  expected 

standard error. 

The result of this experiment and an analysis are given in section 4.4.4 and discussed in 

section 5.
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Fig. 107: Pseudo-code of the triangular barycentric warping  
method.



Fig. 108: Triangular barycentric warping method flowchart.

3.8. Summary

In  this  chapter  the  design  and  methodology  followed  by  the  outlined  experiments  to 

accomplish the objectives were defined and described. 

The expected outcomes are:

• A sample characterisation of the incidence of WRULD in a sample population, verifying 

possible targets of future experiments. It is expected that 10% can be affected and from 

literature the expected profile of the more affected subjects will be females aged between 30 

and 50 years old, having smoking habits, and employed in administrative/clerical settings.
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• A thermal  symmetry  maximum value   to  be  used  as  a  reference discriminative  value  in 

distinguishing pathological states from non-pathological states of approximately 0.5ºC.  

• There were three objective tests involving mechanical provocation stress. In the test using a 

computer keyboard an increase in the hand mean temperature over a period of 5 minutes is  

expected.  After  that  period  subjects  with  WRULD  problems  are  expected  to  present  a 

greater vasoconstriction of the fingers after subsequent vascular cold provocation. A mean 

temperature decrease is expected from exposure to vibration, affected subjects presumably 

will take longer to recover from a posterior vascular provocation. There are no reference 

data  about  provocation  stress  using  a  computer  mouse,  however,  a  mean  temperature 

increase is expected in the exercised hand. 

• In the cold stress test normal healthy subjects presumably will recover within a period of 10 

minutes  after  vascular  provocation presenting a  thermal  index value above the standard 

threshold of -4. The subjects affected by Raynaud's phenomenon are expected to not recover 

within the same period of time (thermal index less than -4). From the proposed methods to 

evaluate  the CST, the  Mean Thermal Gradient method (MTG) will  presumably be more 

sensitive  than the other two methods, the Mean Thermal Area (MTA) and Mean Thermal 

Profile (MTP).

• In the usage of thermal cameras in medical thermography for assessment of hand injuries 

higher resolution cameras are expected to perform better than lower resolution hand-held 

cameras. 

• From using noise reduction techniques images are expected to be improved. The method 

that presumably will produce a result closer to the originally captured scene is, due to its 

reported underlying principles, the homomorphic filter.

• The technique of producing outlines that is expected to produce better results are likely to be 

probabilistic based (Canny and Shen-Castan).

• From literature the interpolation method that presumably will produce better results  is the 

bi-cubic one.

• The image warping technique involving barycentric triangular transformations is expected to  

produce reasonable results by preserving the AOIs' temperature distribution texture.

In the following chapter 4 the results achieved in reality are presented and then compared with the 

above expectations  in chapter 5.
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4 – Experimental Results

In this chapter the results of the following surveys and experiments are presented: 

1. incidence of occupational conditions in a sample population (4.1)

2. medical reference data (4.2), 

3. final provocation tests (4.3),

4. and  the results from imaging processing developments (4.4).

4.1. Online RSI Questionnaire

In order to assess the incidence of the occupational conditions studied here a questionnaire 

(see  Appendix  6)  was  designed,  field-trialled  and  finally  placed  online  at  the  University  of 

Glamorgan.  The  questionnaire  had  218  respondents,  which  is  around  1%  of  the  academic 

population at the University, divided between 103 males and 115 females (fig. 109).

A full review of the characterisation of the questionnaire respondents can be observed in the 

Appendix 7. The majority of the respondents were in the age group between 18 and 30 years old 

(47%). 62% of the women were in the normal weight BMI class, the majority of the men were 
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Fig. 109: Gender distribution of the questionnaire respondents.



divided  between  the  normal  weight  (45%)  and  overweight  (45%)  BMI  classes.  Observing  the 

respondents occupation, the majority were male students (52%) and female administrators (36%) 

and lecturers (28%). The majority of respondents of both genders do not have smoking habits.

From the overall results, it can be observed that 13% of the participants of this study indicate 

having severe symptoms of hand disabilities, other 20% reveal signs, 32% argue to have early signs 

and only 36% of claim to be  free of hand syndromes (fig. 110).  

Although this sample is not representative and cannot therefore be used to make statements 

such as “13% of employees at the University of Glamorgan suffer from severe symptoms of HAS” 

these results demonstrate clearly that measures for the prevention of hand occupational conditions 

are  required  within  the  University  environment  in  order  to  avoid  further  serious  injuries  and 

consequently expensive treatments and expenses. 

From the chart presented in fig. 111, it can be concluded that women in this sample are more 

affected by hand occupational conditions than males. 

For a better understanding of the factors that influence the 'severe symptoms' stage of the 

questionnaire among respondents further analysis was performed. From the chart presented in fig. 

112 it can be seen that  there are over thirteen times more females than males affected by this stage. 

Given the 47/53 male/female gender distribution in the sample this result  can be interpreted as 

reasonably representative for the UK population as a whole. 
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Fig. 110: Overall respondents per hand occupational condition  
pathological state.



According to the obtained answers for the 'severe symptoms' stage, the age group with more 

incidences was 18-30 and 31-40 for women (age group of 61-65 [1% of the sample] was not taken 

into consideration and in the men due to the small number of samples), fig. 113. 
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Fig. 111: The gender distribution of the respondents per hand  
occupational condition pathological state.

Fig. 112: The gender distribution of the questionnaire  
respondents that indicated 'severe symptoms' of hand  
occupational conditions.



Fig.  114 presents  the BMI class distribution  of  the questionnaire  respondents graded as 

having 'severe symptoms' of HAS according to their answer. The BMI class that was shown to be 

most affected in the sample is the overweight (underweight [2% of the sample] and obese [8% of 

the sample] was not taken into consideration due to the small number of the samples).
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Fig. 113: The age group distribution of the questionnaire  
respondents per gender that indicated 'severe symptoms' of  
hand occupational conditions.

Fig. 114: The BMI distribution of the questionnaire  
respondents per gender that indicated 'severe symptoms' of  
hand occupational conditions.



The  most  affected  occupational  group  in  the  'severe  symptoms'  stage  was  found  in 

administrators, fig. 115.

In order  to verify the characterisation of the lifestyle habits with respect to smoking, fig. 

116 show that about 65% of respondents in the 'severe symptoms' smoke daily.
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Fig. 115: The characterisation by occupation of the  
respondents per gender that indicated 'severe symptoms' of  
hand occupational conditions.

Fig. 116: The characterisation of smoking habits of the  
respondents per gender that indicated 'severe symptoms' of  
hand occupational conditions.



In order to relate the stages for hand conditions with exposure to computer keyboard and 

mouse use, participants were requested to indicate the exposure in hours per week. For the 'severe 

symptoms', the highest incidence of keyboard and mouse use was an exposure of more than 40 

hours per week, fig. 117 and fig. 118.
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Fig. 118: The computer mouse weekly exposure time of the  
respondents per gender that indicated 'severe symptoms' of  
hand occupational conditions.

Fig. 117: The computer keyboard weekly exposure time of the  
respondents per gender that indicated 'severe symptoms' of  
hand occupational conditions.



From the previously outlined results, the following can be concluded: that females on ages 

from 31 to 40, in BMI class overweight, daily smokers, in administrative work and operating with a 

computer keyboard and mouse for more than 40 hours a week are more at risk of having symptoms 

of upper limb occupational conditions. The results of this study are in line with observations made 

in the literature (Cole et. al., 2005).

4.2. Reference data 

This study consisted of two experiments, the first is using measurement with geometrical 

(rectangles) AOI in the CTHERM software package. The second experiment used a geometrical 

model based in the AOI defined by Ammer (2008) and the barycentric warping method as described 

in section 3.6.4.

In the first approach for obtaining data on thermal symmetry of the upper limb area (using 

the experimental setup described in section 3.3.1 on 39 male volunteers) the results are shown in 

table 11. This indicates that the maximum difference in mean temperatures appears at the dorsal arm 

in both the regional body view and  in the total body view. In terms of standard deviation difference 

the largest difference found was of 0.47±0.70ºC in the hand AOI for the regional dorsal view of the  

hands and the anterior arm AOI of the total body view. 

The values signed with 'NO DATA' in the table 11, correspond in the regional views to the 

palmar and wrist AOIs, which do not constitute a suitable AOI to be examined as refereed in section 
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Table 11: Thermal asymmetry values (mean temperature absolute differences and standard  
deviations)  for upper limbs and joints in regional and total body views for dorsal and anterior  
perspectives using the first analytical approach.

Regional Views Total Body Views
Anterior view Dorsal view Anterior view Dorsal view

AOI ΔxT ΔxT ΔxT ΔxT
Hand NO DATA NO DATA 0.37±0.45ºC 0.47±0.70ºC 0.28±0.27ºC 0.20±0.17ºC 0.27±0.20ºC 0.20±0.13ºC
Forearm 0.25±0.19ºC 0.14±0.13ºC 0.25±0.19ºC 0.11±0.09ºC 0.32±0.23ºC 0.28±0.24ºC 0.37±0.25ºC 0.25±0.17ºC
Arm 0.37±0.56ºC 0.11±0.13ºC 0.38±0.38ºC 0.11±0.09ºC 0.37±0.28ºC 0.32±0.24ºC 0.32±0.25ºC 0.25±0.19ºC
Wrist NO DATA NO DATA 0.34±0.21ºC 0.17±0.15ºC NO DATA NO DATA NO DATA NO DATA
Elbow 0.29±0.27ºC 0.27±0.25ºC 0.30±0.21ºC 0.16±0.28ºC NO DATA NO DATA NO DATA NO DATA
Shoulder 0.23±0.19ºC 0.10±0.09ºC 0.18±0.17ºC 0.07±0.05ºC NO DATA NO DATA NO DATA NO DATA

Δsd Δsd Δsd Δsd



2.1.1.8. In total body views the size of pixels per AOI did not satisfied the requirements of at least 

25 pixels (Ammer, 2008). 

In the second approach (using the refined analysis method outlined in section 3.3.2 on the 

same 39 subject data set  as above) the results shown in table  12,  demonstrate that the highest 

asymmetry values are 0.49±0.29ºC in the forearm AOI in the anterior view and  0.33±0.34ºC in the 

hand AOI in the dorsal  perspective.  Standard deviation differences  of 0.33±0.23ºC indicate  the 

maximum in the forearm AIO in the anterior view and 0.47±0.28ºC in the forearm AOI in the dorsal 

perspective.

 A statistical analysis to assess the reliability and repetitiveness of the AOIs used in both 

approaches is shown in the following table 13 and table 14. The analysis demonstrates that apart 

from the shoulder AOI in the first approach, all AOIs have a Reliability Coefficient alpha above 0.8 

and all AIOs (excluding forearm, arm, elbow and shoulder in the first approach and arm in the 

second  approach)  have  an  Interclass  Correlation  Coefficient  greater  than  0.8.  Both  statistical 

markers indicate that the AOIs used are reliable and ensure repeatability. 
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Table 12: Thermal asymmetry values obtained  using the  
second analytical approach.

Regional Views
Anterior view Dorsal view

AOI ΔxT ΔxT
Hand NO DATA NO DATA 0.33±0.34ºC 0.39±0.29ºC
Forearm 0.44±0.24ºC 0.33±0.23ºC 0.34±0.25ºC 0.47±0.28ºC
Arm 0.49±0.29ºC 0.12±0.15ºC 0.23±0.16ºC 0.28±0.29ºC

Δsd Δsd

Table 13: Statistical analysis of the AOIs used in the first  
approach of obtaining thermal symmetry values.

AOI
Hand 0.99 0.99 0.98 to 0.99
Forearm 0.83 0.71 0.59 to 0.87
Arm 0.86 0.76 0.59 to 0.89
Wrist 0.99 0.97 0.95 to 0.99
Elbow 0.89 0.67 0.53 to 0.79
Shoulder 0.74 0.41 0.26 to 0.57
Hand 0.98 0.94 0.90 to 0.96
Forearm 0.98 0.93 0.89 to 0.96
Arm 0.94 0.81 0.71 to 0.88

Reliability 
Coefficient 
alpha

Interclass 
Correlation 
Coefficient

95% 
confidence 
interval of ICC

Regional 
views

Total body 
views



From the first approach to the second it can be observed that in anterior and dorsal forearm 

and anterior arm AOI the differences in mean temperature have increased, however for all others 

upper limb AOI this value have diminished. For all AOI excluding the hand the differences in 

standard deviation have increased. These differences are related to the AOI as it could be observed 

from section 3.3.1 and 3.3.2 being a little different. 

Analysing  the  values  of  consistency  (reliability  coefficient  alpha)  and  repeatability 

(interclass correlation coefficient) in both approaches it can be observed that in the second approach 

they have improved. Another outcome of this experiment is that the usage of a standardised AOI 

enforces the repeatability and also implements a semi-automated image analysis solution. This may 

form the basis for future work.

4.3. Objective provocation tests

In order to address the weaknesses found in the pilot provocation tests (section 3.5) a set of 

four new objective provocation tests were developed (section 3.6). The results of these provocation 

tests are presented in this section along with the data statistical analysis, a comparative study to 

assess the vascular tests and the different imaging systems.  The volunteers participating in this test 

were divided into four groups, each one corresponding to a different pathological stage of the HAS: 

controls, signs, symptoms and confirmed.

In the following sections the reader should bear in mind the lower number of volunteers,  

especially in the 'confirmed' group. This means that some statistical figures (e.g. standard deviation 

for error bars) that were calculated for reasons of completeness have to be treated with caution. 
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Table 14: Statistical analysis results of the AOIs used in the  
second thermal symmetry method. 

AOI
Hand 0.99 0.97 0.97 to 0.98
Forearm 0.97 0.89 0.83 to 0.93
Arm 0.94 0.78 0.68 to 0.87

Reliability 
coefficient 

alpha

Interclass 
Correlation 
Coefficient

95% 
confidence 
interval of 

ICC

Regional 
views



4.3.1. Keyboard provocation test

The pilot keyboard provocation test demonstrated poor repeatability and required two visits 

for examination. In order to answer to this challenge a visual aid, computational tool described in 

section 3.6.1, was developed which involved both hands typing on the keyboard. This application 

monitors the typing speed and the eventual psychological stress which was measured by the number 

of miss-typed characters. 

Table  15  shows  the  mean  temperatures  evaluation  during  the  test  (before  mechanical 

provocation, after mechanical provocation, 5 minutes and 10 minutes after vascular test following 

the mechanical provocation) for both hands and thermal symmetry (H Symm) expressed for all four 

stage groups.  

Table 16 presents the volunteer results in terms of typing speed and miss-typed char and also 

characterises the four HAS stage groups considered in this experiment. On average a typing speed 

of 49.1 characters per minute with a miss-typed value of 5 characters in the whole period of the test  

(5 minutes). The confirmed group presented a higher mean number of characters typed per minute 

as well as an higher number of those miss-typed when compared with the other three groups (table 

16).
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Table 15: HAS stage groups mean temperatures over the KPT.

Keyboard Provocaton Test
Before Test Afer Test 5 min CST 10 min CST

MeanT MeanT MeanT MeanT

Controls (12)
L Hand 30,69 0,95 30,96 0,79 29,15 1,22 29,94 1,02
R Hand 30,87 0,95 31,24 0,78 29,45 1,28 30,23 1,05

0,18 0 0,28 0,01 0,3 0,06 0,29 0,03

Signs (7)
L Hand 29,64 1,35 29,9 1,3 27,94 1,66 28,63 1,53
R Hand 29,57 1,47 29,76 1,34 28,03 1,67 28,75 1,41

0,07 0,12 0,14 0,04 0,09 0,01 0,12 0,12

Symptoms (7)
L Hand 27,84 1,34 28,34 1,16 27,03 1,54 27,21 1,32
R Hand 28,5 1,56 28,88 1,24 27,41 1,45 27,68 1,34

0,66 0,22 0,54 0,08 0,38 0,09 0,47 0,02

Confrmed (2)
L Hand 30,96 0,72 30,81 0,65 29,04 1,49 30,74 0,9
R Hand 30,71 0,85 30,84 0,62 29,21 1,38 30,97 0,84

0,25 0,13 0,03 0,03 0,17 0,11 0,23 0,06

sd sd sd sd

H Symm

H Symm

H Symm

H Symm



Observing the results of the KPT per hand, it can be seen that after 5 minutes keyboard 

typing provocation the mean temperature of right hand AOI higher increase was verified in the 

controls and the symptoms groups. At 5 minutes after the vascular test all the mean temperatures of 

the four groups in the right hand AOI had decreased, this decrease being smaller in the symptoms 

group. 

At the end of the test only the confirmed group had shown a total recovery of the right hand 

AOI mean temperature. 
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Table 16: KPT volunteers characterisation in  
speed typing and miss-typing.

Volunteer Group
Keyboard typing

Chars cpm Wrong
HAS01 Control 286 57,2 1
HAS02 Symptoms 258 51,6 4
HAS03 Confrmed 288 57,6 13
HAS04 Control 191 38,2 6
HAS05 Symptoms 227 45,4 0
HAS06 Signs 218 43,6 0
HAS07 Symptoms 315 63 3
HAS08 Control 317 63,4 22
HAS09 Signs 217 43,4 1
HAS10 Control 261 52,2 1
HAS11 Control 151 30,2 1
HAS12 Control 242 48,4 1
HAS13 Signs 260 52 8
HAS14 Signs 216 43,2 2
HAS15 Signs 261 52,2 2
HAS16 Symptoms 263 52,6 1
HAS17 Symptoms 252 50,4 1
HAS18 Symptoms 232 46,4 4
HAS19 Control 292 58,4 18
HAS20 Control 241 48,2 6
HAS21 Control 222 44,4 8
HAS22 Symptoms 215 43 2
HAS23 Control 249 49,8 3
HAS24 Control 200 40 7
HAS25 Signs 212 42,4 2
HAS26 Confrmed 358 71,6 12
HAS27 Control 194 38,8 2
HAS28 Signs 231 46,2 10

Statstcs

Overall 245,3 49,1 5,0
Controls 237,2 47,4 6,3
Signs 230,7 46,1 3,6
Symptoms 251,7 50,3 2,1
Confrmed 323,0 64,6 12,5



The signs and the symptoms groups presented a mean temperature that was lower than the 

control group, fig. 119.

In the left hand AOI, after typing for 5 minutes, a higher mean temperature increase was 

found in the symptoms group. While a decrease in mean temperature was observed in the confirmed 

group. After five minutes recovery from post vascular test in all groups the mean temperatures had 

decreased, with the lowest value being shown by the confirmed group. The smallest decrease was in 

the symptoms group.  At  the end of  the test  the recovery close to the  baseline value for  mean 

temperature of the left hand AOI was found in the confirmed group followed by the symptoms 

group. The signs group presented lower mean temperature values, fig. 120. 
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Fig. 119:  Right hand mean temperature difference from baseline when recovering  
from KPT.

Fig.  120: Left hand mean temperature difference from baseline when recovering  
from KPT.



When  observing  the  values  of  mean  thermal  symmetry  (bilateral  absolute  difference 

between  left  hand  and  right  hand  AOI's),  immediately  after  the  mechanical  provocation  the 

confirmed group presented a higher value. At 5 minutes in recovery from post vascular challenge

It  was  possible  to  distinguish  differences  in  mean  thermal  symmetry  between  the  four 

groups, this value was more accentuated in the confirmed group followed by the symptoms group, 

the control group had the smaller value. At the end of the test the highest mean thermal symmetry 

value was observed in the confirmed group, and conversely, the smaller values were in the control  

group, the two other groups presented a similar value, fig. 121.
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Fig. 121: Hand thermal symmetry difference from baseline when recovering from  
KPT.



Considering the mean value of thermal symmetry in the distal inter-phalanges of the fingers 

after the KPT, it was observed that there was no specific involvement in any particular finger in any 

of the four groups as shown in fig. 122. 

 

Fig. 123 is an example of the collected thermal images after being standardised (as described 

in section 3.7.4.). This example shows a set of images from a sample from the control group and 

from a subject that has been clinically confirmed has having RSI.

From statistical analysis, it was obtained a Cronbach Coefficient Alpha for the hand AOI in 

the  KPT  test  of  0.976,  which  represents  good  data  consistency.  The  Interclass  Correlation 

Coefficient was of 0.954 with a confidence interval varying from 0.905 to 0.978 demonstrating 

higher reproducibility. 

The normal distribution of the data was assessed by the Kolmogorov-Smirnov test (K-S test) 

and the p values obtained were 0.597 for the right hand AOI and 0.646 for the left hand AOI. As the 

K-S test p value was greater than 0.05 this means that the collected data was not different from the 

normal distribution and the statistical methods associated with this distribution can be used. 
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Fig. 122: Hand DIPs thermal symmetry difference when recovering from KPT.



A non-parametric Pearson chi-square test was applied between the groups and the result was 

a value of 168.000 for the right hand AOI and of 153.333 for the left hand AOI with a significance 

level inferior to 0.05 (p=0.000 in both AOI). This demonstrates that if the null hypothesis was true it  

would be expected that an x2 value of 150.000 or superior less than 5 times in each 150.000would 

be  found.  This  result  therefore  rejects  the  null  hypothesis  and  indicates  that  the  variables  are 

independent. 

It can be concluded that using thermal images and the KPT test it  is possible to identify 

different HAS stage groups.

From the statistical analysis of hypothesis Z-test there is statistical evidence of independence 

between all groups (p<0.05) based in both hands AOI excluding the signs and symptoms based in 

the right hand AOI (p>0.05) as it can be observed from table 17.        
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Fig. 123: An example comparative set of standardised images between a control subject  
and a clinically confirmed subject with RSI.

Table 17: Z-test values comparing groups results for hand AOI in the KPT 
(HS-Highly significant, S-Significant, NS-Non Significant). 

KPT
Z-test (p value)

Right hand Lef hand
Control vs. Signs HS HS
Control vs. Symptoms S HS
Control vs. Confrmed HS HS
Signs vs. Symptoms NS HS
Signs vs. Confrmed HS HS
Symptoms vs. Confrmed HS HS



There is statistical  evidence (Z test  p<0.05) of discrimination between subjects from the 

control group and the confirmed group, the signs group and the confirmed group, and also the 

symptoms group and the confirmed group when using difference from baseline hand AOI mean 

thermal symmetry, as shown in table 18.

 

4.3.2. Vibration provocation test

The  table  19  shows  the  mean  temperature,  mean  standard  deviation  and  mean  thermal 

symmetry values of the hand (right and left) AOI before vibration provocation, immediately after 

vibration and 5 and 10 minutes after post vascular challenge.  
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Table 18: Z-test values comparing groups results for hand AOI thermal  
symmetry in the KPT (HS-Highly significant, S-Significant, NS-Non Significant).

KPT Z test (p-value)
Control vs. Signs NS
Control vs. Symptoms NS
Control vs. Confirmed HS
Signs vs. Symptoms NS
Signs vs. Confirmed S
Symptoms vs. Confirmed S

Table 19: HAS stage groups mean temperatures over the VPT.

Vibraton Provocaton Test
Before Test Afer Test 5 min CST 10 min CST

MeanT sd MeanT sd MeanT sd MeanT sd

Controls (9)
L Hand 31,83 0,93 31,02 0,74 29,59 1,22 31,09 0,99
R Hand 31,69 0,95 30,93 0,76 29,6 1,24 30,89 1,05
H Symm 0,14 0,02 0,09 0,02 0,01 0,02 0,2 0,06

Signs (7)
L Hand 29,96 1,2 29,71 1,18 28,35 1,6 29,12 1,34
R Hand 29,94 1,18 29,69 1,16 28,58 1,39 29,43 1,25
H Symm 0,02 0,02 0,02 0,02 0,23 0,21 0,31 0,09

Symptoms (7)
L Hand 28,43 1,61 28,14 1,48 27,58 1,82 28,42 1,68
R Hand 28,78 1,57 28,47 1,46 28,05 1,82 28,8 1,64
H Symm 0,35 0,04 0,33 0,02 0,47 0 0,38 0,04

Confrmed (3)
L Hand 32,03 0,94 31,19 1,04 29,79 1,55 30,37 1,2
R Hand 31,95 1,07 31,24 1,25 29,98 1,73 30,55 1,43
H Symm 0,08 0,13 0,05 0,21 0,19 0,18 0,18 0,23



Observing the right hand AOI, it can be seen that all the four groups had a decrease of mean 

temperature,  specially  the  control  and  confirmed  groups.  Five  minutes  after  the  vascular 

provocation recovery  the greatest  negative mean temperature  difference was in  the  control and 

confirmed groups, the least was indicated by the symptoms group. At the end of the VPT test the 

greatest negative mean temperature difference was observed in the confirmed group followed by the 

control group, the symptoms group had recovered the mean temperature showing the smallest mean 

temperature difference from baseline, fig. 124.  

The left hand AOI as can be observed by fig. 125 only differed from the right hand AOI in 

the outcome after the VPT test, in this case the signs group presented a minimal higher difference 

than control group.
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Fig. 124: Right hand mean temperature difference  from baseline when recovering  
from VPT.

Fig. 125: Left hand mean temperature difference when recovering from VPT.



In the fig. 126 is shown the variation of mean thermal symmetry difference from baseline 

over  the  VPT  test.  After  the  vibration  exposure  the  value  has  increased  in  all  groups  more 

significantly in the confirmed group followed by the control group. Five minutes after recovery 

from vascular challenge the greatest difference was in the confirmed and signs groups. At the end of 

the VPT test the group presenting the greatest difference was in the signs group closely followed by 

the confirmed group. The minimal difference was observed in the symptoms group.

Observing the mean thermal differences in the fingers DIPs AOI after the VPT test, it was 

observed that there was no specific involvement in any particular finger apart from the index in any 

of the four groups as shown in fig. 127 In the index finger it can be observed that the confirmed  

group presented a different pattern than other groups. 

These data have shown that classifying people according to signs rather than symptoms is 

unreliable.

The  fig.  128 presents  an  example  of  captured  images  after  being  standardised  (method 

described in  section 3.7.4.),  which  shows a set  of  images  of  a  subject  from the  control  group 

compared with a subject clinically confirmed as having HAVS during a VPT.  
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Fig. 126: Hand thermal symmetry difference from baseline when recovering from  
VPT.



Statistical  Analysis  of  the  data  collected  from the  VPT test,  was  obtained  a  Cronbach 

Coefficient Alpha for the hand AOI of 0.988, which means good data consistency. The Interclass 
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Fig. 128: An example comparative set of standardised images between a control  
subject and a clinically confirmed subject with HAVS.

Fig. 127: Hand DIPs thermal symmetry difference when recovering from VPT.



Correlation  Coefficient  was  of  0.976  with  a  confidence  interval  varying  from 0.948  to  0.989 

demonstrating high reproducibility. 

The normal distribution of the data was assessed by a K-S test, the p values obtained were 

0.515 for the right hand AOI and 0.68 for the left hand AOI. As the K-S test p value was greater 

than 0.05 it  means that the collected data  is  not  different from the normal  distribution and the 

statistical methods associated with this distribution can be used. 

A non-parametric Pearson chi-square test was applied between the groups. The result gave a 

value of 168.000 for the right and left hand AOIs with a significance level inferior to 0.05 (p=0.000 

in both AOI). This demonstrates that if the the null hypothesis was true it would be expected to find 

a x2 value of 168.000 or superior less than 5 times in each 165.000. This rejects the null hypothesis 

and indicates that the variables are independent. It can therefore be concluded that using thermal 

images and the VPT test it is possible to identify different HAS stage groups.

From the  statistical  analysis  of  hypothesis  Z-test  shown in  table  20.  there  is  statistical 

evidence of independence between all groups (p<0.05) based in both hands AOI.  

There is statistical evidence (Z test p<0.05) of discrimination between subjects from all the 

groups  excluding  between the  signs  and  the  confirmed group  when  using  the  difference  from 

baseline in terms of hand AOI mean thermal symmetry, as shown in table 21.
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Table 20: Z-test values  comparing groups results for hand AOI in the  
VPT(HS-Highly significant, S-Significant, NS-Non Significant) . 

VPT
Z-test (p value)

Right hand Lef hand
Control vs. Signs HS S
Control vs. Symptoms HS HS
Control vs. Confrmed HS HS
Signs vs. Symptoms HS HS
Signs vs. Confrmed HS HS
Symptoms vs. Confrmed HS HS

Table 21: Z-test values comparing groups results for hand AOI thermal symmetry in the VPT  
(HS-Highly significant, S-Significant, NS-Non Significant).

VPT Z test (p-value)
Control vs. Signs HS
Control vs. Symptoms S
Control vs. Confirmed HS
Signs vs. Symptoms HS
Signs vs. Confirmed NS
Symptoms vs. Confirmed HS



4.3.3. Mouse provocation test

The table 22 shows the quantitative data of the mechanical stress exposure by computer 

mouse operation of the volunteers. It presents in each volunteer the number of mouse clicks and the 

pixels traversed by the mouse over a period of 5 minutes. The mean overall number of clicks was 

71.9 per minute, and the average pixel distance traversed by the mouse was 155.657 within the total 

duration of the test. 

The  group  that  presented  the  greatest  value  of  these  two  indicators  of  stress  was  the 

confirmed group.

The variation of the mean temperature of hand AOI, mean standard deviation and mean 
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Table 22: MPT volunteers characterisation in  
number of mouse clicks and pixels traversed.

Volunteer Group
Mouse

Clicks cpm Pixels
HAS01 Control 353 70,6 141357
HAS02 Symptoms 402 80,4 164447
HAS03 Confrmed 429 85,8 179144
HAS05 Symptoms 278 55,6 111408
HAS06 Signs 286 57,2 121673
HAS07 Symptoms 432 86,4 181632
HAS08 Control 282 56,4 116611
HAS09 Signs 368 73,6 156483
HAS12 Control 366 73,2 160990
HAS13 Signs 285 57 124962
HAS14 Signs 294 58,8 122301
HAS15 Signs 358 71,6 160445
HAS16 Symptoms 333 66,6 143778
HAS17 Symptoms 357 71,4 162075
HAS19 Control 454 90,8 207160
HAS20 Control 397 79,4 180323
HAS23 Control 414 82,8 185801
HAS26 Confrmed 381 76,2 169963
HAS27 Control 363 72,6 157886
HAS28 Signs 362 72,4 164700

Statstcs

Overall 359,7 71,9 155657
Controls 375,6 75,1 164304
Signs 325,5 65,1 141761
Symptoms 360,4 72,1 152668
Confrmed 405,0 81,0 174554



thermal symmetry values across the MPT is presented in the table 23 for all four groups.   

Fig. 129 shows the right hand AOI mean temperature difference from the baseline (mean 

temperature after acclimatisation and before mechanical provocation) over the MPT. After the right 

hand stress exposure, the unique group presenting a mean temperature increase was in the signs 

group, while the symptoms group showed a very small variation. At five minutes after post vascular 

challenge all groups presented a decrease in mean temperature, but it was more accentuated in the 

confirmed group. The group that demonstrated the least decrease was the signs group. At the end of 

the test only the signs group showed a mean temperature increase compared with baseline, all the 

remaining 3 groups presented a lower mean temperature difference than baseline.

179

Table 23: HAS stage groups mean temperatures over the MPT.

Mouse Provocaton Test
Before Test Afer Test 5 min CST 10 min CST

MeanT sd MeanT sd MeanT sd MeanT sd

Controls (7)
L Hand 30,9 1,1 30,6 0,82 29,24 1,28 30,63 1,05
R Hand 30,98 1,11 30,71 0,87 29,3 1,34 30,68 1,1
H Symm 0,08 0,01 0,11 0,05 0,06 0,06 0,05 0,05

Signs (6)
L Hand 30,54 1,23 30,91 0,99 29,72 1,33 30,4 1,1
R Hand 30,16 1,37 30,67 1,05 29,36 1,34 30,12 1,13
H Symm 0,38 0,14 0,24 0,06 0,36 0,01 0,28 0,03

Symptoms (5)
L Hand 28,56 1,93 28,39 1,62 27,65 1,72 28,17 1,58
R Hand 28,77 2,12 28,75 1,78 27,79 1,88 28,56 1,74
H Symm 0,21 0,19 0,36 0,16 0,14 0,16 0,39 0,16

Confrmed (2)
L Hand 31,06 1,02 30,86 0,75 28,11 1,43 30,38 1,14
R Hand 30,74 1,3 30,53 1,03 27,77 1,48 30,36 1,06
H Symm 0,32 0,28 0,33 0,28 0,34 0,05 0,02 0,08

Fig. 129: Right hand mean temperature difference from baseline when recovering  
from MPT.



The differences in mean temperatures over the MPT in the left hand AOI from the baseline 

are shown in fig. 130.  Here it can be observed that after the mechanical exercise of the right hand 

with the mouse an increase in mean temperature occurred only in the signs group. The other three 

groups presented  a  decrease  in  mean temperature.  At  five  minutes  after  cold water  immersion 

challenge the mean temperature has decreased in all  groups,  At this stage the confirmed group 

showed the  greatest  decrease  followed  by the  control  group.  At  the  end  of  the  test  the  mean 

temperatures of all groups presented a lower value than baseline, with this decrease being greater in 

the confirmed followed by the symptoms group.

Observing  the  mean  thermal  symmetry  difference  from  baseline  during  the  MPT test, 

showed in fig. 131, it can be seen that all groups presented an increase of this value, which was  

more accentuated in the symptoms and signs groups. At 5 minutes after the post vascular test, the 

mean thermal symmetry value decreased for both the signs and the symptoms groups. At the end of 

the  test  the  group  that  presented  the  greater  mean  thermal  symmetry  difference  value  when 

compared with the baseline was the confirmed group, the control group presented the lowest value 

than the other three groups.
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Fig. 130: Left hand mean temperature difference from baseline when recovering  
from MPT.



Observing the mean thermal symmetry variations in the fingers DIPs AOI after a MPT, it 

was observed that there was not specific involvement of little and ring fingers as shown in fig. 132.  

In the middle finger it can be observed that the confirmed group presented a different pattern than 

other groups (greater value of mean thermal symmetry), likewise in the index finger the symptoms 

group.
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Fig. 131: Hand thermal symmetry difference from baseline when recovering from  
MPT.

Fig. 132: Hand DIPs thermal symmetry difference when recovering from MPT.



 

Statistical analysis of the data collected from the MPT test, was obtained using the Cronbach 

Coefficient Alpha for the hand AOI of 0.977, which means good data consistency. The Interclass 

Correlation  Coefficient  was  of  0.955  with  a  confidence  interval  varying  from 0.890  to  0.982 

demonstrating higher reproducibility of the AOIs in the test. 

The normal distribution of the data was assessed by a K-S test, the p values obtained were 

0.829 for the right hand AOI and 0.853 for the left hand AOI. As the K-S test p value was greater 

than 0.05 it means that the collected data has no difference from the normal distribution and the 

statistical methods associated with this distribution can be used. 

A non-parametric Pearson chi-square test was applied between the groups. The result gave a 

value of 126.000 for the right and left hand AOIs with a significance level inferior to 0.05 (p=0.000 

in both AOI). This demonstrates that if the null hypothesis was true it will be expected to find a x 2 

value of 126.000 or superior less than 5 times in each 120.000. Therefore the null hypothesis can be 

rejected and the result indicates that the variables are independent. It can again be concluded that 

using thermal images and the MPT test it is possible to identify different HAS stage groups.

From the  statistical  analysis  of  hypothesis  Z-test  shown in  table  24.  there  is  statistical 

evidence of independence between control and signs, and signs and confirmed groups (p<0.05) 

based in both hands AOI. There was no statistical evidence of independence between control and 

symptoms, control and confirmed, signs and symptoms, and symptoms and confirmed (p>0.05) 

based in both hands AOI.

There is statistical  evidence (Z test  p<0.05) of discrimination between subjects from the 

control group and the symptoms group, and the signs group and the symptoms group when using 

the difference from baseline in terms of hand AOI mean thermal symmetry, as shown in table 25.
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Table 24: Z-test values  comparing groups results for hand AOI in the MPT 
test (HS-Highly significant, S-Significant, NS-Non Significant).

MPT
Z-test (p value)

Right hand Lef hand
Control vs. Signs HS S
Control vs. Symptoms NS NS
Control vs. Confrmed NS HS
Signs vs. Symptoms HS NS
Signs vs. Confrmed HS HS
Symptoms vs. Confrmed NS NS



4.3.4. Cold Stress Test

In  the  table  26  presents  the  average  mean  temperatures,  standard  deviations  and  mean 

thermal symmetry values for a cold stress test (CST) for the hand AOI.

Both the right  and left  hands AOI had a  mean temperature  decrease for all  groups at  5 

minutes after water immersion and after 10 minutes recovery from vascular provocation. At five 

minutes recovery in both AOI the greater decrease in mean temperature was found in the confirmed 

group followed by the symptoms group. At the end of the test the sequence in decreased mean 
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Table 26: HAS stage groups mean temperatures over the CST.

Cold Stress Test
Before Test 5 min CST 10 min CST

MeanT sd MeanT sd MeanT sd

Controls (7)
L Hand 31,1 0,81 29,6 1,3 30,53 1,1
R Hand 30,95 0,87 29,52 1,24 30,47 1,06
H Symm 0,15 0,06 0,08 0,06 0,06 0,04

Signs (6)
L Hand 29,74 1,48 28,39 1,61 28,81 1,3
R Hand 29,63 1,49 28,32 1,59 28,76 1,32
H Symm 0,11 0,01 0,07 0,02 0,05 0,02

Symptoms (5)
L Hand 29 1,41 27,41 1,69 27,88 1,49
R Hand 28,96 1,5 27,2 1,72 27,75 1,52
H Symm 0,04 0,09 0,21 0,03 0,13 0,03

Confrmed (2)
L Hand 29,7 0,87 27,45 1,44 28,34 1,31
R Hand 30,07 0,77 27,28 1,35 28,25 1,27
H Symm 0,37 0,1 0,17 0,09 0,09 0,04

Table 25: Z-test values comparing groups results for hand AOI thermal symmetry in  
the MPT (HS-Highly significant, S-Significant, NS-Non Significant).

MPT Z test (p-value)
Control vs. Signs NS
Control vs. Symptoms HS
Control vs. Confirmed NS
Signs vs. Symptoms S
Signs vs. Confirmed NS
Symptoms vs. Confirmed NS



temperature from greatest to lower in relation to baseline for all groups was: the confirmed, the 

symptoms, the signs and the control, fig. 133 and fig. 134.  

The differences in mean thermal symmetry from baseline are presented in fig. 135 which 

shows a higher increase of that value either at 5 and 10 minutes after cold challenge. The symptoms 

group at 5 minutes recovery presented the second greater increase in mean thermal symmetry, but at 

the end of the test registered a similar value to both the control and the signs groups. Using this  

value  shows  clear  discrimination  between  the  confirmed  and  the  control  groups,  although  for 

discriminating signs from symptoms other indicators are needed.
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Fig. 133: Right hand mean temperature difference from  
baseline when recovering from CST.

Fig. 134: Left hand mean temperature difference from  
baseline when recovering from CST.



Observing the fig. 136, that represents the mean thermal symmetry value in the DIPs AOI, it 

was observed that there was no specific involvement in any particular finger apart from the index in 

any of the four groups. In the index finger it can be observed that the confirmed group presented a 

different pattern than other groups. 
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Fig. 135: Hand thermal symmetry difference from baseline  
when recovering from CST.

Fig. 136: Hand DIPs thermal symmetry difference when recovering from CST.



Performing a statistical analysis in the data collected from the CST test, with a Cronbach 

Coefficient Alpha for the hand AOI of 0.979, which showed good data consistency. The Interclass 

Correlation  Coefficient  was  0.960  with  a  confidence  interval  varying  from  0.901  to  0.984 

demonstrating higher reproducibility of the test. 

The normal distribution of the data was assessed by a K-S test, the p values obtained were 

0.743 for the right hand AOI and 0.967 for the left hand AOI. As the K-S test p value was greater 

than 0.05 which means that the data is not different from the normal distribution and the statistical 

methods associated with this distribution can be used. 

A non-parametric Pearson chi-square test was performed between the groups and the result 

was a value of 126.000 for the right and left hand AOIs with a significance level inferior to 0.05 

(p=0.000 in both AOI). This demonstrates that if the null hypothesis was true an expected x2 value 

of 126.000 or superior to less than 5 times in each 120.000. This result therefore rejects the null  

hypothesis and indicates that the variables are independent. It can be concluded that using thermal 

images with the MPT test it is possible to identify different HAS stage groups.

From the  statistical  analysis  of  hypothesis  Z-test  shown in  table  27.  there  is  statistical 

evidence of independence between all groups (p<0.05) based in both hands AOI excluding between 

signs and confirmed, and symptoms and confirmed (p>0.05) based in both hands AOI.

There is statistical  evidence (Z test  p<0.05) of discrimination between subjects from the 

control group and the confirmed group, the signs group and the confirmed group, and the symptoms 

group and the confirmed group when using the difference from baseline in terms of hand AOI mean 

thermal symmetry, as shown in table 28.
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Table 27: Z-test values  comparing groups results  
for hand AOI in the CST (HS-Highly significant, S-
Significant, NS-Non Significant).

CST
Z-test (p value)

Right hand Lef hand
Control vs. Signs HS HS
Control vs. Symptoms HS HS
Control vs. Confrmed HS HS
Signs vs. Symptoms HS HS
Signs vs. Confrmed HS NS
Symptoms vs. Confrmed S NS



4.3.5. Cold stress test evaluation methods comparison 

Loading all the performed tests in the developed application gave results for each different 

method of assessing a cold stress test. Fig. 137 shows a screenshot of the application that assesses  

the CST. A set of images are loaded in the left, by clicking in the correspondent image to the test 

time, these images must be standardised as described in section 3.7.4. and in the CTHERM format.  

For assessment only two images are compulsory: the image after acclimatisation and the 10 minutes 

after vascular challenge. Clicking over the selected image it  is possible to see the demographic 

details, e.g. patient name, date of examination, etc.
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Table 28: Z-test values comparing groups results for hand AOI  
thermal symmetry in the CST (HS-Highly significant, S-Significant,  
NS-Non Significant).

CST Z test (p-value)
Control vs. Signs NS
Control vs. Symptoms NS
Control vs. Confirmed HS
Signs vs. Symptoms NS
Signs vs. Confirmed HS
Symptoms vs. Confirmed HS

Fig. 137: Screen shot of the application to evaluate the different methods  
of assessing a CST.



This software has the option of presenting charts, fig. 138, and tables, fig. 139, representing 

the calculated thermal indexes of the hand AOI for the three assessment methods over the time of 

the test. These values can also be exported to a CSV file for later statistical treatment.
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Fig. 138: Chart representation of the calculated thermal indexes of the 3  
assessment methods.

Fig. 139: Table with the calculated thermal indexes of the 3 assessment methods.



The results  of the analysis  of the outcome of each vascular component  of the objective 

provocation tests are now presented. 

Thermal indexes after Keyboard Provocation Test, KPT

From the outcome of the vascular component assessment, showed in fig. 140, is noted that 

the  confirmed  and  signs  groups  had  produced  a  mean  positive  thermal  index  for  the  three 

assessment both methods and in both hands, the other two groups (control and symptoms) presented 

a mean negative value.

Testing the hypothesis of discriminating differences between the groups with these results, 

two sets  of  Thermal  Index mean,  from each evaluation  method,  a  Z-test  (statistical  tests)  was 

conducted. From it (table 29) it can be concluded that is possible to distinguish the control from the 

signs group for any of the three methods in the right hand AOI, and signs from symptoms using the 

MTG method  in  the  right  hand  AOI,  because  p<0.05.  Between  all  other  groups,  for  all  three 

methods in the left hand AOI there was no statistical evidence (p>0.05) of independence between 

the groups.       
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Fig. 140: Thermal indexes per method after KPT.



Thermal indexes after Vibration Provocation Test, VPT

Observing the outcome of the vascular assessment after vibration provocation, shown in fig. 

141, it is noted that in the right hand only, the signs group presented a mean positive thermal index 

for the three assessment methods, when all other three groups presented a mean negative. In the 

symptoms group the data showed that the thermal index was closer to 0. 

In the left hand, the controls presented a mean negative thermal index and in the symptoms 

group a mean negative for all 3 assessment methods. The confirmed group however, had a mean 

positive thermal index using the MTA and MTG methods, and a mean negative using MTP. The 

signs group had a mean positive thermal index using the MTG method and a mean negative with 

the other two assessment methods.

Testing the hypothesis of discriminating differences between the groups with these results, a 

two sets of Z-tests (statistical tests) was conducted. From these results (table 30) it can be concluded  

that is not possible to distinguish between all groups because for all three methods. In both hands 

190

Table 29: Z-test results from relationship between groups after KPT vascular  
assessment (HS-Highly significant, S-Significant, NS-Non Significant).

KPT
Right hand Z-test (p value) Lef hand Z-test (p value)
MTA MTG MTP MTA MTG MTP

Control vs. Signs S S S NS NS NS
Control vs. Symptoms NS NS NS NS NS NS
Control vs. Confrmed NS NS NS NS NS NS
Signs vs. Symptoms NS S NS NS NS NS
Signs vs. Confrmed NS NS NS NS NS NS
Symptoms vs. Confrmed NS NS NS NS NS NS

Fig. 141: Thermal indexes per method after VPT.



the AOI values there was no statistical evidence (p>0.05) of independence between the groups.

Thermal indexes after Mechanical Provocation Tests, MPT

Considering the outcome of the vascular assessment after the mouse stress test on the right 

hand, shown in fig. 142, it is observed that for both hands AOI the mean thermal indexes were 

positive for all groups. The thermal indexes are higher for the confirmed group followed by the 

symptoms group.

Testing the hypothesis of discriminating differences between the groups with these results, 

two sets of means Z-test were conducted. From this result (table 31) it can be concluded that is not 

possible to distinguish between all groups because for all three methods and in both hands AOI 

there was no statistical evidence (p>0.05) of independence between the groups.
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Table 30: Z-test results from relationship between groups after VPT vascular  
assessment (HS-Highly significant, S-Significant, NS-Non Significant).

VPT
Right hand Z-test (p value) Lef hand Z-test (p value)
MTA MTG MTP MTA MTG MTP

Control vs. Signs NS NS NS NS NS NS
Control vs. Symptoms NS NS NS NS NS NS
Control vs. Confrmed NS NS NS NS NS NS
Signs vs. Symptoms NS NS NS NS NS NS
Signs vs. Confrmed NS NS NS NS NS NS
Symptoms vs. Confrmed NS NS NS NS NS NS

Fig. 142: Thermal indexes per method after MPT.



Thermal indexes after Cold Stress Test, CST

The outcome of the vascular assessment after thermal provocation, is shown in fig. 143, in 

the right hand only the signs group presented a mean positive thermal indexes for all 3 assessment 

methods,  while  only the symptoms group showed a mean negative thermal  index value for all 

assessment methods. The confirmed group had a positive mean thermal index with the MTG and 

MTP methods and a negative value with MTA. The control group had a mean positive thermal 

index with MTA and a negative value with the other two assessment methods. In the left hand for 

all three methods the confirmed and signs group presented a mean negative thermal index and the 

control and signs groups a positive value.

Testing the hypothesis of discriminating differences between the groups with these results, 

two sets  of means,  a Z-test  was conducted.  From this (table 32) it  can be concluded that it  is 

possible to distinguish (p<0.05) between symptoms and confirmed in the right hand AOI using the 
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Table 31: Z-test results from relationship between groups after VPT vascular  
assessment, (HS-Highly significant, S-Significant, NS-Non Significant).

MPT
Right hand Z-test (p value) Lef hand Z-test (p value)
MTA MTG MTP MTA MTG MTP

Control vs. Signs NS NS NS NS NS NS
Control vs. Symptoms NS NS NS NS NS NS
Control vs. Confrmed NS NS NS NS NS NS
Signs vs. Symptoms NS NS NS NS NS NS
Signs vs. Confrmed NS NS NS NS NS NS
Symptoms vs. Confrmed NS NS NS NS NS NS

Fig. 143: Thermal indexes per method after CST.



MTG method. Between all other groups, for all three methods and in the left hand AOI there was no 

statistical evidence (p>0.05) of independence between the groups.  

In  comparing  the  three  methods  to  verify  and  identify  a  situation  of  hypothermia  in  a 

vascular test, the method that was more sensitive to hypothermia identification (negative thermal 

index < -4ºC)  was the MTG, which as shown in table 33. that identifies 10 situations, the other two 

methods  MTA and MTP had only identified one situation that coincided. This agrees with the 

literature studies (Ammer, 2007). However this indicator with the collected data has proven not to 

be reliable to classify people in degrees of injury.
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Table 32: Z-test results from relationship between groups after CST(HS-Highly  
significant, S-Significant, NS-Non Significant) .

CST
Right hand Z-test (p value) Lef hand Z-test (p value)
MTA MTG MTP MTA MTG MTP

Control vs. Signs NS NS NS NS NS NS
Control vs. Symptoms NS NS NS NS NS NS
Control vs. Confrmed NS NS NS NS NS NS
Signs vs. Symptoms NS NS NS NS NS NS
Signs vs. Confrmed NS NS NS NS NS NS
Symptoms vs. Confrmed NS HS NS NS NS NS

Table 33: Identified cases of hypothermia per method and provocation test.

Method MTA MTG MTP
Test Hand RH LH RH LH RH LH

KPT

Control 0 0 3 1 0 0
Signs 0 1 1 1 0 0
Symptoms 0 0 1 0 1 0
Confrmed 0 0 0 0 0 0

VPT

Control 0 0 0 0 0 0
Signs 0 0 0 1 0 0
Symptoms 0 0 0 0 0 0
Confrmed 0 0 0 0 0 0

MPT

Control 0 0 0 0 0 0
Signs 0 0 0 1 0 0
Symptoms 0 0 0 0 0 0
Confrmed 0 0 0 0 0 0

CST

Control 0 0 0 0 0 0
Signs 0 0 0 1 0 0
Symptoms 0 0 0 0 0 0
Confrmed 0 0 0 0 0 0

Total hypothermic cases: 0 1 5 5 1 0
Total hypothermic cases per Method: 1 10 1



4.3.6. Inter-camera assessment test

A cold  stress  test  was  recorded  from the  same  subject  within  the  same conditions  and 

monitored  with  the  three  different  cameras,  only  the  differences  from  baseline  were  taken  in 

consideration.  The  obtained  variance  between  cameras  FLIR  A40  and  FLIR  SC7000  was 

0.23±0.56ºC and the  value  resultant  from a  t-test  was  p=0.89.  The value  of  variance  between 

cameras FLIR B2 and FLIR A40 was 0.33±0.32ºC with a p=0.506 from a t-test. Based on these 

experimental  results  for  hand  AOI assessments  no  difference  between  the  cameras  was  found, 

however, the higher quality cameras such as FLIR A40 and FLIR SC7000 are recommended.

  

4.4. Image processing developments

In this section the results of studies in medical thermal image processing will be presented, 

this  studies  are  a  simple  image  enhancement  comparison,  scene  object  outlines  discovery 

comparison, interpolation methods comparison and an advanced warping operation. It is anticipated 

that  an  outcome  of  these  results  could  provide  information  required  to  build  a  new  software 

framework to process medical infrared thermal images to provide more information about specific 

Areas Of Interest. 

4.4.1. Image enhancement

Fig. 144 demonstrates the resultant images from an original noisy image. From the naked 

eye it can be acknowledge that the filters that have produced high quality results were the Wiener, 

Lucy-Richardson and the low-pass filter. 

The chart present in fig. 145, compares the differences in mean temperatures of the AOI in 

20 images produced by each algorithm to the value of the originals. It can be observed that Noise 

Compose,  Homomorphic and Lucy-Richarsson methods presented a higher temperature.  On the 

other  hand Median,  High pass  and Gaussian  filters  have  shown a  decreased  temperature  when 

compared with the baseline. The only algorithm presenting a similar temperature with the original 
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was the Low pass filter.
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Fig. 144: Example of resulting images from application of the image enhancing filters.



Fig.  146  shows  a  comparison  between  the  maximum  temperature,  mean  temperature, 

minimum temperature and standard deviation obtained from each image enhancing method against 

the original image. It  is possible to observe that the algorithm that least  affected the maximum 

temperatures is the Median, and of minimum temperatures is the Median and Wiener. The closest to 

correct mean temperatures is the Low pass and least sensitive to standard deviation is the High pass 

filter. The filter with the greatest affect on maximum temperature and of standard deviation is the 

Unsharp and of minimum temperatures and more variant from mean temperatures is  the Noise 

Compose.
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Fig.  145: The average values of mean temperature comparing the results  
obtained from each algorithm with the original image.

Fig. 146: Temperature differences in average values from the resulting  
images from filter applications to the original image in terms of maximum,  
minimum and mean temperatures and standard deviation.



Fig. 147 presents the comparison between the average obtained images from the application 

of each filter against the calculated average of the original images in terms of Signal to Noise Ratio 

indicator. The Noise Compose filter presented a higher value than the reference and Homomorphic, 

Low pass, Band pass and High pass filters presented a substantially inferior value. 

Fig.  148  shows  the  comparative  relationship  in  Root  Mean  Square  Error  between  the 

original  images  and  images  filtered,  Salt  and  Pepper  and  Unsharp  filters  presented  a  value 

significantly  above the reference, a substantially reduced value has been shown by Homomorphic, 

High pass, Low pass and Band pass filters.

 The  Cross  Correlation  Coefficient  comparison  between  resultant  images  from  the 

application of the image enhancing filters and the original images is presented in the fig. 149.  It can  

be observed that Mean, Homomorphic and Wiener filters have the highest value of this indicator 

than the reference, on the other hand High pass, Low pass, Band pass, Gaussian and Gaussian white 

noise filters present a substantially reduced value.
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Fig. 147: Signal to Noise Ratio comparison between the noise filtered images  
and the original.



Table 34 presents an overall classification of the image enhancing filters in thermal images, 

all  methods  are  graded  by  order  of  performance  per  parameter.  The  parameters  used  were: 

sensitivity to minimal temperatures, to maximum temperatures, to mean temperatures, to standard 

deviation, Root Mean Square Error, Signal to Noise Ratio and Cross Correlation Coefficient. From 

these results the recommended noise removal filters according to this experiment were Median, 

Mean and Wiener. The methods to be avoided for thermal images are Noise Compose, Unsharp and 

High pass filters.
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Fig. 148: Root Mean Square Error comparison between the noise filtered  
images and the original.

Fig. 149: Cross Correlation Coefficient comparison between the noise filtered  
images and the original.



 

4.4.2. Edge detection

The fig.  150 shows a typical  input image selected from the database with poor edge to 

background contrast. The fig. 151 shows the corresponding optimal outline drawn by hand.
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Table 34: Classification of the performance of the image enhancer filters, the 
recommended methods are in green and the non recommended in red. 

Algorithm Classification according to the difference from original image Expected value

min T max T mean T Std Dev RMSE SNR CCC Overall Mean T SD

Median 1º 1º 10º 2º 2º 8º 1º 1º -0,67 0,25

Mean 3º 3º 7º 5º 4º 5º 5º 2º -0,25 0,4

Wiener 2º 4º 6º 8º 1º 4º 7º 2º -0,23 0,45

Poisson 5º 7º 4º 8º 3º 10º 4º 4º -0,21 0,45

Gaussian 10º 2º 11º 4º 8º 3º 11º 5º -0,88 0,36

Speckle 4º 11º 5º 11º 6º 11º 2º 6º -0,22 0,57

Gaussian White Noise 9º 10º 2º 11º 7º 2º 11º 7º -0,2 0,57

Salt & Pepper 8º 5º 8º 7º 10º 7º 8º 8º -0,36 0,44

Lucy-Richardson 6º 9º 9º 13º 4º 6º 9º 9º 0,42 0,6

Low-Pass Filter 7º 7º 1º 10º 13º 13º 13º 10º -0,1 0,46

Homomorphic 14º 6º 12º 3º 12º 12º 6º 11º 1,33 0,29

Noise Compose 13º 12º 14º 6º 11º 1º 10º 12º 3,04 0,42

Unsharp 12º 13º 2º 14º 9º 9º 3º 13º -0,2 0,7

High-Pass Filter 10º 14º 13º 1º 13º 14º 14º 14º -2,1 0,17

Average: -0,05 0,44

Fig. 150: Original captured image in grayscale.



In the fig. 152 an example is presented of the images resulting from the application of the 

edge  detection  algorithms  without  applying  any  noise  reduction  filtering.  Subjective  grading, 

selected  probabilistic methods and contour following methods as best performers.

Fig. 153 shows algorithm outputs with Homomorphic pre-processing applied. According to 

the subjective grading scale the best output was produced by second order based methods, followed 

by gradient based methods (excluding the Kirsch algorithm and probabilistic methods). It can be 

observed that Homomorphic filtering enhances the results for all algorithms.

Table 35 lists the result of the objective classifying method, (i.e. the number of pixels that 

form the outline). The best edge detection algorithms when not using noise filtering are the classical 

gradient based methods (Roberts, Sobel, Prewit, Kirsch). When using pre-process noise filtering the 

best results are produced by the gradient based, probabilistic based and second order based methods 

(excluding Marr-Hildreth).

Fig.  154 demonstrates the benefit  of the Homomorphic filter  by plotting the line length 

percentage difference between the optimum edge and the output of the respective filters.
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Fig. 151: Optimal outline drawn by hand.
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Fig. 152: Edge detection without noise pre-processing.
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Fig. 153: Edge detection with noise pre-processing.



Edge detector With Noise Without Noise Closeness to optimal

Optimal 4562 4562 0

Original 151720 156750 152188

Roberts 7217 5442 880

Sobel 5989 4320 -242

Prewitt 5991 4224 -338

Kirsch 4007 4221 -341

Laplacian 15097 4630 68

Laplacian of Gauss 122374 10838 6276

Marr-Hildreth 70199 24415 19853

Canny 29888 2804 -1758

Shen-Castan 16853 16246 11684

Watershed 138456 150622 146058

Snakes 26428 22806 18244

Table 35: Comparison of the number of outline pixels, in the closeness to optimal only the images  
pre-processed with noise removal were considered.
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Fig. 154: Difference between optimum edge length and algorithmically produced  
edges with and without noise pre-processing.



4.4.3. Interpolation methods

The computational application developed for this experiment produced resultant CTHERM 

images per each interpolation method after using the same pre-processing techniques, the fig. 156 to 

fig. 158 are examples of results produced from the original fig. 155. 
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Fig. 155: Original image loaded from database.

Fig. 156: resultant image from application of Nearest  
Neighborhood interpolation technique.

Fig. 157: resultant image from application of the Bilinear  
interpolation method.



 The average of the mean temperature value obtained from measuring on the original images 

was 30.21ºC ± 4.28ºC, in the result of application the nearest neighborhood algorithm was 30ºC ± 

3.25ºC, with the bilinear method was 29.95ºC ± 3.28ºC and with the bi-cubic process was 29.72ºC ± 

3.60. The difference in mean temperature from the application of the three interpolation methods 

against the original image can be seen on the fig. 159 and the difference in standard deviation on the  

fig. 160. 
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Fig. 158: resultant image from application of the  
bi-cubic interpolation technique.

Fig. 159: Difference in mean temperature between the  
original and the result of interpolation methods, shows 
that the less affected algorithm is the Nearest  
Neighbourhood.



The results of the measurements of the four different types of images of the 20 samples were 

analysed with the SPSS statistical package software. Operating a student t-test with 95% interval 

confidence in the pairs of the 3 interpolation methods results we can conclude that the pairs Bi-

cubic - Bilinear and Bi-cubic Nearest Neighborhood are not correlated, demonstrating a significant 

difference shown by p<0.05, the same study has been inconclusive with the pair Bilinear – Nearest 

Neighborhood were p>0.05.

The  results  of  the  three  methods  together  were  submitted  to  the  Kendal  correlation 

coefficient test that has shown a significant correlation with the data, assuming that the 3 methods 

results are directly related, interpretation is given by p<0.05. 

The Friedman correlation coefficient test has exhibited a statistical evidence of the results of 

the three applications being significantly different according to p>0.05.

4.4.4. Barycentric warp model

From a  total  of  120 processed  images,  when measured  back to  CTHERM a maximum 

variance of 0.18±0.09ºC was found in the difference of mean temperature and standard deviation 

compared with the corresponding original recorded and non-standardised image. An example of a 

206

Fig. 160: Difference in standard deviation between the  
original and the result of interpolation methods, shows 
that the interpolation algorithm that less affects the  
standard deviation is the bi-cubic.



converted image is presented on fig. 161. The statistical significance of the correspondence on the 

vales obtained when performed a standard t-test for means comparison was p=0.0000183 (p < 0.01).

Fig. 161: Resultant image of barycentric  
triangulation warping.

Standardising the thermal images of hands, as presented in fig. 161, aids in the comparison 

of  AOI and average AOI.  Fig.  162 shows a set  of  thermal  images  of  hand that  differ  in  size,  

positioning and shape. Even these differences are small, analysing them accurately still a difficult, 

adjusting them to a standard model will facilitate that task and provide a better understanding.

The time needed for produce a resultant standardised image after adjusting the control points 

was 1.72 ± 0.5 seconds. In average from 80 control point adjustments the time required for that 

operation was 1.5 ± 0.3 minutes. The results were more effective (error of about 2%) when the 
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Fig. 162: Comparison between non-standardised and standardised thermal images of the  
hands.



scaling transformation was less than 10%, higher than that, the error has an exponential growth 

tendency. 

A statistical test of ICC was performed in the two groups of 120 images before and after 

standardisation. The values are shown in table 36.

AOI Hands Reliability  coefficient 
alpha

Interclass  Correlation 
Coefficient

95% c.i. of ICC

Before standardisation 0.97 0.94 0.91 to 0.96

After standardisation 0.99 0.98 0.93 to 0.99

Table 36: The Interclass correlation statistics of the hand AOI before and after standardisation.

According to the obtained values from the statistical analysis, it can be concluded that the 

standardised hand AOI data is more reliable and enhances repeatability.

An experiment was conducted using the same original image, and asking 10 subject to use 

the developed application to standardise it in a accurate way, the resultant images were compared 

and  the  variance  found between users  was  0.04±0.03ºC,  the  calculated  standard  error  between 

measurements was 0.016. 

4.5. Summary

The outcomes of this experimental work are:

• Females on age group between 31 and 40 years old, with daily smoking habits, in the 

BMI  overweight  class,  in  an  administrative  occupation,  operating  with  a  computer 

keyboard and mouse for more than 40 hours per week are more at  risk of having a 

occupational condition affecting the upper limbs.

• A mean thermal symmetry value of  0.4±0.4ºC for the dorsal hand AOI is accepted as 

clinical reference, likewise 0.3±0.3ºC for arm AOI and 0.5±0.3ºC for forearm AOI.

• The pilot test using a keyboard revealed poor reproducibility, however it indicated that 

after constantly typing for 5 minutes a mean temperature increase value of 0.6±0.4ºC is 

expected for the dorsal hand AOI and 0.9±0.1ºC for the forearm AOI. After 15 minutes 

the expected values will be 0.9±0.8ºC for the hand AOI and 1.7±0.1ºC for the forearm 

AOI.  This  experiment  also  revealed  the  handedness,  age  and  BMI  had  minimal 

indication of influencing those values. 
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• The pilot test involving vibration had shown to be reproducible, after holding a vibration 

device weighting 1.35kg with a frequency of 31.5Hz and a magnitude of 36 mm/s2 for 2 

minutes a decrease in mean temperature of 0.2±0.2ºC and 0.3±0.1ºC was expected for 

hand and forearm AOI respectively. Aging may influence these values.

• The value of mean thermal symmetry has indicated to be valid to discriminate different 

degrees of injury when using the proposed objective provocation tests. CST by itself 

would only identify the confirmed cases from healthy, it  is needed some mechanical 

provocation to an early indication of injury.

• The proposed objective provocation tests had proven to be consistent and reproducible.

• The MTG method for  assessing the hand vascular  challenge has  proven to be more 

sensitive  in  identifying  hypothermic  states,  however  the  thermal  indexes  are  not 

recommended for identifying HAS degrees of injury.

• High quality and resolution cameras should always be preferred than the low resolution 

handheld infrared cameras for conducting hand temperature studies.

• The recommended medical thermal image enhancing techniques are median, mean and 

wiener filters when trying to improve images quality.

• The  recommended  edge  detection  techniques  for  medical  thermal  images  are 

probabilistic based (Shen-castan and canny) or gradient based (Roberts, Prewitt, Sobel, 

Kirsh) operators.

• The  interpolation  method  recommended  for  medical  thermal  images  is  the  Nearest 

Neighbor.

• The  proposed  barycentric  warp  model  has  proved  to  be  simple,  fast,  accurate  and 

reproducible.   
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5 – Discussion

In this chapter the results of this work are discussed and considered under the following 

headings; Image capture protocol, survey and laboratory experiments: 

1. Image capture protocol (5.1)

2.  Incidence of occupational conditions in a sample population (5.2)

3.  Medical reference data (5.3)

4.  Image processing developments (5.4)

5.  Objective provocation tests (5.5)

5.1 - Capture protocol

Infrared thermal imaging had lost interest as medical screening technique in the end of 70's 

due  to  the  limitation  imposed  by  the  technology.  Equipment  presented  lowest  sensitivity  and 

specificity in image capture when compared to other techniques such as radiology and ultrasound. 

Image processing at time has not yet been sufficiently developed to be used in analysis of thermal 

images.  Another  factor  that most  contributed to  the descredibilisation of thermography was the 

absence of standard recording procedures (Kennedy et al., 2009, Cleek, 1988).  

Over  time  the  equipment  and  technology  associated  with  thermography  presented  a 

considerable evolution, allowing high resolution images with acceptable values of reproducibility, 

sensitivity and specificity when compared with other medical imaging modalities. Recent advances 

in  thermal  image  processing  and  in  parallel  an  increase  in  the  number  of  standard  recording 

procedures enforced image analysis and restored the lost credibility of the technique for medical use 

(Kennedy et al., 2009).     

A number of reasons for this have been identified at The University of Glamorgan, some 

being due to camera performance, but more commonly due to a lack of standardised technique in 

both image capture and image analysis. The proposed protocol for capturing thermal images of the 

hands in this work is based on the Glamorgan protocol (Ammer, 2008), which has proven that the  

defined AOI provides  high reproducibility  of  recorded images  and temperature readings.  These 
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procedures when appropriately applied avoid an important source of error and unreliability. The 

factors related to patient pre-examination preparation, examination room and temperature control 

when strictly applied contribute to high reliability of thermal images.

The battery of tests purposed by the members of the Medical Imaging Research Unit at  

University  of  Glamorgan (Plassmann,  2006) provide  methods for  easy  and inexpensive  quality 

control  assessment  of  infrared  imaging  equipment,  preventing  the  problems  caused  by  its 

malfunction.    

5.2 - Incidence of occupational conditions in a sample population

The results obtained from the online questionnaire were from females aged from 31 to 40 

years, in BMI class overweight, daily smokers, in administrative work and operating a computer 

keyboard and mouse for more than 40 hours a week. These have been identified to be more at risk 

of having occupational symptoms that affect the upper limbs. From 1% of the Academic population 

of the University of Glamorgan, 13% of the respondents indicated that had severe symptoms of 

affecting the upper limbs. However this sample is not representative and can therefore not be used 

to make statements such as “13% of employees at the University of Glamorgan suffer from severe 

symptoms of HAS”. However these results do clearly demonstrate that measures for the prevention 

of hand occupational conditions are indicated within a University environment, and in the long term 

could avoid increasing symptoms which might entail the need for treatment or sickness absence.

These  results  were similar  to  the results  obtained in  a  Canadian study using a  different 

questionnaire  (Cole  et.  al,  2005).  In  their  study there were 10% of  their  sample that  indicated 

occupationally related conditions affecting the upper extremities. In women aged between 30 and 

50 years old and associated with a high demand for repetitive tasks, and working for more than 30 

hours a week, were the most affected. 

In this  study the major difference is  in  the relationship between daily  smokers and those 

showing symptoms, that this new experiment work is more related. The questionnaire used had 

been assessed and validated. It has proved to be reproducible, internally consistent and responsive 

to clinical change (Levine et al., 1993).  Today, most offices use computer technology, and regular 

daily use is commonplace. It is generally assumed that office workers have transferred their skills 

from the typewriter to the computer without problems, although the nature of the hand movements 
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involved has changed considerably. In the absence of any proven health test, operators of keyboard 

systems are assumed to be unaffected by their manual tasks unless they complain to an occupational 

health service. Such facilities tend to exist only in manufacturing industries, where there are a large 

number of manual workers.

5.3 - Medical reference data

The  thermogram collection  followed  the  standard  capture  protocol  for  medical  infrared 

imaging specified by Ammer (2008). From all views and positions the maximum variation of mean 

temperature between a left and corresponding right body areas of interest was 0.47ºC (hands, dorsal 

view). The greatest difference in standard variations between the contralateral areas was found to be 

0.37ºC (hands, dorsal view). These results were obtained using a IR camera with a higher resolution 

(320x240),  than  those  used  in  previous  similar  studies  (Uematsu  and  Goodman  have  used  a 

resolution of 140x140). 

The 1985 study by Uematsu (1986) resulted in a maximum mean temperature symmetrical 

variance of 0.38ºC (hand, dorsal view) and also a greater standard deviation variation value 0.20ºC 

(forearm, anterior view). Another study by Goodman et al. (1986) concluded that  the greatest mean 

temperature variation was 0.95ºC (forearm, dorsal view) with Standard Deviation difference 0.10ºC 

(hand and forearm, dorsal view). A second study by Uematsu in 1988 reported a mean temperature 

difference maximum of 0.39ºC (arm, dorsal view) with a greater Standard Deviation value of 0.26 

ºC (arm, dorsal view).

In 2001 Niu and his team in Taiwan using a camera with similar resolution (320x240) in a  

controlled environment and subjects preparation, found a maximum mean temperature difference 

between collateral  upper  limb sites  of  0.5ºC (arm, dorsal  and anterior  view)  with  a  maximum 

Standard Deviation of 0.4ºC (arm, dorsal and anterior view). 

This study does not contradict these published studies that were conducted 20 years ago, but 

the use of a significant different methodology (period of acclimatisation, environment temperature 

and humidity, imaging system, subject preparation) can explain the differences. The results of this 

research agree with the published results of 9 years ago in Taiwan (Niu, 2001), where a similar  

approach to the first methodology was followed but using a different human race as samples. The 

second  approach  has  improved  since  the  first  approach  used  for  assessing  thermal  symmetry, 
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standardisation has been used on both image capture and analysis. 

It  is  considered that improved  understanding of the results  of  this  study has two main 

factors: 

a) the application of a rigorous protocol for volunteer selection, preparation and imaging;

b) the increased performance in terms of stability and resolution of thee modern infrared camera 

compared to those used in previous studies. 

With improved image resolution and the now currently available wide angle lenses, it  is 

possible  to  image  a  much  larger  area,  even  a  whole  human  body surface  in  one  image.  This 

phenomenon has been examined as part of this study, because in the event that a more automated 

test  might  be  developed for  medical  thermography,  wide  angle lens use might  prove  to  be  an 

advantage. However, imaging regional body views with a standard lens has been shown to achieve 

slightly higher thermal symmetry than those obtained from full  body views, although in a high 

resolution camera this difference is small. For specific studies on the hands total body views are  

unnecessary and should be avoided because of small pixel size of the AOI.

Thermal symmetry in healthy subjects between corresponding left and right sides of body 

extremities in this work has a maximum value of 0.5±0.3ºC, which can be used by the majority of 

clinical practitioners. Having confirmed and improved previous measurements, this benchmark of 

normal  symmetry variance could be of significant  value in  the assessment  of  neurological  and 

musculoskeletal disorders that manifest themselves by unilaterally affecting thermal patterns on the 

human skin. 

5.4 - Image processing developments

The imaging processing developments in this research were:

• A comparative experiment in image enhancing techniques in medical thermal images.

• A comparative experiment in edge detection techniques in medical thermal images.

• A comparative experiment in interpolation techniques in medical thermal images.

• A development of a hand geometrical model and a warping algorithm to standardise hand 
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medical thermal images.

5.4.1 - Image enhancement

The  results  of  this  experiment  do  not  agree  with  suggested  methods for  digital  images 

(Gonzalez and Woods, 2002) in terms of recommended method. Those methods were focused on 

the qualitative aspect of the data, the quantitative characteristics of the data was not taken into 

consideration. On IR images the quantitative feature is more important than the qualitative. The 

recommended noise filtering methods to be implemented for IR images are Median, Mean and 

Wiener.  Filtering  should  be  avoided  on  principle,  but  in  some  situations  it  offers  unique 

opportunities to retrieve information.

The  results  of  this  experiment  provide  a  benchmark  for  disagreements  between 

measurements  produced  by  different  software  packages  that  implement  various  improvement 

techniques.

5.4.2 - Edge detection

The  subjective  performance  evaluation  method  used  human  judgement.  The  number  of 

characteristics that a human eye can reliably distinguish is, however, limited (Roushdy, 2006). For 

this study a combination of subjective and objective validation was therefore used. The number of 

pixels forming the outline was used as an objective comparison method as it is simple to compute 

and provides a single figure for grading results. It could be argued that the difference between the 

areas enclosed by the outlines would be a more suitable measure since it is these areas that are used 

for subsequent clinical analysis. 

The  results  of  this  experiment  support  previous  studies  that  used  other  types  of  digital 

images (Sharifi, 2002, Roushdy, 2006). It demonstrates that traditional techniques which are usually 

computationally inexpensive and thus fast and simple to implement can produce adequate if not 

superior results (Zhou, 2004, Suzuki, 2000, Ghosh, 2006) to more complex recent approaches such 

as those based on artificial intelligence, edge maps or neural networks.

From this study it can be concluded: 
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• Probability  based  and  gradient  based  edge  detection  techniques  are  the  most  suitable 

methods to outline hands in medical thermal images. 

• The Homomorphic filter enhances boundary detection by reducing noise and ‘clearing up’ 

previously undetectable constructive features that assist edge detection algorithms. 

• Some post-processing such as such as thinning, artifact removal, etc. is needed to improve 

the results. 

It was demonstrated in this experiment that post-processing work should be performed after 

the  image  objects  boundaries  were  discovered.  It  was  for  this  reason  that  an  semi-automated 

solution was preferred instead of a fully automated solution, that would be difficult to accomplish in 

the time for this research project.  

The outcomes of this experiment had been used in the section 3.6.4 that introduces template 

outlines in addition to the edge detection process in regions where contrast between background and 

extremity is low or non-existent and edge detection therefore fails completely. This approach is 

using anatomical control points (i.e. well defined points such as finger tips) to assist the alignment  

between the template outline and the outline produced by edge detection. This work will assist hand 

pathology studies,  clinical  ‘cold stress’ examinations  and the  production  of  an atlas  of  normal 

infrared medical images as a reference source for clinicians (Ring et al., 2004).

 

5.4.3 - Interpolation methods

The choice of median filter composed with the Gaussian blur for noise removing instead of 

the, section 3.6.1, was just due to simplicity on implantation. This study contradicts some other 

studies on digital images comparing the application of interpolation algorithms to scale regions of 

images (Poth, 2004, Park and Sung, 2004), recommending these studies the Bi-cubic algorithm. 

Medical thermal images are based on temperature measurement on a surface of a body, if a scaling 

is needed an interpolation method will be needed, a neighbour value assigned instead of average of 

other pixels will help on maintenance of consistence in temperature values of the AOI when the  

change of resolution is inferior to 15%. 

The medical thermogram proposed protocol (Ammer, 2008) used by major part of European 
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thermal physiological labs refers for the usage of AOI masks being the distance between the subject 

and the camera aligned by the guideline, that minimizes the need of resolution change, scaling is 

more needed in these cases for small positional adjustments caused by involuntary movements of 

the subjects in the moment of capture. According to the results shown by this experimental study 

the recommended interpolation method for scaling medical thermal images following the standard 

capture protocol (Ammer, 2008) is the Nearest Neighborhood.

5.4.4 - Barycentric warp model

The current approach using a hands barycentric warp model when compared with the usage 

of  other  warp  methods  (Gomes  et  al.,  1999)  produces  equivalent  results  presenting  minimal 

processing time and complexity. Automatic discovery of the anatomical control points that delimit 

the model is suggested as further investigation. This method has shown accordingly to its results 

applicability when the difference in size scaling between the source and target AOI's is inferior to 

10%.

As result of this study it can be concluded: 

• thermal images standardised with this barycentric based warp method have 98% accuracy. 

• accurate analysis of hands regions of interest is possible. 

• comparison and/or averaging of images is possible after standardization of images. 

5.5 - Objective provocation tests

The  objective  tests  consisted  of  computer  keyboard  mechanical  provocation,  vibration 

exposure, computer mouse provocation and vascular changes in the hand.

In the keyboard provocation test the main issues are the following:

• After  keyboard  exposure  for  5  minutes  all  the  4 groups,  defined in  the  context  of  this 

research, excluding the confirmed group in the left hand, presented an increase in mean 

temperature of both hands, this is in line with the literature (Sharma, 1997, Ammer, 2001) 

that stated that an increase of temperature was expected after keyboard provocation, that 
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increase being small in people  with symptoms of occupational injury.

• Applying a vascular challenge immediately after the mechanical provocation induced by a 

computer  keyboard  produced  results  in  hand  mean  temperature  changes  with  proven 

statistical evidence (Pearson chi-square and Z-test, p<0.05) of discriminating groups but at 

the moment not individuals.  

• The  differences  in  mean  thermal  symmetry  from  baseline  proved  to  be  a  useful 

discriminative indicator between the two subjects with confirmed symptoms and the other 

three groups (Z test p<0.05).

• There was no specific involvement of any finger in any particular group as a result of the 

application of this test.        

• The  most  significant  change  in  the  two  subjects  with  confirmed  symptoms  was  in  the 

change in thermal symmetry from the baseline.

In the vibration provocation test it is interesting that:

• After vertical vibration exposure for 2 minutes at 31.5Hz all the four groups presented a 

decrease in mean temperature of the hand in conformity with the literature (Acciari, 1978).

• The  application  of  a  vascular  provocation  test  after  the  vibration  exposure  produced 

statistical evidence in mean temperature variation of the hand to discriminate controls from 

subjects with confirmed symptoms. This procedure significantly differs from most of the 

published studies in cold provocation testing for HAVS where only a thermal challenge is 

used  (Coughlin  et  al.,  2001).  This  points  out  the  combination  of  vibration  and thermal 

provocation as objective procedure does provide discrimination between asymptomatic and 

symptomatic subjects.

• The  Stockholm  scale  as  described  in  section  2.3.2.6  has  not  been  employed  in  the 

classification of subjects in this study since all volunteers were not involved with the use of 

vibration tools except one.

• The variation from baseline of thermal symmetry mean value for the four groups during the 

VPT constituted a statistical evidence in the discrimination between healthy controls and 

confirmed affected symptoms.  

• There was involvement  of  the index finger  in  the subject  with confirmed symptoms of 

HAVS.
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In the mouse provocation test the main issues are:

• This study is the first to investigate the possible effects from usage of computer mouse as 

mechanical provocation for quantifying temperature changes.

• Apart from the individuals of the group classified as 'signs', a mean temperature decrease 

was presented after the mouse exposure in both hands,  however this difference between 

groups is not statistically significant.

• Even the  non-parametric  statistical  test  indicating  the  possibility  of  identifying different 

HAS stage groups, the other statistical method (Z test) has proved to be inconclusive for 

discrimination when evaluating the hand mean temperature variations at the end of the test. 

The cold stress test :

• According  to  the  defined  protocol  the  cold  provocation  test  proved  to  discriminate  the 

control group from the subjects with confirmed symptoms based in the variation of the hand 

mean temperature.

• The use of the mean thermal symmetry difference from baseline give statistical evidence 

(p<0.05 in  parametric  and non-parametric  tests)  in  the  distinction  between controls  and 

affected subjects.

• From the three evaluated methods to assess hand cold provocation,  the most sensible to 

identify  Raynaud's  phenomenon  was  the  Mean  Thermal  Gradient  in  agreement  with 

literature (Ammer, 2007), however the thermal index produced by this method and the other 

two have not produced statistical evidence in the discrimination of the different groups used 

in this study.

The Areas of interest used in the final provocative tests involving keyboard and vibration 

stress  had  statistical  evidence  of  being  more  reproducible  that  the  AOIs  used  in  the  pilot 

provocation tests. 

All the above studies are limited by the sample size available, which limits the weight of 

conclusions drawn from this study. 
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6 – Conclusion

In this section, the aim and objectives are assessed and further research is proposed. 

6.1. Meeting the aim

The development and assessment of an objective, quantitative and reproducible diagnostic 

procedure for Work Related Upper Limb Disorders based in the analysis of medical thermal images 

of the hands was satisfied. 

A standard infrared image capture protocol was designed, implemented and assessed and 

proposed for future work.

A online hand injury incidence questionnaire was designed, implemented and assessed and 

its results were used as indications to identify the possible volunteers to collaborate in this work. 

Hand temperature reference data was designed, implemented, being assessed the results and 

data suitability. A clinical reference value was proposed for healthy states discrimination.

A set of mechanical stress provocation tests was designed, implemented and the results were 

objectively assessed. This objective was partially satisfied, results indicate that using these tests 

monitored  by  thermal  imaging  is  possible  to  discriminate  groups,  however,  for  individuals 

discrimination a large sample was required.

Different  techniques  in  image processing  such as:  image enhancing,  edge  detection and 

interpolation were compared and its results assessed, providing important and relevant information 

for future studies using medical thermal images. 

A standard reference method for thermal analysis of the hand was designed, implemented 

and assessed.  It  demonstrated to be extremely useful  and practical in standardising the thermal 

analysis of the whole hands and its anatomical regions providing image comparison and averaging.
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6.2. Proposed future work 

For further work the following research is proposed:

• The application of the developed methodology in a wide study involving a larger affected 

population. For ethical and bureaucratic reasons it was not possible to establish partnerships 

with hospitals, companies or trade unions within this research project.   

• An investigation using the developed methodology, more particularly the thermal symmetry 

values and the proposed Campbell's hand injury score system and Griffin's HAVS scoring 

system to develop an objective and quantitative scale of injury.

• The development of a fully automated solution for the standardisation of anatomical thermal 

AOIs, with automated discovery of control points.

• Use of the proposed barycentric warp method to overlay different modalities of medical 

imaging to improve applications in clinical and forensic sciences.

• The enhancement of medical thermography reproducibility integrating state of art equipment  

and technology with the development of image processing software,  standardising image 

analysis, simultaneously with the development and adoption of standard image recording 

protocols. In order to continuously increase of the modality credibility for medical use. 
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Appendix 1 – Overview table of current diagnostic methods for RSI 

Type Procedure (test) Description Advantages Disadvantages 

Questionnaires Used to identify signs and symptoms of 

RSI. 

The responses are gathered in a 

standardised way, so questionnaires are 

more objective, certainly more so than 

interviews and improve the speed of 

information collection. 

Participants may forget important issues. 

Due to the standardisation of the 

questionnaire text it is not possible to 

explain any points in the questions that 

participants might misinterpret. Participants 

may not be willing to answer the questions. 

P
re

 –
 d

ia
g

n
o

st
ic

 

Medical History Used to support signs and symptoms of 

RSI and relate them with genetic 

inheritance. 

Help clinician to understanding patient’s 

medical background. 

Delayed procedure. Insufficient on its own. 

Wrist flexion test To test muscle shortening, assessing the 

range of blend and flex movements. 

Assesses muscle tightness. 

Easy to perform. Can be painful to the patient and 

inconclusive as a RSI indicator 

Grip strength test To test the weakness of grip by squeezing a 

Jamal dynamometer (an instrument that 

measures the weight that a patient can 

pull). This test is also used to assess 

recovery. 

Gives quantitative data according to the 

weight that a patient can pull. 

Can be painful to the patient and 

inconclusive as a RSI indicator. 

Pulp pinch test Measures the strength in the fingers by 

squeezing the meter as hard as possible in 

different positions. 

Gives quantitative data. Is a reasonably 

good RSI indicator. 

Can be painful for the patient. M
u
sc

u
la

r 

Finkelstein’s sign 

test 

Where the patient makes a fist with the 

thumb curled inside, and then the doctor 

will bend the hand down and ask if it hurts.  

Easy to perform. Can be painful to the patient and 

inconclusive as a RSI indicator 

N
er

v
e Phalen’s maneuver To see whether fingers go numb or tingle 

when holding the back of the hands 

together with the fingers facing the floor 

for a minute. 

Easy to perform, a positive result will 

indicate diagnosis of Carpal Tunnel 

Syndrome, one of the cases of RSI. 

Can be painful for the patient. 



Tinel’s sign To assess possible nerve irritation or 

compression by the doctor tapping with his 

finger on various anatomical sites, like 

elbow, palm side or wrist. 

Easy to perform. A positive result indicates the possibility of 

nerve irritation or compression although it 

is not conclusive of RSI. 

EMG Used when previous tests are positive, the 

nerve conduction studies will test what 

happens in the body when a low voltage of 

electricity passes through specific areas. 

Good quantitative indicator and gold 

standard for verifying Carpal Tunnel 

Syndrome. 

Expensive and specific equipment. Oils and 

ointments can interfere with the test, cold 

hands also impede the test. The amount of 

pain sensation depends individual’s 

sensitivity to pain. 

Semmes-Weinstein 

monofilament test 

Assess the ability to feel light touches in 

hands, if nothing is felt nerve damage is 

indicated. 

Cheap, easy and painless. Inconclusive by itself as an RSI test, needs 

an EMG to verify this. 

Weber two-point 

discrimination test 

Tests light touch sensitivity in the 

fingertips between two points with the eyes 

shut.  

Easy and painless. The instrument used looks like a pizza 

wheel with irregularly placed spokes, as the 

space between these decreases it becomes 

harder to discriminate between one or two 

points.  

MRI Assesses inflammation of soft in affected 

limbs. 

Non-invasive and painless procedure. Good 

imaging system for soft tissues. 

Expensive and sometimes claustrophobia 

producing procedure. Problems when 

imaging shoulder regions because of low 

contrast due to the presence of  muscles, 

tendons, ligaments and lubricant sacs with 

similar (MRI) characteristics. 

 

X-Ray Detects bone or joint problems or arthritis.  Good method to assess bone or joint 

problems or arthritis. 

Radiation exposure. Damage to the soft 

tissue doesn’t usually show up on X-Rays. 

O
th

er
 Video Videotaping patients at a simulated 

workstation to see what they are doing to 

provoke injury. 

It gives to the clinicians the idea of the 

situation and its relationship with the 

symptoms ass well as the correspondent 

corrective answer. 

Time consuming. Good video recording 

system plus technician is also expensive. 

Often inconclusive.  

 

Based on: (Helliwell and Taylor, 2004), (Pascarelli and Quilter, 1994). 

 



Appendix 2 – Overview table of current diagnostic methods for HAVS 

Type Procedure (test) Description Advantages Disadvantages 

Questionnaires Used to identify signs and symptoms of 

HAVS and exposure to vibration. 

The responses are gathered in a 

standardised way, therefore questionnaires 

are more objective, certainly more so than 

interviews. Relatively fast to collect 

information. 

Participants may forget important issues. 

Due to the standardisation of the 

questionnaire text it is not possible to 

explain any points in the questions that 

participants might misinterpret. Participants 

may not be willing to answer the questions. 

Medical History Used to support signs and symptoms of 

HAVS and relate them with genetic 

inheritance. 

Help the understanding of patient’s medical 

background 

Delayed procedure. Insufficient on its own. 

P
re

 –
 d

ia
g
n
o
st

ic
 

Annual Surveillance Routine annual health surveillance 

performed by a “esponsible person” 

assessing workers in risk. 

Good prevention procedure that helps to 

mitigate symptoms of the syndrome. 

Delayed procedure. Useless if not properly 

performed. 

Allen test 

 

The hand is elevated and the patient is 

asked to make a fist for about half a minute. 

Then pressure is applied over the ulnar and 

the radial arteries so as to occlude both of 

them. When still elevated, the hand is then 

opened. It should appear blanched (pallor 

can be observed at the finger nails). After 

that the ulnar pressure is released and 

colour should return within 5 seconds. If 

colour does not return or returns after 7 

seconds there is no integrity of the radial 

and ulnar artery supply to the arm. 

Easy to perform test and clear result can 

also be observed easily.  

Can be painful to the patient and 

inconclusive as a HAVS indicator. 

M
u
sc

u
lo

sk
el

et
al

 

Phalen’s test The patient is asked to hold their wrist in 

complete and forced flexion, pushing the 

dorsal surfaces of both hands together for 1 

minute, symptoms will show if both hands 

are held tightly, can also produce a tingling 

sensation. 

Easy to perform, a positive result will 

indicate diagnosis of Carpal Tunnel 

Syndrome. 

Can be painful to the patient and 

inconclusive as a HAVS indicator. 



Tinel’s test Detects irritated nerves. Appraising the 

median nerve compression in the wrist if 

there is an indicator of a response of 

tingling in the first three fingers. It is 

performed by lightly tapping over the nerve 

to elicit a sensation of tingling in the 

distribution path of the nerve 

Easy to perform test and clear result can be 

observed also easily.  

Can be painful to the patient and 

inconclusive as a HAVS indicator. Is often 

"positive" in healthy patients, causing 

tingling in the thumb, index, and middle 

finger.  

Adson test Used to detect any obstruction of the 

arterial flow to the arm at the level of the 

neck checking if the radial pulse is present. 

Easy to perform test.  Can be painful to the patient and 

inconclusive as a HAVS indicator. 

Grip force test To test the gripping force in both hands 

with a dynamometer. 

Gives a quantitative data, being helpful to 

be used as an injury indicator. 

Can be painful to the patient and 

inconclusive as a HAVS indicator. 

Pinch force test To assess finger strength the arm of a pinch 

meter is pressed between the thumb and 

index finger. 

Gives quantitative data, and can also be 

helpful as an injury indicator. 

Can be painful to the patient and 

inconclusive as a HAVS indicator. 

Finger tapping test To assess fine motor speed and dexterity by 

tapping the fingers. 

Easy to perform test. Can be painful to the patient and 

inconclusive as a HAVS indicator. 

Moberg pick up test Picking up small objects from a table 

surface and place those in a small container, 

time and performance are recorded. 

Gives quantitative data, can also be helpful 

as an injury indicator. 

Can be painful to the patient and 

inconclusive as a HAVS indicator. 

M
u
sc

u
la

r 

Purdue pegboard 

test 

In order to assess dexterity and loss of 

movement in either hand. Measures two 

types of activities: one involving gross 

movement of hands, fingers and arms; and 

the other involving fingertip dexterity. 

Gives quantitative data, can also be helpful 

as an injury indicator. 

Can be painful to the patient and 

inconclusive as a HAVS indicator. 

V
as

cu
la

r 

Cold provocation 

test 

Room temperature maintained at between 

20 and 22ºC. A thermocouple is attached to 

each of the 8 fingers. 2 minutes of 

stabilisation period is used and after it 

plastic gloves are wearied and hands 

immersed up to the wrist in water at 15º C 

for 5 minutes. Finger skin temperature is 

measured 10 minutes after exiting the bath.  

Gives a good quantitative data of vascular 

assessment. 

Can be painful to the patient. 

 

Reduced time of exposure, higher 

temperature water and a recording 

procedure without contact could improve 

this method.  



Finger systolic 

blood pressure 

Finger systolic blood pressures were 

measured using strain-gauge 

plethysmography following local cooling in 

accord with International Standard 14835-2 

(2005). 

The FSBPs were measured simultaneously 

in the thumb and the index, middle, ring, 

and little fingers of the dominant hand 

using a multi-channel plethysmograph. 

Gives a good quantitative data of vascular 

assessment. 

Can be painful to the patient. 

Colour charts An epidemiological study consisting in a 

series of photographs illustrating various 

degrees of blanching and cyanosis of the 

hands. 

Easy to use. Subjective test.  

Nail compression 

test 

Tests the digital flow when occlusion of 

blood to the fingertip has taken place. 

Finger skin temperature is taken with a 

thermistor to check for damaged arterial 

blood flow that results in lower 

temperatures than normal, (i.e. 30 ºC).  

Easy to use and gives a reasonable 

quantitative data of vascular assessment. 

Can be painful to the patient. 

Light touch test To test the sensitivity of fingertips by using 

cotton wool stroked lightly over them.  

Easy to perform. This test shows some unreliability.  

Pain sense test A disposable needle is pressed sharply 

against the fingertip and the patient is 

expected to report when a sharp or dull 

sensation is felt, the stimulus varies with 

the pressure applied to the needle. 

Easy to perform. This test is painful to the patient. 

N
er

v
e 

Weber two-point 

discriminator test 

To evaluate large nerve function in the 

fingertips by differentiating between two 

single point of pressure on the skin at 

variable distances. 

Easy and painless. The instrument used looks like a pizza 

wheel with irregularly placed spokes, as the 

space between these decreases it becomes 

harder to discriminate between one or two 

points. 



Deep sense 

perception 

To determine digital sensibility 

dysfunction. Uses monofilaments. 

Determines whether patients have the 

ability to sense a point of pressure on the 

finger 

Easy to perform. Can be painful to the patient. 

Monofilaments To determine whether patients have the 

ability to sense a point of pressure on the 

finger. 

Easy to perform. Can be painful to the patient. 

Vibration sense Has been used as a non-invasive diagnostic 

technique for nerve compression and 

dysfunction detection and it allows an early 

detection of loss of vibration sensation. 

This technique uses instruments such as the 

traditional tuning fork, the graduated tuning 

fork and the vibration sensimeter. Tests 

joint position sense by moving one of the 

patient's fingers or toes up and down and 

asking the patient to report which way it 

moves. Hold the digit lightly by the sides 

while doing this so that tactile inputs don't 

provide significant clues to the direction of 

movement. 

Easy to use and gives a reasonable 

quantitative data of nerve assessment. 

The digit should be moved very slightly 

because normal individuals can detect 

movements that are barely perceptible by 

eye. 

 

Vibration threshold 

test 

To check at mechanoreceptors (the 

sensation sensitive nerve endings). These 

respond to stretch and texture at different 

frequencies and measurements are taken 

from each hand, from the median nerve 

(index finger) and the ulnar nerve (little 

finger) area. 

Easy to use and gives reasonable 

quantitative data of nerve assessment. 

The digit should be moved very slightly 

because normal individuals can detect 

movements that are barely perceptible by 

eye. Repetitions should also be avoided 

because of attempts learning. 



 

Thermal 

Aesthesiometry 

Measures the degree of tactile sensitivity. 

Used to determine the sensitivity of thermal 

stimuli. The simplest is a manual tool with 

adjustable points similar to a calliper. It can 

determine how short a distance between 

two impressions on the skin can be 

distinguished. A scale on the instrument 

gives readings in millimetre gradients. 

Easy to use and gives a reasonable 

quantitative data of nerve assessment. 

Repetitions should also be avoided because 

of learning effects. 

 

Based on: (Lawson and Navell, 1997, Sampson, 2006). 



Appendix 3 - Hand Injury Scoring System

Finger Integument Skeleton Motor Neurological Total

Thumb x 6 =

Index x 2 =

Middle x 3 =

Ring x 3 =

Little x 2 =

Final Severity Score

Table 1 – Campbell's hand injury severity scoring chart

INTEGUMENT

Skin loss Absolut Values (hand) Dorsum < 1cm2 5

> 1cm2 10

> 5cm2 20

Palm Dorsum x 2

Weighted Values (digit) Dorsum < 1cm2 2

> 1cm2 3

Pulp < 25%

> 25%

Skin laceration < 1cm 1

> 1 cm 2

Nail damage 1

SKELETAL

Fractures Simple shaft 1

Comminuted shaft 2

Inter-articular DIP J 3

Inter-articular PIP/MIP J 5

Inter-articular MCP J 4

Dislocations Open 4

closed 2

Ligament Injury sprain 2

rupture 3

MOTOR

Extensor tendon Proximal to PIP J 1

Distal to PIP J 3

Flexor profundus Zone 1 6

Zone 2 6

Zone 3 5

Flexor superficialis 5

Intrinsics 2

NEURAL

Absolut values Recurrent branch median nerve 30

Deep branch ulnar nerve 30

Weighted Values Digital nerve x 1 3

Digial nerve x 2 4

 Table 2 – The injury scoring system.



Digit Weighting factor

Thumb x6

Index x2

Middle x3

Ring x3

Little x2

 Table 3 – The individual digit weighting factors.

Grade Total points

I - Minor <20

II - Moderate 21-50

III - Severe 51-100

IV - Major >100

 Table 4 – The grade according to the obtained score points.



���������	
��
����	��������������������������		���������	�	�
�����	�
�����������	
���	������	��������������������
����������������������	�����
���

��
������	�������������������������

������� �	
�� ���

��
���� ���
��
������� ��
��������������
�
 ������ �!�������"�����#����!��
$��%&
��"�� ��"�� ���
��

���'"��"%�%���
�!��("
��)

�*��+��",�

����"%���&���,��!�� �
-��
��� �."
�
/��'"��"%�%���
��"
&%����
"%��)

�*��+��",�

����"%���&���,��!�� �
-��
��� �."
�
��� ������
�������
�,"�!��
��"���"��"%�
�"&��
��"������&"��%���
���&"����"�)

�*��� �."
�
0�� �����"%���&�+��"��"%�%���
��������������
��"������,
��������1�����
�����������)

�*��� �."
�
��������"%��2&����������
����,�������"������
%������
���3"�����"���"%���
����"��
�
�)

�*��� �."
�
#�������"%��2&����������
�������������,��������
%������
���3"�����"���"%���
����"��
�
�)

�*��� �."
�
4���
-���"%��-����
��
�������"%�����!+�
�
�"���
�����3%���"��"&��
��"�)

�*��� �."
�
5���
-���"%��-����
��
�������"%������
����"��3"����+��!��+����-��+���
���"��(�""��-������)

�*��� �."
�
6��'"��"%��
-��
���������%����,����
%������"��3"���������"%���
���)

�*��� �."
�
����'"��"%��
-��
���
����
������"�����
��

��
�������"%���
����"��
�
�)

�*��� �."
�
���������"%�"��
����"��7���
�
����
��"�)

�*��� �."
�
�/�������"%�
��
"!��)

89:�9���������;%����"��
��� ���&�<<
���

�����
,
���&
����"�%!<=%������
�

�����0 ��7�67/��6���/#



�*��+��",�

������
�������&����
��� �."
�
����'"��"%�����!�
��"�"�)

�*��+��",�

���%�������</�&����"��(�����&����
��� �."

����������� !�"#�$%�� $�&���&�%��'�#&�$'()%�($���&�*�%')�+*��%�� %',��#&,��#&�)�&��-�-#&� !�%���)*$%�%��
���.$�/������ ��+�&+���%��* $��&��*+��"#�$%�� 01
�
�0���",���-������������
���"��,�����&
�����
���"%��
-��
�������)

:��"��"���
-���
���"��,�����&
���
�������

	����&
��

	"���
���&
��

9�-����&
��

>������-����&
��
�
�����",�"����������
���"��,�����&
���,
!���"%�%&��%�����
���&��
���������������&
����,"�,��!�)

.�-��

$���

?,"�"����������
��

�"%��"����-����
��

	"�����
����-����
��
�
�#��'"��"%���&��
�����
-��&
�������"%���
���"��,������%����������
���
�)

:���-����
-��&
����%����������
�

:��
-��
����&
����%����������
�

:��
-��
"���
���&
����%����������
�

:��
-����-����&
����%����������
�

:��
-��-������-����&
����%����������
�
�
�4���",�"������"��"%��
-���
���"��,�����&
����%����������
���
�)

.�-��

$����"���,����
��
�

?������"���-����
���
��
�

	"�����
����-����
���
��
�

?���&
�������"���
��
�
�5���",��"��+�"��
-��
��+��"���
���&��"���"��&
����
����%����������
���
�)

:���-�������&
����%����������
�

@������
�����
��%���

����"�#��
��%���

���
������
��#��
��%���

?���&
�������"���
������"%��"%�������
�
�

89:�9���������;%����"��
��� ���&�<<
���

�����
,
���&
����"�%!<=%������
�

/����0 ��7�67/��6���/#



�6��'"��"%��
-���%
(�������"���"������
��"�������"%���
��)

."

:��
-��
�����%
(����

:��
-��
"���
����%
(����

:��
-����-�����%
(����

:��
-��-������-�����%
(����
�
/���'"��"%��
-��,�
!���������"%���
���"��,����)

."�,�
!����

	����,�
!����

	"���
���,�
!����

9�-����,�
!����

>������-����,�
!����
�
/���'"��"%��
-���������������
��"�������"%���
��)

."���������

	������������

	"���
�����������

9�-������������

>������-������������
�
//���",���-��������%
(�������"���"������
��"���"�����������
�������)

:��
-���"��%
(�����"�����������
�������

	���

	"���
��

9�-���

>������-���
�
/����",�"����������
����%
(�����"�����������,
!���"%�%&��%�����
���&��
���������%���������&
����,"�,��!�)

.�-��

$���

?,"�"����������
��

�"%��"����-����
��

	"�����
����-����
��
�
/0��'"��"%��
-��������%����,����������
�&����
���%���"���

���"(3������%���
��!����"��&���)

."�������%���

	����������%���

	"���
���������%���

9�-����������%���

>������-����������%���

89:�9���������;%����"��
��� ���&�<<
���

�����
,
���&
����"�%!<=%������
�

�����0 ��7�67/��6���/#



���*$��!&*-��%���)*� �$'()%�($�� �%���)*&%$����%���#))�&�2�-'����&��'�#������)*� ���� �)�&��&(� !�'�#&
#$#*��%*$.$1
�

� 	��)*� 
��-��*� 
�-�&*%���*� ��3�&���*� 4�&'���3�&���*� 
.��!

1&&���(
�!
@",���(
�!
8�������"%����
@������"%����
8�����%&&���
�

@����%&&���
�

8�������(",
@������(",
8������"��
�

@�����"��
�

8�����,����
@����,����
8������
��
@�����
��

� �*�%')�+*��-*'�-#&� !�%���)*$%�%������.$��*3���* -�* -��&�$%�$'()%�($�+*#$�-�'�#�%���*3��* '�-����+#�%'
-�� !�%���*+%�3�%��$���$%�-�2����5����*$��$���+%�%����)%�� �%�*%�2�$%�-�$+&�2�$�'�#&�*2���%'�%��-��%���*+%�3�%'1
�

�+%�3�%' 	�
-����+#�%'


��-
-����+#�%'


�-�&*%�
-����+#�%'

��3�&�
-����+#�%'

�*  �%�-��*%
*��

 ������
A%��"�����������"����
�"������
�(""!�,����

��
����
���&&����"��
�����&�"��

�
����
$&&������"��3
��
�"%���"�����"���

B
�������"����"�����(
��
A
������
�����������

:���"%�,"%�����!���"�����%��������=%����"��
����"���"��
("�
�������%�%�����%�����,����%��&��
��������������"���
-������
�"%���

����

��������	
���
����

���


89:�9���������;%����"��
��� ���&�<<
���

�����
,
���&
����"�%!<=%������
�

0����0 ��7�67/��6���/#



Appendix 5 - Upper limb occupational conditions online 
questionnaire - Database Schema

The database used to storing the questionnaire data has one table, which has the following format:

CREATE TABLE IF NOT EXISTS `trsi` (

  `dat` datetime NOT NULL default '0000-00-00 00:00:00',

  `gen` char(1) NOT NULL default '',

  `age` int(2) NOT NULL default '0',

  `hgt` int(3) NOT NULL default '0',

  `wgt` int(3) NOT NULL default '0',

  `occ` varchar(20) NOT NULL default '',

  `ocy` int(2) NOT NULL default '0',

  `keyb` int(2) default NULL,

  `mou` int(2) default NULL,

  `cig` int(2) default NULL,

  `unt` int(2) default NULL,

  `eml` varchar(35) default NULL,

  `Q1` char(1) NOT NULL default '',

  `Q2` char(1) NOT NULL default '',

  `Q3` char(1) NOT NULL default '',

  `Q4` char(1) NOT NULL default '',

  `Q5` char(1) NOT NULL default '',

  `Q6` char(1) NOT NULL default '',

  `Q7` char(1) NOT NULL default '',

  `Q8` char(1) NOT NULL default '',

  `Q9` char(1) NOT NULL default '',

  `Q10` char(1) NOT NULL default '',

  `Q11` char(1) NOT NULL default '',

  `Q12` char(1) NOT NULL default '',

  `Q13` char(1) NOT NULL default '',

  `Q14` char(1) NOT NULL default '',

  `Q15` char(1) NOT NULL default '',

  `Q16` char(1) NOT NULL default '',

  `Q17` char(1) NOT NULL default '',

  `Q18` char(1) NOT NULL default '',

  `Q19` char(1) NOT NULL default '',

  `Q20` char(1) NOT NULL default '',

  `Q21` char(1) NOT NULL default '',

  `Q22` char(1) NOT NULL default '',

  `Q23` char(1) NOT NULL default '',

  `Q24` char(1) NOT NULL default '',

  `P1` char(1) NOT NULL default '',

  `P2` char(1) NOT NULL default '',

  `P3` char(1) NOT NULL default '',

  `P4` char(1) NOT NULL default '',

  `P5` char(1) NOT NULL default '',



  `P6` char(1) NOT NULL default '',

  `P7` char(1) NOT NULL default '',

  `P8` char(1) NOT NULL default '',

  `P9` char(1) NOT NULL default '',

  `P10` char(1) NOT NULL default '',

  `P11` char(1) NOT NULL default '',

  `P12` char(1) NOT NULL default '',

  `P13` char(1) NOT NULL default '',

  `P14` char(1) NOT NULL default '',

  `P15` char(1) NOT NULL default '',

  `D1` char(1) NOT NULL default '',

  `D2` char(1) NOT NULL default '',

  `D3` char(1) NOT NULL default '',

  `D4` char(1) NOT NULL default '',

  `D5` char(1) NOT NULL default '',

  `D6` char(1) NOT NULL default '',

  `D7` char(1) NOT NULL default '',

  `D8` char(1) NOT NULL default '',

  `ip` varchar(15) NOT NULL default '',

  `uid` bigint(20) unsigned NOT NULL auto_increment,

  PRIMARY KEY  (`uid`)

)

Database schema



Appendix 6 - Upper limb occupational conditions online 
questionnaire - Script Code

The online questionnaire consists in two scripting pages, one using simple HTML code to 

present the questionnaire form, and a PHP for validating it and insert the data on the database.

The HTML code for the implementation of the questionnaire was the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
"http://www.w3.org/TR/html4/loose.dtd">
<HTML>
<HEAD>
<TITLE>RSI Screening Questionnaire</TITLE>
</HEAD>
</BODY>
<FORM name="frm" action="quest.php" method="post">
<TABLE width="70%" align="center" border="0" name="tbp">
<TR><TD  align="center">
<IMG src="banner.jpg">
</TD></TR>
<TR><TD align="center">
<B> ALL THE INFORMATION COLLECTED BY THIS QUESTIONNAIRE IS ANONYMOUS AND STRICTLY CONFIDENTIAL AND 
WILL JUST BE USED FOR RESEARCH PURPOSES ONLY, AFTER COMPLETION ALL DATA WILL BE DELETED</B>
</TD></TR>
<TR><TD align="center">
<TABLE align="center" border="0" name="tbl">
<TR>
<TD>Gender:</TD>
<TD><input type="radio" name="gender" value="M"> Male<input type="radio" name="gender" value="F"> 
Female</TD>
</TR>
<TR>
<TD>Age:</TD>
<TD><input type="text" name="age" size="4" maxlenght="2"> years</TD>
</TR>
<TR>
<TD>Height:</TD>
<TD><input type="text" name="height" size="4" maxlenght="3"> cm (1ft = 30.5 cm)</TD>
</TR>
<TR>
<TD>Weight:</TD>
<TD><input type="text" name="weight" size="4" maxlenght="3"> kg (1 stone = 6.35 kg)</TD>
</TR>
<TR>
<TD>Occupation:</TD>
<TD><input type="text" name="occupation" maxlenght="20"> for <input type="text" name="otime" 
size="4" maxlenght="2"> years</TD>
</TR>
<TR>
<TD colspan="2"><HR></TD>
</TR>
<TR>
<TD colspan="2">1. Do you use a keyboard?</TD>
</TR>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="keyb" value="Y"> Yes, How many hours per week: <input 
type="text" name="keybh" size="2" maxlenght="2">(average)<input type="radio" name="keyb" value="N"> 
No</TD>
</TR>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">2. Do you use a computer mouse?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="mouse" value="Y"> Yes, How many hours per week: <input 
type="text" name="mouseh" size="2" maxlenght="2">(average)<input type="radio" name="mouse" 
value="N"> No</TD>
</TR>



<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">3. When seated in a workstation do you adopt a correct posture and position?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q3" value="Y"> Yes <input type="radio" name="Q3" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">4. When you type, do you use all fingers in a correct way (i.e. Using all fingers)?
</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q4" value="Y"> Yes <input type="radio" name="Q4" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">5. Are you experiencing any swelling of the muscles and joints of your hands or 
arms?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q5" value="Y"> Yes <input type="radio" name="Q5" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">6. Are you experiencing any stiffness with the muscles and joints of your hands or 
arms?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q6" value="Y"> Yes <input type="radio" name="Q6" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">7. Have you ever had any serious neck, arm or hand injury or operation?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q7" value="Y"> Yes <input type="radio" name="Q7" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">8. Have you ever had any serious diseases of joints, skin, nerves, heart or blood 
vessels?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q8" value="Y"> Yes <input type="radio" name="Q8" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">9. Do you have any difficulty with muscles or joints in your hands?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q9" value="Y"> Yes <input type="radio" name="Q9" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">10. Do you have any medical history that may affect your hands or arms?</TD>
</TR>



<TR>
<TD colspan="2"><input type="radio" name="Q10" value="Y"> Yes <input type="radio" name="Q10" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">11. Are you on any long-term medication?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q11" value="Y"> Yes <input type="radio" name="Q11" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">12. Are you a smoker?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q12" value="Y"> Yes, How many cigarettes per day: <input 
type="text" name="cigar" size="2" maxlenght="2"><input type="radio" name="Q12" value="N"> No</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">13. Do you drink alcohol?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q13" value="Y"> Yes, How many units (1/2 pint of beer) 
per day: <input type="text" name="alc" size="2" maxlenght="2"><input type="radio" name="Q13" 
value="N"> No</TD>
</TR>
<TR>
<TD colspan="2"><HR></TD>
</TR>
<TR>
<TD colspan="2"><B>The following questions refer to your symptoms for a typical twenty-four-hour 
period during the past two weeks (fill one circle to answer each question).</B></TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">14. How severe is the hand or wrist pain that you have at night?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q14" value="1">I do not have hand or wrist pain at 
night</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q14" value="2">Mild pain</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q14" value="3">Moderate pain</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q14" value="4">Severe pain</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q14" value="5">Very severe pain</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">15. How often did hand or wrist pain wake you up during a typical night in the past 
two weeks?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q15" value="1">Never</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q15" value="2">Once</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q15" value="3">Two ot three times</TD>
</TR>



<TR>
<TD colspan="2"><input type="radio" name="Q15" value="4">Four or five times</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q15" value="5">More than five times</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">16. Do you typically have pain in your hand or wrist during the daytime?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q16" value="1">I never have pain during the day</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q16" value="2">I have mild pain during the day</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q16" value="3">I have moderate pain during the day</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q16" value="4">I have severe pain during the day</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q16" value="5">I have very severe pain during the 
day</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TD colspan="2">17. How often do you have hand or wrist pain during the daytime?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q17" value="1">Never</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q17" value="2">Once or twice a day</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q17" value="3">Three to five times a day</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q17" value="4">More than five times a day</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q17" value="5">The pain is constant</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">18. How long, on average, does an episode of pain last during the daytime?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q18" value="1">I never get pain during the day</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q18" value="2">Less than 10 minutes</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q18" value="3">10 to 60 minutes</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q18" value="4">Greater than 60 minutes</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q18" value="5">The pain is constant throughout the 
day</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">19. Do you have numbness (loss of sensation) in your hand?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q19" value="1">No</TD>
</TR>
<TR>



<TD colspan="2"><input type="radio" name="Q19" value="2">I have mild numbness</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q19" value="3">I have moderate numbness</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q19" value="4">I have severe numbness</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q19" value="5">I have very severe numbness</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">20. Do you have weakness in your hand or wrist?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q20" value="1">No weakness</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q20" value="2">Mild weakness</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q20" value="3">Moderate weakness</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q20" value="4">Severe weakness</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q20" value="5">Very severe weakness</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">21. Do you have tingling sensations in your hand?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q21" value="1">No tingling</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q21" value="2">Mild tingling</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q21" value="3">Moderate tingling</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q21" value="4">Severe tingling</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q21" value="5">Very severe tingling</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">22. How severe is numbness (loss of sensation) or tingling at night?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q22" value="1">I have no numbness or tingling at 
night</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q22" value="2">Mild</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q22" value="3">Moderate</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q22" value="4">Severe</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q22" value="5">Very severe</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">23. How often did hand numbness or tingling wake you up during a typical night 



during the past two weeks?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q23" value="1">Never</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q23" value="2">Once</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q23" value="3">Two ot three times</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q23" value="4">Four or five times</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q23" value="5">More than five times</TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">24. Do you have difficulty with the grasping and use of small objects such as keys 
or pens?</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q24" value="1">No difficulty</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q24" value="2">Mild difficulty</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q24" value="3">Moderate difficulty</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q24" value="4">Severe difficulty</TD>
</TR>
<TR>
<TD colspan="2"><input type="radio" name="Q24" value="5">Very severe difficulty</TD>
</TR>
<TR>
<TD colspan="2"><HR></TD>
</TR>
<TR>
<TD colspan="2"><B>Please grade the pain symptoms on the parts of the upper body where you feel 
pain when performing your usual tasks.</B></TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">
<TABLE align="center" border="1" name="tblub">
<TR>
<TH>&nbsp;</TD>
<TH align="center">No pain</TD>
<TH align="center">Mild Pain</TD>
<TH align="center">Moderate Pain</TD>
<TH align="center">Severe Pain</TD>
<TH align="center">Very Severe Pain</TD>
</TR>
<TR>
<TD align="center">Neck</TD>
<TD align="center"><input type="radio" name="P1" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P1" value="2"></TD>
<TD align="center"><input type="radio" name="P1" value="3"></TD>
<TD align="center"><input type="radio" name="P1" value="4"></TD>
<TD align="center"><input type="radio" name="P1" value="5"></TD>
</TR>
<TR>
<TD align="center">Upper back</TD>
<TD align="center"><input type="radio" name="P2" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P2" value="2"></TD>
<TD align="center"><input type="radio" name="P2" value="3"></TD>
<TD align="center"><input type="radio" name="P2" value="4"></TD>
<TD align="center"><input type="radio" name="P2" value="5"></TD>
</TR>
<TR>
<TD align="center">Lower back</TD>
<TD align="center"><input type="radio" name="P3" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P3" value="2"></TD>



<TD align="center"><input type="radio" name="P3" value="3"></TD>
<TD align="center"><input type="radio" name="P3" value="4"></TD>
<TD align="center"><input type="radio" name="P3" value="5"></TD>
</TR>
<TR>
<TD align="center">Right shoulder</TD>
<TD align="center"><input type="radio" name="P4" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P4" value="2"></TD>
<TD align="center"><input type="radio" name="P4" value="3"></TD>
<TD align="center"><input type="radio" name="P4" value="4"></TD>
<TD align="center"><input type="radio" name="P4" value="5"></TD>
</TR>
<TR>
<TD align="center">Left shoulder</TD>
<TD align="center"><input type="radio" name="P5" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P5" value="2"></TD>
<TD align="center"><input type="radio" name="P5" value="3"></TD>
<TD align="center"><input type="radio" name="P5" value="4"></TD>
<TD align="center"><input type="radio" name="P5" value="5"></TD>
</TR>
<TR>
<TD align="center">Right upper arm</TD>
<TD align="center"><input type="radio" name="P6" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P6" value="2"></TD>
<TD align="center"><input type="radio" name="P6" value="3"></TD>
<TD align="center"><input type="radio" name="P6" value="4"></TD>
<TD align="center"><input type="radio" name="P6" value="5"></TD>
</TR>
<TR>
<TD align="center">Left upper arm</TD>
<TD align="center"><input type="radio" name="P7" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P7" value="2"></TD>
<TD align="center"><input type="radio" name="P7" value="3"></TD>
<TD align="center"><input type="radio" name="P7" value="4"></TD>
<TD align="center"><input type="radio" name="P7" value="5"></TD>
</TR>
<TR>
<TD align="center">Right elbow</TD>
<TD align="center"><input type="radio" name="P8" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P8" value="2"></TD>
<TD align="center"><input type="radio" name="P8" value="3"></TD>
<TD align="center"><input type="radio" name="P8" value="4"></TD>
<TD align="center"><input type="radio" name="P8" value="5"></TD>
</TR>
<TR>
<TD align="center">Left elbow</TD>
<TD align="center"><input type="radio" name="P9" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P9" value="2"></TD>
<TD align="center"><input type="radio" name="P9" value="3"></TD>
<TD align="center"><input type="radio" name="P9" value="4"></TD>
<TD align="center"><input type="radio" name="P9" value="5"></TD>
</TR>
<TR>
<TD align="center">Right forearm</TD>
<TD align="center"><input type="radio" name="P10" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P10" value="2"></TD>
<TD align="center"><input type="radio" name="P10" value="3"></TD>
<TD align="center"><input type="radio" name="P10" value="4"></TD>
<TD align="center"><input type="radio" name="P10" value="5"></TD>
</TR>
<TR>
<TD align="center">Left forearm</TD>
<TD align="center"><input type="radio" name="P11" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P11" value="2"></TD>
<TD align="center"><input type="radio" name="P11" value="3"></TD>
<TD align="center"><input type="radio" name="P11" value="4"></TD>
<TD align="center"><input type="radio" name="P11" value="5"></TD>
</TR>
<TR>
<TD align="center">Right wrist</TD>
<TD align="center"><input type="radio" name="P12" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P12" value="2"></TD>
<TD align="center"><input type="radio" name="P12" value="3"></TD>
<TD align="center"><input type="radio" name="P12" value="4"></TD>
<TD align="center"><input type="radio" name="P12" value="5"></TD>
</TR>
<TR>
<TD align="center">Left wrist</TD>
<TD align="center"><input type="radio" name="P13" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P13" value="2"></TD>



<TD align="center"><input type="radio" name="P13" value="3"></TD>
<TD align="center"><input type="radio" name="P13" value="4"></TD>
<TD align="center"><input type="radio" name="P13" value="5"></TD>
</TR>
<TR>
<TD align="center">Right hand</TD>
<TD align="center"><input type="radio" name="P14" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P14" value="2"></TD>
<TD align="center"><input type="radio" name="P14" value="3"></TD>
<TD align="center"><input type="radio" name="P14" value="4"></TD>
<TD align="center"><input type="radio" name="P14" value="5"></TD>
</TR>
<TR>
<TD align="center">Left hand</TD>
<TD align="center"><input type="radio" name="P15" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="P15" value="2"></TD>
<TD align="center"><input type="radio" name="P15" value="3"></TD>
<TD align="center"><input type="radio" name="P15" value="4"></TD>
<TD align="center"><input type="radio" name="P15" value="5"></TD>
</TR>
</TABLE>
</TD>
</TR>
<TR>
<TD colspan="2"><HR></TD>
</TR>
<TR>
<TD colspan="2"><B>On a typical day during the past two weeks have hand and wrist symptoms caused 
you to have any difficulty doing the activities listed below? Please select the option that best 
describes your ability to do the activity.</B></TD>
</TR>
<TR>
<TD colspan="2">&nbsp;</TD>
</TR>
<TR>
<TD colspan="2">
<TABLE align="center" border="1" name="tblub">
<TR>
<TH align="center">Activity</TD>
<TH align="center">No difficulty</TD>
<TH align="center">Mild difficulty</TD>
<TH align="center">Moderate difficulty</TD>
<TH align="center">Severe difficulty</TD>
<TH align="center">Cannot do at all</TD>
</TR>
<TR>
<TD align="center">Writing</TD>
<TD align="center"><input type="radio" name="D1" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="D1" value="2"></TD>
<TD align="center"><input type="radio" name="D1" value="3"></TD>
<TD align="center"><input type="radio" name="D1" value="4"></TD>
<TD align="center"><input type="radio" name="D1" value="5"></TD>
</TR>
<TR>
<TD align="center">Buttoning the clothes</TD>
<TD align="center"><input type="radio" name="D2" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="D2" value="2"></TD>
<TD align="center"><input type="radio" name="D2" value="3"></TD>
<TD align="center"><input type="radio" name="D2" value="4"></TD>
<TD align="center"><input type="radio" name="D2" value="5"></TD>
</TR>
<TR>
<TD align="center">Holding a book while reading</TD>
<TD align="center"><input type="radio" name="D3" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="D3" value="2"></TD>
<TD align="center"><input type="radio" name="D3" value="3"></TD>
<TD align="center"><input type="radio" name="D3" value="4"></TD>
<TD align="center"><input type="radio" name="D3" value="5"></TD>
</TR>
<TR>
<TD align="center">Gripping of a telephone handle</TD>
<TD align="center"><input type="radio" name="D4" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="D4" value="2"></TD>
<TD align="center"><input type="radio" name="D4" value="3"></TD>
<TD align="center"><input type="radio" name="D4" value="4"></TD>
<TD align="center"><input type="radio" name="D4" value="5"></TD>
</TR>
<TR>
<TD align="center">Oppening of jars</TD>
<TD align="center"><input type="radio" name="D5" value="1" CHECKED></TD>



<TD align="center"><input type="radio" name="D5" value="2"></TD>
<TD align="center"><input type="radio" name="D5" value="3"></TD>
<TD align="center"><input type="radio" name="D5" value="4"></TD>
<TD align="center"><input type="radio" name="D5" value="5"></TD>
</TR>
<TR>
<TD align="center">Household chores</TD>
<TD align="center"><input type="radio" name="D6" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="D6" value="2"></TD>
<TD align="center"><input type="radio" name="D6" value="3"></TD>
<TD align="center"><input type="radio" name="D6" value="4"></TD>
<TD align="center"><input type="radio" name="D6" value="5"></TD>
</TR>
<TR>
<TD align="center">Carrying of grocery bags</TD>
<TD align="center"><input type="radio" name="D7" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="D7" value="2"></TD>
<TD align="center"><input type="radio" name="D7" value="3"></TD>
<TD align="center"><input type="radio" name="D7" value="4"></TD>
<TD align="center"><input type="radio" name="D7" value="5"></TD>
</TR>
<TR>
<TD align="center">Bathing and dressing</TD>
<TD align="center"><input type="radio" name="D8" value="1" CHECKED></TD>
<TD align="center"><input type="radio" name="D8" value="2"></TD>
<TD align="center"><input type="radio" name="D8" value="3"></TD>
<TD align="center"><input type="radio" name="D8" value="4"></TD>
<TD align="center"><input type="radio" name="D8" value="5"></TD>
</TR>
</TABLE>
</TD>
</TR>
<TR>
<TD colspan="2"><HR></TD>
</TR>
<TR>
<TD colspan="2">If you  would like to discuss this questionnaire or collaborate in future studies 
with us please feel free to leave here your email: </B>
<input type="text" name="email" size="40" maxlenght="40">
</TD>
</TR>
<TR>
<TD colspan="2"><HR></TD>
</TR>
<TR>
<TD align="center" colspan="2"><INPUT type="submit" value="SUBMIT THE QUESTIONNAIRE" 
name="sques"></TD>
</TR>
<TR>
<TD colspan="2"><HR></TD>
</TR>
</TABLE>
</TD></TR>
<TR><TD align="center">
<IMG src="bottom.jpg" align="center">
</TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

HTML code of the questionnaire

The PHP script used to validate the online questionnaire form and store the information in 

the database was the following:

<?php
$gen = $_POST["gender"];
$age = $_POST["age"];
$hgt = $_POST["height"];
$wgt = $_POST["weight"];
$occ = $_POST["occupation"];
$ocy = $_POST["otime"];
$Q1  = $_POST["keyb"];
$keyb = $_POST["keybh"];
$Q2  = $_POST["mouse"];



$mou = $_POST["mouseh"];
$Q3  = $_POST["Q3"];
$Q4  = $_POST["Q4"];
$Q5  = $_POST["Q5"];
$Q6  = $_POST["Q6"];
$Q7  = $_POST["Q7"];
$Q8  = $_POST["Q8"];
$Q9  = $_POST["Q9"];
$Q10 = $_POST["Q10"];
$Q11 = $_POST["Q11"];
$Q12 = $_POST["Q12"];
$cig = $_POST["cigar"];
$Q13 = $_POST["Q13"];
$unt = $_POST["alc"];
$Q14 = $_POST["Q14"];
$Q15 = $_POST["Q15"];
$Q16 = $_POST["Q16"];
$Q17 = $_POST["Q17"];
$Q18 = $_POST["Q18"];
$Q19 = $_POST["Q19"];
$Q20 = $_POST["Q20"];
$Q21 = $_POST["Q21"];
$Q22 = $_POST["Q22"];
$Q23 = $_POST["Q23"];
$Q24 = $_POST["Q24"];
$P1  = $_POST["P1"];
$P2  = $_POST["P2"];
$P3  = $_POST["P3"];
$P4  = $_POST["P4"];
$P5  = $_POST["P5"];
$P6  = $_POST["P6"];
$P7  = $_POST["P7"];
$P8  = $_POST["P8"];
$P9  = $_POST["P9"];
$P10 = $_POST["P10"];
$P11 = $_POST["P11"];
$P12 = $_POST["P12"];
$P13 = $_POST["P13"];
$P14 = $_POST["P14"];
$P15 = $_POST["P15"];
$D1  = $_POST["D1"];
$D2  = $_POST["D2"];
$D3  = $_POST["D3"];
$D4  = $_POST["D4"];
$D5  = $_POST["D5"];
$D6  = $_POST["D6"];
$D7  = $_POST["D7"];
$D8  = $_POST["D8"];
$eml = $_POST["email"];

$ip = $_SERVER['REMOTE_ADDR'];

$go = true;

function check_email_address($email) {
// First, we check that there's one @ symbol, and that the lengths are right
if (!ereg("^[^@]{1,64}@[^@]{1,255}$", $email)) {

// Email invalid because wrong number of characters in one section, or wrong 
number of @ symbols.

return false;
}
// Split it into sections to make life easier
$email_array = explode("@", $email);
$local_array = explode(".", $email_array[0]);
for ($i = 0; $i < sizeof($local_array); $i++) {

if (!ereg("^(([A-Za-z0-9!#$%&'*+/=?^_`{|}~-][A-Za-z0-9!#$%&'*+/=?^_`{|}~\.-]
{0,63})|(\"[^(\\|\")]{0,62}\"))$", $local_array[$i])) {

return false;
}

}
if (!ereg("^\[?[0-9\.]+\]?$", $email_array[1])) { // Check if domain is IP. If not, 

it should be valid domain name
$domain_array = explode(".", $email_array[1]);
if (sizeof($domain_array) < 2) {

return false; // Not enough parts to domain
}
for ($i = 0; $i < sizeof($domain_array); $i++) {

if (!ereg("^(([A-Za-z0-9][A-Za-z0-9-]{0,61}[A-Za-z0-9])|([A-Za-z0-
9]+))$", $domain_array[$i])) {

return false;



}
}

}
return true;

}

?>
<HTML>
<HEAD>
<TITLE>RSI Screening Questionnaire</TITLE>
</HEAD>
</BODY>
<TABLE align="center" border="0" name="tbp">
<TR><TD  align="center">
<IMG src="banner.jpg">
</TD></TR>
<TR><TD>
<FONT color="red">

<?php

if (strlen($gen)==0){
print "Error - gender required!<br>"; 
$go = false;

}

if (strlen($age)==0){
print "Error - age required!<br>"; 
$go = false;

} else {
   if($age<16 || $age>75){

print "Error - please correct your age!<br>"; 
$go = false;

} 
}

if (strlen($hgt)==0){
print "Error - height required!<br>"; 
$go = false;

} else
   if($hgt<145 || $hgt>215){

print "Error - please correct your height, it should be in centimeters!<br>"; 
$go = false;

}

if (strlen($wgt)==0){
print "Error - weight required!<br>"; 
$go = false;

} else
   if($wgt<40 || $wgt>150){

print "Error - please correct your weight, it should be in kilos!<br>"; 
$go = false;

}

if (strlen($occ)!=0){
if (strlen($ocy)==0){

print "Error - years on occupation required!<br>"; 
$go = false;

}
} else 

if (strlen($ocy)!=0){
print "Error - occupation required!<br>"; 
$go = false;

}

if (strlen($Q1)==0){
print "Error - answer to question 1 is required!<br>"; 
$go = false;

} else 
if ($Q1=='Y'){
 if (strlen($keyb)==0){

print "Error - hours spent on keyboard per week required!<br>"; 
$go = false;

} else {
if ($keyb<0 || $keyb>72){

print "Error - invalid number of hours spent on keyboard per 
week!<br>"; 

$go = false;
}

}
}



if ($Q1=='N')
$keyb='0';

if (strlen($Q2)==0){
print "Error - answer to question 2 is required!<br>"; 
$go = false;

} else 
if ($Q2=='Y'){
 if (strlen($mou)==0){

print "Error - hours spent on computer mouse per week required!<br>"; 
$go = false;

} else {
if ($mou<0 || $mou>72){

print "Error - invalid number of hours spent on computer mouse 
per week!<br>"; 

$go = false;
}

}
}

if ($Q2=='N')
$mou='0';

if (strlen($Q3)==0){
print "Error - answer to question 3 is required!<br>"; 
$go = false;

}

if (strlen($Q4)==0){
print "Error - answer to question 4 is required!<br>"; 
$go = false;

}

if (strlen($Q5)==0){
print "Error - answer to question 5 is required!<br>"; 
$go = false;

}

if (strlen($Q6)==0){
print "Error - answer to question 6 is required!<br>"; 
$go = false;

}

if (strlen($Q7)==0){
print "Error - answer to question 7 is required!<br>"; 
$go = false;

}

if (strlen($Q8)==0){
print "Error - answer to question 8 is required!<br>"; 
$go = false;

}

if (strlen($Q9)==0){
print "Error - answer to question 9 is required!<br>"; 
$go = false;

}

if (strlen($Q10)==0){
print "Error - answer to question 10 is required!<br>"; 
$go = false;

}

if (strlen($Q11)==0){
print "Error - answer to question 11 is required!<br>"; 
$go = false;

}

if (strlen($Q12)==0){
print "Error - answer to question 12 is required!<br>"; 
$go = false;

} else 
if ($Q12=='Y'){
 if (strlen($cig)==0){

print "Error - number of cigarettes per day required!<br>"; 
$go = false;

} else {
if ($cig<0 || $cig>40){

print "Error - invalid number of cigarettes per day!<br>"; 



$go = false;
}

}
}

if ($Q12=='N')
$cig='0';

if (strlen($Q13)==0){
print "Error - answer to question 13 is required!<br>"; 
$go = false;

} else 
if ($Q13=='Y'){
 if (strlen($unt)==0){

print "Error - number of alcohol units (1/2 pint of beer) per day 
required!<br>"; 

$go = false;
} else {

if ($unt<0 || $unt>40){
print "Error - invalid number of alcohol units (1/2 pint of 

beer) per day!<br>"; 
$go = false;

}
}

}

if ($Q13=='N')
$unt='0';

if (strlen($Q14)==0){
print "Error - answer to question 14 is required!<br>"; 
$go = false;

}

if (strlen($Q15)==0){
print "Error - answer to question 15 is required!<br>"; 
$go = false;

}

if (strlen($Q16)==0){
print "Error - answer to question 16 is required!<br>"; 
$go = false;

}

if (strlen($Q17)==0){
print "Error - answer to question 17 is required!<br>"; 
$go = false;

}

if (strlen($Q18)==0){
print "Error - answer to question 18 is required!<br>"; 
$go = false;

}

if (strlen($Q19)==0){
print "Error - answer to question 19 is required!<br>"; 
$go = false;

}

if (strlen($Q20)==0){
print "Error - answer to question 20 is required!<br>"; 
$go = false;

}

if (strlen($Q21)==0){
print "Error - answer to question 21 is required!<br>"; 
$go = false;

}

if (strlen($Q22)==0){
print "Error - answer to question 22 is required!<br>"; 
$go = false;

}

if (strlen($Q23)==0){
print "Error - answer to question 23 is required!<br>"; 
$go = false;

}

if (strlen($Q24)==0){



print "Error - answer to question 24 is required!<br>"; 
$go = false;

}

if (strlen($P1)==0){
print "Error - required grading for neck pain!<br>"; 
$go = false;

}

if (strlen($P2)==0){
print "Error - required grading for upper back pain!<br>"; 
$go = false;

}

if (strlen($P3)==0){
print "Error - required grading for lower back pain!<br>"; 
$go = false;

}

if (strlen($P4)==0){
print "Error - required grading for right shoulder pain!<br>"; 
$go = false;

}

if (strlen($P5)==0){
print "Error - required grading for left shoulder pain!<br>"; 
$go = false;

}

if (strlen($P6)==0){
print "Error - required grading for right upper arm pain!<br>"; 
$go = false;

}

if (strlen($P7)==0){
print "Error - required grading for left upper arm pain!<br>"; 
$go = false;

}

if (strlen($P8)==0){
print "Error - required grading for right elbow pain!<br>"; 
$go = false;

}

if (strlen($P9)==0){
print "Error - required grading for left elbow pain!<br>"; 
$go = false;

}

if (strlen($P10)==0){
print "Error - required grading for right forearm pain!<br>"; 
$go = false;

}

if (strlen($P11)==0){
print "Error - required grading for left forearm pain!<br>"; 
$go = false;

}

if (strlen($P12)==0){
print "Error - required grading for right wrist pain!<br>"; 
$go = false;

}

if (strlen($P13)==0){
print "Error - required grading for left wrist pain!<br>"; 
$go = false;

}

if (strlen($P14)==0){
print "Error - required grading for right hand pain!<br>"; 
$go = false;

}

if (strlen($P15)==0){
print "Error - required grading for left hand pain!<br>"; 
$go = false;

}

if (strlen($D1)==0){



print "Error - required grading for difficulty on writing!<br>"; 
$go = false;

}

if (strlen($D2)==0){
print "Error - required grading for difficulty on buttoning the clothes!<br>"; 
$go = false;

}

if (strlen($D3)==0){
print "Error - required grading for difficulty on holding a book while reading!<br>"; 
$go = false;

}

if (strlen($D4)==0){
print "Error - required grading for difficulty on gripping of a telephone handle!

<br>"; 
$go = false;

}

if (strlen($D5)==0){
print "Error - required grading for difficulty on oppening of jars!<br>"; 
$go = false;

}

if (strlen($D6)==0){
print "Error - required grading for difficulty on household chores!<br>"; 
$go = false;

}

if (strlen($D7)==0){
print "Error - required grading for difficulty on carrying of grocery bags!<br>"; 
$go = false;

}

if (strlen($D8)==0){
print "Error - required grading for difficulty on bathing and dressing!<br>"; 
$go = false;

}

if (strlen($eml)!= 0){
if (!check_email_address($eml))
{

   print "Error - bad email address!<br>"; 
$go = false;

}
}

if($go==true){
 $dat = date('YmdHis',time());
 
 $link = @mysql_connect('db2.awardspace.com', 'medimaging_rsi', 'phdglam');

if (!$link) {
    die('Could not connect: ' . mysql_error());
}

$db_selected = mysql_select_db('medimaging_rsi', $link);
if (!$db_selected) {
    die ('Can\'t use the database table : ' . mysql_error());
}

$data = mysql_query("SELECT dat FROM trsi WHERE ip='$ip' ORDER BY dat DESC") or 
die(mysql_error());

$info = mysql_fetch_array( $data );

if (strlen($info['dat'])!=0) 
$diff = (strtotime($dat) - strtotime($info['dat'] )) % 60;

else
$diff = 30;

if ($diff > 20)
{
// Formulate Query
// This is the best way to perform a SQL query
// For more examples, see mysql_real_escape_string()
$query = sprintf("INSERT INTO `trsi` 

(`dat`,`gen`,`age`,`hgt`,`wgt`,`occ`,`ocy`,`keyb`,`mou`,`cig`,`unt`,`eml`,`Q1`,`Q2`,`Q3`,`Q4`,`Q5`,
`Q6`,`Q7`,`Q8`,`Q9`,`Q10`,`Q11`,`Q12`,`Q13`,`Q14`,`Q15`,`Q16`,`Q17`,`Q18`,`Q19`,`Q20`,`Q21`,`Q22`,`
Q23`,`Q24`,`P1`,`P2`,`P3`,`P4`,`P5`,`P6`,`P7`,`P8`,`P9`,`P10`,`P11`,`P12`,`P13`,`P14`,`P15`,`D1`,`D



2`,`D3`,`D4`,`D5`,`D6`,`D7`,`D8`,`ip`,`uid`) VALUES 
('%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s
','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%
s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','
%s',NULL)",

    mysql_real_escape_string($dat),
    mysql_real_escape_string($gen),
    mysql_real_escape_string($age),
    mysql_real_escape_string($hgt),
    mysql_real_escape_string($wgt),
    mysql_real_escape_string($occ),
    mysql_real_escape_string($ocy),
    mysql_real_escape_string($keyb),
    mysql_real_escape_string($mou),
    mysql_real_escape_string($cig),
    mysql_real_escape_string($unt),
    mysql_real_escape_string($eml),
    mysql_real_escape_string($Q1),
    mysql_real_escape_string($Q2),
    mysql_real_escape_string($Q3),
    mysql_real_escape_string($Q4),
    mysql_real_escape_string($Q5),
    mysql_real_escape_string($Q6),
    mysql_real_escape_string($Q7),
    mysql_real_escape_string($Q8),
    mysql_real_escape_string($Q9),
    mysql_real_escape_string($Q10),
    mysql_real_escape_string($Q11),
    mysql_real_escape_string($Q12),
    mysql_real_escape_string($Q13),
    mysql_real_escape_string($Q14),
    mysql_real_escape_string($Q15),
    mysql_real_escape_string($Q16),
    mysql_real_escape_string($Q17),
    mysql_real_escape_string($Q18),
    mysql_real_escape_string($Q19),
    mysql_real_escape_string($Q20),
    mysql_real_escape_string($Q21),
    mysql_real_escape_string($Q22),
    mysql_real_escape_string($Q23),
    mysql_real_escape_string($Q24),
    mysql_real_escape_string($P1),
    mysql_real_escape_string($P2),
    mysql_real_escape_string($P3),
    mysql_real_escape_string($P4),
    mysql_real_escape_string($P5),
    mysql_real_escape_string($P6),
    mysql_real_escape_string($P7),
    mysql_real_escape_string($P8),
    mysql_real_escape_string($P9),
    mysql_real_escape_string($P10),
    mysql_real_escape_string($P11),
    mysql_real_escape_string($P12),
    mysql_real_escape_string($P13),
    mysql_real_escape_string($P14),
    mysql_real_escape_string($P15),
    mysql_real_escape_string($D1),
    mysql_real_escape_string($D2),
    mysql_real_escape_string($D3),
    mysql_real_escape_string($D4),
    mysql_real_escape_string($D5),
    mysql_real_escape_string($D6),
    mysql_real_escape_string($D7),
    mysql_real_escape_string($D8),
    mysql_real_escape_string($ip));

// Perform Query
$result = mysql_query($query);

//$num_rows = mysql_num_rows($result);
   

mysql_close($link);
 
 //if ($num_rows == 0)

//   print "<BR> An error occurred on inserting the data on the database! <BR>Please 
try again later!";

//else 
//{

print '<BR><BR><BR><BR><BR><TR><TD align="center"><FONT color="green">';
print "Thank you for your cooperation!<BR><BR>We appreciate your effort!";



print "<BR><BR><BR><BR><BR></FORM></TD></TR></FONT>";
//}
} else

print '<BR><BR><P align="center">You have already submmited your 
questionnaire!</P><BR>';

} else {
print '<BR><A href="javascript:history.go(-1)" title="Return to the form and 

correct the errors"> Go Back and correct errors</A>';

}

?>

</FONT>
</TD></TR>
<TR><TD align="center">
<IMG src="bottom.jpg" align="center">
</TD></TR>
</TABLE>
</BODY>
</HTML>

PHP script for checking questionnaire answers and insert them on the database



Appendix 7 - Occupational conditions incidence questionnaire
results

A total of 218 subjects had responded to the questionnaire, which is around 1% of the

academic population of the University of Glamorgan. According to the gender 103 were males and

115 females (fig. 1).

Observing the age distribution of the respondents, the majority in both genders were in the

age group of 18 to 30 years old (fig. 2).

Fig. 1: Total respondents per gender.

Fig. 2: Age group distribution of the questionnaire respondents

per gender.



The fig. 3. shows the Body Mass Index class distribution of the questionnaire respondents

per gender. The majority of the respondents of both genders were in the BMI classes normal weight

(18.5 <= BMI < 25) and overweight (25 <= BMI < 30).

The respondents of the questionnaire were asked to select as occupation:

Administrative/Clerical, Lecturer, Student with occupation and Student. The majority of the male

respondents were students, the female respondents were mainly administratives, lecturers and

students (fig. 4).  

Fig. 3: The Body Mass Index class distribution of the

questionnaire respondents per gender.

Fig. 4: Occupational distribution of the questionnaire

respondents per gender.



The fig. 5 shows the smoking habits of the questionnaire respondents per gender, the

majority of both genders respondents are non-smokers.

 

Observing the alcohol habits of the questionnaire respondents per gender, the number of

alcohol consumers is greater in males than females, however is just a difference of 8% (fig. 6).

Fig. 5: The smoking habits of the questionnaire respondents

per gender.

Fig. 6: The alcohol habits of the questionnaire respondents per

gender.



The fig. 7 shows the average keyboard exposure time in hours per week of the questionnaire

respondents per gender, the majority of both genders spend and average between 20 and 40 hours

per week operating a computer keyboard.

Observing the average mouse exposure time in hours per week of the questionnaire

respondents per gender, the majority of both genders spend and average between 20 and 40 hours

per week operating a computer mouse.

Fig. 7: Exposure average time per week operating a computer

keyboard of the questionnaire respondents per gender.

Fig. 8: Exposure average time per week operating a computer

mouse of the questionnaire respondents per gender.



From the assessment of the reported conditions answers in the sample population, 36%

claim to be free of hand syndromes, 31% argue to have early signs of hand syndromes, 20% reveal

signs of hand syndromes and 13% indicated having severe symptoms of hand conditions (fig. 9). 

In fig. 10 is possible to observe that women are more affected than men by hand

occupational conditions.

Observing the distribution in age groups of the questionnaire respondents per gender that

indicated severe symptoms of hand occupational conditions (fig. 11), the women were more

affected in ages between 31 and 40 years old (between 51 and 65 years old were not considered as

demonstrative value because of the small sample)  and men in ages superior than 60 years old.

Fig. 9: Distribution of the questionnaire respondents per hand

condition stage. 

Fig. 10: Distribution of the questionnaire respondents per

gender and hand condition stage.



In fig. 12 is shown the distribution in BMI classes of the questionnaire respondents per

gender that indicated severe symptoms of hand occupational conditions, the women in the normal

weight and overweight classes were more affected (BMI classes underweight and obese were not

considered as demonstrative value because of the small sample)  and men in the overweight class.

Observing the distribution in occupations of the questionnaire respondents per gender that

indicated severe symptoms of hand occupational conditions (fig. 13), the women an administrative

occupation were more affected  and men being students with other occupation.

Fig. 11: Age group distribution of the questionnaire respondents per

gender that indicated severe symptoms of hand occupational conditions.

Fig. 12: BMI classes distribution of the questionnaire respondents per

gender that indicated severe symptoms of hand occupational conditions.



The fig. 14 shows the smoking habits characterisation of the questionnaire respondents per

gender that indicated severe symptoms of hand occupational conditions, women that are active

smokers are more affected. 

Observing the alcohol habits characterisation of the questionnaire respondents per gender

that indicated severe symptoms of hand occupational conditions (fig. 15), in women there are no

significant difference between consumer an non-consumer, in men the individuals that presented

Fig. 13: Occupations distribution of the questionnaire respondents per

gender that indicated severe symptoms of hand occupational conditions.

Fig. 14: Smoking habits of the questionnaire respondents per gender

that indicated severe symptoms of hand occupational conditions.



severe symptoms were alcohol consumers.

The fig. 16 shows the average keyboard exposure time in hours per week of the

questionnaire respondents per gender that indicated severe symptoms of hand occupational

conditions, women having more than 40 hours of exposure were more affected.

Observing the average keyboard exposure time in hours per week of the questionnaire

respondents per gender that indicated severe symptoms of hand occupational conditions (fig. 17),

women having more than 40 hours of exposure were more affected.

Fig. 15: Alcohol habits of the questionnaire respondents per gender

that indicated severe symptoms of hand occupational conditions.

Fig. 16: Exposure average time per week operating a computer

keyboard of the questionnaire respondents per gender that

indicated severe symptoms of hand occupational conditions.



Fig. 17: Exposure average time per week operating a computer

mouse of the questionnaire respondents per gender that

indicated severe symptoms of hand occupational conditions.
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Dear Volunteer, 

Thank you for agreeing to take part in this study. Your participation is greatly appreciated and the 

study could not take place without it. The study has obtained ethical approval from the governing 

body at the University of Glamorgan. We adhere to a strict protocol and therefore require a signed 

consent form from you. All information gathered will be strictly confidential and only accessed by 

the researchers responsible for this study. You cannot be recognised by the thermal images and will 

maintain anonymous.. 

If you have any queries or would like to discuss any aspect of this study please contact: 

• Professor Francis Ring, 01443 483717 (efring@glam.ac.uk), or

• Dr. Peter Plassmann, 01443 483486 (pplassma@glam.ac.uk).

I………………………………………………… understand that: 

1. I will be asked to attend the thermal physiology laboratory to have thermal images taken.  

2. I will be required to complete a Euro-QoL form where my body mass index (BMI), age and 

Euro-QoL score are recorded.

3. I will be required not to have eaten a large meal, consumed alcohol, smoked or participated 

in rigorous activity for two hours prior to thermal imaging.

4. I will be required not to apply cosmetics or ointments to the skin and to remove all jewelry 

and watches prior to thermal imaging.

5. I will be required to rest for twenty minutes prior to thermal imaging in order to obtain 

thermal equilibrium (allow the body to cool to a pre-set temperature).

6. I will be asked to undress up to a point I am comfortable with, in order to achieve clear 

images.

7. A member of staff from the Medical Imaging Research Group will administer the imaging.

8. I cannot be identified from the image and no personal data (name, d.o.b., etc,) are stored on 

a computer system.

9. I am free to request the presence of a chaperone throughout the procedure. 

10.I am free to withdraw from the study at any time

I have read this form and hereby give my consent to participate in this study. 

.....................................  ..................................... .............................................................

Print name Date Signature of volunteer 

.....................................  ..................................... .............................................................

Print name Date Signature of investigator 

In the highly unlikely event of any irregularity being detected in the pictures, do you wish us to 

inform you of this ? Yes / No (delete as appropriate)
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EURO-QOL ASSESSMENT SHEET 

______________________________________________________________________________________________________________________________________

Body weight       Age 
______________________________________________________________________________________________________________________________________

Body height 
______________________________________________________________________________________________________________________________________

Body mass index 
______________________________________________________________________________________________________________________________________

Injuries or surgery within the last 6 months  yes    no    
______________________________________________________________________________________________________________________________________

Medicaments  _________________________________________________ 

    _________________________________________________ 

    _________________________________________________ 

Please tick the appropriate field 

MOBILITY 

I have no problems in walking about  

I have some problems in walking about  

I am confined to bed  

SELF-CARE 

I have no problems with self-care  

I have some problems washing or dressing myself  

I am unable to wash or dress myself  

USUAL ACTIVITIES (e.g. Work, study, housework family or leisure activities) 

I have no problems with performing my usual activities  

I have some problems with performing my usual activities  

I am unable to perform my usual activities  

PAIN / DISCONFORT 

I have no pain or discomfort  

I have moderate pain or discomfort  

I have extreme pain or discomfort  

ANXIETY / DEPRESSION 

I am not anxious or depressed  

I am moderate anxious or depressed  

I am extremely anxious or depressed 

Note that 

this sheet is 

anonymous.

Its sole 

purpose is 

to establish 

volunteers’

BMI and to 

make sure 

that

volunteers

satisfy the 

inclusion

criteria for 

the study 

(i.e. be 

subjectively

in perfect 

health, had 

no

injuries/sur

gery within 

the last 6 

months,

take no 

medication
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Repetitive Strain Injury Screening Questionnaire 
(Standard Questionnaire by London Hazards Centre)

1

1 - http://www.lhc.org.uk/members/pubs/books/rsi/ch06a.htm   #1/2 

About you 

Name: 

Do you suffer from swellings, numbness, tingling, pins and needles, stiffness, aches or pain in 

any of the following parts of your body? (Tick appropriate boxes) 

 Swelling Numbness Tingling Stiffness Aches Pain

Back       

Neck       

Shoulders       

Arms       

Wrists       

Fingers       

Legs       

Other       

1. Have you visited your doctor about any of these complaints? _____________ 

2. If yes, what diagnosis or treatment did the doctor suggest?  

Diagnosis

______________________________________________________________

______________________________________________________________ 

Treatment 

___________________________________________________________

___________________________________________________________ 

About your job 

1. Do you have any of the following types of movement in your job? 

Types of movement Y N 

Repetitive movements of the arms and shoulders   

Repetitive movements of the feet and legs   

Frequent use of awkward wrist positions or bending the wrists   

A twisting, clothes-wringing motion to the hands and wrists    

Keeping parts of you body in a fixed position, with your muscles tense (e.g. holding your 

arms above your shoulders; holding your elbows out) 

Repeated stretching or reaching movements   

Repeated squeezing, screwing, pressing or twisting movements   
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Repetitive Strain Injury Screening Questionnaire 
(Standard Questionnaire by London Hazards Centre)

1

1 - http://www.lhc.org.uk/members/pubs/books/rsi/ch06a.htm   #2/2 

2. Is your workstation well designed for the job you do? 

Design Y N 

Can you sit square to do your job?   

Does your chair have good back support?   

Is your chair easily adjustable?   

Is your bench or desk too high or too low?   

Do you have difficulty in reaching the controls, levels, pedals, etc.?   

Do you have to stretch or reach repeatedly in a particular direction to carry out your work?   

3. Does a line management /work process determine the speed of your work or can you 

control it?  _________________________________________________________________ 

4. Is your output measured/is there a monitoring system in operation? __________________ 

5. What work-rate/piece-rate do you have to achieve? _______________________________ 

6. How often do you take a rest break? ___________________________________________ 

7. Can you think of any obvious and immediate improvements that could be made to your 

job? ______________________________________________________________________ 

8. Have you ever raised any of these problems with your boss/management? 

__________________________________________________________________________ 

9. Do you take painkillers in order to keep on working? ______________________________ 

10. Are there any other comments you would like to make? 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________ 

Date: ___/____/_______   Signature: _________________________________
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Hand Arm Vibration Syndrome Screening Questionnaire 
(Standard Questionnaire by UK HSE and NHS)

1,2

1 - http://www.hse.gov.uk/vibration/hav/advicetoemployers/inscrquest.pdf #1/2 
2 - www.derbyshirehps.nhs.uk/uploads/workingwell/Checklist/HAV_workplace_assessment.doc

Name : _____________________________________________________  
         
Ex or current smoker?   Y/N    Occupation: _________________________   

Have you ever used hand-held vibrating tools, machines or hand-fed processes in your 
job?  Y / N

If YES a) list year of first exposure: ____________ 

           b) when was the last time you used them?  _______________ 
          (detail work history later) 

1. Do you have any tingling of the fingers lasting more than 20 minutes after using 
vibrating equipment? Y / N

2. Do you have tingling of the fingers at any other time? Y / N

3. Do you wake at night with pain, tingling, or numbness in your hand or wrist? Y / N

4. Do one or more of your fingers go numb more than 20 minutes after using vibrating 
equipment? Y / N

5. Have your fingers gone white (see photo) * on cold exposure? Y / N

*Whiteness means a clear 
discoloration of the fingers with a 
sharp edge, usually followed by a 
red flush.



MEDICAL IMAGING RESEARCH UNIT 
DEPARTMENT OF COMPUTING AND MATHEMATICAL SCIENCES 

 FACULTY OF ADVANCED TECHNOLOGY 

UNIVERSITY OF GLAMORGAN 

Hand Arm Vibration Syndrome Screening Questionnaire 
(Standard Questionnaire by UK HSE and NHS)

1,2

1 - http://www.hse.gov.uk/vibration/hav/advicetoemployers/inscrquest.pdf #2/2 
2 - www.derbyshirehps.nhs.uk/uploads/workingwell/Checklist/HAV_workplace_assessment.doc

Mark on the sketch the effected parts. 

a) White colour or 

BLANCHING

b) TINGLING or 

NUMBNESS

6. If Yes to 5, do you have difficulty re-warming them when leaving the cold? Y / N

7. Do your fingers go white at any other time? Y / N

8. Are you experiencing any other problems with the muscles or joints of the hands or 
arms? Y / N

9. Do you have difficulty picking up very small objects e.g. screws or buttons or opening 
tight jars? Y / N

10. Have you ever had a neck, arm or hand injury or operation? Y / N
If so give details ______________________________________________________ 

11. Have you ever had any serious diseases of joints, skin, nerves, heart or blood 
vessels? Y / N 
If so give details ______________________________________________________ 

12. Are you on any long-term medication? Y / N
      If so give details ______________________________________________________ 

Date: ___/____/_______   Signature: _________________________________ 
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